1
|
Wang X, Shen Y, Wei W, Bai Y, Li P, Ding K, Zhou Y, Xie J, Zhang X, Guo Z, Wang M. Alterations of Regional Homogeneity and Functional Connectivity in Different Hoehn and Yahr Stages of Parkinson's Disease. Brain Res Bull 2024:111110. [PMID: 39486465 DOI: 10.1016/j.brainresbull.2024.111110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
PURPOSE Using regional homogeneity (ReHo) and functional connectivity (FC) to assess alterations in brain function and their potential relation to different Hoehn and Yahr (H&Y) stages in Parkinson's disease (PD). MATERIALS AND METHODS 66 patients with PD and 57 age- and sex-matched healthy control (HC) participants were recruited. All subjects underwent clinical assessments and resting-state functional magnetic resonance imaging (rs-fMRI) scanning. We analyzed alterations in regional brain activity using ReHo analyses in all subjects and further explored their relationship to disease severity. Finally, the brain region significantly associated with disease severity was used as a seed point to analyze the FC changes between it and other brain regions in the whole brain. RESULTS Compared with HC participants, PD patients showed a significant decrease ReHo in the sensorimotor network (bilateral precentral and postcentral gyrus). The ReHo value of the left precentral gyrus in PD patients decreased with increasing H&Y stage and correlated negatively with Unified Parkinson's Disease Rating Scale (UPDRS) III scores. Further, FC analysis of the left precentral gyrus as a region of interest showed that functional activity between the left precentral gyrus and sensorimotor network, default network, and visual network was decreased. CONCLUSION The left precentral gyrus plays an important role in the pathophysiological mechanisms of PD patients, and this finding further highlights the potential of the primary motor cortex (M1) as a non-invasive therapeutic target for neuromodulation in PD patients.
Collapse
Affiliation(s)
- Xinhui Wang
- Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China
| | - Yu Shen
- Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China
| | - Wei Wei
- Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China
| | - Yan Bai
- Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China
| | - Panlong Li
- Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China
| | - Kaiyue Ding
- Department of Medical Imaging, Henan University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yihang Zhou
- Department of Medical Imaging, Xinxiang Medical University & Henan Provincial People's Hospital, Zhengzhou, China
| | - Jiapei Xie
- Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China
| | | | - Zhiping Guo
- Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China; Health Management Center of Henan Province, Zhengzhou University People's Hospital & FuWai Central China Cardiovascular Hospital, Zhengzhou, China.
| | - Meiyun Wang
- Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China; Laboratory of Brain Science and Brain-Like Intelligence Technology, Biomedical Research Institute, Henan Academy of Sciences, Zhengzhou, China.
| |
Collapse
|
2
|
Zifman N, Levy-Lamdan O, Hiller T, Thaler A, Dolev I, Mirelman A, Fogel H, Hallett M, Maidan I. TMS-evoked potentials unveil occipital network involvement in patients diagnosed with Parkinson's disease within 5 years of inclusion. NPJ Parkinsons Dis 2024; 10:182. [PMID: 39349492 PMCID: PMC11443052 DOI: 10.1038/s41531-024-00793-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 09/05/2024] [Indexed: 10/02/2024] Open
Abstract
Distinguishing Parkinson's disease (PD) subgroups may be achieved by observing network responses to external stimuli. We compared TMS-evoked potential (TEP) measures from stimulation of bilateral motor cortex (M1), dorsolateral prefrontal cortex (DLPFC), and visual cortex (V1) between 62 PD patients (age: 69.9 ± 7.5) and 76 healthy controls (age: 69.2 ± 4.3) using a TMS-EEG protocol. TEP measures were analyzed using two-way ANCOVA adjusted for MOCA. PD patients were divided into tremor dominant (TD), non-tremor dominant (NTD) and rapid disease progression (RDP) subgroups. PD patients showed lower wide-waveform adherence (wWFA) (p = 0.025) and interhemispheric connectivity (IHCCONN) (p < 0.001) compared to healthy controls. Lower occipital IHCCONN correlated with advanced disease stage (r = -0.37, p = 0.0039). The RDP and NTD groups showed lower wWFA in response to occipital stimulation than the TD group (p = 0.005). Occipital TEP measures identified RDP patients with 85% accuracy. These findings demonstrate occipital network involvement in early PD stages, suggesting that TEP measures offer insights into altered networks in PD subgroups.
Collapse
Affiliation(s)
- Noa Zifman
- QuantalX Neuroscience Ltd., Kfar Saba, Israel
| | | | - Tal Hiller
- QuantalX Neuroscience Ltd., Kfar Saba, Israel
| | - Avner Thaler
- Laboratory of Early Markers of Neurodegeneration (LEMON), Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | | | - Anat Mirelman
- Laboratory of Early Markers of Neurodegeneration (LEMON), Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Hilla Fogel
- QuantalX Neuroscience Ltd., Kfar Saba, Israel
| | - Mark Hallett
- QuantalX Neuroscience Ltd., Kfar Saba, Israel
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Inbal Maidan
- Laboratory of Early Markers of Neurodegeneration (LEMON), Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
3
|
Bai X, Guo T, Guan X, Zhou C, Wu J, Wu H, Liu X, Wu C, Chen J, Wen J, Qin J, Tan S, DuanMu X, Gu L, Gao T, Huang P, Zhang B, Xu X, Zheng X, Zhang M. Cortical microstructural alterations in different stages of Parkinson's disease. Brain Imaging Behav 2024:10.1007/s11682-024-00931-5. [PMID: 39331345 DOI: 10.1007/s11682-024-00931-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
To explore the cortical microstructural alterations in Parkinson's disease (PD) at different stages. 149 PD patients and 76 healthy controls were included. PD patients were divided into early stage PD (EPD) (Hoehn-Yahr stage ≤ 2) and moderate-to-late stage PD (MLPD) (Hoehn-Yahr stage ≥ 2.5) according to their Hoehn-Yahr stages. All participants underwent two-shell diffusion MRI and the images were fitted to Neurite Orientation Dispersion and Density Imaging (NODDI) model to obtain the neurite density index (NDI) and orientation dispersion index (ODI) to reflect the cortical microstructure. We used gray matter-based spatial statistics method to compare the voxel-wise cortical NODDI metrics between groups. Partial correlation was used to correlate the NODDI metrics and global composite outcome in PD patients. Compared with healthy controls, EPD patients showed lower ODI in widespread regions, covering bilateral frontal, temporal, parietal and occipital cortices, as well as regional lower NDI in bilateral cingulate and frontal lobes. Compared with healthy controls, MLPD patients showed lower ODI and NDI in more widespread regions. Compared with EPD patients, MLPD patients showed lower ODI in bilateral temporal, parietal and occipital cortices, where the ODI values were negatively correlated with global composite outcome in PD patients. PD patients showed widespread cortical microstructural degeneration, characterized by reduced neurite density and orientation dispersion, and the cortical neuritic microstructure exhibit progressive degeneration during the progression of PD.
Collapse
Grants
- 82271935, 81971577, 82171888, 82202091 and 82001767 the National Natural Science Foundation of China
- 82271935, 81971577, 82171888, 82202091 and 82001767 the National Natural Science Foundation of China
- 82271935, 81971577, 82171888, 82202091 and 82001767 the National Natural Science Foundation of China
- 82271935, 81971577, 82171888, 82202091 and 82001767 the National Natural Science Foundation of China
- LY22H180002 and LQ21H180008 the Natural Science Foundation of Zhejiang Province
- LY22H180002 and LQ21H180008 the Natural Science Foundation of Zhejiang Province
- 2016YFC1306600 the 13th Five-year Plan for National Key Research and Development Program of China
Collapse
Affiliation(s)
- Xueqin Bai
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Jingjing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Haoting Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Xiaocao Liu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Chengqing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Jingwen Chen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Jiaqi Wen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Jianmei Qin
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Sijia Tan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Xiaojie DuanMu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Luyan Gu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Ting Gao
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Xiangwu Zheng
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China.
| |
Collapse
|
4
|
Wu J, Yang M, Zhang Y, Ren YK, Ding CW, Ying CC, Wu QR, Wang CS, Sheng YJ, Mao P, Chen XF, Zhang YC, Liu CF. Changes in the correlation between substantia nigra hyperechogenicity area and Parkinson's disease severity at different Hoehn and Yahr stages. Neurol Sci 2024:10.1007/s10072-024-07697-0. [PMID: 39090356 DOI: 10.1007/s10072-024-07697-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND It is debatable whether the area of substantia nigra hyperechogenicity (SN+) in transcranial sonography (TCS) is related to Parkinson's disease (PD) severity. Iron deposition, which is associated with the formation of SN+, may have different effects on dopamine nerve function as PD progresses. However, little research has explored the association between the SN + area and disease severity of PD in stages. METHODS 612 PD patients with sufficient bone window were retrospectively included from a PD database, and disease severity was assessed by the Unified Parkinson's Disease Rating Scale (UPDRS) scores. Based on the Hoehn and Yahr (H-Y) scale, we classified the patients into seven groups (H-Y stage 1, 1.5, 2, 2.5, 3, 4, and 5) and then analyzed the correlations between the SN + area and the UPDRS scores separately. RESULTS Our results indicated a U-shaped relationship between the initial-SN + area and disease severity in PD: In the H-Y stage 1 group, the initial-SN + area was negatively correlated with the UPDRS total score (r = - 0.456, p < 0.001) and UPDRS-III score (r = - 0.497, p < 0.001). No correlation was observed in the groups of H-Y stages 1.5, 2, and 2.5. In the groups of H-Y stage ≥ 3, the initial-SN + area was positively correlated with the UPDRS total score and UPDRS-III score, with strongest correlation in the H-Y stage 5 group (all p values < 0.05). Moreover, the larger SN + area and average SN + area showed a similar evolutionary trend of correlation with UPDRS total score and UPDRS-III score. CONCLUSIONS Our study indicated a U-shaped correlation between the SN + area with the UPDRS total score and UPDRS-III score as H-Y stage progressed. The evolution of the correlation may reflect the evolution of underlying pathological mechanisms related to iron deposition in the substantia nigra.
Collapse
Affiliation(s)
- Jian Wu
- Department of Ultrasound, The Second Affiliated Hospital of Soochow University, 1055, Road Sanxiang, Suzhou, 215004, Jiangsu, China
| | - Min Yang
- Department of Ultrasound, The Second Affiliated Hospital of Soochow University, 1055, Road Sanxiang, Suzhou, 215004, Jiangsu, China
| | - Ying Zhang
- Department of Ultrasound, The Second Affiliated Hospital of Soochow University, 1055, Road Sanxiang, Suzhou, 215004, Jiangsu, China
| | - Ya Kun Ren
- Department of Ultrasound, The Second Affiliated Hospital of Soochow University, 1055, Road Sanxiang, Suzhou, 215004, Jiangsu, China
| | - Chang Wei Ding
- Department of Ultrasound, The Second Affiliated Hospital of Soochow University, 1055, Road Sanxiang, Suzhou, 215004, Jiangsu, China
| | - Chen Chu Ying
- Department of Ultrasound, The Second Affiliated Hospital of Soochow University, 1055, Road Sanxiang, Suzhou, 215004, Jiangsu, China
| | - Qiao Rui Wu
- Department of Ultrasound, The Second Affiliated Hospital of Soochow University, 1055, Road Sanxiang, Suzhou, 215004, Jiangsu, China
| | - Cai Shan Wang
- Department of Ultrasound, The Second Affiliated Hospital of Soochow University, 1055, Road Sanxiang, Suzhou, 215004, Jiangsu, China
| | - Yu Jing Sheng
- Department of Ultrasound, The Second Affiliated Hospital of Soochow University, 1055, Road Sanxiang, Suzhou, 215004, Jiangsu, China
| | - Pan Mao
- Department of Ultrasound, The Second Affiliated Hospital of Soochow University, 1055, Road Sanxiang, Suzhou, 215004, Jiangsu, China
| | - Xiao Fang Chen
- Department of Ultrasound, The Second Affiliated Hospital of Soochow University, 1055, Road Sanxiang, Suzhou, 215004, Jiangsu, China
| | - Ying Chun Zhang
- Department of Ultrasound, The Second Affiliated Hospital of Soochow University, 1055, Road Sanxiang, Suzhou, 215004, Jiangsu, China.
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
5
|
Yoo HS, Kim HK, Lee HS, Yoon SH, Na HK, Kang SW, Lee JH, Ryu YH, Lyoo CH. Predictors associated with the rate of progression of nigrostriatal degeneration in Parkinson's disease. J Neurol 2024; 271:5213-5222. [PMID: 38839638 DOI: 10.1007/s00415-024-12477-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/20/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Parkinson's disease (PD) manifests as a wide variety of clinical phenotypes and its progression varies greatly. However, the factors associated with different disease progression remain largely unknown. METHODS In this retrospective cohort study, we enrolled 113 patients who underwent 18F-FP-CIT PET scan twice. Given the negative exponential progression pattern of dopamine loss in PD, we applied the natural logarithm to the specific binding ratio (SBR) of two consecutive 18F-FP-CIT PET scans and conducted linear mixed model to calculate individual slope to define the progression rate of nigrostriatal degeneration. We investigated the clinical and dopamine transporter (DAT) availability patterns associated with the progression rate of dopamine depletion in each striatal sub-region. RESULTS More symmetric parkinsonism, the presence of dyslipidemia, lower K-MMSE total score, and lower anteroposterior gradient of the mean putaminal SBR were associated with faster progression rate of dopamine depletion in the caudate nucleus. More symmetric parkinsonism and lower anteroposterior gradient of the mean putaminal SBR were associated with faster depletion of dopamine in the anterior putamen. Older age at onset, more symmetric parkinsonism, the presence of dyslipidemia, and lower anteroposterior gradient of the mean putaminal SBR were associated with faster progression rate of dopamine depletion in the posterior putamen. Lower striatal mean SBR predicted the development of LID, while lower mean SBR in the caudate nuclei predicted the development of dementia. DISCUSSION Our results suggest that the evaluation of baseline clinical features and patterns of DAT availability can predict the progression of PD and its prognosis.
Collapse
Affiliation(s)
- Han Soo Yoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, 20 Eonjuro 63-gil, Gangnam-gu, Seoul, South Korea
| | - Han-Kyeol Kim
- Department of Neurology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, South Korea
| | - So Hoon Yoon
- Department of Neurology, International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon, South Korea
| | - Han Kyu Na
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, 20 Eonjuro 63-gil, Gangnam-gu, Seoul, South Korea
| | - Sung Woo Kang
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, 20 Eonjuro 63-gil, Gangnam-gu, Seoul, South Korea
| | - Jae-Hoon Lee
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 20 Eonjuro 63-gil, Gangnam-gu, Seoul, South Korea
| | - Young Hoon Ryu
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 20 Eonjuro 63-gil, Gangnam-gu, Seoul, South Korea.
| | - Chul Hyoung Lyoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, 20 Eonjuro 63-gil, Gangnam-gu, Seoul, South Korea.
| |
Collapse
|
6
|
Cox E, Wade R, Hodgson R, Fulbright H, Phung TH, Meader N, Walker S, Rothery C, Simmonds M. Devices for remote continuous monitoring of people with Parkinson's disease: a systematic review and cost-effectiveness analysis. Health Technol Assess 2024; 28:1-187. [PMID: 39021200 PMCID: PMC11331379 DOI: 10.3310/ydsl3294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Background Parkinson's disease is a brain condition causing a progressive loss of co ordination and movement problems. Around 145,500 people have Parkinson's disease in the United Kingdom. Levodopa is the most prescribed treatment for managing motor symptoms in the early stages. Patients should be monitored by a specialist every 6-12 months for disease progression and treatment of adverse effects. Wearable devices may provide a novel approach to management by directly monitoring patients for bradykinesia, dyskinesia, tremor and other symptoms. They are intended to be used alongside clinical judgement. Objectives To determine the clinical and cost-effectiveness of five devices for monitoring Parkinson's disease: Personal KinetiGraph, Kinesia 360, KinesiaU, PDMonitor and STAT-ON. Methods We performed systematic reviews of all evidence on the five devices, outcomes included: diagnostic accuracy, impact on decision-making, clinical outcomes, patient and clinician opinions and economic outcomes. We searched MEDLINE and 12 other databases/trial registries to February 2022. Risk of bias was assessed. Narrative synthesis was used to summarise all identified evidence, as the evidence was insufficient for meta-analysis. One included trial provided individual-level data, which was re-analysed. A de novo decision-analytic model was developed to estimate the cost-effectiveness of Personal KinetiGraph and Kinesia 360 compared to standard of care in the UK NHS over a 5-year time horizon. The base-case analysis considered two alternative monitoring strategies: one-time use and routine use of the device. Results Fifty-seven studies of Personal KinetiGraph, 15 of STAT-ON, 3 of Kinesia 360, 1 of KinesiaU and 1 of PDMonitor were included. There was some evidence to suggest that Personal KinetiGraph can accurately measure bradykinesia and dyskinesia, leading to treatment modification in some patients, and a possible improvement in clinical outcomes when measured using the Unified Parkinson's Disease Rating Scale. The evidence for STAT-ON suggested it may be of value for diagnosing symptoms, but there is currently no evidence on its clinical impact. The evidence for Kinesia 360, KinesiaU and PDMonitor is insufficient to draw any conclusions on their value in clinical practice. The base-case results for Personal KinetiGraph compared to standard of care for one-time and routine use resulted in incremental cost-effectiveness ratios of £67,856 and £57,877 per quality-adjusted life-year gained, respectively, with a beneficial impact of the Personal KinetiGraph on Unified Parkinson's Disease Rating Scale domains III and IV. The incremental cost-effectiveness ratio results for Kinesia 360 compared to standard of care for one-time and routine use were £38,828 and £67,203 per quality-adjusted life-year gained, respectively. Limitations The evidence was limited in extent and often low quality. For all devices, except Personal KinetiGraph, there was little to no evidence on the clinical impact of the technology. Conclusions Personal KinetiGraph could reasonably be used in practice to monitor patient symptoms and modify treatment where required. There is too little evidence on STAT-ON, Kinesia 360, KinesiaU or PDMonitor to be confident that they are clinically useful. The cost-effectiveness of remote monitoring appears to be largely unfavourable with incremental cost-effectiveness ratios in excess of £30,000 per quality-adjusted life-year across a range of alternative assumptions. The main driver of cost-effectiveness was the durability of improvements in patient symptoms. Study registration This study is registered as PROSPERO CRD42022308597. Funding This award was funded by the National Institute for Health and Care Research (NIHR) Evidence Synthesis programme (NIHR award ref: NIHR135437) and is published in full in Health Technology Assessment; Vol. 28, No. 30. See the NIHR Funding and Awards website for further award information.
