1
|
Nomoto M, Tsuboi Y, Kashihara K, Chiu SW, Maeda T, Saiki H, Watanabe H, Shimo Y, Hattori N, Yamaguchi T. Prescription trends in Japanese advanced Parkinson's disease patients with non-motor symptoms: J-FIRST. PLoS One 2024; 19:e0309297. [PMID: 39441810 PMCID: PMC11498663 DOI: 10.1371/journal.pone.0309297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/01/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Non-motor symptoms (NMS) are important factors when selecting treatments for patients with advanced Parkinson's disease (PD). We sought to elucidate the prescribing practices for advanced PD patients with NMS in Japanese clinical practice. METHODS We examined the prescription rates and doses of anti-PD drugs, and the use of non-steroidal anti-inflammatory drugs (NSAIDs) in post hoc analyses of a 52-week observational study of 996 PD patients with wearing-off on levodopa-containing therapy and ≥1 NMS. RESULTS Dopamine agonists were the most frequently prescribed drugs combined with levodopa-containing drugs, followed by entacapone, zonisamide, istradefylline, selegiline, and amantadine. The daily dose of levodopa-containing drugs, rotigotine, entacapone, istradefylline, and droxidopa, and the levodopa-equivalent dose increased during the observation period. In a subgroup analysis of patients stratified by NMS status (improved/unchanged/deteriorated), the deteriorated group had higher prescription rates of entacapone and istradefylline, whereas the improved group had higher prescription rates of NSAIDs and zonisamide at Week 52. Prescriptions varied by geographical region for anti-PD drugs and by NMS status for NSAIDs. CONCLUSIONS There were significant changes in the prescriptions and dosing of selected anti-PD drugs, especially newer drugs. Anti-PD drug and NSAID prescriptions also varied by changes in NMS status and geographic region.
Collapse
Affiliation(s)
- Masahiro Nomoto
- Department of Neurology and Clinical Pharmacology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Yoshio Tsuboi
- Department of Neurology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | | | - Shih-Wei Chiu
- Division of Biostatistics, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Tetsuya Maeda
- Department of Neurology, Research Institute for Brain and Blood Vessels-Akita, Akita, Japan
| | - Hidemoto Saiki
- Department of Neurology, Kitano Hospital, The Tazuke Kofukai Medical Research Institute, Osaka, Japan
| | | | - Yasushi Shimo
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takuhiro Yamaguchi
- Division of Biostatistics, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | | |
Collapse
|
2
|
Costello H, Husain M, Roiser JP. Apathy and Motivation: Biological Basis and Drug Treatment. Annu Rev Pharmacol Toxicol 2024; 64:313-338. [PMID: 37585659 DOI: 10.1146/annurev-pharmtox-022423-014645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Apathy is a disabling syndrome associated with poor functional outcomes that is common across a broad range of neurological and psychiatric conditions. Currently, there are no established therapies specifically for the condition, and safe and effective treatments are urgently needed. Advances in the understanding of motivation and goal-directed behavior in humans and animals have shed light on the cognitive and neurobiological mechanisms contributing to apathy, providing an important foundation for the development of new treatments. Here, we review the cognitive components, neural circuitry, and pharmacology of apathy and motivation, highlighting converging evidence of shared transdiagnostic mechanisms. Though no pharmacological treatments have yet been licensed, we summarize trials of existing and novel compounds to date, identifying several promising candidates for clinical use and avenues of future drug development.
Collapse
Affiliation(s)
- Harry Costello
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom;
| | - Masud Husain
- Nuffield Department of Clinical Neurosciences and Department of Experimental Psychology, Oxford University, Oxford, United Kingdom
| | - Jonathan P Roiser
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom;
| |
Collapse
|
3
|
Koch J. Management of OFF condition in Parkinson disease. Ment Health Clin 2023; 13:289-297. [PMID: 38058599 PMCID: PMC10696172 DOI: 10.9740/mhc.2023.12.289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/31/2023] [Indexed: 12/08/2023] Open
Abstract
Parkinson disease (PD) impacts nearly 1 million individuals in the United States. Nearly every patient with PD will require therapy with dopamine in the form of levodopa as the disease progresses. In more advanced stages of the disease, patients will experience motor fluctuations and require adjustment to their medication regimens to maintain good control of their symptoms. During the last 10 years, several new therapeutic treatment options have come to the market to treat motor fluctuations and improve patient quality of life. Some of these agents represent additional options to previously available drug classes, such as the catechol-O-methyl transferase (COMT) inhibitor, opicapone, and monoamine-oxidase B-inhibitor (MAO-B inhibitor), safinamide, as well as new dosage forms for available therapeutics. One new agent, istradefylline, has a novel mechanism in the treatment of PD. The place in therapy for these newer therapeutic options will be explored through a series of patient cases. This article focuses on evidence-based recommendations for the use of these newer options in the management of patients experiencing OFF episodes.
Collapse
|
4
|
Sako W, Kogo Y, Koebis M, Kita Y, Yamakage H, Ishida T, Hattori N. Comparative efficacy and safety of adjunctive drugs to levodopa for fluctuating Parkinson's disease - network meta-analysis. NPJ Parkinsons Dis 2023; 9:143. [PMID: 37853009 PMCID: PMC10584871 DOI: 10.1038/s41531-023-00589-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
It remains unclear which adjunctive drug for Parkinson's disease (PD) in combination with levodopa is more effective, tolerable, and safe. We aimed to compare the efficacy, tolerability, and safety among anti-PD drugs from several classes in patients with fluctuating PD who received levodopa through network meta-analysis (NMA). Twelve anti-PD drugs belonging to 4 different drug classes (dopamine agonists, monoamine oxidase type B inhibitors, catechol-O-methyl transferase inhibitors, and an adenosine A2A receptor antagonist) were selected. We systematically searched PubMed, Embase, and the Cochrane Library for eligible randomized controlled trials (RCTs) comparing placebo with anti-PD drug or among anti-PD drugs in patients with PD who experienced motor fluctuations or wearing-off and received levodopa. We included 54 RCTs in the analysis. The NMA was performed under a frequentist framework using a random-effects model. The efficacy outcome was change in daily off-time, and the tolerability outcome was discontinuation due to all causes. Safety outcomes included discontinuation due to adverse events (AEs) and the incidence of AEs, dyskinesia, hallucination, and orthostatic hypotension. According to the surface under the cumulative ranking curve (SUCRA) in the NMA, ropinirole transdermal patch (SUCRA, 0.861) ranked the highest in efficacy, followed by pramipexole (0.762), ropinirole extended release (ER) (0.750), and safinamide (0.691). In terms of tolerability, ropinirole (0.954) ranked the highest, followed by pramipexole (0.857), safinamide (0.717), and ropinirole ER (0.708). Each anti-PD drug had different SUCRA ranking profiles for the safety outcomes. These findings suggest that ropinirole, pramipexole, and safinamide are well-balanced anti-PD drugs that satisfy both efficacy and tolerability outcomes.
Collapse
Affiliation(s)
- Wataru Sako
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Yuki Kogo
- Medical Headquarters, Eisai Co., Ltd., Tokyo, Japan
| | | | - Yoshiaki Kita
- Publication Business, Medical Professional Relations Inc., Osaka, Japan
| | - Hajime Yamakage
- Department of Medical Statistics, Satista Co., Ltd., Kyoto, Japan
| | | | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Offit M, Nagle B, Ozay G, Zhang I, Kerasidis A, Torres-Yaghi Y, Pagan F. Adenosine A 2A antagonists and Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 170:105-119. [PMID: 37741688 DOI: 10.1016/bs.irn.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Although there is no cure for Parkinson's disease (PD), there are several classes of medications with various mechanisms of action that can help improve the functionality of someone with PD. Dopamine derivatives are first line therapies for PD, hence dopamine receptor agonists (DAs) have been shown to improve functionality of symptoms in PD patients. The two main formulations of dopamine agonist medications in PD therapy are ergoline and non-ergoline derivatives. Additionally, it has been shown that PD can involve irregularities in other neurotransmitters, such as acetylcholine, norepinephrine, and serotonin, hence why non-dopaminergic medications are also vital in PD management. Examples include NMDA receptor antagonists, dopamine antagonists (i.e. neuroleptics), acetylcholine receptor antagonists, serotonin receptor 2A agonists, and adenosine A2 antagonists. In general, dopaminergic medications are the most effective in improving motor involvement with PD, whereas non-dopaminergic medications tend to focus on the non-motor involvement of PD. In this chapter, we will focus on the chemistry and medication background on dopaminergic vs non-dopaminergic therapy, with a focus of adenosine A2 antagonists at the end.
Collapse
Affiliation(s)
- Michelle Offit
- MedStar Georgetown University Hospital, Neurology Department, Reservoir Rd, Washington, DC, United States.
| | - Brian Nagle
- MedStar Georgetown University Hospital, Neurology Department, Reservoir Rd, Washington, DC, United States
| | - Gonul Ozay
- MedStar Georgetown University Hospital, Neurology Department, Reservoir Rd, Washington, DC, United States
| | - Irma Zhang
- MedStar Georgetown University Hospital, Neurology Department, Reservoir Rd, Washington, DC, United States
| | - Anastassia Kerasidis
- MedStar Georgetown University Hospital, Neurology Department, Reservoir Rd, Washington, DC, United States
| | - Yasar Torres-Yaghi
- MedStar Georgetown University Hospital, Neurology Department, Reservoir Rd, Washington, DC, United States
| | - Fernando Pagan
- MedStar Georgetown University Hospital, Neurology Department, Reservoir Rd, Washington, DC, United States
| |
Collapse
|
6
|
Ohno Y, Okita E, Kawai-Uchida M, Shoukei Y, Soshiroda K, Kanda T, Uchida S. The adenosine A 2A receptor antagonist/inverse agonist, KW-6356 enhances the anti-parkinsonian activity of L-DOPA with a low risk of dyskinesia in MPTP-treated common marmosets. J Pharmacol Sci 2023; 152:193-199. [PMID: 37257947 DOI: 10.1016/j.jphs.2023.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/27/2023] [Accepted: 05/08/2023] [Indexed: 06/02/2023] Open
Abstract
The adenosine A2A receptor antagonist/inverse agonist, KW-6356 has been shown to be effective in Parkinson's disease (PD) patients as monotherapy and as an adjunct therapy to L-3,4-dihydroxyphenylalanine (L-DOPA)/decarboxylase inhibitor. However, the effects of KW-6356 combined with L-DOPA on anti-parkinsonian activity and established dyskinesia has not been investigated in preclinical experiments. We examined the effects of combination of KW-6356 with L-DOPA in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated common marmosets. Oral administration of KW-6356 (1 mg/kg) enhanced the anti-parkinsonian activities of various doses of L-DOPA (2.5-10 mg/kg). In MPTP-treated common marmosets primed with L-DOPA to show dyskinesia, KW-6356 (1 mg/kg) also enhanced the anti-parkinsonian activities of various doses of L-DOPA (1.25-10 mg/kg) but not dyskinesia. Chronic co-administration of KW-6356 (1 mg/kg) with a low dose of L-DOPA (2.5 mg/kg) for 21 days increased the degree of dyskinesia induced by the low dose of L-DOPA, but the amplitude of dyskinesia induced by combined administration of KW-6356 (1 mg/kg) with L-DOPA (2.5 mg/kg) was lower than that induced by an optimal dose of L-DOPA (10 mg/kg). These results suggest that KW-6356 can be used to potentiate the effects of a wide range of L-DOPA doses with a low risk of dyskinesia for the treatment of PD.
