1
|
Morera Maiquez B, Jackson GM, Jackson SR. Examining the neural antecedents of tics in Tourette syndrome using electroencephalography. J Neuropsychol 2021; 16:1-20. [PMID: 33949779 DOI: 10.1111/jnp.12245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 03/05/2021] [Indexed: 01/02/2023]
Abstract
Tourette syndrome (TS) is a neurodevelopmental disorder characterized by the occurrence of motor and vocal tics. TS is associated with cortical-striatal-thalamic-cortical circuit dysfunction and hyper-excitability of cortical limbic and motor regions that lead to the occurrence of tics. Importantly, individuals with TS often report that their tics are preceded by premonitory sensory/urge phenomena (PU) that are described as uncomfortable bodily sensations that precede the execution of a tic and are experienced as an urge for motor discharge. While tics are most often referred to as involuntary movements, it has been argued by some that tics should be viewed as voluntary movements that are executed in response to the presence of PU. To investigate this issue further, we conducted a study using electroencephalography (EEG). We recorded movement-related EEG (mu- and beta-band oscillations) during (1) the immediate period leading up to the execution of voluntary movements by a group of individuals with TS and a group of matched healthy control participants, and (2) the immediate period leading up to the execution of a tic in a group of individuals with TS. We demonstrate that movement-related mu and beta oscillations are not reliably observed prior to tics in individuals with TS. We interpret this effect as reflecting the greater involvement of a network of brain areas, including the insular and cingulate cortices, the basal ganglia and the cerebellum, in the generation of tics in TS. We also show that beta-band desynchronization does occur when individuals with TS initiate voluntary movements, but, in contrast to healthy controls, desynchronization of mu-band oscillations is not observed during the execution of voluntary movements for individuals with TS. We interpret this finding as reflecting a dysfunction of physiological inhibition in TS, thereby contributing to an impaired ability to suppress neuronal populations that may compete with movement preparation processes.
Collapse
Affiliation(s)
| | - Georgina M Jackson
- Institute of Mental Health, School of Medicine, University of Nottingham, UK
| | - Stephen R Jackson
- School of Psychology, University of Nottingham, UK.,Institute of Mental Health, School of Medicine, University of Nottingham, UK
| |
Collapse
|
2
|
Bruce AB, Yuan W, Gilbert DL, Horn PS, Jackson HS, Huddleston DA, Wu SW. Altered frontal-mediated inhibition and white matter connectivity in pediatric chronic tic disorders. Exp Brain Res 2021; 239:955-965. [PMID: 33462641 DOI: 10.1007/s00221-020-06017-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/09/2020] [Indexed: 11/26/2022]
Abstract
Tics are unique from most movement disorders, in that they are partially suppressible. As part of the inhibitory motor network, the pre-supplementary motor area is engaged in motor control and may be involved in tic physiology. We used dual-site transcranial magnetic stimulation to assess inhibitory connectivity between right pre-supplementary motor area and left primary motor cortex, which has previously been demonstrated in healthy adults. We also used diffusion tensor imaging to investigate white matter connectivity in children with chronic tics. Twelve children with chronic tic disorder and fourteen typically developing controls underwent MRI with diffusion tensor imaging indices analysis followed by single and paired-pulse transcranial magnetic stimulation with conditioning pulse over the right pre-supplementary motor area followed by left motor cortex test pulse. Neurophysiologic and imaging data relationships to measures of tic severity and suppressibility were also evaluated in tic patients. Pre-supplementary motor area-mediated inhibition of left motor cortex was present in healthy control children but not in chronic tic disorder participants. Less inhibition correlated with worse tic suppressibility (ρ = - 0.73, p = 0.047). Imaging analysis showed increased fractional anisotropy in the right superior longitudinal fasciculus, corpus callosum, corona radiata and posterior limb of the internal capsule (p < 0.05) in tic participants, which correlated with lower self-reported tic suppressibility (ρ = - 0.70, p = 0.05). Physiologic data revealed impaired frontal-mediated motor cortex inhibition in chronic tic participants, and imaging analysis showed abnormalities in motor pathways. Collectively, the neurophysiologic and neuroanatomic data correlate with tic suppressibility, supporting the relevancy to tic pathophysiology.