Collapse
Affiliation(s)
- Edward Cox
- CHE Technology Assessment Group, University of York, York, UK
| | - Ros Wade
- CRD Technology Assessment Group, University of York, York, UK
| | - Robert Hodgson
- CRD Technology Assessment Group, University of York, York, UK
| | - Helen Fulbright
- CRD Technology Assessment Group, University of York, York, UK
| | - Thai Han Phung
- CHE Technology Assessment Group, University of York, York, UK
| | - Nicholas Meader
- CRD Technology Assessment Group, University of York, York, UK
| | - Simon Walker
- CHE Technology Assessment Group, University of York, York, UK
| | - Claire Rothery
- CHE Technology Assessment Group, University of York, York, UK
| | - Mark Simmonds
- CRD Technology Assessment Group, University of York, York, UK
| |
Collapse
|
7
|
Bhanupriya R, Haridoss M, Lakshmi GS, Bagepally BS. Health-related quality of life in Parkinson's disease: systematic review and meta-analysis of EuroQol (EQ-5D) utility scores. Qual Life Res 2024; 33:1781-1793. [PMID: 38581635 DOI: 10.1007/s11136-024-03646-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 04/08/2024]
Abstract
INTRODUCTION Evaluating the Health-related quality of life (HRQoL) of individuals with Parkinson's disease (PD) holds significant importance in clinical and research settings. The EQ-5D is a widely recognized tool for comprehensive measurement of HRQoL using utility values. This study aims to systematically review and synthesize EQ-5D utility values from existing literature on patients with PD and their caregivers. METHODS We conducted a systematic search for studies that provided EQ-5D utility scores for patients with PD, using PubMed-Medline, Scopus, and Embase and selected the studies. The selected studies underwent systematic review, including an assessment of their quality. We performed a meta-analysis using a random-effect model and conducted a meta-regression analysis to investigate sources of heterogeneity among the studies. RESULTS The search result of 13,417 articles that were reviewed, 130 studies with 33,914 participants were selected for systematic review, and 79 studies were included for meta-analysis. The pooled EQ-5D utility values and visual analog score (VAS) among PD were 62.72% (60.53-64.93, I2 = 99.56%) and 0.60 (0.55-0.65, I2 = 99.81%), respectively. The pooled scores for caregivers' EQ-VAS and EQ-5D utility were 70.10% (63.99-76.20, I2 = 98.25%) and 0.71 (0.61-0.81, I2 = 94.88%), respectively. Disease duration (P < 0.05) showed a negative correlation with EQ-5D utility values on meta-regression. CONCLUSION The pooled utility values of PD and their caregivers help to understand their HRQoL and aid in conducting health economics research. The negative association between disease duration and utility values highlights the evolving nature of HRQoL challenges, suggesting the need for appropriate long-term disease management.
Collapse
Affiliation(s)
| | | | | | - Bhavani Shankara Bagepally
- ICMR-National Institute of Epidemiology, Chennai, India.
- Health Technology Assessment Resource Centre ICMR-NIE, ICMR-National Institute of Epidemiology, Ayapakkam, Chennai, 600077, India.
| |
Collapse
|
8
|
Almeida LRS, Vasconcelos L, Valenca GT, Carvalho K, Pinto EB, Oliveira-Filho J, Canning CG. Psychometric properties of the Brazilian-Portuguese version of the Falls Behavioral Scale in people with Parkinson's disease. Disabil Rehabil 2024; 46:2684-2690. [PMID: 37403370 DOI: 10.1080/09638288.2023.2230132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/23/2023] [Indexed: 07/06/2023]
Abstract
PURPOSE To verify the psychometric properties of the Brazilian-Portuguese version of the Falls Behavioral (FaB-Brazil) Scale in Parkinson's disease (PD). MATERIAL AND METHODS Participants (n = 96) were assessed by disease-specific, self-report and functional mobility measures. Internal consistency of the FaB-Brazil scale was evaluated using Cronbach's alpha and inter-rater and test-retest reliability using intraclass correlation coefficients (ICC). The standard error of measurement (SEM), minimal detectable change (MDC), ceiling and floor effects, and convergent and discriminative validity were evaluated. RESULTS Internal consistency was moderate (α = 0.77). Excellent inter-rater (ICC = 0.90; p < 0.001) and test-retest (ICC = 0.91; p < 0.001) reliability were found. The SEM was 0.20 and MDC was 0.38. Ceiling and floor effects were not found. Convergent validity was established by the positive correlations between the FaB-Brazil scale and age, modified Hoehn and Yahr, PD duration, Movement Disorders Society-Unified Parkinson's Disease Rating Scale, Motor Aspects of Experiences of Daily Living, Timed Up & Go and 8-item Parkinson's Disease Questionnaire, and negative correlations between the FaB-Brazil scale and community mobility, Schwab & England, and Activities-specific Balance Confidence scale. Females showed greater protective behaviors than males; recurrent fallers showed greater protective behaviors than non-recurrent fallers (p < 0.05). CONCLUSIONS The FaB-Brazil scale is reliable and valid for assessing people with PD.
Collapse
Affiliation(s)
- Lorena Rosa S Almeida
- Movement Disorders and Parkinson's Disease Clinic, Roberto Santos General Hospital/SESAB, Salvador, Bahia, Brazil
- Bahiana School of Medicine and Public Health, Motor Behavior and Neurorehabilitation Research Group, Salvador, Bahia, Brazil
| | - Lara Vasconcelos
- Postgraduate Program in Health Sciences, Federal University of Bahia School of Medicine, Salvador, Bahia, Brazil
| | - Guilherme T Valenca
- Movement Disorders and Parkinson's Disease Clinic, Roberto Santos General Hospital/SESAB, Salvador, Bahia, Brazil
- Bahiana School of Medicine and Public Health, Salvador, Bahia, Brazil
| | - Kárin Carvalho
- Bahiana School of Medicine and Public Health, Motor Behavior and Neurorehabilitation Research Group, Salvador, Bahia, Brazil
- Postgraduate Program in Health Sciences, Federal University of Bahia School of Medicine, Salvador, Bahia, Brazil
| | - Elen Beatriz Pinto
- Bahiana School of Medicine and Public Health, Motor Behavior and Neurorehabilitation Research Group, Salvador, Bahia, Brazil
- Department of Life Sciences (DCV), Bahia State University, Salvador, Bahia, Brazil
| | - Jamary Oliveira-Filho
- Discipline of Physiotherapy, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Colleen G Canning
- Discipline of Physiotherapy, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| |
Collapse
|
9
|
Juwara L, Cressatti M, Galindez JM, Drammeh PS, Velly AM, Schipper HM. Development and internal validation of a prognostic model for loss of balance and falls in mid- to late-stage Parkinson's disease. Neurol Sci 2024; 45:2027-2033. [PMID: 38060035 DOI: 10.1007/s10072-023-07220-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Mid- to late-stage Parkinson's disease (PD) is often linked with worsened and significant impairment of motor activities, but existing prognostic markers do not adequately capture the risk of loss of balance in PD patients. This study aims to develop a risk prognostic model for mid- to late-stage PD and identify prognostic factors that are indicative of impending loss of balance and falls. METHODS The study included 307 participants of which 75 were diagnosed with idiopathic PD and 232 were neurological or non-neurological controls. Among the PD group, 46 were early-stage (Hoehn and Yahr [H&Y] = 1,2) with no significant loss of balance while 29 were mid- to late-stage (H&Y = 3,4,5) which is characterized by loss of balance and falls. Multivariable logistic regression (MLR) was used to develop a prognostic model for mid- to late-stage PD. Model discrimination was assessed by ROC curves. The model was internally validated through bootstrapping and calibration plots. RESULTS The relevant factors identified and included in the final MLR model were shortness of breath, age, swollen joints, heme oxygenase-1 (HO-1) protein, and total salivary protein. The model had an AUC of 0.82 (95% CI = 0.71-0.92) and was well calibrated (calibration slope = 0.77, intercept = 0.03). The likelihood of shortness of breath (OR = 7.91, 95% CI = 1.63-45.12) was significantly higher among mid- to late-stage PD than early-stage. Age and total salivary protein were also significantly higher among mid- to late-stage PD. CONCLUSION The MLR prognostic model for mid- to late-stage PD may assist physicians in identifying patients at high risk for loss of balance and falls.
Collapse
Affiliation(s)
- Lamin Juwara
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Quantitative Life Sciences, McGill University, Montreal, Quebec, Canada
| | - Marisa Cressatti
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Julia M Galindez
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Pa Sallah Drammeh
- Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Ana M Velly
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Dentistry, Jewish General Hospital, Montreal, Quebec, Canada
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Hyman M Schipper
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
10
|
Stamatelos P, Economou A, Yannis G, Stefanis L, Papageorgiou SG. Parkinson's Disease and Driving Fitness: A Systematic Review of the Existing Guidelines. Mov Disord Clin Pract 2024; 11:198-208. [PMID: 38164044 PMCID: PMC10928339 DOI: 10.1002/mdc3.13942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 09/21/2023] [Accepted: 11/05/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Motor/nonmotor symptomatology and antiparkinsonian drugs deteriorate the driving ability of Parkinson's disease (PD) patients. OBJECTIVES Treating neurologists are frequently asked to evaluate driving fitness of their patients and provide evidence-based consultation. Although several guidelines have been published, the exact procedure along with the neurologist's role in this procedure remains obscure. METHODS We systematically reviewed the existing guidelines, regarding driving fitness evaluation of PD patients. We searched MEDLINE and Google Scholar and identified 109 articles. After specified inclusion criteria were applied, 15 articles were included (nine national guidelines, five recommendation papers, and one consensus statement). RESULTS The treating physician is proposed as the initial evaluator in 8 of 15 articles (neurologist in 2 articles) and may refer patients for a second-line evaluation. The evaluation should include motor, cognitive, and visual assessment (proposed in 15, 13, and 8 articles, respectively). Specific motor tests are proposed in eight articles (cutoff values in four), whereas specific neuropsychological and visual tests are proposed in seven articles each (cutoff values in four and three articles, respectively). Conditional licenses are proposed in 11 of 15 articles, to facilitate driving for PD patients. We summarized our findings on a graphic of the procedure for driving fitness evaluation of PD patients. CONCLUSIONS Neurological aspects of driving fitness evaluation of PD patients are recognized in most of the guidelines. Motor, neuropsychological, visual, and sleep assessment and medication review are key components. Clear-cut instructions regarding motor, neuropsychological, and visual tests and relative cutoff values are lacking. Conditional licenses and periodical reevaluation of driving fitness are important safety measures.
Collapse
Affiliation(s)
- Petros Stamatelos
- 1st Department of NeurologyMedical School, National and Kapodistrian University of Athens, Eginition HospitalAthensGreece
| | - Alexandra Economou
- Department of PsychologyNational and Kapodistrian University of AthensAthensGreece
| | - George Yannis
- Department of Transportation Planning and EngineeringSchool of Civil Engineering, National Technical University of AthensAthensGreece
| | - Leonidas Stefanis
- 1st Department of NeurologyMedical School, National and Kapodistrian University of Athens, Eginition HospitalAthensGreece
| | - Sokratis G. Papageorgiou
- 1st Department of NeurologyMedical School, National and Kapodistrian University of Athens, Eginition HospitalAthensGreece
| |
Collapse
|
11
|
Huang J, Lin L, Yu F, He X, Song W, Lin J, Tang Z, Yuan K, Li Y, Huang H, Pei Z, Xian W, Yu-Chian Chen C. Parkinson's severity diagnosis explainable model based on 3D multi-head attention residual network. Comput Biol Med 2024; 170:107959. [PMID: 38215619 DOI: 10.1016/j.compbiomed.2024.107959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/31/2023] [Accepted: 01/01/2024] [Indexed: 01/14/2024]
Abstract
The severity evaluation of Parkinson's disease (PD) is of great significance for the treatment of PD. However, existing methods either have limitations based on prior knowledge or are invasive methods. To propose a more generalized severity evaluation model, this paper proposes an explainable 3D multi-head attention residual convolution network. First, we introduce the 3D attention-based convolution layer to extract video features. Second, features will be fed into LSTM and residual backbone networks, which can be used to capture the contextual information of the video. Finally, we design a feature compression module to condense the learned contextual features. We develop some interpretable experiments to better explain this black-box model so that it can be better generalized. Experiments show that our model can achieve state-of-the-art diagnosis performance. The proposed lightweight but effective model is expected to serve as a suitable end-to-end deep learning baseline in future research on PD video-based severity evaluation and has the potential for large-scale application in PD telemedicine. The source code is available at https://github.com/JackAILab/MARNet.
Collapse
Affiliation(s)
- Jiehui Huang
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Lishan Lin
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, 510080, China
| | - Fengcheng Yu
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xuedong He
- School of Computer Science and Technology, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Wenhui Song
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jiaying Lin
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zhenchao Tang
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Kang Yuan
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, 510080, China
| | - Yucheng Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, 510080, China
| | - Haofan Huang
- Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, 510080, China.
| | - Wenbiao Xian
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, 510080, China.
| | - Calvin Yu-Chian Chen
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China; AI for Science (AI4S)-Preferred Program, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China; School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China; Department of Medical Research, China Medical University Hospital, Taichung, 40447, Taiwan; Department of Bioinformatics and Medical Engineering, Asia University, Taichung, 41354, Taiwan.
| |
Collapse
|
12
|
Amo-Salas J, Olivares-Gil A, García-Bustillo Á, García-García D, Arnaiz-González Á, Cubo E. Computer Vision for Parkinson's Disease Evaluation: A Survey on Finger Tapping. Healthcare (Basel) 2024; 12:439. [PMID: 38391815 PMCID: PMC10888014 DOI: 10.3390/healthcare12040439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder whose prevalence has steadily been rising over the years. Specialist neurologists across the world assess and diagnose patients with PD, although the diagnostic process is time-consuming and various symptoms take years to appear, which means that the diagnosis is prone to human error. The partial automatization of PD assessment and diagnosis through computational processes has therefore been considered for some time. One well-known tool for PD assessment is finger tapping (FT), which can now be assessed through computer vision (CV). Artificial intelligence and related advances over recent decades, more specifically in the area of CV, have made it possible to develop computer systems that can help specialists assess and diagnose PD. The aim of this study is to review some advances related to CV techniques and FT so as to offer insight into future research lines that technological advances are now opening up.