Collapse
Affiliation(s)
- Yutaro Ohno
- Biomedical Science Research Laboratories 1, Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan
| | - Eri Okita
- Research Core Function Laboratories, Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan
| | - Mika Kawai-Uchida
- Research Core Function Laboratories, Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan
| | - Youji Shoukei
- Research Core Function Laboratories, Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan
| | - Kazuhiro Soshiroda
- Research Core Function Laboratories, Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 3-6-6 Asahi-machi, Machida-shi, Tokyo, Japan
| | - Tomoyuki Kanda
- R&D Planning Department, R&D Division, Kyowa Kirin Co., Ltd., 1-9-2 Otemachi, Chiyoda-Ku, Tokyo, Japan
| | - Shinichi Uchida
- Biomedical Science Research Laboratories 1, Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan.
| |
Collapse
|
7
|
Richmond AM, Lyons KE, Pahwa R. Safety review of current pharmacotherapies for levodopa-treated patients with Parkinson's disease. Expert Opin Drug Saf 2023; 22:563-579. [PMID: 37401865 DOI: 10.1080/14740338.2023.2227096] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/15/2023] [Indexed: 07/05/2023]
Abstract
INTRODUCTION Levodopa remains the gold standard for treatment of Parkinson's disease (PD). Patients develop complications with disease progression, necessitating adjunctive therapy to control fluctuations in motor and non-motor symptoms and dyskinesia. Knowledge of medication safety and tolerability is critical to ascertain the benefit-risk ratio and select an adjunctive therapy that provides the highest chance for medication adherence. Posing a challenge are the sheer abundance of options, stemming from the development of several new drugs in recent years, as well as differences in commercial drug availability worldwide. AREAS COVERED This review evaluates the efficacy, safety, and tolerability of current US FDA-approved pharmacotherapies for levodopa-treated PD patients, including dopamine agonists, monoamine oxidase type-B inhibitors, catechol-O-methyltransferase inhibitors, the N-methyl-D-aspartate receptor antagonist amantadine, and the adenosine receptor antagonist istradefylline. Data were taken from pivotal phase III randomized controlled and post-surveillance studies, when available, that directly led to FDA-approval. EXPERT OPINION No strong evidence exists to support use of a specific adjunctive treatment for improving Off time. Only one medication has demonstrated improvement in dyskinesia in levodopa-treated PD patients; however, every patient cannot tolerate it and therefore adjunctive therapy should be tailored to an individual's symptoms and risk for specific adverse effects.
Collapse
Affiliation(s)
- Angela M Richmond
- Parkinson's and Movement Disorders Division, Department of Neurology, The University of Kansas Medical Center, Kansas, KS, United States of America
| | - Kelly E Lyons
- Research and Education, Parkinson's and Movement Disorders Division, Department of Neurology, The University of Kansas Medical Center, Kansas, KS, United States of America
| | - Rajesh Pahwa
- Laverne & Joyce Rider Professor of Neurology, Chief, Parkinson's and Movement Disorders Division Director, Parkinson's Foundation Center of Excellence, The University of Kansas Medical Center, Kansas, KS, United States of America
| |
Collapse
|
8
|
Rimbert S, Moreira JB, Xapelli S, Lévi S. Role of purines in brain development, from neuronal proliferation to synaptic refinement. Neuropharmacology 2023:109640. [PMID: 37348675 DOI: 10.1016/j.neuropharm.2023.109640] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
The purinergic system includes P1 and P2 receptors, which are activated by ATP and its metabolites. They are expressed in adult neuronal and glial cells and are crucial in brain function, including neuromodulation and neuronal signaling. As P1 and P2 receptors are expressed throughout embryogenesis and development, purinergic signaling also has an important role in the development of the peripheral and central nervous system. In this review, we present the expression pattern and activity of purinergic receptors and of their signaling pathways during embryonic and postnatal development of the nervous system. In particular, we review the involvement of the purinergic signaling in all the crucial steps of brain development i.e. in neural stem cell proliferation, neuronal differentiation and migration as well as in astrogliogenesis and oligodendrogenesis. Then, we review data showing a crucial role of the ATP and adenosine signaling pathways in the formation of the peripheral neuromuscular junction and of central GABAergic and glutamatergic synapses. Finally, we examine the consequences of deregulation of the purinergic system during development and discuss the therapeutic potential of targeting it at adult stage in diseases with reactivation of the ATP and adenosine pathway.
Collapse
Affiliation(s)
- Solen Rimbert
- INSERM UMR-S 1270, Sorbonne Université, Institut du Fer à Moulin, 75005, Paris, France
| | - João B Moreira
- INSERM UMR-S 1270, Sorbonne Université, Institut du Fer à Moulin, 75005, Paris, France; Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular - João Lobo Antunes (iMM - JLA), Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular - João Lobo Antunes (iMM - JLA), Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sabine Lévi
- INSERM UMR-S 1270, Sorbonne Université, Institut du Fer à Moulin, 75005, Paris, France.
| |
Collapse
|
9
|
Jenner P, Kanda T, Mori A. How and why the adenosine A 2A receptor became a target for Parkinson's disease therapy. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 170:73-104. [PMID: 37741697 DOI: 10.1016/bs.irn.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Dopaminergic therapy for Parkinson's disease has revolutionised the treatment of the motor symptoms of the illness. However, it does not alleviate all components of the motor deficits and has only limited effects on non-motor symptoms. For this reason, alternative non-dopaminergic approaches to treatment have been sought and the adenosine A2A receptor provided a novel target for symptomatic therapy both within the basal ganglia and elsewhere in the brain. Despite an impressive preclinical profile that would indicate a clear role for adenosine A2A antagonists in the treatment of Parkinson's disease, the road to clinical use has been long and full of difficulties. Some aspects of the drugs preclinical profile have not translated into clinical effectiveness and not all the clinical studies undertaken have had a positive outcome. The reasons for this will be explored and suggestions made for the further development of this drug class in the treatment of Parkinson's disease. However, one adenosine A2A antagonist, namely istradefylline has been introduced successfully for the treatment of late-stage Parkinson's disease in two major areas of the world and has become a commercial success through offering the first non-dopaminergic approach to the treatment of unmet need to be introduced in several decades.
Collapse
Affiliation(s)
- Peter Jenner
- Institute of Pharmaceutical Sciences, King's College London, London, United Kingdom.
| | - Tomoyuki Kanda
- Kyowa Kirin Co., Ltd., Otemachi. Chiyoda-ku, Tokyo, Japan
| | | |
Collapse
|
10
|
Rose R, Mitchell E, Van Der Graaf P, Takaichi D, Hosogi J, Geerts H. A quantitative systems pharmacology model for simulating OFF-Time in augmentation trials for Parkinson’s disease: application to preladenant. J Pharmacokinet Pharmacodyn 2022; 49:593-606. [DOI: 10.1007/s10928-022-09825-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022]
|
11
|
Isaacson SH, Betté S, Pahwa R. Istradefylline for OFF Episodes in Parkinson’s Disease: A US Perspective of Common Clinical Scenarios. Degener Neurol Neuromuscul Dis 2022; 12:97-109. [PMID: 35910426 PMCID: PMC9329678 DOI: 10.2147/dnnd.s245197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
The effective management of OFF episodes remains an important unmet need for patients with Parkinson’s disease (PD) who develop motor complications with long-term levodopa therapy. Istradefylline is a selective adenosine A2A receptor antagonist for the treatment of patients with PD experiencing OFF episodes while on levodopa/decarboxylase inhibitor. Originally approved in Japan, istradefylline was recently approved in the USA. In this article, we provide a specific review of the four clinical studies that the FDA included in the approval of istradefylline in the USA, and discuss common clinical scenarios, based on our experience, where treatment with istradefylline may benefit patients experiencing motor fluctuations.
Collapse
Affiliation(s)
- Stuart H Isaacson
- Parkinson’s Disease and Movement Disorders Center of Boca Raton, Boca Raton, FL, USA
- Correspondence: Stuart H Isaacson, Parkinson’s Disease and Movement Disorders Center of Boca Raton, 951 NW 13th Street, Bldg. 5-E, Boca Raton, FL, 33486, USA, Tel +1 561-392-1818, Fax +1 561-392-8989, Email
| | - Sagari Betté
- Parkinson’s Disease and Movement Disorders Center of Boca Raton, Boca Raton, FL, USA
| | - Rajesh Pahwa
- University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
12
|
Mori A, Chen JF, Uchida S, Durlach C, King SM, Jenner P. The Pharmacological Potential of Adenosine A 2A Receptor Antagonists for Treating Parkinson's Disease. Molecules 2022; 27:2366. [PMID: 35408767 PMCID: PMC9000505 DOI: 10.3390/molecules27072366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
The adenosine A2A receptor subtype is recognized as a non-dopaminergic pharmacological target for the treatment of neurodegenerative disorders, notably Parkinson's disease (PD). The selective A2A receptor antagonist istradefylline is approved in the US and Japan as an adjunctive treatment to levodopa/decarboxylase inhibitors in adults with PD experiencing OFF episodes or a wearing-off phenomenon; however, the full potential of this drug class remains to be explored. In this article, we review the pharmacology of adenosine A2A receptor antagonists from the perspective of the treatment of both motor and non-motor symptoms of PD and their potential for disease modification.
Collapse
Affiliation(s)
- Akihisa Mori
- Kyowa Kirin Co., Ltd., Tokyo 100-0004, Japan; (A.M.); (S.U.)
| | - Jiang-Fan Chen
- Molecular Neuropharmacology Laboratory, Wenzhou Medical University, Wenzhou 325015, China;
| | - Shinichi Uchida
- Kyowa Kirin Co., Ltd., Tokyo 100-0004, Japan; (A.M.); (S.U.)
| | | | | | - Peter Jenner
- Institute of Pharmaceutical Science, Kings College London, London SE1 9NH, UK
| |
Collapse
|
13
|
Hatano T, Kano O, Sengoku R, Yoritaka A, Suzuki K, Nishikawa N, Mukai Y, Nomura K, Yoshida N, Seki M, Matsukawa MK, Terashi H, Kimura K, Tashiro J, Hirano S, Murakami H, Joki H, Uchiyama T, Shimura H, Ogaki K, Fukae J, Tsuboi Y, Takahashi K, Yamamoto T, Yanagisawa N, Nagayama H. Evaluating the impact of adjunctive istradefylline on the cumulative dose of levodopa-containing medications in Parkinson's disease: study protocol for the ISTRA ADJUST PD randomized, controlled study. BMC Neurol 2022; 22:71. [PMID: 35241003 PMCID: PMC8892732 DOI: 10.1186/s12883-022-02600-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/23/2022] [Indexed: 12/02/2022] Open
Abstract
Background Levodopa remains the most effective symptomatic treatment for Parkinson’s disease (PD) more than 50 years after its clinical introduction. However, the onset of motor complications can limit pharmacological intervention with levodopa, which can be a challenge when treating PD patients. Clinical data suggest using the lowest possible levodopa dose to balance the risk/benefit. Istradefylline, an adenosine A2A receptor antagonist indicated as an adjunctive treatment to levodopa-containing preparations in PD patients experiencing wearing off, is currently available in Japan and the US. Preclinical and preliminary clinical data suggested that adjunctive istradefylline may provide sustained antiparkinsonian benefits without a levodopa dose increase; however, available data on the impact of istradefylline on levodopa dose titration are limited. The ISTRA ADJUST PD study will evaluate the effect of adjunctive istradefylline on levodopa dosage titration in PD patients. Methods This 37-week, multicenter, randomized, open-label, parallel-group controlled study in PD patients aged 30–84 years who are experiencing the wearing-off phenomenon despite receiving levodopa-containing medications ≥ 3 times daily (daily dose 300–400 mg) began in February 2019 and will continue until February 2022. Enrollment is planned to attain 100 evaluable patients for the efficacy analyses. Patients will receive adjunctive istradefylline (20 mg/day, increasing to 40 mg/day) or the control in a 1:1 ratio, stratified by age, levodopa equivalent dose, and presence/absence of dyskinesia. During the study, the levodopa dose will be increased according to symptom severity. The primary study endpoint is the comparison of the cumulative additional dose of levodopa-containing medications during the treatment period between the adjunctive istradefylline and control groups. Secondary endpoints include changes in efficacy rating scales and safety outcomes. Discussion This study aims to clarify whether adjunctive istradefylline can reduce the cumulative additional dose of levodopa-containing medications in PD patients experiencing the wearing-off phenomenon, and lower the risk of levodopa-associated complications. It is anticipated that data from ISTRA ADJUST PD will help inform future clinical decision-making for patients with PD in the real-world setting. Trial registration Japan Registry of Clinical Trials, jRCTs031180248; registered 12 March 2019.