Collapse
Affiliation(s)
- Javier Amo-Salas
- Escuela Politécnica Superior, Departamento de Ingeniería Informática, Universidad de Burgos, 09001 Burgos, Spain
| | - Alicia Olivares-Gil
- Escuela Politécnica Superior, Departamento de Ingeniería Informática, Universidad de Burgos, 09001 Burgos, Spain
| | - Álvaro García-Bustillo
- Facultad de Ciencias de la Salud, Departamento de Ciencias de la Salud, Universidad de Burgos, 09001 Burgos, Spain
| | - David García-García
- Escuela Politécnica Superior, Departamento de Ingeniería Informática, Universidad de Burgos, 09001 Burgos, Spain
| | - Álvar Arnaiz-González
- Escuela Politécnica Superior, Departamento de Ingeniería Informática, Universidad de Burgos, 09001 Burgos, Spain
| | - Esther Cubo
- Servicio de Neurología, Hospital Universitario de Burgos, 09006 Burgos, Spain
| |
Collapse
|
13
|
Murueta-Goyena A, Romero-Bascones D, Teijeira-Portas S, Urcola JA, Ruiz-Martínez J, Del Pino R, Acera M, Petzold A, Wagner SK, Keane PA, Ayala U, Barrenechea M, Tijero B, Gómez Esteban JC, Gabilondo I. Association of retinal neurodegeneration with the progression of cognitive decline in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:26. [PMID: 38263165 PMCID: PMC10805713 DOI: 10.1038/s41531-024-00637-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/08/2024] [Indexed: 01/25/2024] Open
Abstract
Retinal thickness may serve as a biomarker in Parkinson's disease (PD). In this prospective longitudinal study, we aimed to determine if PD patients present accelerated thinning rate in the parafoveal ganglion cell-inner plexiform layer (pfGCIPL) and peripapillary retinal nerve fiber layer (pRNFL) compared to controls. Additionally, we evaluated the relationship between retinal neurodegeneration and clinical progression in PD. A cohort of 156 PD patients and 72 controls underwent retinal optical coherence tomography, visual, and cognitive assessments between February 2015 and December 2021 in two Spanish tertiary hospitals. The pfGCIPL thinning rate was twice as high in PD (β [SE] = -0.58 [0.06]) than in controls (β [SE] = -0.29 [0.06], p < 0.001). In PD, the progression pattern of pfGCIPL atrophy depended on baseline thickness, with slower thinning rates observed in PD patients with pfGCIPL below 89.8 µm. This result was validated with an external dataset from Moorfields Eye Hospital NHS Foundation Trust (AlzEye study). Slow pfGCIPL progressors, characterized by older at baseline, longer disease duration, and worse cognitive and disease stage scores, showed a threefold increase in the rate of cognitive decline (β [SE] = -0.45 [0.19] points/year, p = 0.021) compared to faster progressors. Furthermore, temporal sector pRNFL thinning was accelerated in PD (βtime x group [SE] = -0.67 [0.26] μm/year, p = 0.009), demonstrating a close association with cognitive score changes (β [SE] = 0.11 [0.05], p = 0.052). This study suggests that a slower pattern of pfGCIPL tissue loss in PD is linked to more rapid cognitive decline, whereas changes in temporal pRNFL could track cognitive deterioration.
Collapse
Affiliation(s)
- Ane Murueta-Goyena
- Neurodegenerative Diseases Group, Biobizkaia Health Research Institute, Barakaldo, Spain.
- Department of Neurosciences, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - David Romero-Bascones
- Biomedical Engineering Department, Faculty of Engineering (MU-ENG), Mondragon Unibertsitatea, Mondragón, Spain
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, EC1V 2PD, London, UK
| | - Sara Teijeira-Portas
- Neurodegenerative Diseases Group, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - J Aritz Urcola
- Department of Ophthalmology, Araba University Hospital, Vitoria-Gasteiz, Spain
| | - Javier Ruiz-Martínez
- Department of Neurology, Donostia University Hospital, Donostia, Spain
- Biogipuzkoa Health Research Institute, Donostia, Spain
- CIBERNED, Institute of Health Carlos III, Madrid, Spain
| | - Rocío Del Pino
- Neurodegenerative Diseases Group, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Marian Acera
- Neurodegenerative Diseases Group, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Axel Petzold
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, EC1V 2PD, London, UK
- Queen Square Institute of Neurology, University College London, London, UK
- The National Hospital for Neurology and Neurosurgery, London, UK
- Departments of Neurology and Ophthalmology, Amsterdam UMC, Amsterdam, Netherlands
| | - Siegfried Karl Wagner
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, EC1V 2PD, London, UK
- Institute of Ophthalmology, University College London, London, UK
| | - Pearse Andrew Keane
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, EC1V 2PD, London, UK
- Institute of Ophthalmology, University College London, London, UK
| | - Unai Ayala
- Biomedical Engineering Department, Faculty of Engineering (MU-ENG), Mondragon Unibertsitatea, Mondragón, Spain
| | - Maitane Barrenechea
- Biomedical Engineering Department, Faculty of Engineering (MU-ENG), Mondragon Unibertsitatea, Mondragón, Spain
| | - Beatriz Tijero
- Neurodegenerative Diseases Group, Biobizkaia Health Research Institute, Barakaldo, Spain
- Neurology Department, Cruces University Hospital, Barakaldo, Spain
| | - Juan Carlos Gómez Esteban
- Neurodegenerative Diseases Group, Biobizkaia Health Research Institute, Barakaldo, Spain
- Department of Neurosciences, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Leioa, Spain
- Neurology Department, Cruces University Hospital, Barakaldo, Spain
| | - Iñigo Gabilondo
- Neurodegenerative Diseases Group, Biobizkaia Health Research Institute, Barakaldo, Spain
- Neurology Department, Cruces University Hospital, Barakaldo, Spain
- IKERBASQUE, The Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
14
|
Lannon M, Duda T, Mastrolonardo A, Huang E, Martyniuk A, Farrokhyar F, Xie F, Bhandari M, Kalia SK, Sharma S. Economic Evaluations Comparing Deep Brain Stimulation to Best Medical Therapy for Movement Disorders: A Meta-Analysis. PHARMACOECONOMICS 2024; 42:41-68. [PMID: 37751075 DOI: 10.1007/s40273-023-01318-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Movement disorders (Parkinson's disease, essential tremor, primary dystonia) are a debilitating group of conditions that are progressive in nature. The mainstay of treatment is best medical therapy; however, a number of surgical therapies are available, including deep brain stimulation. Economic evaluations are an important aspect of evidence to inform decision makers regarding funding allocated to these therapies. OBJECTIVE This systematic review and meta-analysis evaluated the cost effectiveness of including deep brain stimulation compared with best medical therapy for movement disorder indications in the adult population. METHODS Ovid Medical Literature Analysis and Retrieval System Online, Embase, and Cochrane Central Register of Controlled Trials were queried. Only economic evaluations reporting incremental cost-effectiveness ratios for including deep brain stimulation versus best medical therapy for movement disorders were included. Studies were reviewed in duplicate for inclusion and data abstraction. Data were harmonized using the Consumer Price Index and Purchasing Power Parity to standardize values to 2022 US dollars. For inclusion in meta-analyses, studies were required to have sufficient data available to calculate an estimate of the incremental net benefit. Meta-analyses of pooled incremental net benefit based on the time horizon were performed. The study was registered at PROSPERO (CRD42022335436). RESULTS There were 2190 studies reviewed, with 14 economic evaluations included following a title/abstract and full-text review. Only studies considering Parkinson's disease were available for the meta-analysis. Quality of the identified studies was low, with moderate transferability to the American Healthcare System, and certainty of evidence was low. However, studies with a longer time horizon (15 years to lifetime) were found to have significant positive incremental net benefit (indicating cost effectiveness) for including deep brain stimulation with a mean difference of US$40,504.81 (95% confidence interval 2422.42-78,587.19). CONCLUSIONS Deep brain stimulation was cost effective for Parkinson's disease when considered over the course of the patient's remaining life after implantation. TRIAL REGISTRATION Clinical Trial Registration: PROSPERO (CRD42022335436).
Collapse
Affiliation(s)
- Melissa Lannon
- Division of Neurosurgery, McMaster University, 237 Barton Street East, Hamilton, ON, Canada.
| | - Taylor Duda
- Division of Neurosurgery, McMaster University, 237 Barton Street East, Hamilton, ON, Canada
| | | | - Ellissa Huang
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Amanda Martyniuk
- Division of Neurosurgery, McMaster University, 237 Barton Street East, Hamilton, ON, Canada
| | - Forough Farrokhyar
- Department of Health, Evidence, Impact, McMaster University, Hamilton, ON, Canada
| | - Feng Xie
- Department of Health, Evidence, Impact, McMaster University, Hamilton, ON, Canada
| | - Mohit Bhandari
- Department of Health, Evidence, Impact, McMaster University, Hamilton, ON, Canada
- Division of Orthopaedic Surgery, McMaster University, Hamilton, ON, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, University of Toronto, Toronto, ON, Canada
| | - Sunjay Sharma
- Division of Neurosurgery, McMaster University, 237 Barton Street East, Hamilton, ON, Canada
- Department of Health, Evidence, Impact, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
15
|
Bane A, Wilson L, Jumper J, Spindler L, Wyatt P, Willoughby D. Effects of Blood Flow Restriction Resistance Training on Autonomic and Endothelial Function in Persons with Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:761-775. [PMID: 38701159 PMCID: PMC11191514 DOI: 10.3233/jpd-230259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 05/05/2024]
Abstract
Background Autonomic dysfunction precedes endothelial dysfunction in Parkinson's disease (PD) and causes blood pressure and circulation abnormalities that are highly disruptive to one's quality of life. While exercise interventions have proven helpful for motor symptoms of PD, improving associated non-motor symptoms is limited. Low-intensity resistance training with blood flow restriction (LIRT-BFR) improves autonomic dysfunction in non-PD patients and high-intensity resistance training (HIRT) is recommended for motor symptom improvements for people with PD (PwPD). Objective To determine the effects of LIRT-BFR and HIRT on homocysteine and autonomic and endothelial function in PwPD and to determine the hemodynamic loads during LIRT-BFR and HIRT in PwPD using a novel exercise protocol. Methods Thirty-eight PwPD were assigned LIRT-BFR, HIRT or to a control (CNTRL) group. The LIRT-BFR and HIRT groups exercised three days per week for four weeks. The LIRT-BFR protocol used 60% limb occlusion pressure (LOP) and performed three sets of 20 repetitions at 20% of the one-repetition maximum (1RM). The HIRT group performed three sets of eight repetitions at 80% 1RM. The CNTRL group was asked to continue their normal daily routines. Results LIRT-BFR significantly improved orthostatic hypotension (p = 0.026), homocysteine levels (p < 0.001), peripheral circulation (p = 0.003), supine blood pressure (p = 0.028) and heart rate variability (p = 0.041); LIRT-BFR improved homocysteine levels (p < 0.018), peripheral circulation (p = 0.005), supine blood pressure (p = 0.007) and heart rate variability (p = 0.047) more than HIRT; and hemodynamic loads for LIRT-BFR and HIRT were similar. Conclusions LIRT-BFR may be more effective than HIRT for autonomic and endothelial function improvements in PwPD and hemodynamic loads may be lessened in LIRT-BFR protocols using single-joint exercises with intermittent blood flow restriction. Further research is needed to determine if non-motor symptoms improve over time and if results are sustainable.
Collapse
Affiliation(s)
- Annie Bane
- Department of Kinesiology and Nutrition, Abilene Christian University, Abilene, TX, USA
| | - Lorraine Wilson
- Department of Kinesiology and Nutrition, Abilene Christian University, Abilene, TX, USA
| | - Jill Jumper
- Department of Physical Therapy, Hardin-Simmons University, Abilene, TX, USA
| | - Lindsay Spindler
- Department of Kinesiology, Health and Recreation, Hardin-Simmons University, Abilene, TX, USA
| | - Pricilla Wyatt
- Texas Tech University Health Science Center, Abilene, TX, USA
| | - Darryn Willoughby
- Physicians Assistant Program and the Exercise and Sport Science Department, University of Mary Hardin-Baylor, Belton, TX, USA
- School of Medicine, Baylor College of Medicine, Temple, TX, USA
| |
Collapse
|
16
|
Liu J, Zou X, Gu J, Yu Q, Dong Z, Zuo H, Chen X, Du X, Zou D, Han Y, Peng J, Cheng O. Altered connectivity in the cognitive control-related prefrontal cortex in Parkinson's disease with rapid eye movement sleep behavior disorder. Brain Imaging Behav 2023; 17:702-714. [PMID: 37721659 DOI: 10.1007/s11682-023-00796-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2023] [Indexed: 09/19/2023]
Abstract
Rapid eye movement sleep behavior disorder (RBD) frequently occurs in Parkinson's disease (PD), however, the exact pathophysiological mechanism is not clear. The prefrontal cortex (PFC), especially ventrolateral prefrontal cortex (VLPFC), dorsolateral prefrontal cortex (DLPFC), and inferior frontal gyrus (IFG) which may play roles by regulating cognitive control processes. The purpose of this study was to investigate whether there is abnormal functional connectivity (FC) maps and volume changes in PD with RBD(PD-RBD). We recruited 20 PD-RBD, 20 PD without RBD (PD-nRBD), and 20 normal controls (NC). We utilized resting-state functional Magnetic Resonance Imaging (rs-MRI) to explore FC changes based on regions of interest (VLPFC, DLPFC, and IFG), and used voxel-based morphology technology to analyze whole-brain volumes by 3D-T1 structural MRI. Except the REM sleep behavioral disorders questionnaire (RBDSQ), the PD-RBD showed lower visuospatial/executive and attention scores than the NC group. The RBDSQ scores were significantly positively correlated with zFC of right DLPFC to bilateral posterior cingulate cortex (PCC) (P = 0.0362, R = 0.4708, AlphaSim corrected) and also significantly positively correlated with zFC of left VLPFC to right inferior temporal (P = 0.0157, R = 0.5323, AlphaSim corrected) in PD-RBD group. Furthermore, abnormal correlations with zFC values were also found in some cognitive subdomains in PD-RBD group. The study may suggest that in PD-RBD patients, the presence of RBD may be related to the abnormal FC of VLPFC and DLPFC, meanwhile, the abnormal FC of DLPFC and IFG may be related to the mechanisms of cognitive impairment.
Collapse
Affiliation(s)
- Jinjing Liu
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiaoya Zou
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Jinming Gu
- Department of Radiology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Qian Yu
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Zhaoying Dong
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Hongzhou Zuo
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaocui Chen
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Xinyi Du
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Dezhi Zou
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Yu Han
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Juan Peng
- Department of Radiology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.
| | - Oumei Cheng
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
17
|
Nair P, Shojaei Baghini M, Pendharkar G, Chung H. Detecting early-stage Parkinson's disease from gait data. Proc Inst Mech Eng H 2023; 237:1287-1296. [PMID: 37916586 DOI: 10.1177/09544119231197090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Parkinson's disease is a chronic and progressive neurodegenerative disorder with an estimated 10 million people worldwide living with PD. Since early signs are benign, many patients go undiagnosed until the symptoms get severe and the treatment becomes more difficult. The symptoms start intermittently and gradually become continuous as the disease progresses. In order to detect and classify these minute differences between gaits in early PD patients, we propose to use dynamic time warping (DTW). For a given set of gait data from a patient, the DTW algorithm computes the difference between any two gait cycles in the form of a warping path, which reveals small time differences between gait cycles. Once the time-warping information between all possible pairs of gait cycles is used as the main source of gait features, K-means clustering is used to extract the final features. These final features are fed to a simple logistic regression to easily and successfully detect early PD symptoms, which was reported as challenging using conventional statistical features. In addition, the use of DTW ensures that the obtained results are not affected by the differences in the style and speed of walking of a subject. Our approach is validated for the gait data from 83 subjects at early stages of PD, 10 subjects at moderate stages of PD, and 73 controls using the Leave-One-Out and N-fold cross-validation techniques, with a detection accuracy of over 98%. The high classification accuracy validated from a large data set suggests that these new features from DTW can be effectively used to help clinicians diagnose the disease at the earliest. Even though PD is not completely curable, early diagnosis would help clinicians to start the treatment from the beginning thereby reducing the intensity of symptoms at later stages.