Collapse
Affiliation(s)
- Taku Hatano
- Department of Neurology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, 113-8421, Tokyo, Japan.
| | - Osamu Kano
- Department of Neurology, Faculty of Medicine, Toho University, 6-11-1 Omorinishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Renpei Sengoku
- Department of Neurology, Jikei University Daisan Hospital, 4-11-1 Izumihoncho, Komae, Tokyo, 201-0003, Japan
| | - Asako Yoritaka
- Department of Neurology, Juntendo University Koshigaya Hospital, 560 Fukuroyama, Koshigaya-shi, Saitama, 343-0032, Japan
| | - Keisuke Suzuki
- Department of Neurology, Dokkyo Medical University Hospital, 880 Oaza Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, 321-0293, Japan
| | - Noriko Nishikawa
- Department of Neurology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, 113-8421, Tokyo, Japan.,Department of Neurology, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira-shi, Tokyo, 187-8551, Japan
| | - Yohei Mukai
- Department of Neurology, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira-shi, Tokyo, 187-8551, Japan
| | - Kyoichi Nomura
- Department of Neurology, Saitama Medical Center, Kawagoe-shi, Saitama, 350-8550, Japan
| | - Norihito Yoshida
- Department of Neurology, Saitama Medical Center, Kawagoe-shi, Saitama, 350-8550, Japan
| | - Morinobu Seki
- Department of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Miho Kawabe Matsukawa
- Department of Neurology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Hiroo Terashi
- Department of Neurology, Tokyo Medical University Hospital, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Katsuo Kimura
- Department of Neurology, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama-shi, Kanagawa, 232-0024, Japan
| | - Jun Tashiro
- Sapporo Parkinson MS Neurological Clinic, Dai 27 Big Sapporo-kita Sky Building 12F, 7-6 Kita-7 jo Nishi-5 chome, Kita-ku, Sapporo-shi, Hokkaido, 060-0807, Japan
| | - Shigeki Hirano
- Department of Neurology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8670, Japan
| | - Hidetomo Murakami
- Department of Neurology, The Jikei University Hospital, 3-19-18 Nishishinbashi, Minato-ku, Tokyo, 105-8471, Japan
| | - Hideto Joki
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Tsuyoshi Uchiyama
- Department of Neurology, Seirei Hamamatsu General Hospital, 2-12-12 Sumiyoshi, Naka-ku, Hamamatsu-shi, Shizuoka, 430-8558, Japan
| | - Hideki Shimura
- Department of Neurology, Juntendo Tokyo Koto Geriatric Medical Center, 3-3-20 Shinsuna, Koto-ku, Tokyo, 136-0075, Japan
| | - Kotaro Ogaki
- Department of Neurology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu-shi, Chiba, 279-0021, Japan
| | - Jiro Fukae
- Department of Neurology, Juntendo University Nerima Hospital, 3-1-10 Takano-dai, Nerima-ku, Tokyo, 177-8521, Japan
| | - Yoshio Tsuboi
- Department of Neurology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Johnan-ku, Fukuoka, 814-0180, Japan
| | - Kazushi Takahashi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Musashidai 2-6-1, Fuchu-shi, Tokyo, 183-0042, Japan
| | - Toshimasa Yamamoto
- Department of Neurology, Saitama Medical University Hospital, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Naotake Yanagisawa
- Medical Technology Innovation Center, Juntendo University and Juntendo Clinical Research and Trial Center, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hiroshi Nagayama
- Department of Neurology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| |
Collapse
|
14
|
Angela Cenci M, Skovgård K, Odin P. Non-dopaminergic approaches to the treatment of motor complications in Parkinson's disease. Neuropharmacology 2022; 210:109027. [DOI: 10.1016/j.neuropharm.2022.109027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 12/21/2022]
|
15
|
Jost WH, Tönges L. [Adenosine A2A Receptor Antagonists as a Treatment Option for Parkinson's Disease?]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2022; 90:565-570. [PMID: 35226930 DOI: 10.1055/a-1771-6225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In Parkinson's disease, the focus has long been on motor symptoms and therapy with dopaminergic substances. In recent years, the importance of non-motor symptoms has been increasingly recognized, as they occur early in the course of the disease and restrict considerably the quality of life. However, this also made the need for treatment of non-dopaminergic deficits obvious. Adenosine A2A receptor antagonists were identified as an additional therapy, since the adenosine A2A receptors are non-dopaminergic and selectively localized in the basal ganglia. This means that the striato-thalamo-cortical loops can be modulated. An adenosine A2A receptor antagonist was already approved in Japan in 2013 and in the USA in 2019 as an add-on to L-DOPA. Approval for this drug in Europe is expected in the near future. In this overview, we present the theoretical basis and current data on its efficacy and therapeutic use.
Collapse
Affiliation(s)
| | - Lars Tönges
- Klinik für Neurologie, Ruhr-Universität Bochum, St. Josef-Hospital, Bochum, Germany
| |
Collapse
|
16
|
Jakova E, Moutaoufik MT, Lee JS, Babu M, Cayabyab FS. Adenosine A1 receptor ligands bind to α-synuclein: implications for α-synuclein misfolding and α-synucleinopathy in Parkinson's disease. Transl Neurodegener 2022; 11:9. [PMID: 35139916 PMCID: PMC8830172 DOI: 10.1186/s40035-022-00284-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/21/2022] [Indexed: 12/20/2022] Open
Abstract
Background Accumulating α-synuclein (α-syn) aggregates in neurons and glial cells are the staples of many synucleinopathy disorders, such as Parkinson’s disease (PD). Since brain adenosine becomes greatly elevated in ageing brains and chronic adenosine A1 receptor (A1R) stimulation leads to neurodegeneration, we determined whether adenosine or A1R receptor ligands mimic the action of known compounds that promote α-syn aggregation (e.g., the amphetamine analogue 2-aminoindan) or inhibit α-syn aggregation (e.g., Rasagiline metabolite 1-aminoindan). In the present study, we determined whether adenosine, A1R receptor agonist N6-Cyclopentyladenosine (CPA) and antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) could directly interact with α-syn to modulate α-syn aggregation and neurodegeneration of dopaminergic neurons in the substantia nigra (SN). Methods Nanopore analysis and molecular docking were used to test the binding properties of CPA and DPCPX with α-syn in vitro. Sprague–Dawley rats were administered with 7-day intraperitoneal injections of the A1R ligands and 1- and 2-aminoindan, and levels of α-syn aggregation and neurodegeneration were examined in the SN pars compacta and hippocampal regions using confocal imaging and Western blotting. Results Using nanopore analysis, we showed that the A1R agonists (CPA and adenosine) interacted with the N-terminus of α-syn, similar to 2-aminoindan, which is expected to promote a “knot” conformation and α-syn misfolding. In contrast, the A1R antagonist DPCPX interacted with the N- and C-termini of α-syn, similar to 1-aminoindan, which is expected to promote a “loop” conformation that prevents α-syn misfolding. Molecular docking studies revealed that adenosine, CPA and 2-aminoindan interacted with the hydrophobic core of α-syn N-terminus, whereas DPCPX and 1-aminoindan showed direct binding to the N- and C-terminal hydrophobic pockets. Confocal imaging and Western blot analyses revealed that chronic treatments with CPA alone or in combination with 2-aminoindan increased α-syn expression/aggregation and neurodegeneration in both SN pars compacta and hippocampus. In contrast, DPCPX and 1-aminoindan attenuated the CPA-induced α-syn expression/aggregation and neurodegeneration in SN and hippocampus. Conclusions The results indicate that A1R agonists and drugs promoting a “knot” conformation of α-syn can cause α-synucleinopathy and increase neuronal degeneration, whereas A1R antagonists and drugs promoting a “loop” conformation of α-syn can be harnessed for possible neuroprotective therapies to decrease α-synucleinopathy in PD. Supplementary Information The online version contains supplementary material available at 10.1186/s40035-022-00284-3.
Collapse
Affiliation(s)
- Elisabet Jakova
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mohamed Taha Moutaoufik
- Department of Chemistry and Biochemistry, Faculty of Science, University of Regina, Regina, SK, Canada
| | - Jeremy S Lee
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mohan Babu
- Department of Chemistry and Biochemistry, Faculty of Science, University of Regina, Regina, SK, Canada
| | - Francisco S Cayabyab
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
17
|
nnEfficacy and safety of istradefylline for Parkinson's disease: A systematic review and meta-analysis. Neurosci Lett 2022; 774:136515. [PMID: 35149201 DOI: 10.1016/j.neulet.2022.136515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/21/2022] [Accepted: 02/05/2022] [Indexed: 11/23/2022]
Abstract
As an adenosine receptor A2A antagonist, istradefylline is used as an adjunctive agent of levodopa to improve motor symptoms in advanced Parkinson's disease (PD) patients. In this study, we re-evaluated the effects of istradefylline on treating the motor symptoms of PD patients. We performed a literature search up to November 2021 from electronic databases. Eligible studies were synthesized for efficacy, tolerability, OFF time, Unified Parkinson's Disease Rating Scale part III score, ON state with dyskinesia, and the incidence of treatment-emergent adverse events. As a result, nine clinical studies with 2727 subjects on istradefylline treatment for PD patients were included. Our results showed that compared to placebo, istradefylline exhibited a statically significant difference in efficacy (1.39 [1.15 to 1.69]; p = 0.001), decreasing OFF time (-0.58 [-1.01 to -0.16]; p = 0.007), and improving ON state with dyskinesia (0.69 [0.02 to 1.37]; p = 0.043). For tolerability, UPDRS III, and adverse effects, there was no significant difference between istradefylline and placebo. In conclusion, the results suggest that istradefylline exhibits an efficient and well-tolerated role in treating PD patients. Randomized controlled trials and long-term studies are still required to investigate the effects of istradefylline on motor and non-motor symptoms of PD in future research.
Collapse
|
18
|
Cummins L, Cates ME. Istradefylline: A novel agent in the treatment of “off” episodes associated with levodopa/carbidopa use in Parkinson disease. Ment Health Clin 2022; 12:32-36. [PMID: 35116210 PMCID: PMC8788305 DOI: 10.9740/mhc.2022.01.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Abstract
The current gold standard for treatment of Parkinson disease (PD) is levodopa/carbidopa (L/C), but long-term treatment frequently results in motor complications, such as wearing-off and motor fluctuations (eg, dyskinesia, “on-off” phenomenon). Istradefylline is a new drug with a unique pharmacologic profile that was approved by the FDA for use as adjunctive treatment to L/C in adult patients with PD experiencing “off” episodes. The drug was shown to reduce “off” time in 4 randomized, double-blind, placebo-controlled studies. The most common adverse effects are dyskinesia, dizziness, constipation, nausea, hallucinations, and insomnia. Unlike many drugs that treat PD, istradefylline is a nondopaminergic drug that exerts its effects via adenosine A2A receptor antagonism. The major drug interactions involve inhibitors or inducers of CYP3A4 as well as tobacco smoking via induction of CYP1A1. Istradefylline is taken once daily as a 20- or 40-mg dose, except in cases involving drug interactions or hepatic impairment. The cost of the drug is relatively expensive, which has implications for Medicare and private insurance coverage. Istradefylline is an alternative option to dopaminergic drugs such as dopamine agonists, monoamine oxidase B inhibitors, and catechol-O-methyltransferase inhibitors as an adjunct to L/C in patients with motor fluctuations, but clinical use will further define its role in treatment of PD.
Collapse
Affiliation(s)
- Lauren Cummins
- PharmD Candidate 2022, Samford University McWhorter School of Pharmacy, Birmingham, Alabama
| | | |
Collapse
|
19
|
Rendón-Ochoa EA, Padilla-Orozco M, Calderon VM, Avilés-Rosas VH, Hernández-González O, Hernández-Flores T, Perez-Ramirez MB, Palomero-Rivero M, Galarraga E, Bargas J. Dopamine D 2 and Adenosine A 2A Receptors Interaction on Ca 2+ Current Modulation in a Rodent Model of Parkinsonism. ASN Neuro 2022; 14:17590914221102075. [PMID: 36050845 PMCID: PMC9178983 DOI: 10.1177/17590914221102075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Adenosine A1 and A2A receptors are expressed in striatal projection neurons (SPNs). A1 receptors are located in direct (dSPN) and indirect SPNs (iSNP). A2A receptors are only present in iSPNs. Dopamine D2 receptors are also expressed in iSPNs and interactions between D2 and A2A receptors have received attention. iSPNs activity increases during parkinsonism (PD) and A2A receptors may be responsible by enhancing Ca2+ currents (iCa2+). Therefore, A2A receptors blockade is a therapeutic approach. We asked whether A2A receptors need the interaction with D2 receptors (D2R) to exert their actions. By using isolated and identified iSPNs to avoid indirect influences, we show that D2R action habilitates A2A receptors (A2AR) modulation. iCa2+ through voltage gated Ca2+ channels (CaV) was used as a signal to observe this interaction. Voltage-clamp recordings in acutely dissociated iSPNs, current-clamp recordings in slices and calcium imaging in transgenic A2A-Cre mice, showed that D2R reduction in iCa2+ endows A2AR to restore iCa2+ on iSPNs showing an antagonistic interaction between D2 and A2A receptors. A2A receptors were blocked by the antagonist istradefylline, however, this blockade differed in control and dopamine-depleted iSPNs: istradefylline reduced D2R modulation in parkinsonian animals as compared to controls. Calcium imaging recordings show that istradefylline occludes D2R actions in the parkinsonian circuitry and this effect depends on the order of drugs application. Thus, while D2 activation enables A2A receptors action, blockade of A2AR induces a reduction in the action of D2 agonists, confirming a complex interaction. Summary Statement A2A receptor required previous D2 receptor activation to modulate Ca2+ currents. Istradefylline decreases pramipexole modulation on Ca2+ currents. Istradefylline reduces A2A + neurons activity in striatial microcircuit, but pramipexole failed to further reduce neuronal activity.
Collapse
Affiliation(s)
- Ernesto Alberto Rendón-Ochoa
- Laboratorio de Psicofarmacología, Unidad de Investigación Interdisciplinaria y de Ciencias de la Salud y Educación, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Montserrat Padilla-Orozco
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Vladimir Melesio Calderon
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Victor Hugo Avilés-Rosas
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Omar Hernández-González
- Facultad de Medicina, Departamento dé Fisiología, Universidad Nacional Autónoma de México, Circuito Exterior s/n Ciudad Universitaria, Ciudad de Mexico, Mexico
| | - Teresa Hernández-Flores
- Brain Mechanism for behavior Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - María Belén Perez-Ramirez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Marcela Palomero-Rivero
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Elvira Galarraga
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - José Bargas
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| |
Collapse
|
20
|
Singh A, Gupta D, Dhaneria S, Sheth PG. Istradefylline Versus Opicapone for "Off" Episodes in Parkinson's Disease: A Systematic Review and Meta-Analysis. Ann Neurosci 2021; 28:65-73. [PMID: 34733056 PMCID: PMC8558978 DOI: 10.1177/09727531211046362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 08/03/2021] [Indexed: 01/21/2023] Open
Abstract
Background: In recent times, the US-FDA approved istradefylline and opicapone as an adjunct to
levodopa/carbidopa for managing the "off" episodes in Parkinson’s disease. Purpose: Current meta-analysis was performed to determine the safety and efficacy of these drugs
in the management of “off” episodes and to recognize which among them would provide
therapeutic benefits clinically. Methods: A thorough literature search was performed through the Cochrane Library, PubMed, and
clinicaltrials.gov for a period from January 2003 to October 2020, with the following
keywords: Istradefylline, KW-6002, opicapone, BIA 9-1067, and Parkinson’s disease. Those
randomized, double-blind placebo/active comparator-controlled trials that analyzed the
efficacy and safety of istradefylline and opicapone and that were published in the
English language were included. In this analysis, the outcomes focused on the least
square mean change in “off” time and Unified Parkinson’s Disability Rating Scale (UPDRS)
III score from baseline to the end of the study, and the incidence of treatment-emergent
adverse events (TEAEs) and dyskinesia. Results: Both drugs have shown significant reduction in “off” time duration (mean difference
[MD] = –0.70; 95% CI [–1.11, –0.30]; P < 0.001 for istradefylline
and MD = –0.85; 95% CI [–1.09, –0.61]; P < .001 for opicapone).
Istradefylline showed significant improvement in UPDRS III (MD = –1.56; 95% CI [–2.71,
–0.40]; P < .008), but the same was not observed with opicapone (MD
= –0.63; 95% CI [–1.42, –0.15]; P < .12). The incidence of TEAEs and
dyskinesia reportedly were higher in the intervention group rather than with the
placebo, (risk ratio RR =1.11, 95% CI [1.02,1.20] for istradefylline and RR =1.12, 95%
CI [1.00,1.25] for opicapone, and for dyskinesia particularly, the incidence was higher
with opicapone as compared to istradefylline (RR = 3.47, 95% CI [2.17, 5.57], and RR =
1.77, 95% CI [1.29, 2.44], respectively). Conclusions: Both drugs were comparable in efficacy; however, istradefylline seemed to be better in
reducing the UPDRS III score. Although the incidence of TEAEs and dyskinesia were higher
with both the drugs, the incidence of dyskinesia was more in the opicapone group.
Collapse
Affiliation(s)
- Alok Singh
- Department of Pharmacology, All India Institute of Medical Sciences,
Raipur, Chhattisgarh, India
- Alok Singh, Department of Pharmacology, All India
Institute of Medical Sciences, Raipur, Chhattisgarh 492099, India. E-mail:
| | - Dhyuti Gupta
- Department of Pharmacology, All India Institute of Medical Sciences,
Raipur, Chhattisgarh, India
| | - Suryaprakash Dhaneria
- Department of Pharmacology, All India Institute of Medical Sciences,
Raipur, Chhattisgarh, India
| | - Pranav G. Sheth
- Department of Pharmacology, All India Institute of Medical Sciences,
Raipur, Chhattisgarh, India
| |
Collapse
|
21
|
Hauser RA, Hattori N, Fernandez H, Isaacson SH, Mochizuki H, Rascol O, Stocchi F, Li J, Mori A, Nakajima Y, Ristuccia R, LeWitt P. Efficacy of Istradefylline, an Adenosine A2A Receptor Antagonist, as Adjunctive Therapy to Levodopa in Parkinson's Disease: A Pooled Analysis of 8 Phase 2b/3 Trials. JOURNAL OF PARKINSONS DISEASE 2021; 11:1663-1675. [PMID: 34486986 PMCID: PMC8609697 DOI: 10.3233/jpd-212672] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Istradefylline is a selective adenosine A2A receptor antagonist for the treatment of patients with Parkinson's disease (PD) experiencing OFF episodes while on levodopa/decarboxylase inhibitor. OBJECTIVE This pooled analysis of eight randomized, placebo-controlled, double-blind phase 2b/3 studies evaluated the efficacy and safety of istradefylline. METHODS Istradefylline was evaluated in PD patients receiving levodopa with carbidopa/benserazide and experiencing motor fluctuations. Eight 12- or 16-week trials were conducted (n = 3,245); four of these studies were the basis for istradefylline's FDA approval. Change in OFF time as assessed in patient-completed 24-h PD diaries at Week 12 was the primary endpoint. All studies were designed with common methodology, thereby permitting pooling of data. Pooled analysis results from once-daily oral istradefylline (20 and 40 mg/day) and placebo were evaluated using a mixed-model repeated-measures approach including study as a factor. RESULTS Among 2,719 patients (placebo, n = 992; 20 mg/day, n = 848; 40 mg/day, n = 879), OFF hours/day were reduced at Week 12 at istradefylline dosages of 20 mg/day (least-squares mean difference [LSMD] from placebo in reduction from baseline [95%CI], -0.38 h [-0.61, -0.15]) and 40 mg/day (-0.45 h [-0.68, -0.22], p < 0.0001); ON time without troublesome dyskinesia (ON-WoTD) significantly increased. Similar results were found in the four-study pool (OFF hours/day, 20 mg/day, -0.75 h [-1.10, -0.40]; 40 mg/day, -0.82 h [-1.17, -0.47]). Istradefylline was generally well-tolerated; the average study completion rate among istradefylline-treated patients across all studies was 89.2%. Dyskinesia was the most frequent adverse event (placebo, 9.6%; 20 mg/day, 16.1%; 40 mg/day, 17.7%). CONCLUSION In this pooled analysis, istradefylline significantly improved OFF time and ON-WoTD relative to placebo and was well-tolerated.