Collapse
Affiliation(s)
- Parvathy Nair
- IITB-Monash Research Academy, Mumbai, Maharashtra, India
- IIT Bombay, Mumbai, Maharashtra, India
- Monash University, Clayton, VIC, Australia
| | | | | | - Hoam Chung
- Monash University, Clayton, VIC, Australia
| |
Collapse
|
18
|
Vo A, Tremblay C, Rahayel S, Shafiei G, Hansen JY, Yau Y, Misic B, Dagher A. Network connectivity and local transcriptomic vulnerability underpin cortical atrophy progression in Parkinson's disease. Neuroimage Clin 2023; 40:103523. [PMID: 38016407 PMCID: PMC10687705 DOI: 10.1016/j.nicl.2023.103523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 11/30/2023]
Abstract
Parkinson's disease pathology is hypothesized to spread through the brain via axonal connections between regions and is further modulated by local vulnerabilities within those regions. The resulting changes to brain morphology have previously been demonstrated in both prodromal and de novo Parkinson's disease patients. However, it remains unclear whether the pattern of atrophy progression in Parkinson's disease over time is similarly explained by network-based spreading and local vulnerability. We address this gap by mapping the trajectory of cortical atrophy rates in a large, multi-centre cohort of Parkinson's disease patients and relate this atrophy progression pattern to network architecture and gene expression profiles. Across 4-year follow-up visits, increased atrophy rates were observed in posterior, temporal, and superior frontal cortices. We demonstrated that this progression pattern was shaped by network connectivity. Regional atrophy rates were strongly related to atrophy rates across structurally and functionally connected regions. We also found that atrophy progression was associated with specific gene expression profiles. The genes whose spatial distribution in the brain was most related to atrophy rate were those enriched for mitochondrial and metabolic function. Taken together, our findings demonstrate that both global and local brain features influence vulnerability to neurodegeneration in Parkinson's disease.
Collapse
Affiliation(s)
- Andrew Vo
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Christina Tremblay
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Shady Rahayel
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada; Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montréal, Canada
| | - Golia Shafiei
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Justine Y Hansen
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Yvonne Yau
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Alain Dagher
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada.
| |
Collapse
|
19
|
Dams J, Zapp JJ, König HH. Modelling the Cost Effectiveness of Treatments for Parkinson's Disease: An Updated Methodological Review. PHARMACOECONOMICS 2023; 41:1205-1228. [PMID: 37344724 PMCID: PMC10492764 DOI: 10.1007/s40273-023-01289-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/28/2023] [Indexed: 06/23/2023]
Abstract
OBJECTIVE This article systematically reviewed the methodological quality of modelling approaches for economic evaluations of the treatment of motor symptoms in Parkinson's disease in studies published after 2010. METHODS A systematic literature search was undertaken using PubMed, EconLit, the Cochrane Database of Systematic Reviews, National Health Service Economic Evaluation Database and Health Technology Assessment databases of the UK National Health Service Centre for Review and Dissemination (March 2010 to July 2022). Quality was assessed using a checklist from the German Scientific Working Group. RESULTS A total of 20 studies were evaluated, with the majority based on Markov models (n = 18). Studies assessed the cost effectiveness of medical (n = 12) or surgical (n = 8) treatment, and included costs from a payer or healthcare provider's perspective (n = 17). Furthermore, all studies included quality-adjusted life-years as an effect measure. In the quality assessment of the literature, a mean score of 42.1 points (out of 56 points) on the checklist of the German Scientific Working Group was achieved. Seventeen studies concluded the intervention under study was (likely) cost effective. No intervention was classified as cost ineffective. CONCLUSIONS The quality of economic evaluation models in Parkinson's disease has improved in terms of calculating cost and transition parameters, as well as carrying out probabilistic sensitivity analyses, compared with the published literature of previous systematic reviews up to 2010. However, there is still potential for further development in terms of the integration of non-motor complications and treatment changes, the transparent presentation of parameter estimates, as well as conducting sensitivity analyses and validations to support the interpretation of results.
Collapse
Affiliation(s)
- Judith Dams
- Department of Health Economics and Health Services Research, University Medical Center Hamburg-Eppendorf, Hamburg Center for Health Economics, Martinistraße 52, 20246, Hamburg, Germany.
| | - Johann-Jacob Zapp
- Department of Health Economics and Health Services Research, University Medical Center Hamburg-Eppendorf, Hamburg Center for Health Economics, Martinistraße 52, 20246, Hamburg, Germany
| | - Hans-Helmut König
- Department of Health Economics and Health Services Research, University Medical Center Hamburg-Eppendorf, Hamburg Center for Health Economics, Martinistraße 52, 20246, Hamburg, Germany
| |
Collapse
|
20
|
Bovenzi R, Conti M, Degoli GR, Cerroni R, Simonetta C, Liguori C, Salimei C, Pisani A, Pierantozzi M, Stefani A, Mercuri NB, Schirinzi T. Shaping the course of early-onset Parkinson's disease: insights from a longitudinal cohort. Neurol Sci 2023; 44:3151-3159. [PMID: 37140831 PMCID: PMC10415517 DOI: 10.1007/s10072-023-06826-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/20/2023] [Indexed: 05/05/2023]
Abstract
INTRODUCTION Early -onset Parkinson's disease (EOPD) labels those cases with onset earlier than fifty. Although peculiarities emerged either in clinical or pathological features, EOPD is managed alike typical, late-onset PD. A customized approach would be, instead, better appropriate. Accordingly, a deeper characterization of the clinical course, with an estimation of the disease progression rate, the therapy flow, and the main motor and non-motor complications occurrence, is needed. METHODS A longitudinal cohort of 193 EOPD patients (selected on a single-centre population of 2000 PD cases) was retrospectively analysed, providing descriptive statics on a series of clinical parameters (genetics, phenotype, comorbidities, therapies, motor and non-motor complications, marital and gender issues) and modelling the trajectories from diagnosis to 10 years later of both Hoehn and Yahr (H&Y) stage and levodopa equivalent daily dose (LEDD). RESULTS EOPD had a prevalence of 9.7%, including few monogenic cases. It mostly appeared as a motor syndrome, with asymmetric, rigid-akinetic presentation. H&Y linearly progressed with an increment of 0.92 points/10 years; LEDD flow had a non-linear trend, increasing of 526.90 mg/day in 0-5 years, and 166.83 mg/day in 5-10 years. Motor fluctuations started 6.5 ± 3.2 years from onset, affecting up to 80% of the cohort. Neuropsychiatric troubles interested the 50%, sexual complaints the 12%. Gender-specific motor disturbances emerged. CONCLUSION We shaped EOPD course, modelling a "brain-first" PD subtype, slowly progressive, with non-linear dopaminergic requirement. Major burden mostly resulted from motor fluctuations, neuropsychiatric complications, sexual and marital complaints, with a considerable gender-effect.
Collapse
Affiliation(s)
- Roberta Bovenzi
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
| | - Matteo Conti
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
| | - Giulia Rebecca Degoli
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
| | - Rocco Cerroni
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
| | - Clara Simonetta
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
| | - Claudio Liguori
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
| | - Chiara Salimei
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
| | - Antonio Pisani
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| | - Mariangela Pierantozzi
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
| | - Alessandro Stefani
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
- UOSD Parkinson Centre, Tor Vergata University Hospital, Rome, Italy
| | - Nicola Biagio Mercuri
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
- IRCCS Fondazione Santa Lucia, European Centre for Brain Research, Rome, Italy
| | - Tommaso Schirinzi
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy.
| |
Collapse
|
21
|
Sorrell L, Leta V, Barnett A, Stevens K, King A, Inches J, Kobylecki C, Walker R, Chaudhuri KR, Martin H, Rideout J, Sneyd JR, Campbell S, Carroll C. Clinical features and outcomes of hospitalised patients with COVID-19 and Parkinsonian disorders: A multicentre UK-based study. PLoS One 2023; 18:e0285349. [PMID: 37523365 PMCID: PMC10389727 DOI: 10.1371/journal.pone.0285349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Parkinson's disease has been identified as a risk factor for severe Coronavirus disease 2019 (COVID-19) outcomes. However, whether the significant high risk of death from COVID-19 in people with Parkinson's disease is specific to the disease itself or driven by other concomitant and known risk factors such as comorbidities, age, and frailty remains unclear. OBJECTIVE To investigate clinical profiles and outcomes of people with Parkinson's disease and atypical parkinsonian syndromes who tested positive for COVID-19 in the hospital setting in a multicentre UK-based study. METHODS A retrospective cohort study of Parkinson's disease patients with a positive SARS-CoV-2 test admitted to hospital between February 2020 and July 2021. An online survey was used to collect data from clinical care records, recording patient, Parkinson's disease and COVID-19 characteristics. Associations with time-to-mortality and severe outcomes were analysed using either the Cox proportional hazards model or logistic regression models, as appropriate. RESULTS Data from 552 admissions were collected: 365 (66%) male; median (inter-quartile range) age 80 (74-85) years. The 34-day all-cause mortality rate was 38.4%; male sex, increased age and frailty, Parkinson's dementia syndrome, requirement for respiratory support and no vaccination were associated with increased mortality risk. Community-acquired COVID-19 and co-morbid chronic neurological disorder were associated with increased odds of requiring respiratory support. Hospital-acquired COVID-19 and delirium were associated with requiring an increase in care level post-discharge. CONCLUSIONS This first, multicentre, UK-based study on people with Parkinson's disease or atypical parkinsonian syndromes, hospitalised with COVID-19, adds and expands previous findings on clinical profiles and outcomes in this population.
Collapse
Affiliation(s)
- Lexy Sorrell
- University of Plymouth, Plymouth, United Kingdom
| | - Valentina Leta
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology & Neuroscience, London, United Kingdom
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, United Kingdom
| | | | - Kara Stevens
- Exploristics Ltd, Belfast, Northern Ireland, United Kingdom
| | - Angela King
- University of Plymouth, Plymouth, United Kingdom
| | - Jemma Inches
- University of Plymouth, Plymouth, United Kingdom
- University Hospitals Plymouth NHS Trust, Plymouth, United Kingdom
| | - Christopher Kobylecki
- Division of Neuroscience and Experimental Psychology, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
- Department of Neurology, Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Foundation Trust, Salford, United Kingdom
| | - Richard Walker
- Department of Medicine, North Tyneside Hospital, Northumbria Healthcare NHS Foundation Trust, North Shields, United Kingdom
- Population Health Science Institute, Newcastle University, Newcastle, United Kingdom
| | - K Ray Chaudhuri
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology & Neuroscience, London, United Kingdom
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, United Kingdom
| | - Hannah Martin
- University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
| | | | | | | | - Camille Carroll
- University of Plymouth, Plymouth, United Kingdom
- University Hospitals Plymouth NHS Trust, Plymouth, United Kingdom
- Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
22
|
Li W, Shen J, Wu H, Lin L, Liu Y, Pei Z, Liu G. Transcriptome Analysis Reveals a Two-Gene Signature Links to Motor Progression and Alterations of Immune Cells in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2023; 13:25-38. [PMID: 36591658 PMCID: PMC9912738 DOI: 10.3233/jpd-223454] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/14/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND The motor impairment in Parkinson's disease (PD) can be managed but effective treatments for stopping or slowing the disease process are lacking. The advent of transcriptomics studies in PD shed light on the development of promising measures to predict disease progression and discover novel therapeutic strategies. OBJECTIVE To reveal the potential role of transcripts in the motor impairment progression of patients with PD via transcriptome analysis. METHODS We separately analyzed the differentially expressed genes (DEGs) between PD cases and healthy controls in two cohorts using whole blood bulk transcriptome data. Based on the intersection of DEGs, we established a prognostic signature by regularized regression and Cox proportional hazards analysis. We further performed immune cell analysis and single-cell RNA sequencing analysis to study the biological features of this signature. RESULTS We identified a two-gene-based prognostic signature that links to PD motor progression and the two-gene signature-derived risk score was associated with several types of immune cells in blood. Notably, the fraction of neutrophils increased 5% and CD4+ T cells decreased 7% in patients with high-risk scores compared to that in patients with low-risk scores, suggesting these two types of immune cells might play key roles in the prognosis of PD. We also observed the downregulated genes in PD patients with high-risk scores that enriched in PD-associated pathways from iPSC-derived dopaminergic neurons single-cell RNA sequencing analysis. CONCLUSION We identified a two-gene signature linked to the motor progression in PD, which provides new insights into the motor prognosis of PD.
Collapse
Affiliation(s)
- Weimin Li
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jiaqi Shen
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hao Wu
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Lishan Lin
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanmei Liu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ganqiang Liu
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
23
|
Greenland JC, Camacho M, Williams-Gray CH. The dilemma between milestones of progression versus clinical scales in Parkinson's disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:169-185. [PMID: 36796941 DOI: 10.1016/b978-0-323-85538-9.00010-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
There are significant challenges in accurately documenting the progression of Parkinson's disease (PD). The disease course is highly heterogeneous, there are no validated biomarkers, and we are reliant on repeated clinical measures to assess disease state over time. Yet, the ability to chart disease progression accurately is vital in both observational and interventional study designs, where reliable measures are critical to determine whether an outcome has been met. In this chapter, we first discuss the natural history of PD, including the spectrum of clinical presentation and expected developments through the course of the disease. We then explore in detail the current strategies for measuring disease progression, which can be broadly divided into: (i) the use of quantitative clinical scales; and (ii) determination of the onset time of key milestones. We discuss the strengths and limitations of these approaches for use in clinical trials, with a particular focus on disease modification trials. The selection of outcome measures for a particular study will depend on multiple factors, but trial duration is an important determinant. Milestones are reached over a course of years rather than months, and hence clinical scales with sensitivity to change are needed for short-term studies. However, milestones represent important markers of disease stage which are not confounded by symptomatic therapies and are of critical relevance to the patient. Prolonged but low intensity follow-up beyond a limited period of treatment with a putative disease-modifying agent may allow milestones to be incorporated into evaluation of efficacy in a practical and cost-effective way.
Collapse
Affiliation(s)
- Julia C Greenland
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Marta Camacho
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
24
|
Castro IP, Valença GT, Pinto EB, Cavalcanti HM, Oliveira‐Filho J, Almeida LRS. Predictors of Falls with Injuries in People with Parkinson's Disease. Mov Disord Clin Pract 2022; 10:258-268. [PMID: 36825046 PMCID: PMC9941941 DOI: 10.1002/mdc3.13636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 11/03/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Background Falls are frequent in Parkinson's disease (PD), but there is lack of information about predictors of injurious falls. Objectives To determine predictors of falls with injuries in people with PD; to compare circumstances and consequences of falls in single and recurrent fallers. Methods Participants (n = 225) were assessed by disease-specific, self-report, and balance measures, and followed-up for 12 months with a diary to record falls, their circumstances, and injuries. Univariate and multivariate analyses were performed. Circumstances and consequences of falls presented by single and recurrent fallers were compared. Results A total of 805 falls were analyzed, 107 (13%) were falls with injuries. Multivariate logistic regression model revealed that greater PD duration and higher balance confidence were protective factors; better balance during gait, outdoor falls, and falls related to extrinsic factors were risk factors for falls with injuries, when compared to falls with no injuries. Multivariate multinomial regression model revealed that, when compared to zero fall, past falls and daily levodopa equivalent dose were predictors of falls with injuries; these predictors together with disability were predictors of falls with no injuries. Single falls (n = 27; 3%) were more common outdoors because of extrinsic factors, whereas recurrent falls (n = 778; 97%) were more common indoors because of intrinsic factors. Single falls led to more injuries than recurrent falls (P < 0.05). Conclusions Different predictors of falls with injuries were obtained when different outcomes were compared. It should be noted that falls with injuries might be influenced by fall-related activities and environmental factors. Single and recurrent falls differed on circumstances and consequences.
Collapse
Affiliation(s)
- Isabella P.R. Castro
- Postgraduate Program in Health SciencesFederal University of Bahia School of MedicineSalvadorBahiaBrazil,Motor Behavior and Neurorehabilitation Research GroupBahiana School of Medicine and Public HealthSalvadorBahiaBrazil
| | - Guilherme T. Valença
- Movement Disorders and Parkinson's Disease ClinicRoberto Santos General HospitalSalvadorBahiaBrazil
| | - Elen Beatriz Pinto
- Motor Behavior and Neurorehabilitation Research GroupBahiana School of Medicine and Public HealthSalvadorBahiaBrazil,Department of Life Sciences (DCV)Bahia State UniversitySalvadorBahiaBrazil
| | - Helen M. Cavalcanti
- Postgraduate Program in Health SciencesFederal University of Bahia School of MedicineSalvadorBahiaBrazil,Motor Behavior and Neurorehabilitation Research GroupBahiana School of Medicine and Public HealthSalvadorBahiaBrazil
| | - Jamary Oliveira‐Filho
- Postgraduate Program in Health SciencesFederal University of Bahia School of MedicineSalvadorBahiaBrazil
| | - Lorena Rosa S. Almeida
- Motor Behavior and Neurorehabilitation Research GroupBahiana School of Medicine and Public HealthSalvadorBahiaBrazil,Movement Disorders and Parkinson's Disease ClinicRoberto Santos General HospitalSalvadorBahiaBrazil
| |
Collapse
|
25
|
Magaña JC, Deus CM, Giné-Garriga M, Montané J, Pereira SP. Exercise-Boosted Mitochondrial Remodeling in Parkinson's Disease. Biomedicines 2022; 10:biomedicines10123228. [PMID: 36551984 PMCID: PMC9775656 DOI: 10.3390/biomedicines10123228] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is a movement disorder characterized by the progressive degeneration of dopaminergic neurons resulting in dopamine deficiency in the striatum. Given the estimated escalation in the number of people with PD in the coming decades, interventions aimed at minimizing morbidity and improving quality of life are crucial. Mitochondrial dysfunction and oxidative stress are intrinsic factors related to PD pathogenesis. Accumulating evidence suggests that patients with PD might benefit from various forms of exercise in diverse ways, from general health improvements to disease-specific effects and, potentially, disease-modifying effects. However, the signaling and mechanism connecting skeletal muscle-increased activity and brain remodeling are poorly elucidated. In this review, we describe skeletal muscle-brain crosstalk in PD, with a special focus on mitochondrial effects, proposing mitochondrial dysfunction as a linker in the muscle-brain axis in this neurodegenerative disease and as a promising therapeutic target. Moreover, we outline how exercise secretome can improve mitochondrial health and impact the nervous system to slow down PD progression. Understanding the regulation of the mitochondrial function by exercise in PD may be beneficial in defining interventions to delay the onset of this neurodegenerative disease.
Collapse
Affiliation(s)
- Juan Carlos Magaña
- Blanquerna Faculty of Psychology, Education and Sport Sciences, Ramon Llull University, 08022 Barcelona, Spain
| | - Cláudia M. Deus
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Correspondence: (C.M.D.); (J.M.)
| | - Maria Giné-Garriga
- Blanquerna Faculty of Psychology, Education and Sport Sciences, Ramon Llull University, 08022 Barcelona, Spain
- Blanquerna Faculty of Health Sciences, Ramon Llull University, 08025 Barcelona, Spain
| | - Joel Montané
- Blanquerna Faculty of Psychology, Education and Sport Sciences, Ramon Llull University, 08022 Barcelona, Spain
- Blanquerna Faculty of Health Sciences, Ramon Llull University, 08025 Barcelona, Spain
- Correspondence: (C.M.D.); (J.M.)
| | - Susana P. Pereira
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4150-564 Porto, Portugal
| |
Collapse
|
26
|
Kim HK, Lee MJ, Yoo HS, Lee JH, Ryu YH, Lyoo CH. Temporal trajectory model for dopaminergic input to the striatal subregions in Parkinson's disease. Parkinsonism Relat Disord 2022; 103:42-49. [PMID: 36037782 DOI: 10.1016/j.parkreldis.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/21/2022] [Accepted: 08/07/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Almost half of the nigral neurons are already lost during the preclinical period of Parkinson's disease (PD), and then the speed of neuronal loss is slowly attenuated during the subsequent progression. We sought to establish long-term temporal trajectory models for the dopaminergic input to the striatal subregions and a 4D-temporal trajectory model for the dopamine transporter positron emission tomography (PET). METHODS We selected 83 patients in PD spectrum who underwent dopamine transporter PET scan twice and 71 age-matched healthy controls. We created temporal trajectories of specific binding ratios of the striatal subregions by integrating function between baseline values and their annual change rates and also created 4D-temporal trajectory model by applying the same method for each striatal voxel. Using the PET data of additional 100 PD patients, we estimated an individual time point in the 4D-temporal trajectory model for the validation. RESULTS Degenerative loss of striatal dopaminergic input first appeared in the posterior dorsal putamen in the more affected side at 14.4 years before the clinical onset, and subsequently in the posterior ventral and anterior putamen, and finally in the caudate. The time delay between the initiation of dopaminergic loss in the more and less affected posterior dorsal putamen was 6.1 years. The estimated individual time points within the entire disease course were correlated with the motor severity. CONCLUSION Our temporal trajectory model demonstrated a sequential loss of dopaminergic input in the striatal subregions in PD and may be beneficial for the evaluation of individual status of disease progression.
Collapse
Affiliation(s)
- Han-Kyeol Kim
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Myung Jun Lee
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan, Republic of Korea
| | - Han Soo Yoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Hoon Lee
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Hoon Ryu
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chul Hyoung Lyoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Chen HC, Wang CY, Chen HH, Liou HH. Cost-effectiveness of the add-on exenatide to conventional treatment in patients with Parkinson’s disease when considering the coexisting effects of diabetes mellitus. PLoS One 2022; 17:e0269006. [PMID: 35951654 PMCID: PMC9371359 DOI: 10.1371/journal.pone.0269006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 05/13/2022] [Indexed: 11/22/2022] Open
Abstract
Objective This study aims to investigate the cost-effectiveness of the add-on exenatide to conventional pharmacotherapy in patients with Parkinson’s disease (PD) when considering the coexistence of diabetes mellitus (DM). Methods We used the Keelung and Community-based Integrated Screening databases to understand the medical utilisation in the Hoehn and Yahr stages of patients with PD. A Markov model with 1-year cycle length and 50-year time horizon was used to assess the cost-effectiveness of add-on exenatide to conventional pharmacotherapy compared to conventional pharmacotherapy alone. All costs were adjusted to the value of the new Taiwanese dollar (NT$) as of the year 2020. One-way sensitivity and probability analyses were performed to test the robustness of the results. Results From a societal perspective, the add-on exenatide brought an average of 0.39 quality-adjusted life years (QALYs) gained, and a cost increment of NT$104,744 per person in a 50-year horizon compared to conventional pharmacotherapy. The incremental cost-effectiveness ratio (ICER) was NT$268,333 per QALY gained. As the ICER was less than the gross domestic product per capita (NT$839,558), the add-on exenatide was considered to be very cost-effective in the two models, according to the World Health Organization recommendation. Add-on exenatide had a 96.9% probability of being cost-effective in patients with PD, and a 100% probability of being cost-effective in patients with PD and DM. Conclusion Add-on exenatide is cost-effective in PD combined with DM. Considering that DM may be a risk factor for neurodegenerative diseases, exenatide provides both clinical benefits and cost-effectiveness when considering both PD and DM.
Collapse
Affiliation(s)
- Hsuan-Chih Chen
- Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Yu Wang
- Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Pharmacy, National Taiwan University Hospital Yun-Lin Branch, Douliu, Taiwan
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Yunlin, Taiwan
| | - Hsiu-Hsi Chen
- Institute of Epidemiology and Prevention Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Horng- Huei Liou
- Department of Neurology, National Taiwan University Hospital, Yunlin Branch, Yunlin, Taiwan
- Department of Neurology and Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
28
|
He C, Rong S, Zhang P, Li R, Li X, Li Y, Wang L, Zhang Y. Metabolite changes in prefrontal lobes and the anterior cingulate cortex correlate with processing speed and executive function in Parkinson disease patients. Quant Imaging Med Surg 2022; 12:4226-4238. [PMID: 35919059 PMCID: PMC9338382 DOI: 10.21037/qims-21-1126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/23/2022] [Indexed: 11/06/2022]
Abstract
Background Processing speed and executive function can be impaired in patients with Parkinson disease (PD). However, the neural factors related to the slowdown in processing speed and dysexecutive function in PD are not completely understood. The objective of this study is to investigate the metabolic changes of the frontal and anterior cingulate cortex (ACC) through the use of 1H magnetic resonance spectroscopy and to explore the association between cognitive function and metabolic ratios. Methods In this retrospective case-control study, we conducted neuropsychological assessments of executive function and information processing speed in healthy controls (HCs) and in patients with PD. Chemical information was obtained for the of N-acetyl-aspartate (NAA):creatine (Cr) ratio and the choline-containing compounds (Cho):Cr ratio within the bilateral prefrontal cortex and ACC. Using hierarchical multiple regression analysis, we analyzed the relationship between cognitive function and metabolic ratios in the bilateral prefrontal lobe and ACC in patients with PD. Results In all, 59 patients with PD and 30 HCs were recruited. Patients with PD showed worse performance in executive function and processing speed compared with HCs (P<0.001). In patients with PD, the Cho:Cr ratios in the ACC (Z=2.20, P=0.028) and the right prefrontal cortex (t=2.16, P=0.034) were significantly increased. The hierarchical multiple regressions in patients with PD showed that the NAA:Cr ratio in the ACC correlated with the Stroop A completion times (P<0.05) and that the NAA:Cr ratio of the right prefrontal cortex correlated with the scores of the Wechsler Adult Intelligence Scale (WAIS)-Digit symbol test (P<0.05). Conclusions Information processing speed and executive function are impaired in patients with PD. Neuronal integrity and membrane turnover in the ACC and the right prefrontal cortex may be important factors in the slowdown of the information processing speed in patients with PD.
Collapse
Affiliation(s)
- Chentao He
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Siming Rong
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Piao Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ruitao Li
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaohong Li
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yan Li
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lijuan Wang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuhu Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
29
|
Sundararajan V, Burk UC, Bajdak-Rusinek K. Revisiting the miR-200 Family: A Clan of Five Siblings with Essential Roles in Development and Disease. Biomolecules 2022; 12:biom12060781. [PMID: 35740906 PMCID: PMC9221129 DOI: 10.3390/biom12060781] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 12/07/2022] Open
Abstract
Over two decades of studies on small noncoding RNA molecules illustrate the significance of microRNAs (miRNAs/miRs) in controlling multiple physiological and pathological functions through post-transcriptional and spatiotemporal gene expression. Among the plethora of miRs that are essential during animal embryonic development, in this review, we elaborate the indispensable role of the miR-200 family (comprising miR-200a, -200b, 200c, -141, and -429) in governing the cellular functions associated with epithelial homeostasis, such as epithelial differentiation and neurogenesis. Additionally, in pathological contexts, miR-200 family members are primarily involved in tumor-suppressive roles, including the reversal of the cancer-associated epithelial–mesenchymal transition dedifferentiation process, and are dysregulated during organ fibrosis. Moreover, recent eminent studies have elucidated the crucial roles of miR-200s in the pathophysiology of multiple neurodegenerative diseases and tissue fibrosis. Lastly, we summarize the key studies that have recognized the potential use of miR-200 members as biomarkers for the diagnosis and prognosis of cancers, elaborating the application of these small biomolecules in aiding early cancer detection and intervention.
Collapse
Affiliation(s)
- Vignesh Sundararajan
- Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine, Singapore 117599, Singapore;
| | - Ulrike C. Burk
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
| | - Karolina Bajdak-Rusinek
- Department of Medical Genetics, Faculty of Medical Sciences, Medical University of Silesia, 40-752 Katowice, Poland
- Correspondence: ; Tel.: +48-32-208-8382
| |
Collapse
|
30
|
Shakya S, Prevett J, Hu X, Xiao R. Characterization of Parkinson's Disease Subtypes and Related Attributes. Front Neurol 2022; 13:810038. [PMID: 35677337 PMCID: PMC9167933 DOI: 10.3389/fneur.2022.810038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disease with complex, heterogeneous motor and non-motor symptoms. The current evidence shows that there is still a marked heterogeneity in the subtyping of Parkinson's disease using both clinical and data-driven approaches. Another challenge posed in PD subtyping is the reproducibility of previously identified PD subtypes. These issues require additional results to confirm previous findings and help reconcile discrepancies, as well as establish a standardized application of cluster analysis to facilitate comparison and reproducibility of identified PD subtypes. Our study aimed to address this gap by investigating subtypes of Parkinson's disease using comprehensive clinical (motor and non-motor features) data retrieved from 408 de novo Parkinson's disease patients with the complete clinical data in the Parkinson's Progressive Marker Initiative database. A standardized k-means cluster analysis approach was developed by taking into consideration of common practice and recommendations from previous studies. All data analysis codes were made available online to promote data comparison and validation of reproducibility across research groups. We identified two distinct PD subtypes, termed the severe motor-non-motor subtype (SMNS) and the mild motor- non-motor subtype (MMNS). SMNS experienced symptom onset at an older age and manifested more intense motor and non-motor symptoms than MMNS, who experienced symptom onset at a younger age and manifested milder forms of Parkinson's symptoms. The SPECT imaging makers supported clinical findings such that the severe motor-non-motor subtype showed lower binding values than the mild motor- non-motor subtype, indicating more significant neural damage at the nigral pathway. In addition, SMNS and MMNS show distinct motor (ANCOVA test: F = 47.35, p< 0.001) and cognitive functioning (F = 33.93, p< 0.001) progression trends. Such contrast between SMNS and MMNS in both motor and cognitive functioning can be consistently observed up to 3 years following the baseline visit, demonstrating the potential prognostic value of identified PD subtypes.
Collapse
Affiliation(s)
| | - Julia Prevett
- School of Nursing, Duke University, Durham, NC, United States
| | - Xiao Hu
- School of Nursing, Emory University, Atlanta, GA, United States
- Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, GA, United States
- Department of Computer Science, College of Arts and Sciences, Emory University, Atlanta, GA, United States
| | - Ran Xiao
- School of Nursing, Duke University, Durham, NC, United States
- *Correspondence: Ran Xiao
| |
Collapse
|
31
|
Emdina A, Hermann P, Varges D, Nuhn S, Goebel S, Bunck T, Maass F, Schmitz M, Llorens F, Kruse N, Lingor P, Mollenhauer B, Zerr I. Baseline Cerebrospinal Fluid α-Synuclein in Parkinson's Disease Is Associated with Disease Progression and Cognitive Decline. Diagnostics (Basel) 2022; 12:diagnostics12051259. [PMID: 35626415 PMCID: PMC9140902 DOI: 10.3390/diagnostics12051259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 02/06/2023] Open
Abstract
Biomarkers are increasingly recognized as tools in the diagnosis and prognosis of neurodegenerative diseases. No fluid biomarker for Parkinson’s disease (PD) has been established to date, but α-synuclein, a major component of Lewy bodies in PD and dementia with Lewy bodies (DLB), has become a promising candidate. Here, we investigated CSF α-synuclein in patients with PD (n = 28), PDD (n = 8), and DLB (n = 5), applying an electrochemiluminescence immunoassay. Median values were non-significantly (p = 0.430) higher in patients with PDD and DLB (287 pg/mL) than in PD (236 pg/mL). A group of n = 36 primarily non-demented patients with PD and PDD was clinically followed for up to two years. A higher baseline α-synuclein was associated with increases in Hoehn and Yahr classifications (p = 0.019) and Beck Depression Inventory scores (p < 0.001) as well as worse performance in Trail Making Test A (p = 0.017), Trail Making Test B (p = 0.043), and the Boston Naming Test (p = 0.002) at follow-up. Surprisingly, higher levels were associated with a better performance in semantic verbal fluency tests (p = 0.046). In summary, CSF α-synuclein may be a potential prognostic marker for disease progression, affective symptoms, and executive cognitive function in PD. Larger-scaled studies have to validate these findings and the discordant results for single cognitive tests in this exploratory investigation.
Collapse
Affiliation(s)
- Anna Emdina
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
| | - Peter Hermann
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
- Correspondence: ; Tel.: +49-551-398-955
| | - Daniela Varges
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
| | - Sabine Nuhn
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
| | - Stefan Goebel
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
| | - Timothy Bunck
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
| | - Fabian Maass
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
| | - Matthias Schmitz
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
| | - Franc Llorens
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
- Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, 08908 Barcelona, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Niels Kruse
- Department of Neuropathology, University Medical Centre Göttingen, 37075 Göttingen, Germany;
| | - Paul Lingor
- Department of Neurology, Klinikum Rechts der Isar, Technical University of Munich, 80333 Munich, Germany;
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
- Paracelsus-Elena-Klinik, 34128 Kassel, Germany
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| |
Collapse
|
32
|
Li R, Zou T, Wang X, Wang H, Hu X, Xie F, Meng L, Chen H. Basal ganglia atrophy-associated causal structural network degeneration in Parkinson's disease. Hum Brain Mapp 2022; 43:1145-1156. [PMID: 34792836 PMCID: PMC8764481 DOI: 10.1002/hbm.25715] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/09/2021] [Accepted: 11/02/2021] [Indexed: 01/18/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by both motor and non-motor symptoms. A convergent pathophysiological hallmark of PD is an early selective vulnerability within the basal ganglia circuit. However, the causal interactions between basal ganglia atrophy and progressive structural network alterations in PD remain unaddressed. Here, we adopted voxel-based morphometry method to measure gray matter (GM) volume for each participant (n = 84 PD patients and n = 70 matched healthy controls). Patients were first divided into three stages according to the Hoehn and Yahr (H&Y) and the Part III of Unified Parkinson's Disease Rating Scale scores respectively to analyze the stage-specific GM atrophy patterns. Then, the modulation of early caudate atrophy over other brain structures was evaluated using the whole-brain voxel-wise and region-of-interest-wise causal structural covariance network approaches. We found that GM atrophy progressively expands from the basal ganglia to the angular gyrus, temporal areas, and eventually spreads through the subcortical-cortical networks as PD progresses. Notably, we identified a shared caudate-associated degeneration network including the basal ganglia, thalamus, cerebellum, sensorimotor cortex, and cortical association areas with the PD progressive factors. These findings suggest that the early structural vulnerability of basal ganglia in PD may play a pivotal role in the modulation of motor and non-motor circuits at the structural level. Our work provides evidence for a novel mechanism of network degeneration that underlies the pathology of PD and may have potential clinical applications in the development of early predictors of PD onset and progress.