Collapse
Affiliation(s)
- Robert A Hauser
- Parkinson's Disease and Movement Disorders Center, Department of Neurology, University of South Florida, Tampa, FL, USA
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Hubert Fernandez
- Center for Neuro-Restoration, Cleveland Clinic, Cleveland, OH, USA
| | - Stuart H Isaacson
- Parkinson's Disease and Movement Disorders Center of Boca Raton, Boca Raton, FL, USA
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Olivier Rascol
- Clinical Investigation Center CIC1436, Departments of Neurosciences and Clinical Pharmacology, Parkinson Expert Center, NS-Park/FCRIN Network and NeuroToul COEN Center, CHU de Toulouse, INSERM and University of Toulouse 3, Toulouse, France
| | | | - June Li
- Kyowa Kirin, Inc., Princeton, NJ, USA
| | | | | | | | | |
Collapse
|
22
|
Karuppagounder SS, Uthaythas S, Govindarajulu M, Ramesh S, Parameshwaran K, Dhanasekaran M. Caffeine, a natural methylxanthine nutraceutical, exerts dopaminergic neuroprotection. Neurochem Int 2021; 148:105066. [PMID: 34004240 DOI: 10.1016/j.neuint.2021.105066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 10/21/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that affects more than 10 million people worldwide. Oxidative stress and mitochondrial dysfunction play a significant role in altering the homeostasis of energy production and free radical generation. Current PD therapies are focused on reducing the cardinal symptoms rather than preventing disease progression in the patients. Adenosine A2A receptor (A2A R) antagonist (Istradephylline) combined with levodopa shows a promising therapy for PD. In animal studies, caffeine administration showed to improve motor functions and neuroprotective effect in the neurons. Caffeine is probably the most extensively used psychoactive substance. In this current study, we investigated the neuroprotective effect of caffeine against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurodegeneration. Here, we demonstrate that caffeine improves behavioral and neurotransmitter recovery against MPTP-induced toxicity. Caffeine restores endogenous antioxidant levels and suppresses neuroinflammation. Our finding suggests that the blockage of A2AR is a promising disease-modifying therapy for PD. Target engagement strategies could be more beneficial in preventing disease progression rather than symptomatic reliefs in PD patients.
Collapse
Affiliation(s)
- Senthilkumar S Karuppagounder
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, 36849, USA.
| | - Subramaniam Uthaythas
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Manoj Govindarajulu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Sindhu Ramesh
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Koodeswaran Parameshwaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
23
|
Jenner P, Mori A, Aradi SD, Hauser RA. Istradefylline - a first generation adenosine A 2A antagonist for the treatment of Parkinson's disease. Expert Rev Neurother 2021; 21:317-333. [PMID: 33507105 DOI: 10.1080/14737175.2021.1880896] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction It is now accepted that Parkinson's disease (PD) is not simply due to dopaminergic dysfunction, and there is interest in developing non-dopaminergic approaches to disease management. Adenosine A2A receptor antagonists represent a new way forward in the symptomatic treatment of PD.Areas covered In this narrative review, we summarize the literature supporting the utility of adenosine A2A antagonists in PD with a specific focus on istradefylline, the most studied and only adenosine A2A antagonist currently in clinical use.Expert opinion: At this time, the use of istradefylline in the treatment of PD is limited to the management of motor fluctuations as supported by the results of randomized clinical trials and evaluation by Japanese and USA regulatory authorities. The relatively complicated clinical development of istradefylline was based on classically designed studies conducted in PD patients with motor fluctuations on an optimized regimen of levodopa plus adjunctive dopaminergic medications. In animal models, there is consensus that a more robust effect of istradefylline in improving motor function is produced when combined with low or threshold doses of levodopa rather than with high doses that produce maximal dopaminergic improvement. Exploration of istradefylline as a 'levodopa sparing' strategy in earlier PD would seem warranted.
Collapse
Affiliation(s)
- Peter Jenner
- Institute of Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Akihisa Mori
- Medical Affairs Department, Kyowa Kirin Co Ltd, Otemachi, Chiyoda-ku, Tokyo, Japan
| | - Stephen D Aradi
- Department of Neurology, University of South Florida, Tampa, Florida, USA
| | - Robert A Hauser
- Department of Neurology, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
24
|
Shu Z, Pang P, Wu X, Cui S, Xu Y, Zhang M. An Integrative Nomogram for Identifying Early-Stage Parkinson's Disease Using Non-motor Symptoms and White Matter-Based Radiomics Biomarkers From Whole-Brain MRI. Front Aging Neurosci 2021; 12:548616. [PMID: 33390927 PMCID: PMC7773758 DOI: 10.3389/fnagi.2020.548616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose: To develop and validate an integrative nomogram based on white matter (WM) radiomics biomarkers and nonmotor symptoms for the identification of early-stage Parkinson's disease (PD). Methods: The brain magnetic resonance imaging (MRI) and clinical characteristics of 336 subjects, including 168 patients with PD, were collected from the Parkinson's Progress Markers Initiative (PPMI) database. All subjects were randomly divided into training and test sets. According to the baseline MRI scans of patients in the training set, the WM was segmented to extract the radiomic features of each patient and develop radiomics biomarkers, which were then combined with nonmotor symptoms to build an integrative nomogram using machine learning. Finally, the diagnostic accuracy and reliability of the nomogram were evaluated using a receiver operating characteristic curve and test data, respectively. In addition, we investigated 58 patients with atypical PD who had imaging scans without evidence of dopaminergic deficit (SWEDD) to verify whether the nomogram was able to distinguish patients with typical PD from patients with SWEDD. A decision curve analysis was also performed to validate the clinical practicality of the nomogram. Results: The area under the curve values of the integrative nomogram for the training, testing and verification sets were 0.937, 0.922, and 0.836, respectively; the specificity values were 83.8, 88.2, and 91.38%, respectively; and the sensitivity values were 84.6, 82.4, and 70.69%, respectively. A significant difference in the number of patients with PD was observed between the high-risk group and the low-risk group based on the nomogram (P < 0.05). Conclusion: This integrative nomogram is a new potential method to identify patients with early-stage PD.
Collapse
Affiliation(s)
- Zhenyu Shu
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China
| | | | - Xiao Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sijia Cui
- Second Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuyun Xu
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
25
|
Isaacson SH, Lyons KE, Amjad F, Pahwa R. Development, Efficacy and Safety of Once-daily, Bedtime, Extended-release Amantadine (Gocovri®) to Treat Dyskinesia and OFF Time in Parkinson’s Disease. Neurology 2021. [DOI: 10.17925/usn.2021.17.1.36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
26
|
LeWitt PA, Aradi SD, Hauser RA, Rascol O. The challenge of developing adenosine A 2A antagonists for Parkinson disease: Istradefylline, preladenant, and tozadenant. Parkinsonism Relat Disord 2020; 80 Suppl 1:S54-S63. [PMID: 33349581 DOI: 10.1016/j.parkreldis.2020.10.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 11/28/2022]
Abstract
Laboratory and clinical experience have pointed to the value of targeting motor pathways emerging from the striatum to treat problems arising in advanced Parkinson's disease (PD). These pathways are selectively populated with a subtype of adenosine binding sites (A2A receptors) that offer a target for improving PD symptomatology. Several compounds were developed that possess high selectivity and potency for blocking this receptor. Three of these compounds - istradefylline, preladenant, and tozadenant - were chosen for clinical development programs that culminated in Phase 3 multicenter randomized clinical trials. Each of these drugs exert virtually no off-target neurochemical effects. Clinical trials with these drugs focused upon reducing OFF time when administered adjunctly to levodopa and other antiparkinsonian medications. Despite promising Phase 2 data, preladenant did not show efficacy when tested in a randomized placebo-controlled Phase 3 clinical trial. Reports of hematological toxicity necessitated ceasing an ongoing Phase 3 investigation of tozadenant. Following a challenging approval process, based on the results of randomized clinical trials carried out in the U.S. and Japan, istradefylline received approval in these countries for treatment of OFF episodes.
Collapse
Affiliation(s)
- Peter A LeWitt
- Department of Neurology, Wayne State University School of Medicine, USA; Department of Neurology, Henry Ford Hospital, Detroit, MI, USA.
| | - Stephen D Aradi
- Department of Neurology, University of South Florida, Tampa, FL, USA
| | - Robert A Hauser
- Department of Neurology, University of South Florida, Tampa, FL, USA
| | - Olivier Rascol
- Clinical Investigation Center CIC1436, Department of Pharmacology and Neurosciences, Toulouse Parkinson Expert Center, NS-Park/FCRIN Network and NeuroToul COEN Center, University Hospital of Toulouse, INSERM and University of Toulouse 3, Toulouse, France
| |
Collapse
|
27
|
Berger AA, Winnick A, Welschmeyer A, Kaneb A, Berardino K, Cornett EM, Kaye AD, Viswanath O, Urits I. Istradefylline to Treat Patients with Parkinson's Disease Experiencing "Off" Episodes: A Comprehensive Review. Neurol Int 2020; 12:109-129. [PMID: 33302331 PMCID: PMC7768423 DOI: 10.3390/neurolint12030017] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
Parkinson’s disease (PD) is a common neurodegenerative disorder that leads to significant morbidity and disability. PD is caused by a loss of dopaminergic, cholinergic, serotonergic, and noradrenergic neurons in the central nervous system (CNS), and peripherally; the syndromic parkinsonism symptoms of movement disorder, gait disorder, rigidity and tremor are mostly driven by the loss of these neurons in the basal ganglia. Unfortunately, a significant proportion of patients taking levodopa, the standard of care treatment for PD, will begin to experience a decrease in effectiveness at varying times. These periods, referred to as “off episodes”, are characterized by increased symptoms and have a detrimental effect on quality of life and disability. Istradefylline, a novel adenosine A2A receptor antagonist, is indicated as a treatment addition to levodopa/carbidopa in patients experiencing “off episodes”. It promotes dopaminergic activity by antagonizing adenosine in the basal ganglia. This review will discuss istradefylline as a treatment for PD patients with off episodes.
Collapse
Affiliation(s)
- Amnon A. Berger
- Department of Anesthesiology, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Ariel Winnick
- Soroka University Medical Center and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva 8410501, Israel;
- School of Optometry, University of California, Berkeley, CA 94704, USA
| | - Alexandra Welschmeyer
- Department of Anesthesiology, Georgetown University School of Medicine, Washington, DC 20007, USA; (A.W.); (A.K.); (K.B.)
| | - Alicia Kaneb
- Department of Anesthesiology, Georgetown University School of Medicine, Washington, DC 20007, USA; (A.W.); (A.K.); (K.B.)
| | - Kevin Berardino
- Department of Anesthesiology, Georgetown University School of Medicine, Washington, DC 20007, USA; (A.W.); (A.K.); (K.B.)
| | - Elyse M. Cornett
- Department of Anesthesiology, LSU Health Shreveport, Shreveport, LA 71103, USA; (A.D.K.); (O.V.); (I.U.)
- Correspondence: ; Tel.: +1-248-515-9211
| | - Alan D. Kaye
- Department of Anesthesiology, LSU Health Shreveport, Shreveport, LA 71103, USA; (A.D.K.); (O.V.); (I.U.)
| | - Omar Viswanath
- Department of Anesthesiology, LSU Health Shreveport, Shreveport, LA 71103, USA; (A.D.K.); (O.V.); (I.U.)
- Department of Anesthesiology, University of Arizona College of Medicine—Phoenix, Phoenix, AZ 85004, USA
- Department of Anesthesiology, Creighton University School of Medicine, Omaha, NE 68124, USA
- Valley Anesthesiology and Pain Consultants—Envision Physician Services, Phoenix, AZ 85004, USA
| | - Ivan Urits
- Department of Anesthesiology, LSU Health Shreveport, Shreveport, LA 71103, USA; (A.D.K.); (O.V.); (I.U.)