Collapse
Affiliation(s)
- Rong Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Ting Zou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Xuyang Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Hongyu Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Xiaofei Hu
- Department of Radiology, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Fangfang Xie
- Department of Radiology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Li Meng
- Department of Radiology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Department of Radiology, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
33
|
Neurostimulation in People with Oropharyngeal Dysphagia: A Systematic Review and Meta-Analysis of Randomised Controlled Trials-Part II: Brain Neurostimulation. J Clin Med 2022; 11:jcm11040993. [PMID: 35207265 PMCID: PMC8878820 DOI: 10.3390/jcm11040993] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/05/2023] Open
Abstract
Objective. To assess the effects of brain neurostimulation (i.e., repetitive transcranial magnetic stimulation [rTMS] and transcranial direct current stimulation [tDCS]) in people with oropharyngeal dysphagia (OD). Methods. Systematic literature searches were conducted in four electronic databases (CINAHL, Embase, PsycINFO, and PubMed) to retrieve randomised controlled trials (RCTs) only. Using the Revised Cochrane risk-of-bias tool for randomised trials (RoB 2), the methodological quality of included studies was evaluated, after which meta-analysis was conducted using a random-effects model. Results. In total, 24 studies reporting on brain neurostimulation were included: 11 studies on rTMS, 9 studies on tDCS, and 4 studies on combined neurostimulation interventions. Overall, within-group meta-analysis and between-group analysis for rTMS identified significant large and small effects in favour of stimulation, respectively. For tDCS, overall within-group analysis and between-group analysis identified significant large and moderate effects in favour of stimulation, respectively. Conclusion. Both rTMS and tDCS show promising effects in people with oropharyngeal dysphagia. However, comparisons between studies were challenging due to high heterogeneity in stimulation protocols and experimental parameters, potential moderators, and inconsistent methodological reporting. Generalisations of meta-analyses need to be interpreted with care. Future research should include large RCTs using standard protocols and reporting guidelines as achieved by international consensus.
Collapse
|
34
|
Li J, Zhu BF, Gu ZQ, Zhang H, Mei SS, Ji SZ, Liu SY, Han C, Chen HZ, Chan P. Musculoskeletal Pain in Parkinson's Disease. Front Neurol 2022; 12:756538. [PMID: 35126283 PMCID: PMC8813739 DOI: 10.3389/fneur.2021.756538] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Musculoskeletal pain is commonly experienced in patients with Parkinson's disease (PD). Few studies have investigated the clinical characteristics and risk factors associated with musculoskeletal pain. OBJECTIVES To investigate the distribution, clinical characteristics, and factors associated with musculoskeletal pain in a large sample of patients with PD. METHODS We enrolled 452 patients from two clinics and used a standardized questionnaire to collect demographic and clinical information. Musculoskeletal pain was diagnosed based on the Ford Classification System, and pain severity was assessed with the numeric rating scale (NRS). Multivariate regression models explored the association between clinical features of PD and quality of life and pain. RESULTS Two hundred and six patients (45.58%) reported musculoskeletal pain, typically in their lower limbs and backs. Levodopa resulted in a ≥30% reduction in pain intensity scores in 170 subjects. Female sex (odds ratio [OR], 1.57; 95% CI, 1.07-2.29) and Levodopa-equivalent daily doses (LEDDs; OR, 3.35; 95% CI, 1.63-6.59) were associated with an increased risk for musculoskeletal pain. Pain duration (p = 0.017), motor symptoms (p < 0.001), and depression (p < 0.001) were significantly associated with quality of life. CONCLUSIONS The lower limbs and back are common sites of musculoskeletal pain in patients with PD, and up to 82.52% of patients were responsive to Levodopa. Female sex and LEDDs are associated with musculoskeletal pain, suggesting that dopamine deficiencies, and not the motor and non-motor impairment, might be the most critical baseline risk factor of musculoskeletal pain.
Collapse
Affiliation(s)
- Jun Li
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China.,Department of Neurology, Neurobiology, and Geriatrics, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ben-Fan Zhu
- Department of Pain, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhu-Qin Gu
- Department of Neurology, Neurobiology, and Geriatrics, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China
| | - Hui Zhang
- Department of Neurology, Neurobiology, and Geriatrics, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China
| | - Shan-Shan Mei
- Department of Neurology, Neurobiology, and Geriatrics, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China
| | - Shao-Zhen Ji
- Department of Neurology, Neurobiology, and Geriatrics, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China
| | - Shu-Ying Liu
- Department of Neurology, Neurobiology, and Geriatrics, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China
| | - Chao Han
- Department of Neurology, Neurobiology, and Geriatrics, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China
| | - Huai-Zhen Chen
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Piu Chan
- Department of Neurology, Neurobiology, and Geriatrics, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China.,Clinical and Research Center for Parkinson's Disease, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
35
|
Mapping Actuarial Criteria for Parkinson’s Disease-Mild Cognitive Impairment onto Data-Driven Cognitive Phenotypes. Brain Sci 2021; 12:brainsci12010054. [PMID: 35053799 PMCID: PMC8773733 DOI: 10.3390/brainsci12010054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/05/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022] Open
Abstract
Prevalence rates for mild cognitive impairment in Parkinson’s disease (PD-MCI) remain variable, obscuring the diagnosis’ predictive utility of greater dementia risk. A primary factor of this variability is inconsistent operationalization of normative cutoffs for cognitive impairment. We aimed to determine which cutoff was optimal for classifying individuals as PD-MCI by comparing classifications against data-driven PD cognitive phenotypes. Participants with idiopathic PD (n = 494; mean age 64.7 ± 9) completed comprehensive neuropsychological testing. Cluster analyses (K-means, Hierarchical) identified cognitive phenotypes using domain-specific composites. PD-MCI criteria were assessed using separate cutoffs (−1, −1.5, −2 SD) on ≥2 tests in a domain. Cutoffs were compared using PD-MCI prevalence rates, MCI subtype frequencies (single/multi-domain, executive function (EF)/non-EF impairment), and validity against the cluster-derived cognitive phenotypes (using chi-square tests/binary logistic regressions). Cluster analyses resulted in similar three-cluster solutions: Cognitively Average (n = 154), Low EF (n = 227), and Prominent EF/Memory Impairment (n = 113). The −1.5 SD cutoff produced the best model of cluster membership (PD-MCI classification accuracy = 87.9%) and resulted in the best alignment between PD-MCI classification and the empirical cognitive profile containing impairments associated with greater dementia risk. Similar to previous Alzheimer’s work, these findings highlight the utility of comparing empirical and actuarial approaches to establish concurrent validity of cognitive impairment in PD.
Collapse
|
36
|
Godi M, Arcolin I, Giardini M, Corna S, Schieppati M. A pathophysiological model of gait captures the details of the impairment of pace/rhythm, variability and asymmetry in Parkinsonian patients at distinct stages of the disease. Sci Rep 2021; 11:21143. [PMID: 34707168 PMCID: PMC8551236 DOI: 10.1038/s41598-021-00543-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/05/2021] [Indexed: 01/15/2023] Open
Abstract
Locomotion in people with Parkinson' disease (pwPD) worsens with the progression of disease, affecting independence and quality of life. At present, clinical practice guidelines recommend a basic evaluation of gait, even though the variables (gait speed, cadence, step length) may not be satisfactory for assessing the evolution of locomotion over the course of the disease. Collecting variables into factors of a conceptual model enhances the clinical assessment of disease severity. Our aim is to evaluate if factors highlight gait differences between pwPD and healthy subjects (HS) and do it at earlier stages of disease compared to single variables. Gait characteristics of 298 pwPD and 84 HS able to walk without assistance were assessed using a baropodometric walkway (GAITRite®). According to the structure of a model previously validated in pwPD, eight spatiotemporal variables were grouped in three factors: pace/rhythm, variability and asymmetry. The model, created from the combination of three factor scores, proved to outperform the single variables or the factors in discriminating pwPD from HS. When considering the pwPD split into the different Hoehn and Yahr (H&Y) stages, the spatiotemporal variables, factor scores and the model showed that multiple impairments of gait appear at H&Y stage 2.5, with the greatest difference from HS at stage 4. A contrasting behavior was found for the asymmetry variables and factor, which showed differences from the HS already in the early stages of PD. Our findings support the use of factor scores and of the model with respect to the single variables in gait staging in PD.
Collapse
Affiliation(s)
- Marco Godi
- Division of Physical Medicine and Rehabilitation, Scientific Institute of Veruno, Istituti Clinici Scientifici Maugeri IRCCS, 28010, Gattico-Veruno, NO, Italy
| | - Ilaria Arcolin
- Division of Physical Medicine and Rehabilitation, Scientific Institute of Veruno, Istituti Clinici Scientifici Maugeri IRCCS, 28010, Gattico-Veruno, NO, Italy.
| | - Marica Giardini
- Division of Physical Medicine and Rehabilitation, Scientific Institute of Veruno, Istituti Clinici Scientifici Maugeri IRCCS, 28010, Gattico-Veruno, NO, Italy
| | - Stefano Corna
- Division of Physical Medicine and Rehabilitation, Scientific Institute of Veruno, Istituti Clinici Scientifici Maugeri IRCCS, 28010, Gattico-Veruno, NO, Italy
| | - Marco Schieppati
- Scientific Institute of Pavia, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| |
Collapse
|
37
|
Are there differences in cortical excitability between akinetic-rigid and tremor-dominant subtypes of Parkinson's disease? Neurophysiol Clin 2021; 51:443-453. [PMID: 34588134 DOI: 10.1016/j.neucli.2021.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE To assess by transcranial magnetic stimulation (TMS) the excitability of various cortical circuits in akinetic-rigid and tremor-dominant subtypes of Parkinson's disease (PD). METHODS The study included 92 patients with PD according to UK Brain Bank criteria, with akinetic-rigid (n = 64) or tremor-dominant (n = 28) subtype. Cortical excitability study, including resting and active motor thresholds (rMT and aMT), input-output curve of motor evoked potentials, contralateral and ipsilateral silent periods (cSP and iSP), short and long-interval intracortical inhibition (SICI and LICI), and intracortical facilitation (ICF) were measured. The results obtained were compared to a control group of 30 age- and sex-matched healthy subjects. RESULTS The patients in the tremor group had significantly lower rMT and aMT compared to controls and akinetic-rigid patients and significantly shorter iSP duration compared to akinetic-rigid patients, while iSP latency tended to be longer in akinetic-rigid patients compared to controls. There were no significant differences between the two PD subgroups regarding other cortical excitability parameters, including paired-pulse TMS parameters. CONCLUSIONS Only subtle differences of cortical excitability were found between patients with akinetic-rigid vs. tremor-dominant subtype of PD. SIGNIFICANCE The clinical heterogeneity of PD patients probably has an impact on cortical excitability measures, far beyond the akinetic-rigid versus tremor-dominant profile.
Collapse
|
38
|
Sheng W, Guo T, Zhou C, Wu J, Gao T, Pu J, Zhang B, Zhang M, Yang Y, Guan X, Xu X. Altered Cortical Cholinergic Network in Parkinson's Disease at Different Stage: A Resting-State fMRI Study. Front Aging Neurosci 2021; 13:723948. [PMID: 34566625 PMCID: PMC8461333 DOI: 10.3389/fnagi.2021.723948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/09/2021] [Indexed: 11/29/2022] Open
Abstract
The cholinergic system is critical in Parkinson’s disease (PD) pathology, which accounts for various clinical symptoms in PD patients. The substantia innominata (SI) provides the main source of cortical cholinergic innervation. Previous studies revealed cholinergic-related dysfunction in PD pathology at early stage. Since PD is a progressive disorder, alterations of cholinergic system function along with the PD progression have yet to be elucidated. Seventy-nine PD patients, including thirty-five early-stage PD patients (PD-E) and forty-four middle-to-late stage PD patients (PD-M), and sixty-four healthy controls (HC) underwent brain magnetic resonance imaging and clinical assessments. We employed seed-based resting-state functional connectivity analysis to explore the cholinergic-related functional alterations. Correlation analysis was used to investigate the relationship between altered functional connectivity and the severity of motor symptoms in PD patients. Results showed that both PD-E and PD-M groups exhibited decreased functional connectivity between left SI and left frontal inferior opercularis areas and increased functional connectivity between left SI and left cingulum middle area as well as right primary motor and sensory areas when comparing with HC. At advanced stages of PD, functional connectivity in the right primary motor and sensory areas was further increased. These altered functional connectivity were also significantly correlated with the Unified Parkinson’s Disease Rating Scale motor scores. In conclusion, this study illustrated that altered cholinergic function plays an important role in the motor disruptions in PD patients both in early stage as well as during the progression of the disease.
Collapse
Affiliation(s)
- Wenshuang Sheng
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting Gao
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiali Pu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunjun Yang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
39
|
Faggianelli F, Loundou A, Baumstarck K, Nathalie S, Auquier P, Eusebio A, Defebvre L, Brefel-Courbon C, Houeto JL, Maltete D, Tranchant C, Derkinderen P, Geny C, Krystkowiak P, Jean-Philippe B, Macia F, Durif F, Poujois A, Borg M, Azulay JP, Witjas T. Validation of a non-motor fluctuations questionnaire in Parkinson's disease. Rev Neurol (Paris) 2021; 178:347-354. [PMID: 34565624 DOI: 10.1016/j.neurol.2021.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Non-motor fluctuations (NMF) in Parkinson's disease (PD) remain poorly recognized but have a high impact on patients' quality of life. The lack of assessment tools limits our understanding of NMF, compromising appropriate management. Our objective was to validate a hetero-questionnaire for NMF in PD patients at different stages of the disease: without treatment, without motor fluctuations, with motor fluctuations. METHODS We included patients in 15 centers in France. Our questionnaire, NMF-Park, resulted from previous studies, allowing us to identify the more pertinent NMF for evaluation. Patients reported the presence (yes or no) of 22 selected NMF, and their link with dopaminergic medications. The assessment was repeated at one and two years to study the progression of NMF. We performed a metrological validation of our questionnaire. RESULTS We included 255 patients (42 without treatment, 88 without motor fluctuations and 125 with motor fluctuations). After metrological validation, three dimensions of NMF were found: dysautonomic; cognitive; psychiatric. The sensory/pain dimension described in the literature was not statistically confirmed by our study. DISCUSSION Our questionnaire was validated according to clinimetric standards, for different stages of PD. It was clinically coherent with three homogeneous dimensions. It highlighted a link between fatigue, visual accommodation disorder, and cognitive fluctuations; and the integration of sensory/pain fluctuations as part of dysautonomic fluctuations. It focused exclusively on NMF, which is interesting considering the described differences between non-motor and motor fluctuations. CONCLUSION Our study validated a hetero-questionnaire of diagnosis for NMF for different stages of PD.