- Southcoast Health, Southcoast Physicians Group Pain Medicine, Wareham, MA 02571, USA
| |
Collapse
|
28
|
Gentile F, Doneddu PE, Riva N, Nobile-Orazio E, Quattrini A. Diet, Microbiota and Brain Health: Unraveling the Network Intersecting Metabolism and Neurodegeneration. Int J Mol Sci 2020; 21:E7471. [PMID: 33050475 PMCID: PMC7590163 DOI: 10.3390/ijms21207471] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence gives support for the idea that extra-neuronal factors may affect brain physiology and its predisposition to neurodegenerative diseases. Epidemiological and experimental studies show that nutrition and metabolic disorders such as obesity and type 2 diabetes increase the risk of Alzheimer's and Parkinson's diseases after midlife, while the relationship with amyotrophic lateral sclerosis is uncertain, but suggests a protective effect of features of metabolic syndrome. The microbiota has recently emerged as a novel factor engaging strong interactions with neurons and glia, deeply affecting their function and behavior in these diseases. In particular, recent evidence suggested that gut microbes are involved in the seeding of prion-like proteins and their spreading to the central nervous system. Here, we present a comprehensive review of the impact of metabolism, diet and microbiota in neurodegeneration, by affecting simultaneously several aspects of health regarding energy metabolism, immune system and neuronal function. Advancing technologies may allow researchers in the future to improve investigations in these fields, allowing the buildup of population-based preventive interventions and development of targeted therapeutics to halt progressive neurologic disability.
Collapse
Affiliation(s)
- Francesco Gentile
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy; (F.G.); (N.R.)
- Neuromuscular and Neuroimmunology Service, Humanitas Clinical and Research Institute IRCCS, 20089 Milan, Italy; (P.E.D.); (E.N.-O.)
| | - Pietro Emiliano Doneddu
- Neuromuscular and Neuroimmunology Service, Humanitas Clinical and Research Institute IRCCS, 20089 Milan, Italy; (P.E.D.); (E.N.-O.)
| | - Nilo Riva
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy; (F.G.); (N.R.)
- Department of Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Eduardo Nobile-Orazio
- Neuromuscular and Neuroimmunology Service, Humanitas Clinical and Research Institute IRCCS, 20089 Milan, Italy; (P.E.D.); (E.N.-O.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20122 Milan, Italy
| | - Angelo Quattrini
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy; (F.G.); (N.R.)
| |
Collapse
|
29
|
Abstract
Levodopa is the most effective medication for the treatment of the motor symptoms of Parkinson's disease. However, over time, the clinical response to levodopa becomes complicated by a reduction in the duration and reliability of motor improvement (motor fluctuations) and the emergence of involuntary movements (levodopa-induced dyskinesia). Strategies that have been attempted in an effort to delay the development of these motor complications include levodopa sparing and continuous dopaminergic therapy. Once motor complications occur, a wide array of medical treatments is available to maximize motor function through the day while limiting dyskinesia. Here, we review the clinical features, epidemiology, and risk factors for the development of motor complications, as well as strategies for their prevention and medical management.
Collapse
Affiliation(s)
- Stephen D Aradi
- Department of Neurology, Parkinson's Foundation Center of Excellence, University of South Florida, Tampa, FL, USA.
| | - Robert A Hauser
- Department of Neurology, Parkinson's Foundation Center of Excellence, University of South Florida, Tampa, FL, USA
| |
Collapse
|
30
|
Hattori N, Kitabayashi H, Kanda T, Nomura T, Toyama K, Mori A. A Pooled Analysis From Phase 2b and 3 Studies in Japan of Istradefylline in Parkinson's Disease. Mov Disord 2020; 35:1481-1487. [PMID: 32501582 PMCID: PMC7496465 DOI: 10.1002/mds.28095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Characterization of patient factors associated with istradefylline efficacy may facilitate personally optimized treatment. OBJECTIVES We aimed to examine which patient factors are associated with favorable istradefylline treatment outcomes in PD patients with motor complications. METHODS We performed a pooled analysis of data from two identical phase 2b and 3 Japanese studies of istradefylline. Logistic regression models were used to assess the association of 12 patient characteristics with favorable outcomes. RESULTS Off time reduction and increased good on time with istradefylline provided a significantly favorable response in patients aged ≥65 years. Off time reduction was more favorable in patients with ≥8-hour daily off time at baseline. Improvement in UPDRS Part III was favorable in patients with UPDRS Part III baseline score ≥ 20. CONCLUSIONS Several patient factors influenced the effect of istradefylline on motor fluctuations, motor function, activities of daily living, and clinical impression. © 2020 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | | | - Tomoyuki Kanda
- Medical Affairs Department, Kyowa Kirin Co., Ltd., Tokyo, Japan
| | - Takanobu Nomura
- Medical Affairs Department, Kyowa Kirin Co., Ltd., Tokyo, Japan
| | - Keizo Toyama
- R&D Division, Kyowa Kirin Co., Ltd., Tokyo, Japan
| | - Akihisa Mori
- Medical Affairs Department, Kyowa Kirin Co., Ltd., Tokyo, Japan
| |
Collapse
|
31
|
Kaneko Y, Hirao K, Serisawa S, Kanetaka H, Shimizu S, Hirai H, Shishido-Hara Y, Umahara T, Sakurai H, Hanyu H. Association between clinical symptoms and post-mortem neuropathology in dementia with Lewy bodies. Geriatr Gerontol Int 2020; 20:261-262. [PMID: 32115860 PMCID: PMC7065117 DOI: 10.1111/ggi.13853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Yoshitsugu Kaneko
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Kentaro Hirao
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Shuntaro Serisawa
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Hidekazu Kanetaka
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Soichiro Shimizu
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Hideaki Hirai
- Department of Anatomic Pathology, Tokyo Medical University, Tokyo, Japan
| | | | - Takahiko Umahara
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Hirofumi Sakurai
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Haruo Hanyu
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
32
|
Adenosinergic System Involvement in Ischemic Stroke Patients' Lymphocytes. Cells 2020; 9:cells9051072. [PMID: 32344922 PMCID: PMC7290971 DOI: 10.3390/cells9051072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Adenosine modulates many physiological processes through the interaction with adenosine receptors (ARs) named as A1, A2A, A2B, and A3ARs. During ischemic stroke, adenosine mediates neuroprotective and anti-inflammatory effects through ARs activation. One of the dominant pathways generating extracellular adenosine involves the dephosphorylation of ATP by ecto-nucleotidases CD39 and CD73, which efficiently hydrolyze extracellular ATP to adenosine. The aim of the study is to assess the presence of ARs in lymphocytes from ischemic stroke patients compared to healthy subjects and to analyze changes in CD39 and CD73 expression in CD4+ and CD8+ lymphocytes. Saturation binding experiments revealed that A2AARs affinity and density were significantly increased in ischemic stroke patients whilst no differences were found in A1, A2B, and A3ARs. These results were also confirmed in reverse transcription (RT)-polymerase chain reaction (PCR) assays where A2AAR mRNA levels of ischemic stroke patients were higher than in control subjects. In flow cytometry experiments, the percentage of CD73+ cells was significantly decreased in lymphocytes and in T-lymphocyte subclasses CD4+ and CD8+ obtained from ischemic stroke patients in comparison with healthy individuals. These data corroborate the importance of the adenosinergic system in ischemic stroke and could open the way to more targeted therapeutic approaches and biomarker development for ischemic stroke.
Collapse
|
33
|
Chen JF, Cunha RA. The belated US FDA approval of the adenosine A 2A receptor antagonist istradefylline for treatment of Parkinson's disease. Purinergic Signal 2020; 16:167-174. [PMID: 32236790 DOI: 10.1007/s11302-020-09694-2] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/02/2020] [Indexed: 01/08/2023] Open
Abstract
After more than two decades of preclinical and clinical studies, on August 27, 2019, the US Food and Drug Administration (FDA) approved the adenosine A2A receptor antagonist Nourianz® (istradefylline) developed by Kyowa Hakko Kirin Inc., Japan, as an add-on treatment to levodopa in Parkinson's disease (PD) with "OFF" episodes. This milestone achievement is the culmination of the decade-long clinical studies of the effects of istradefylline in more than 4000 PD patients. Istradefylline is the first non-dopaminergic drug approved by FDA for PD in the last two decades. This approval also provides some important lessons to be remembered, namely, concerning disease-specific adenosine signaling and targeting subpopulation of PD patients. Importantly, this approval paves the way to foster entirely novel therapeutic opportunities for adenosine A2A receptor antagonists, such as neuroprotection or reversal of mood and cognitive deficits in PD and other neuropsychiatric diseases.
Collapse
Affiliation(s)
- Jiang-Fan Chen
- Molecular Neuropharmacology Laboratory, Wenzhou Medical University, Wenzhou, China.
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
34
|
Sahoo AK, Gupta D, Singh A. Istradefylline: a novel drug for ‘off’ episodes in Parkinson’s disease. DRUGS & THERAPY PERSPECTIVES 2020. [DOI: 10.1007/s40267-020-00718-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Matos MJ, Vilar S, Vazquez-Rodriguez S, Kachler S, Klotz KN, Buccioni M, Delogu G, Santana L, Uriarte E, Borges F. Structure-Based Optimization of Coumarin hA 3 Adenosine Receptor Antagonists. J Med Chem 2019; 63:2577-2587. [PMID: 31738058 DOI: 10.1021/acs.jmedchem.9b01572] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adenosine receptors participate in many physiological functions. Molecules that may selectively interact with one of the receptors are favorable multifunctional chemical entities to treat or decelerate the evolution of different diseases. 3-Arylcoumarins have already been studied as neuroprotective agents by our group. Here, differently 8-substituted 3-arylcoumarins are complementarily studied as ligands of adenosine receptors, performing radioligand binding assays. Among the synthesized compounds, selective A3 receptor antagonists were found. 3-(4-Bromophenyl)-8-hydroxycoumarin (compound 4) displayed the highest potency and selectivity as A3 receptor antagonist (Ki = 258 nM). An analysis of its X-ray diffraction provided detailed information on its structure. Further evaluation of a selected series of compounds indicated that it is the nature and position of the substituents that determine their activity and selectivity. Theoretical modeling calculations corroborate and explain the experimental data, suggesting this novel scaffold can be involved in the generation of candidates as multitarget drugs.
Collapse
Affiliation(s)
- Maria João Matos
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal.,Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Santiago Vilar
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Saleta Vazquez-Rodriguez
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Sonja Kachler
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
| | - Karl-Norbert Klotz
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
| | - Michela Buccioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, 62032 Camerino, Italy
| | - Giovanna Delogu
- Department of Life Sciences and Environment-Section of Pharmaceutical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Lourdes Santana
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Eugenio Uriarte
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.,Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, 7500912 Santiago, Chile
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
36
|
Alves ACDB, Bristot VJDO, Limana MD, Speck AE, Barros LSD, Solano AF, Aguiar AS. Role of Adenosine A 2A Receptors in the Central Fatigue of Neurodegenerative Diseases. J Caffeine Adenosine Res 2019. [DOI: 10.1089/caff.2019.0009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Ana Cristina de Bem Alves
- Exercise Biology Lab, Department of Health Sciences, UFSC—Universidade Federal de Santa Catarina, Araranguá, Brazil
| | | | - Mirieli Denardi Limana
- Exercise Biology Lab, Department of Health Sciences, UFSC—Universidade Federal de Santa Catarina, Araranguá, Brazil
| | - Ana Elisa Speck
- Exercise Biology Lab, Department of Health Sciences, UFSC—Universidade Federal de Santa Catarina, Araranguá, Brazil
| | - Leonardo Soares de Barros
- LABOX—Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, UFSC—Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Alexandre Francisco Solano
- LABOX—Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, UFSC—Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Aderbal S. Aguiar
- Exercise Biology Lab, Department of Health Sciences, UFSC—Universidade Federal de Santa Catarina, Araranguá, Brazil
| |
Collapse
|
37
|
Leta V, Jenner P, Chaudhuri KR, Antonini A. Can therapeutic strategies prevent and manage dyskinesia in Parkinson’s disease? An update. Expert Opin Drug Saf 2019; 18:1203-1218. [DOI: 10.1080/14740338.2019.1681966] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Valentina Leta
- King’s College London, Department of Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, London, UK
- Parkinson’s Foundation Centre of Excellence, King’s College Hospital, London, UK
| | - Peter Jenner
- Neurodegenerative Diseases Research Group, School of Cancer and Pharmaceutical Sciences, Faculty of Life Science and Medicine, King’s College London, London, UK
| | - K. Ray Chaudhuri
- King’s College London, Department of Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, London, UK
- Parkinson’s Foundation Centre of Excellence, King’s College Hospital, London, UK
| | - Angelo Antonini
- Department of Neuroscience, University of Padova, Padua, Italy
| |
Collapse
|
38
|
Martini ML, Neifert SN, Mocco J, Panov F, Tse W, Walker RH, Jin J, Gupta F. Recent Advances in the Development of Experimental Therapeutics for Levodopa-Induced Dyskinesia. J Mov Disord 2019; 12:161-165. [PMID: 31556261 PMCID: PMC6763722 DOI: 10.14802/jmd.19029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/09/2019] [Indexed: 01/05/2023] Open
Affiliation(s)
- Michael L Martini
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sean N Neifert
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J Mocco
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fedor Panov
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Winona Tse
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ruth H Walker
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,James J. Peters VA Medical Center, Bronx, NY, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fiona Gupta
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
39
|
Affiliation(s)
- Jordan Dubow
- Avadel Pharmaceuticals PLC, Chesterfield, MO, USA
| | - C. Warren Olanow
- Department of Neurology and Neuroscience, Mount Sinai Health System, New York City, NY, USA
| |
Collapse
|
40
|
Iijima M, Orimo S, Terashi H, Suzuki M, Hayashi A, Shimura H, Mitoma H, Kitagawa K, Okuma Y. Efficacy of istradefylline for gait disorders with freezing of gait in Parkinson's disease: A single-arm, open-label, prospective, multicenter study. Expert Opin Pharmacother 2019; 20:1405-1411. [PMID: 31039621 DOI: 10.1080/14656566.2019.1614167] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background: Gait disorders are common in Parkinson's disease patients who respond poorly to dopaminergic treatment. Blockade of adenosine A2A receptors is expected to improve gait disorders. Istradefylline is a first-in-class selective adenosine A2A receptor antagonist with benefits for motor complications associated with Parkinson's disease. Research design and methods: This multicenter, open-label, single-group, prospective interventional study evaluated changes in total gait-related scores of the Part II/III Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) and Freezing of Gait Questionnaire (FOG-Q) in 31 Parkinson's disease patients treated with istradefylline. Gait analysis by portable gait rhythmogram was performed. Results: MDS-UPDRS Part III gait-related total scores significantly decreased at Weeks 4-12 from baseline with significant improvements in gait, freezing of gait, and postural stability. Significant decreases in MDS-UPDRS Part II total scores and individual item scores at Week 12 indicated improved daily living activities. At Week 12, there were significant improvements in FOG-Q, new FOG-Q, and overall movement per 48 h measured by portable gait rhythmogram. Adverse events occurred in 7/31 patients. Conclusions: Istradefylline improved gait disorders in Parkinson's disease patients complicated with freezing of gait, improving their quality of life. No unexpected adverse drug reactions were identified. Trial registration: UMIN-CTR (UMIN000020288).
Collapse
Affiliation(s)
- Mutsumi Iijima
- a Department of Neurology , Tokyo Women's Medical University , Tokyo , Japan
| | - Satoshi Orimo
- b Department of Neurology , Kanto Central Hospital , Tokyo , Japan
| | - Hiroo Terashi
- c Department of Neurology , Tokyo Medical University , Tokyo , Japan
| | - Masahiko Suzuki
- d Department of Neurology , Katsushika Medical Center, The Jikei University School of Medicine , Tokyo , Japan
| | - Akito Hayashi
- e Department of Rehabilitation , Juntendo University Urayasu Hospital , Urayasu , Japan
| | - Hideki Shimura
- f Department of Neurology , Juntendo University Urayasu Hospital , Urayasu , Japan
| | - Hiroshi Mitoma
- g Department of Medical Education , Tokyo Medical University , Tokyo , Japan
| | - Kazuo Kitagawa
- a Department of Neurology , Tokyo Women's Medical University , Tokyo , Japan
| | - Yasuyuki Okuma
- h Department of Neurology , Juntendo University Shizuoka Hospital , Izunokuni , Japan
| |
Collapse
|
41
|
Okuzumi A, Hatano T, Ueno SI, Ogawa T, Saiki S, Mori A, Koinuma T, Oji Y, Ishikawa KI, Fujimaki M, Sato S, Ramamoorthy S, Mohney RP, Hattori N. Metabolomics-based identification of metabolic alterations in PARK2. Ann Clin Transl Neurol 2019; 6:525-536. [PMID: 30911576 PMCID: PMC6414487 DOI: 10.1002/acn3.724] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 12/31/2018] [Indexed: 12/05/2022] Open
Abstract
Objective Parkin is the causative gene for autosomal recessive familial Parkinson's disease (PD), although it remains unclear how parkin dysfunction is involved with the general condition. Recently, serum and/or plasma metabolomics revealed alterations in metabolic pathways that might reflect pathomechanisms of idiopathic PD (iPD). Thus, we hypothesized that serum metabolomics of patients with homozygous or compound heterozygous parkin mutations (namely, PARK2) might reflect metabolic alterations due to parkin dysfunction. Methods We enrolled 15 PARK2 patients (52 ± 17.6 years) confirmed with homozygous (seven cases) and compound heterozygous (eight cases) parkin mutations, along with 19 healthy age‐matched controls (51 ± 11.5 years). We analyzed 830 metabolites from participants’ serum using well‐established metabolomics technologies, including ultra‐high performance liquid chromatography/tandem mass spectroscopy. Results Based on metabolic profiles, hierarchical matrix analysis can divide samples between control and PARK2 subjects. Profiles from PARK2 patients showed significantly higher levels of fatty acid (FA) metabolites and oxidized lipids, and significantly lower levels of antioxidant, caffeine, and benzoate‐related metabolites. Interpretation Metabolomics can identify specific metabolic alterations in PARK2 patients compared with controls. Alterations in FA metabolites suggest a relationship between parkin function and lipid metabolism. The elevation of oxidized lipids in combination with decreasing antioxidants may reflect general hyperoxidative stress. Decreasing benzoate‐related metabolites might be due to the alteration in gut microbiota. Consequently, caffeine and its metabolites may be decreased due to malabsorption. These findings are similar to metabolic alterations in iPD. Thus, serum/plasma metabolomics may reflect the association between parkin dysfunction and parkinsonism.
Collapse
Affiliation(s)
- Ayami Okuzumi
- Department of Neurology Juntendo University School of Medicine Tokyo Japan
| | - Taku Hatano
- Department of Neurology Juntendo University School of Medicine Tokyo Japan
| | - Shin-Ichi Ueno
- Department of Neurology Juntendo University School of Medicine Tokyo Japan
| | - Takashi Ogawa
- Department of Neurology Juntendo University School of Medicine Tokyo Japan
| | - Shinji Saiki
- Department of Neurology Juntendo University School of Medicine Tokyo Japan
| | - Akio Mori
- Department of Neurology Juntendo University School of Medicine Tokyo Japan
| | - Takahiro Koinuma
- Department of Neurology Juntendo University School of Medicine Tokyo Japan
| | - Yutaka Oji
- Department of Neurology Juntendo University School of Medicine Tokyo Japan
| | - Kei-Ichi Ishikawa
- Department of Neurology Juntendo University School of Medicine Tokyo Japan
| | - Motoki Fujimaki
- Department of Neurology Juntendo University School of Medicine Tokyo Japan
| | - Shigeto Sato
- Department of Neurology Juntendo University School of Medicine Tokyo Japan
| | | | | | - Nobutaka Hattori
- Department of Neurology Juntendo University School of Medicine Tokyo Japan
| |
Collapse
|
42
|
cAMP-producing chemogenetic and adenosine A2a receptor activation inhibits the inwardly rectifying potassium current in striatal projection neurons. Neuropharmacology 2019; 148:229-243. [PMID: 30659840 DOI: 10.1016/j.neuropharm.2019.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 12/29/2022]
Abstract
Adenosine A2a receptors (A2aRs) are highly and selectively expressed in D2-medium spiny neurons (D2-MSNs) that also express a high level of dopamine D2 receptors (D2Rs). However, it was not established how A2aR activity affects D2-MSN excitability, let alone the ion channels involved. We have performed two sets of experiments to determine the potential A2aR agonistic effects on D2-MSN intrinsic excitability and the underlying ion channel mechanism. First, we have used the cAMP-producing, Gαs/olf coupled designer receptors exclusively activated by designer drug (Gs-DREADDs) to phenocopy cAMP-stimulating A2aR activation. We found that activation of Gs-DREADD inhibited the inwardly rectifying potassium current (Kir)-a key regulator of MSN excitability, caused a depolarization, increased input resistance, and substantially increased the intrinsic excitability of MSNs such that depolarizing inputs evoked many more action potentials. Second, we have determined that A2aR agonism produced these same excitatory effects on D2-MSN intrinsic excitability and spike firing, although at lower magnitudes than those induced by Gs-DREADD activation; furthermore, these A2aR-triggered excitatory effects were intact in the presence of a D2R antagonist. Taken together, these results clearly establish that in striatal D2-MSNs, A2aR activation can independently inhibit Kir and increase intrinsic excitability and spike and neurotransmitter output; our results also indicate that Gs-DREADD can serve as a broadly useful positive control for neurotransmitter receptors that increase intracellular cAMP levels and hence facilitate the determination of the cellular effects of these neurotransmitter receptors.
Collapse
|
43
|
Hattori N, Takeda A, Takeda S, Nishimura A, Nakaya R, Mochizuki H, Nagai M, Takahashi R. Long-term safety and efficacy of adjunctive rasagiline in levodopa-treated Japanese patients with Parkinson's disease. J Neural Transm (Vienna) 2019; 126:289-297. [PMID: 30635744 PMCID: PMC6449487 DOI: 10.1007/s00702-018-1962-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/06/2018] [Indexed: 11/20/2022]
Abstract
Rasagiline is a monoamine oxidase type-B inhibitor in development in Japan for Parkinson’s disease (PD). This open-label study evaluated the long-term safety and efficacy of rasagiline in Japanese patients with PD receiving levodopa. Patients were aged 30–79 years and had wearing-off or weakened effect. Patients received rasagiline 1 mg/day for 52 weeks. The primary objective was to evaluate safety. Secondary endpoints included MDS-UPDRS Part II and Part III total scores (ON-state) and change from baseline in mean daily OFF-time. An additional endpoint was the Parkinson’s Disease Questionnaire-39 (PDQ-39) Summary Index (SI) score. In total, 222 patients were enrolled; 52.3% had wearing-off phenomena. Treatment-emergent adverse events (TEAEs) were mostly mild or moderate and occurred in 83.3% of patients; 63.1% had drug-related TEAEs; and 21.2% had TEAEs resulting in discontinuation. Fall (16.7%), nasopharyngitis (14.0%), and dyskinesia (10.8%) were the most frequent TEAEs. Serious TEAEs were reported in 17.6% of patients, and led to discontinuation in 9.5%. At week 52 (last-observation-carried forward), the mean change from baseline in MDS-UPDRS Part III total score (ON-state) was − 7.6; the mean change from baseline in daily OFF-time was − 0.89 h in patients with wearing-off phenomena at the start of the run-in period. The mean change from baseline in PDQ-39 SI was − 0.64. No major safety issues were observed during this 52-week trial of rasagiline as an adjunct to levodopa in Japanese patients. Mean changes in MDS-UPDRS scores and daily OFF-time suggested that adjunctive rasagiline treatment with levodopa was efficacious, with efficacy maintained for at least 52 weeks.