Collapse
Affiliation(s)
- F Faggianelli
- Service de Neurologie et Pathologies du Mouvement, CHU Timone, APHM, Marseille, France.
| | - A Loundou
- Centre D'Etudes et de Recherches sur les Services de Santé et Qualité, Faculté de Médecine, Aix-Marseille Université, Marseille, France.
| | - K Baumstarck
- Centre D'Etudes et de Recherches sur les Services de Santé et Qualité, Faculté de Médecine, Aix-Marseille Université, Marseille, France.
| | - S Nathalie
- Service de Neurologie et Pathologies du Mouvement, CHU Timone, APHM, Marseille, France
| | - P Auquier
- Centre D'Etudes et de Recherches sur les Services de Santé et Qualité, Faculté de Médecine, Aix-Marseille Université, Marseille, France.
| | - A Eusebio
- Service de Neurologie et Pathologies du Mouvement, CHU Timone, APHM, Marseille, France.
| | - L Defebvre
- Service de Neurologie A, CHRU de Lille, Hôpital Roger Salengro, Marseille, France.
| | - C Brefel-Courbon
- Unité Neurologie cognitive, épilepsie, sommeil et mouvements anormaux, Département de Neurologie, CHU de Toulouse - Hôpital Purpan, Marseille, France.
| | - J-L Houeto
- Service de Neurologie, CHU de Poitiers, Marseille, France.
| | - D Maltete
- Unité Neurologie polyvalente, Département de neurologie, CHU de Rouen, Marseille, France.
| | - C Tranchant
- Service de Pathologie du mouvement-Neurologie, CHU de Strasbourg, Hôpital de Hautepierre, Marseille, France.
| | - P Derkinderen
- Clinique neurologique, CHU de Nantes, Hôpital Nord Guillaume et René Laënnec, Marseille, France.
| | - C Geny
- Service de Neurologie, CHU de Montpellier, Marseille, France.
| | - P Krystkowiak
- Service de Neurologie, CHU Amiens-Picardie - Site Sud, Marseille, France.
| | - B Jean-Philippe
- Département de Neurologie, Hôpital Universitaire de la Pitié-Salpêtrière, APHP, Marseille, France.
| | - F Macia
- Service de Neurologie, Hôpital Sainte Musse, Toulon, France.
| | - F Durif
- Service de neurologie, CHU de Clermont-Ferrand, Hôpital Gabriel Montpied, Marseille, France.
| | - A Poujois
- Service de Neurologie, Hôpital Fondation Rothschild, Paris, France.
| | - M Borg
- Service de Neurologie, CHU de Nice, Marseille, France.
| | - J-P Azulay
- Service de Neurologie et Pathologies du Mouvement, CHU Timone, APHM, Marseille, France.
| | - T Witjas
- Service de Neurologie et Pathologies du Mouvement, CHU Timone, APHM, Marseille, France.
| | | |
Collapse
|
40
|
Ren X, Lin J, Stebbins GT, Goetz CG, Luo S. Prognostic Modeling of Parkinson's Disease Progression Using Early Longitudinal Patterns of Change. Mov Disord 2021; 36:2853-2861. [PMID: 34327755 DOI: 10.1002/mds.28730] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Predicting Parkinson's disease (PD) progression may enable better adaptive and targeted treatment planning. OBJECTIVE Develop a prognostic model using multiple, easily acquired longitudinal measures to predict temporal clinical progression from Hoehn and Yahr (H&Y) stage 1 or 2 to stage 3 in early PD. METHODS Predictive longitudinal measures of PD progression were identified by the joint modeling method. Measures were extracted by multivariate functional principal component analysis methods and used as covariates in Cox proportional hazards models. The optimal model was developed from the Parkinson's Progression Marker Initiative (PPMI) data set and confirmed with external validation from the Longitudinal and Biomarker Study in PD (LABS-PD) study. RESULTS The proposed prognostic model with longitudinal information of selected clinical measures showed significant advantages in predicting PD temporal progression in comparison to a model with only baseline information (iAUC = 0.812 vs. 0.743). The modeling results allowed the development of a prognostic index for categorizing PD patients into low, mid, and high risk of progression to HY 3 that is offered to facilitate physician-patient discussion on prognosis. CONCLUSION Incorporating longitudinal information of multiple clinical measures significantly enhances predictive performance of prognostic models. Furthermore, the proposed prognostic index enables clinicians to classify patients into different risk groups, which could be adaptively updated as new longitudinal information becomes available. Modeling of this type allows clinicians to utilize observational data sets that inform on disease natural history and specifically, for precision medicine, allows the insertion of a patient's clinical data to calculate prognostic estimates at the individual case level. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Xuehan Ren
- Department of Biostatistics, Gilead Sciences, Foster City, California, USA
| | - Jeffrey Lin
- Department of Biostatistics, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Glenn T Stebbins
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Christopher G Goetz
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, USA
| |
Collapse
|
41
|
Laansma MA, Bright JK, Al-Bachari S, Anderson TJ, Ard T, Assogna F, Baquero KA, Berendse HW, Blair J, Cendes F, Dalrymple-Alford JC, de Bie RMA, Debove I, Dirkx MF, Druzgal J, Emsley HCA, Garraux G, Guimarães RP, Gutman BA, Helmich RC, Klein JC, Mackay CE, McMillan CT, Melzer TR, Parkes LM, Piras F, Pitcher TL, Poston KL, Rango M, Ribeiro LF, Rocha CS, Rummel C, Santos LSR, Schmidt R, Schwingenschuh P, Spalletta G, Squarcina L, van den Heuvel OA, Vriend C, Wang JJ, Weintraub D, Wiest R, Yasuda CL, Jahanshad N, Thompson PM, van der Werf YD. International Multicenter Analysis of Brain Structure Across Clinical Stages of Parkinson's Disease. Mov Disord 2021; 36:2583-2594. [PMID: 34288137 PMCID: PMC8595579 DOI: 10.1002/mds.28706] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Brain structure abnormalities throughout the course of Parkinson's disease have yet to be fully elucidated. OBJECTIVE Using a multicenter approach and harmonized analysis methods, we aimed to shed light on Parkinson's disease stage-specific profiles of pathology, as suggested by in vivo neuroimaging. METHODS Individual brain MRI and clinical data from 2357 Parkinson's disease patients and 1182 healthy controls were collected from 19 sources. We analyzed regional cortical thickness, cortical surface area, and subcortical volume using mixed-effects models. Patients grouped according to Hoehn and Yahr stage were compared with age- and sex-matched controls. Within the patient sample, we investigated associations with Montreal Cognitive Assessment score. RESULTS Overall, patients showed a thinner cortex in 38 of 68 regions compared with controls (dmax = -0.20, dmin = -0.09). The bilateral putamen (dleft = -0.14, dright = -0.14) and left amygdala (d = -0.13) were smaller in patients, whereas the left thalamus was larger (d = 0.13). Analysis of staging demonstrated an initial presentation of thinner occipital, parietal, and temporal cortices, extending toward rostrally located cortical regions with increased disease severity. From stage 2 and onward, the bilateral putamen and amygdala were consistently smaller with larger differences denoting each increment. Poorer cognition was associated with widespread cortical thinning and lower volumes of core limbic structures. CONCLUSIONS Our findings offer robust and novel imaging signatures that are generally incremental across but in certain regions specific to disease stages. Our findings highlight the importance of adequately powered multicenter collaborations.
Collapse
Affiliation(s)
- Max A Laansma
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Joanna K Bright
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, California, USA
| | - Sarah Al-Bachari
- Faculty of Health and Medicine, The University of Lancaster, Lancaster, UK.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Department of Neurology, Royal Preston Hospital, Preston, UK
| | - Tim J Anderson
- Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand
| | - Tyler Ard
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California, USA
| | - Francesca Assogna
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | - Henk W Berendse
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jamie Blair
- Department of Medical Imaging, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Fernando Cendes
- Neuroimaging Laboratory, Department of Neurology, University of Campinas, Campinas, Brazil
| | - John C Dalrymple-Alford
- New Zealand Brain Research Institute, Christchurch, New Zealand.,School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand.,Brain Research New Zealand - Rangahau Roro Aotearoa, Centre of Research Excellence, Auckland, New Zealand
| | - Rob M A de Bie
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ines Debove
- Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Michiel F Dirkx
- Department of Neurology and Center of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.,Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Jason Druzgal
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| | - Hedley C A Emsley
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Lancaster Medical School, Lancaster University, Preston, UK
| | - Gäetan Garraux
- GIGA-CRC In Vivo Imaging, University of Liège, Liège, Belgium.,Department of Neurology, CHU Liège, Liège, Belgium
| | - Rachel P Guimarães
- Neuroimaging Laboratory, Department of Neurology, University of Campinas, Campinas, Brazil
| | - Boris A Gutman
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Rick C Helmich
- Department of Neurology and Center of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.,Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Johannes C Klein
- Department of Clinical Neurosciences, Division of Clinical Neurology, Oxford Parkinson's Disease Centre, Nuffield, University of Oxford, Oxford, UK
| | - Clare E Mackay
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Corey T McMillan
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Tracy R Melzer
- Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand.,New Zealand Brain Research Institute, Christchurch, New Zealand.,Brain Research New Zealand - Rangahau Roro Aotearoa, Centre of Research Excellence, Auckland, New Zealand
| | - Laura M Parkes
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Toni L Pitcher
- Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand.,New Zealand Brain Research Institute, Christchurch, New Zealand.,Brain Research New Zealand - Rangahau Roro Aotearoa, Centre of Research Excellence, Auckland, New Zealand
| | - Kathleen L Poston
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, California, USA
| | - Mario Rango
- Excellence Center for Advanced MR Techniques and Parkinson's Disease Center, Neurology Unit, Fondazione IRCCS Cà Granda Maggiore Policlinico Hospital, University of Milan, Milan, Italy
| | - Letícia F Ribeiro
- Neuroimaging Laboratory, Department of Neurology, University of Campinas, Campinas, Brazil
| | - Cristiane S Rocha
- Neuroimaging Laboratory, Department of Neurology, University of Campinas, Campinas, Brazil.,Department of Medical Genetics, University of Campinas, Campinas, Brazil
| | - Christian Rummel
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Bern, Switzerland
| | - Lucas S R Santos
- Neuroimaging Laboratory, Department of Neurology, University of Campinas, Campinas, Brazil
| | - Reinhold Schmidt
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University Graz, Graz, Austria
| | | | | | - Letizia Squarcina
- Excellence Center for Advanced MR Techniques and Parkinson's Disease Center, Neurology Unit, Fondazione IRCCS Cà Granda Maggiore Policlinico Hospital, University of Milan, Milan, Italy
| | - Odile A van den Heuvel
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Chris Vriend
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jiun-Jie Wang
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan City, Taiwan.,Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Keelung Branch, Keelung City, Taiwan
| | - Daniel Weintraub
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Roland Wiest
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Bern, Switzerland
| | - Clarissa L Yasuda
- Neuroimaging Laboratory, Department of Neurology, University of Campinas, Campinas, Brazil
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, California, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, California, USA
| | - Ysbrand D van der Werf
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
42
|
Goh GS, Zeng GJ, Tay DK, Lo NN, Yeo SJ, Liow MHL. Patients With Parkinson's Disease Have Poorer Function and More Flexion Contractures After Total Knee Arthroplasty. J Arthroplasty 2021; 36:2325-2330. [PMID: 33277144 DOI: 10.1016/j.arth.2020.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/24/2020] [Accepted: 11/08/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) may negatively influence the rehabilitative course after total knee arthroplasty (TKA). However, functional outcomes in this select group remain poorly defined. We compared complication, mortality and revision rates, as well as patient-reported outcomes, and satisfaction between patients with PD and controls after TKA. METHODS Patients with PD who underwent primary unilateral TKA were identified and matched 1:1 with a control group using propensity scores adjusting for age, sex, body mass index, Charlson Comorbidity Index, baseline range of motion, Knee Society Knee Score, Knee Society Function Score, Oxford Knee Score, and 36-item Short-Form Health Survey Mental and Physical Component Summary. Functional outcomes and patient satisfaction were assessed at 6 months and 2 years. Complications, survivorship, and all-cause mortality were analyzed. RESULTS In total, 114 patients were included. Majority of PD patients had Hoehn and Yahr stage 1 or 2 disease. Overall complication rate was 26.3% in the PD group and 10.5% in the control group (P = .030). There was no difference in transfusions, length of stay, and discharge to rehabilitation or readmissions. Patients with PD had more flexion contractures, poorer Knee Society Function Score and Oxford Knee Score at 2 years, and poorer 36-item Short-Form Health Survey Physical Component Summary at 6 months. 80.4% of patients with PD were satisfied compared with 85.5% of controls (P = .476). At follow-up of 8.5 ± 2.7 years, one TKA was revised in each group. All-cause mortality was higher in the PD group (15.8% vs 5.3%, P = .067). CONCLUSION Although patients with PD had relatively poorer knee function and quality of life, these patients still experienced significant functional gains compared with their preoperative status, and high satisfaction was achieved. LEVEL OF EVIDENCE III.
Collapse
Affiliation(s)
- Graham S Goh
- Department of Orthopaedic Surgery, Singapore General Hospital, Singapore
| | - Gerald J Zeng
- Department of Orthopaedic Surgery, Singapore General Hospital, Singapore
| | - Darren K Tay
- Department of Orthopaedic Surgery, Singapore General Hospital, Singapore
| | - Ngai-Nung Lo
- Department of Orthopaedic Surgery, Singapore General Hospital, Singapore
| | - Seng-Jin Yeo
- Department of Orthopaedic Surgery, Singapore General Hospital, Singapore
| | | |
Collapse
|
43
|
Kulshreshtha D, Pieterman M, Gilmore G, Jog M. Optimizing the selection of Parkinson's disease patients for neuromodulation using the levodopa challenge test. J Neurol 2021; 269:846-852. [PMID: 34191078 DOI: 10.1007/s00415-021-10666-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND In Parkinson's disease (PD), early stages are associated with a good long-duration response and as the disease advances, the short-duration response predominates. The transition between the long-duration and short-duration responses may be an important and measurable intermediate stage. A critical criterion in determining the candidature for neuromodulation is a beneficial response to an 'off-on' levodopa challenge test. This test is usually reserved for those that have already developed marked short-duration response and are candidates for deep brain stimulation (DBS) surgery. However, identifying those that are in transition may allow DBS to be offered earlier. OBJECTIVE The objective of the study was to determine if the transition from a long-duration to a short-duration response can be assessed on a levodopa challenge test. METHODS An 'off-on" levodopa challenge test was done in sixty-five PD patients divided into four groups based on the disease duration. RESULTS OFF motor scores increased in all groups [Mean ± STD; 22.94 ± 8.52, 31.53 ± 9.87, 34.05 ± 9.50, and 33.92 ± 10.15 in groups 1-4, respectively] while a significant response to medication was maintained on 'off-on' testing. The mean levodopa equivalency dose in groups 1 and 2 was significantly less than in groups 3 and 4. This transition occurred between years 7 and 9 of disease duration. CONCLUSION Performing a regular levodopa challenge test, when levodopa dose increases substantially, should be considered to determine the ideal time for DBS in patients with Parkinson's disease.
Collapse
Affiliation(s)
- Dinkar Kulshreshtha
- Department of Clinical Neurological Sciences, University Hospital, London Health Sciences Centre, 339 Windermere road, London, ON, N6A 5A5, Canada
| | - Marcus Pieterman
- Department of Clinical Neurological Sciences, University Hospital, London Health Sciences Centre, 339 Windermere road, London, ON, N6A 5A5, Canada
| | - Greydon Gilmore
- School of Biomedical Engineering, Western University, London, Canada
| | - Mandar Jog
- Department of Clinical Neurological Sciences, University Hospital, London Health Sciences Centre, 339 Windermere road, London, ON, N6A 5A5, Canada.
| |
Collapse
|
44
|
Bai X, Zhou C, Guo T, Guan X, Wu J, Liu X, Gao T, Gu L, Xuan M, Gu Q, Huang P, Song Z, Yan Y, Pu J, Zhang B, Xu X, Zhang M. Progressive microstructural alterations in subcortical nuclei in Parkinson's disease: A diffusion magnetic resonance imaging study. Parkinsonism Relat Disord 2021; 88:82-89. [PMID: 34147950 DOI: 10.1016/j.parkreldis.2021.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/22/2021] [Accepted: 06/06/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To explore the microstructural alterations in subcortical nuclei in Parkinson's disease (PD) at different stages with diffusion kurtosis imaging (DKI) and tensor imaging and to test the performance of diffusion metrics in identifying PD. METHODS 108 PD patients (64 patients in early-stage PD group (EPD) and 44 patients in moderate-late-stage PD group (MLPD)) and 64 healthy controls (HC) were included. Tensor and kurtosis metrics in the subcortical nuclei were compared. Partial correlation was used to correlate the diffusion metrics and Unified Parkinson's Disease Rating Scale part-III (UPDRS-III) score. Logistic regression and receiver operating characteristic analysis were applied to test the diagnostic performance of the diffusion metrics. RESULTS Compared with HC, both EPD and MLPD patients showed higher fractional anisotropy and axial diffusivity, lower mean kurtosis (MK) and axial kurtosis in substantia nigra, lower MK and radial kurtosis (RK) in globus pallidus (GP) and thalamus (all p < 0.05). Compared with EPD, MLPD patients showed lower MK and RK in GP and thalamus (all p < 0.05). MK and RK in GP and thalamus were negatively correlated with UPDRS-III score (all p < 0.01). The logistic regression model combining kurtosis and tensor metrics showed the best performance in diagnosing PD, EPD, and MLPD (areas under curve were 0.817, 0.769, and 0.914, respectively). CONCLUSIONS PD has progressive microstructural alterations in the subcortical nuclei. DKI is sensitive to detect microstructural alterations in GP and thalamus during PD progression. Combining kurtosis and tensor metrics can achieve a good performance in diagnosing PD.