Collapse
Affiliation(s)
- Nobutaka Hattori
- Department of Neurology, Juntendo University Faculty of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Atsushi Takeda
- Department of Neurology, National Hospital Organization, Sendai Nishitaga Hospital, Sendai, Miyagi, Japan
| | - Shinichi Takeda
- Japan Development Center, Takeda Pharmaceutical Company Limited, Osaka, Japan
| | - Akira Nishimura
- Japan Development Center, Takeda Pharmaceutical Company Limited, Osaka, Japan
| | - Ryou Nakaya
- Japan Development Center, Takeda Pharmaceutical Company Limited, Osaka, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masahiro Nagai
- Clinical Therapeutic Trial Center, Ehime University Hospital, Toon, Ehime, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
44
|
Nagayama H, Kano O, Murakami H, Ono K, Hamada M, Toda T, Sengoku R, Shimo Y, Hattori N. Effect of istradefylline on mood disorders in Parkinson's disease. J Neurol Sci 2019; 396:78-83. [DOI: 10.1016/j.jns.2018.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/11/2018] [Accepted: 11/04/2018] [Indexed: 01/21/2023]
|
45
|
Dragašević-Mišković N, Petrović I, Stanković I, Kostić VS. Chemical management of levodopa-induced dyskinesia in Parkinson's disease patients. Expert Opin Pharmacother 2018; 20:219-230. [PMID: 30411647 DOI: 10.1080/14656566.2018.1543407] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Levodopa-induced dyskinesias (LID) appears in more than 50% of Parkinson's disease patients after 5 years of treatment and clinicians always have to ensure that there is a balance between the beneficial effect of the treatment and the potential complications. AREAS COVERED In this review, the authors discuss the treatment of LID. Treatment can be divided into strategies for preventing their occurrence, modification of dopaminergic therapy, and providing more continuous dopaminergic stimulation as well as the use of nondopaminergic drugs. EXPERT OPINION Amantadine is currently considered the most effective drug for the treatment of LID. Several compounds developed to target adenosine, adrenergic, glutamatergic, and serotonergic receptors have shown to significantly decrease dyskinesias in animal models. However, despite promising preclinical results, translation to clinical practice remains challenging and majority of these compounds failed to decrease LID in randomized controlled trials with moderate-to-advanced parkinsonian patients. Despite promising results with nondopaminergic drugs, treatment of dyskinesias is still challenging and largely due to their side effects. Future research should focus on developing treatments that can provide continuous dopaminergic delivery throughout the day in a noninvasive manner. Studies on the impact of the early administration of long-acting formulations of levo-3,4-dihydroxy-phenylalanine on dyskinesias are also necessary.
Collapse
Affiliation(s)
| | - Igor Petrović
- a Neurology Clinic, CCS, School of Medicine , Universtiy of Belgrade , Belgrade , Serbia
| | - Iva Stanković
- a Neurology Clinic, CCS, School of Medicine , Universtiy of Belgrade , Belgrade , Serbia
| | - Vladimir S Kostić
- a Neurology Clinic, CCS, School of Medicine , Universtiy of Belgrade , Belgrade , Serbia
| |
Collapse
|
46
|
Núñez F, Taura J, Camacho J, López-Cano M, Fernández-Dueñas V, Castro N, Castro J, Ciruela F. PBF509, an Adenosine A 2A Receptor Antagonist With Efficacy in Rodent Models of Movement Disorders. Front Pharmacol 2018; 9:1200. [PMID: 30405415 PMCID: PMC6202948 DOI: 10.3389/fphar.2018.01200] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/01/2018] [Indexed: 11/13/2022] Open
Abstract
Adenosine A2A receptor (A2AR) antagonists have emerged as complementary non-dopaminergic drugs to alleviate Parkinson's disease (PD) symptomatology. Here, we characterize a novel non-xhantine non-furan A2AR antagonist, PBF509, as a potential pro-dopaminergic drug for PD management. First, PBF509 was shown to be a highly potent ligand at the human A2AR, since it antagonized A2AR agonist-mediated cAMP accumulation and impedance responses with KB values of 72.8 ± 17.4 and 8.2 ± 4.2 nM, respectively. Notably, these results validated our new A2AR-based label-free assay as a robust and sensitive approach to characterize A2AR ligands. Next, we evaluated the efficacy of PBF509 reversing motor impairments in several rat models of movement disorders, including catalepsy, tremor, and hemiparkinsonism. Thus, PBF509 (orally) antagonized haloperidol-mediated catalepsy, reduced pilocarpine-induced tremulous jaw movements and potentiated the number of contralateral rotations induced by L-3,4-dihydroxyphenylalanine (L-DOPA) in unilaterally 6-OHDA-lesioned rats. Moreover, PBF509 (3 mg/kg) inhibited L-DOPA-induced dyskinesia (LID), showing not only its efficacy on reversing parkinsonian motor impairments but also acting as antidyskinetic agent. Overall, here we describe a new orally selective A2AR antagonist with potential utility for PD treatment, and for some of the side effects associated to the current pharmacotherapy (i.e., dyskinesia).
Collapse
Affiliation(s)
- Fabiana Núñez
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Jaume Taura
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | | | - Marc López-Cano
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Víctor Fernández-Dueñas
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | | | | | - Francisco Ciruela
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
47
|
Torti M, Vacca L, Stocchi F. Istradefylline for the treatment of Parkinson’s disease: is it a promising strategy? Expert Opin Pharmacother 2018; 19:1821-1828. [DOI: 10.1080/14656566.2018.1524876] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Margherita Torti
- Center for Parkinson’s Disease, IRCCS San Raffaele Pisana, Rome, Italy
- Neurology Department, San Raffaele Cassino, Cassino, Italy
| | - Laura Vacca
- Center for Parkinson’s Disease, IRCCS San Raffaele Pisana, Rome, Italy
- Neurology Department, Casa di Cura Privata Policlinico (CCPP), Milan, Italy
| | - Fabrizio Stocchi
- Center for Parkinson’s Disease, IRCCS San Raffaele Pisana, Rome, Italy
- Neurology Department, San Raffaele University, Rome, Italy
| |
Collapse
|
48
|
Takahashi M, Fujita M, Asai N, Saki M, Mori A. Safety and effectiveness of istradefylline in patients with Parkinson’s disease: interim analysis of a post-marketing surveillance study in Japan. Expert Opin Pharmacother 2018; 19:1635-1642. [DOI: 10.1080/14656566.2018.1518433] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Makio Takahashi
- Department of Neurology, Osaka Red Cross Hospital, Osaka, Japan
| | - Masaki Fujita
- Pharmacovigilance Department, Kyowa Hakko Kirin Co., Ltd., Tokyo, Japan
| | - Naoko Asai
- Pharmacovigilance Department, Kyowa Hakko Kirin Co., Ltd., Tokyo, Japan
| | - Mayumi Saki
- Medical Affairs Department, Kyowa Hakko Kirin Co., Ltd., Tokyo, Japan
| | - Akihisa Mori
- Medical Affairs Department, Kyowa Hakko Kirin Co., Ltd., Tokyo, Japan
| |
Collapse
|
49
|
Occupancy of adenosine A 2A receptors by istradefylline in patients with Parkinson's disease using 11C-preladenant PET. Neuropharmacology 2018; 143:106-112. [PMID: 30253174 DOI: 10.1016/j.neuropharm.2018.09.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 12/20/2022]
Abstract
Istradefylline, an adenosine A2A receptor (A2AR) antagonist, is effective as an adjunct to levodopa and can alleviate "off" time and motor symptoms in patients with Parkinson's disease (PD). The present study aimed to calculate occupancy rates of A2ARs by administrating istradefylline 20 mg or 40 mg, which is the currently approved dose for PD in Japan. Additionally, A2AR availability was compared between patients with PD and healthy controls. Ten patients with PD under levodopa therapy and six age-matched healthy controls were included. The patients underwent a total of two 11C-preladenant positron emission tomography scans before and after the administration of istradefylline 20 mg or 40 mg (both n = 5). Binding potential (BPND) was calculated to estimate A2AR availability in the ventral striatum, caudate, and putamen. Maximal A2AR occupancy and ED50 were estimated by modeling the dose-occupancy curves. All patients were around the middle stage of PD, and their characteristics were clinically heterogeneous. Maximal A2AR occupancy and ED50 were 93.5% and 28.6 mg in the ventral striatum, 69.5% and 10.8 mg in the caudate, and 66.8% and 14.8 mg in the putamen, respectively. There were no significant differences in BPND values in the ventral striatum (P = 0.42), caudate (P = 0.72), and putamen (P = 0.43) between the PD and control groups. In conclusion, the present study shows that istradefylline binds to A2ARs dose-dependently. A sufficient occupancy of A2ARs could be obtained by administrating the approved dose of istradefylline.
Collapse
|
50
|
Bouabid S, Zhou FM. Cyclic AMP-producing chemogenetic activation of indirect pathway striatal projection neurons and the downstream effects on the globus pallidus and subthalamic nucleus in freely moving mice. J Neurochem 2018; 145:436-448. [PMID: 29500819 DOI: 10.1111/jnc.14331] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/19/2018] [Accepted: 02/26/2018] [Indexed: 01/11/2023]
Abstract
The indirect pathway striatal medium spiny projection neurons (iMSNs) are critical to motor and cognitive brain functions. These neurons express a high level of cAMP-increasing adenosine A2a receptors. However, the potential effects of cAMP production on iMSN spiking activity have not been established, and recording identified iMSNs in freely moving animals is challenging. Here, we show that in the transgenic mice expressing cAMP-producing G protein Gs -coupled designer receptor exclusively activated by designer drug (Gs-DREADD) in iMSNs, the baseline spike firing in MSNs is normal, indicating DREADD expression does not affect the normal physiology of these neurons. Intraperitoneal injection of the DREADD agonist clozapine-N-oxide (CNO; 2.5 mg/kg) increased the spike firing in 50% of the recorded MSNs. However, CNO did not affect MSN firing in Gs-DREADD-negative mice. We also found that CNO injection inhibited the spike firing of globus pallidus external segment (GPe) neurons in Gs-DREADD-positive mice, further indicating CNO excitation of iMSNs. Temporally coincident with these effects on spiking firing in the indirect pathway, CNO injection selectively inhibited locomotion in D2 Gs-DREADD mice. Taken together, our results strongly suggest that cAMP production in iMSNs can increase iMSN spiking activity and cause motor inhibition, thus addressing a long-standing question about the cellular functions of the cAMP-producing adenosine A2a receptors in iMSNs. Cover Image for this issue: doi: 10.1111/jnc.14181.
Collapse
Affiliation(s)
- Safa Bouabid
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, Tennessee, USA
| | - Fu-Ming Zhou
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, Tennessee, USA
| |
Collapse
|