Collapse
Affiliation(s)
- Xueqin Bai
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Jingjing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Xiaocao Liu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Ting Gao
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Luyan Gu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Min Xuan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Quanquan Gu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Zhe Song
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Yaping Yan
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Jiali Pu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| |
Collapse
|
45
|
Ma X, Li S, Li C, Wang R, Chen M, Chen H, Su W. Total Cerebral Small Vessel Score Association With Hoehn and Yahr Stage in Parkinson's Disease. Front Aging Neurosci 2021; 13:682776. [PMID: 34122053 PMCID: PMC8192831 DOI: 10.3389/fnagi.2021.682776] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Background: This study aimed to evaluate the total cerebral small vessel disease (CSVD) score in patients with Parkinson’s disease (PD) at different stages and related factors. Methods: A 100 and seven patients with idiopathic PD and 62 normal controls (NCs) who underwent brain magnetic resonance imaging (MRI) were enrolled. PD patients were divided into two groups: early PD [(Hoehn and Yahr (H&Y) 1–1.5, n = 36)] and advanced PD (H&Y 2–4, n = 71) groups. We calculated the total CSVD score for each participant based on lacunes, high-grade white matter hyperintensities (WMH), enlarged perivascular spaces (EPVS), and cerebral microbleeds (CMBs). Differences in total CSVD score between the PD and NCs and between the two subgroups were compared. In addition, a multivariate logistic regression analysis was conducted to investigate the association between CSVD markers and clinical variables in PD. Results: Lacunes were found in 9.3% of patients with PD, periventricular WMH (PVWMH) in 89.7%, deep WMH (DWMH) in 81.3%, EPVS in 85%, and CMBs in 2.8%. Compared with NCs, patients with PD showed higher PVWMH and DWMH scores. Advanced PD patients exhibited greater PVWMH (P = 0.041), DWMH (P = 0.046), and total CSVD score (P = 0.044) than the early PD group. After adjusting for multiple variables, higher H&Y stage was independently correlated with increased total CSVD score (OR = 2.667, 95% CI 1.154–2.266) and PVWMH score (OR = 2.237, 95% CI 1.084–1.696). Conclusions: CSVD may play a critical role in patients with PD. The total CSVD score is a potential neuroimaging marker for monitoring the progression of PD.
Collapse
Affiliation(s)
- Xinxin Ma
- Department of Neurology, Parkinson's Disease and Extra Pyramidal Disease Diagnosis and Treatment Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Shuhua Li
- Department of Neurology, Parkinson's Disease and Extra Pyramidal Disease Diagnosis and Treatment Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chunmei Li
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Rui Wang
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Min Chen
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Haibo Chen
- Department of Neurology, Parkinson's Disease and Extra Pyramidal Disease Diagnosis and Treatment Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Wen Su
- Department of Neurology, Parkinson's Disease and Extra Pyramidal Disease Diagnosis and Treatment Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
46
|
Baghi M, Yadegari E, Rostamian Delavar M, Peymani M, Ganjalikhani‐Hakemi M, Salari M, Nasr‐Esfahani MH, Megraw TL, Ghaedi K. MiR-193b deregulation is associated with Parkinson's disease. J Cell Mol Med 2021; 25:6348-6360. [PMID: 34018309 PMCID: PMC8366452 DOI: 10.1111/jcmm.16612] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/12/2021] [Accepted: 04/28/2021] [Indexed: 02/05/2023] Open
Abstract
PGC-1α/FNDC5/BDNF has found to be a critical pathway in neurodegeneration. MicroRNAs (miR(NA)s) are non-coding regulatory RNAs whose dysregulation has been observed in multiple neurological disorders, and miRNA-mediated gene deregulation plays a decisive role in PD. Here, candidate miRNA was chosen based on the literature survey and in silico studies. Chronic and acute models of PD were created using MPP+-treated SH-SY5Y cells. Twenty PD patients and 20 healthy volunteers were recruited. RT-qPCR was performed to assess the expression of miRNA and genes. Severe mitochondrial dysfunction induced by acute MPP+ treatment instigated compensatory mechanisms through enhancing expression of PGC-1α/FNDC5/BDNF pathway genes, while chronic MPP+ toxicity led to down-regulated levels of the genes in SH-SY5Y cells. PD peripheral blood mononuclear cells (PBMCs) also showed decreased expression of target genes. There were significant changes in the level of miR-193b in both models, as well as PD PBMCs. Moreover, miR-193b overexpression significantly affected PGC-1α, FNDC5 and TFAM levels. Interestingly, down-regulations of PGC-1α, FNDC5, BDNF and TFAM were inversely correlated with miR-193b up-regulation in PD PBMCs. This study showed the deregulation of PGC-1α/FNDC5/BDNF pathway in PD models and PBMCs, verifying its importance in neurodegeneration. Our findings also revealed that miR-193b functions in PD development, possibly through regulating PGC-1α/FNDC5/BDNF pathway, suggesting miR-193b as a potential biomarker for PD diagnosis.
Collapse
Affiliation(s)
- Masoud Baghi
- Department of Cell and Molecular Biology and MicrobiologyFaculty of Biological Science and TechnologyUniversity of IsfahanIsfahanIran
- Department of Animal BiotechnologyCell Science Research CenterRoyan Institute for BiotechnologyACECRIsfahanIran
| | - Elaheh Yadegari
- Department of Cell and Molecular Biology and MicrobiologyFaculty of Biological Science and TechnologyUniversity of IsfahanIsfahanIran
| | - Mahsa Rostamian Delavar
- Department of Cell and Molecular Biology and MicrobiologyFaculty of Biological Science and TechnologyUniversity of IsfahanIsfahanIran
| | - Maryam Peymani
- Department of BiologyFaculty of Basic SciencesShahrekord BranchIslamic Azad UniversityShahrekordIran
| | | | - Mehri Salari
- Functional Neurosurgery Research CenterShohada Tajrish Neurosurgical Center of ExcellenceShahid Beheshti University of Medical SciencesTehranIran
| | | | - Timothy L. Megraw
- Department of Biomedical SciencesFlorida State UniversityCollege of MedicineTallahasseeFLUSA
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and MicrobiologyFaculty of Biological Science and TechnologyUniversity of IsfahanIsfahanIran
| |
Collapse
|
47
|
Liu J, Shuai G, Fang W, Zhu Y, Chen H, Wang Y, Li Q, Han Y, Zou D, Cheng O. Altered regional homogeneity and connectivity in cerebellum and visual-motor relevant cortex in Parkinson's disease with rapid eye movement sleep behavior disorder. Sleep Med 2021; 82:125-133. [PMID: 33915428 DOI: 10.1016/j.sleep.2021.03.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/16/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Rapid eye movement sleep behavior disorder (RBD) frequently occurs in Parkinson's disease (PD), however, the exact pathophysiological mechanism underlying its occurrence is not clear. In this study, we explored whether there is abnormal spontaneous neuronal activities and connectivity maps in some brain areas under resting-state in PD patients with RBD. METHODS We recruited 38 PD patients (19 PD with RBD and 19 PD without RBD), and 20 age- and gender-matched normal controls. We used resting-state functional magnetic resonance imaging (RS-fMRI) to analyze regional homogeneity (ReHo) and functional connectivity (FC), and further to reveal the neuronal activity in all subjects. RESULTS Compared with the PD without RBD patients, the PD with RBD patients showed a significant increase in regional homogeneity in the left cerebellum, the right middle occipital region and the left middle temporal region, and decreased regional homogeneity in the left middle frontal region. The REM sleep behavioral disorders questionnaire scores were significantly positively correlated with the ReHo values of the left cerebellum. The functional connectivity analysis in which the four regions described above were used as regions of interest revealed increased functional activity between the left cerebellum and bilateral occipital regions, bilateral temporal regions and bilateral supplementary motor area. CONCLUSION The pathophysiological mechanism of PD with RBD may be related to abnormal spontaneous neuronal activity patterns with strong synchronization of cerebellar and visual-motor relevant cortex, and the increased connectivity of the cerebellum with the occipital and motor regions.
Collapse
Affiliation(s)
- Jinjing Liu
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Guangying Shuai
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Weidong Fang
- Department of Radiology, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yingcheng Zhu
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Huiyue Chen
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yuchan Wang
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Qun Li
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yu Han
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Dezhi Zou
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Oumei Cheng
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
48
|
Almeida LRS, Piemonte MEP, Cavalcanti HM, Canning CG, Paul SS. A Self-Reported Clinical Tool Predicts Falls in People with Parkinson's Disease. Mov Disord Clin Pract 2021; 8:427-434. [PMID: 33816673 PMCID: PMC8015904 DOI: 10.1002/mdc3.13170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/14/2021] [Accepted: 01/27/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND A 3-step clinical prediction tool including falling in the previous year, freezing of gait in the past month and self-selected gait speed <1.1 m/s has shown high accuracy in predicting falls in people with Parkinson's disease (PD). The accuracy of this tool when including only self-report measures is yet to be determined. OBJECTIVES To validate the 3-step prediction tool using only self-report measures (3-step self-reported prediction tool), and to externally validate the 3-step clinical prediction tool. METHODS The clinical tool was used with 137 individuals with PD. Participants also answered a question about self-reported gait speed, enabling scoring of the self-reported tool, and were followed-up for 6 months. An intraclass correlation coefficient (ICC2,1) was calculated to evaluate test-retest reliability of the 3-step self-reported prediction tool. Multivariate logistic regression models were used to evaluate the performance of both tools and their discriminative ability was determined using the area under the curve (AUC). RESULTS Forty-two participants (31%) reported ≥1 fall during follow-up. The 3-step self-reported tool had an ICC2,1 of 0.991 (95% CI 0.971-0.997; P < 0.001) and AUC = 0.68; 95% CI 0.59-0.77, while the 3-step clinical tool had an AUC = 0.69; 95% CI 0.60-0.78. CONCLUSIONS The 3-step self-reported prediction tool showed excellent test-retest reliability and was validated with acceptable accuracy in predicting falls in the next 6 months. The 3-step clinical prediction tool was externally validated with similar accuracy. The 3-step self-reported prediction tool may be useful to identify people with PD at risk of falls in e/tele-health settings.
Collapse
Affiliation(s)
- Lorena Rosa S. Almeida
- Movement Disorders and Parkinson's Disease ClinicRoberto Santos General HospitalSalvadorBrazil
- Motor Behavior and Neurorehabilitation Research GroupBahiana School of Medicine and Public HealthSalvadorBrazil
| | - Maria Elisa Pimentel Piemonte
- Physical Therapy, Speech Therapy and Occupational Therapy DepartmentFaculty of Medicine of University of São PauloSão PauloBrazil
| | - Helen M. Cavalcanti
- Motor Behavior and Neurorehabilitation Research GroupBahiana School of Medicine and Public HealthSalvadorBrazil
- Postgraduate Program in Health SciencesFederal University of Bahia School of MedicineSalvadorBrazil
- Bahia Adventist CollegeCachoeiraBrazil
| | - Colleen G. Canning
- Discipline of Movement Sciences, Sydney School of Health Sciences, Faculty of Medicine and HealthThe University of SydneyNew South WalesAustralia
| | - Serene S. Paul
- Discipline of Movement Sciences, Sydney School of Health Sciences, Faculty of Medicine and HealthThe University of SydneyNew South WalesAustralia
| |
Collapse
|
49
|
Kwan V, Shum D, Haffenden A, Yeates KO, Kwok A, Lau H, Poon WS, Chan D, Zhu XL, Chan D, Mok V, Chan A, Ma K, Yeung J, Lau C, Bezchlibnyk Y, Kiss Z, Tang V. A retrospective comparison of cognitive performance in individuals with advanced Parkinson's Disease in Hong Kong and Canada. APPLIED NEUROPSYCHOLOGY-ADULT 2021; 29:1562-1570. [PMID: 33721508 DOI: 10.1080/23279095.2021.1898396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A deeper understanding of the cross-cultural applicability of cognitive tests across countries and cultures is needed to better equip neuropsychologists for the assessment of patients from diverse backgrounds. Our study compared cognitive test scores in patients with advanced Parkinson's disease (PD) at the Prince of Wales Hospital (n = 63; Hong Kong) and the Foothills Medical Center (n = 20; Calgary, Canada). The groups did not differ in age or sex (p > .05), but Western patients had significantly more years of education (M = 14.2, SD = 2.7) than Asian patients (M = 10.33, SD = 4.4). Cognitive tests administered to both groups included: digit span, verbal fluency (animals), the Boston Naming Test, and verbal memory (California Verbal Learning Test or Chinese Auditory Verbal Learning Test). Testing was completed before and 12 months after deep brain stimulation surgery. Results showed cognitive performance was similar across time, but significant group differences were found on digit span forward (longer among patients from Hong Kong; F(1, 75) = 44.155, p < .001) and the Boston Naming Test (higher percent spontaneous correct among patients from Canada; F(1, 62) = 7.218, p = .009, η2 = 0.104), after controlling for age, sex, and years of education. In conclusion, our findings provide preliminary support for the similarity of Chinese versions of tests originally developed for Western populations. Also, we caution that some aspects of testing may be susceptible to cultural bias and therefore warrant attention in clinical practice and refinement in future test development for Asian patients.
Collapse
Affiliation(s)
| | - David Shum
- The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | | | | | - Alice Kwok
- Department of Clinical Psychology, Prince of Wales Hospital, Sha Tin, Hong Kong
| | - Herman Lau
- Chinese University Medical Centre, Ma Liu Shui, Hong Kong
| | - Wai Sang Poon
- Department of Surgery, Prince of Wales Hospital, Sha Tin, Hong Kong
| | - Danny Chan
- Department of Surgery, Prince of Wales Hospital, Sha Tin, Hong Kong
| | - X L Zhu
- Department of Surgery, Prince of Wales Hospital, Sha Tin, Hong Kong
| | - David Chan
- Department of Surgery, Prince of Wales Hospital, Sha Tin, Hong Kong
| | - Vincent Mok
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Sha Tin, Hong Kong
| | - Anne Chan
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Sha Tin, Hong Kong
| | - Karen Ma
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Sha Tin, Hong Kong
| | - Jonas Yeung
- Department of Medicine, Alice Ho Miu Ling Nethersole Hospital, Tai Po, Hong Kong
| | - Claire Lau
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Sha Tin, Hong Kong
| | - Yarema Bezchlibnyk
- Department of Clinical Neurosciences, University of Calgary, Alberta, Canada
| | - Zelma Kiss
- Department of Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Venus Tang
- Department of Clinical Psychology, Prince of Wales Hospital, Sha Tin, Hong Kong
| |
Collapse
|
50
|
Differences in Home Health Nursing Care for Patients with Parkinson's Disease by Stage of Progress: Patients in Hoehn and Yahr Stages III, IV, and V. PARKINSONS DISEASE 2021; 2021:8834998. [PMID: 33688425 PMCID: PMC7920702 DOI: 10.1155/2021/8834998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/30/2020] [Indexed: 11/18/2022]
Abstract
As societal aging progresses globally, the number of people with Parkinson's disease (PD) is expected to increase worldwide. Accordingly, the need for home health nursing care for homebound patients with PD will continue to expand. We aimed to clarify the clinical care provided by nurses to homebound patients in each Hoehn and Yahr (HY) stage of the disease. We analyzed the visiting nursing records of patients and observed the clinical care provided by nurses in patients' homes and nursing homes to compare the attributes of patients and differences in nursing care by HY stage. All 21 patients surveyed were at or above HY stage III. The nurses visited each patient nine times per month, on average. The number of visits was positively correlated with HY stage. All stage III patients were homebound, and medication dosage and dispensation assistance were quite common. Several stage IV patients were admitted into nursing homes. In stage V, assistance with hygiene, bedsore management, urine withdrawal/bladder catheters, and other excretory aids were among the most common forms of nursing care provided. As patients' stages progressed, guidance/educational care meant to encourage self-care decreased and direct physical care increased. Clear differences in nursing care were observed between HY stages, suggesting that stage-based protocols regarding the nature and frequency of nursing visits may be useful for ensuring consistent, effective care of patients with PD.
Collapse
|