Collapse
Affiliation(s)
- Adrienne B Bruce
- Department of Pediatrics, University of South Carolina School of Medicine Greenville, Greenville, SC, USA
| | - Weihong Yuan
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Radiology, Cincinnati Children's Hospital Medical Center, Pediatric Neuroimaging Research Consortium, Cincinnati, OH, 45229, USA
| | - Donald L Gilbert
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave. MLC 2015, Cincinnati, OH, 45229, USA
| | - Paul S Horn
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave. MLC 2015, Cincinnati, OH, 45229, USA
| | - Hannah S Jackson
- Division of Neurology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave. MLC 2015, Cincinnati, OH, 45229, USA
| | - David A Huddleston
- Division of Neurology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave. MLC 2015, Cincinnati, OH, 45229, USA
| | - Steve W Wu
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Division of Neurology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave. MLC 2015, Cincinnati, OH, 45229, USA.
| |
Collapse
|
3
|
Koh CL, Tang PF, Chen HI, Hsu YC, Hsieh CL, Tseng WYI. Impaired Callosal Motor Fiber Integrity and Upper Extremity Motor Impairment Are Associated With Stroke Lesion Location. Neurorehabil Neural Repair 2019; 32:602-612. [PMID: 30016930 DOI: 10.1177/1545968318779730] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Damage to the callosal motor fibers (CMFs) may affect motor recovery in patients with stroke. However, whether the severity of CMF impairment varies with lesion locations remains unclear. OBJECTIVE To investigate (1) whether CMF impairment occurs after stroke and whether the impairment varies with lesion locations and (2) the associations of CMF impairment and upper extremity (UE) motor impairment. METHODS Twenty-nine patients with lesions involving the corticospinal tract (CST) were categorized into 2 groups: lesions involving the CMFs (CMF group, n = 15), and lesions not involving the CMFs (non-CMF group, n = 14). Thirteen healthy adults served as the control group. Tract integrity, assessed by the mean generalized fractional anisotropy (mGFA) using diffusion spectrum imaging, of the CMFs and the CST above the internal capsule (CSTABOVE) of the ipsilesional hemisphere were compared. RESULTS After accounting for the effect of lesion load on the CST, the CMF group exhibited a significantly lower mGFA of the CMFs than did the control and non-CMF groups (post hoc P = .005 and .001, respectively). No significant difference was observed between the non-CMF and control groups (post hoc P = .999). The CST and CMF impairment accounted for 56% of the variance of UE motor impairment in the CMF group ( P = .007), whereas no significant association was observed in the non-CMF group ( P = .570). CONCLUSIONS CMF impairment after stroke depends on lesion locations and CMF integrity has an incremental contribution to the severity of UE motor impairment in the CMF group.
Collapse
Affiliation(s)
- Chia-Lin Koh
- 1 National Taiwan University, Taipei, Taiwan.,2 Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - Pei-Fang Tang
- 1 National Taiwan University, Taipei, Taiwan.,3 National Taiwan University Hospital, Taipei, Taiwan
| | | | | | - Ching-Lin Hsieh
- 1 National Taiwan University, Taipei, Taiwan.,3 National Taiwan University Hospital, Taipei, Taiwan
| | | |
Collapse
|
4
|
Martino D, Delorme C, Pelosin E, Hartmann A, Worbe Y, Avanzino L. Abnormal lateralization of fine motor actions in Tourette syndrome persists into adulthood. PLoS One 2017; 12:e0180812. [PMID: 28708864 PMCID: PMC5510833 DOI: 10.1371/journal.pone.0180812] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/21/2017] [Indexed: 12/14/2022] Open
Abstract
Youth with Tourette syndrome (TS) exhibit, compared to healthy, abnormal ability to lateralize digital sequential tasks. It is unknown whether this trait is related to inter-hemispheric connections, and whether it is preserved or lost in patients with TS persisting through adult life. We studied 13 adult TS patients and 15 age-matched healthy volunteers. All participants undertook: 1) a finger opposition task, performed with the right hand (RH) only or with both hands, using a sensor-engineered glove in synchrony with a metronome at 2 Hz; we calculated a lateralization index [(single RH-bimanual RH)/single RH X 100) for percentage of correct movements (%CORR); 2) MRI-based diffusion tensor imaging and probabilistic tractography of inter-hemispheric corpus callosum (CC) connections between supplementary motor areas (SMA) and primary motor cortices (M1). We confirmed a significant increase in the %CORR in RH in the bimanual vs. single task in TS patients (p<0.001), coupled to an abnormal ability to lateralize finger movements (significantly lower lateralization index for %CORR in TS patients, p = 0.04). The %CORR lateralization index correlated positively with tic severity measured with the Yale Global Tic Severity Scale (R = 0.55;p = 0.04). We detected a significantly higher fractional anisotropy (FA) in both the M1-M1 (p = 0.036) and the SMA-SMA (p = 0.018) callosal fibre tracts in TS patients. In healthy subjects, the %CORR lateralization index correlated positively with fractional anisotropy of SMA-SMA fibre tracts (R = 0.63, p = 0.02); this correlation was not significant in TS patients. TS patients exhibited an abnormal ability to lateralize finger movements in sequential tasks, which increased in accuracy when the task was performed bimanually. This abnormality persists throughout different age periods and appears dissociated from the transcallosal connectivity of motor cortical regions. The altered interhemispheric transfer of motor abilities in TS may be the result of compensatory processes linked to self-regulation of motor control.
Collapse
Affiliation(s)
- D. Martino
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - C. Delorme
- UMR S 975, CNRS UMR 7225, ICM, Sorbonne Universités, UPMC University Paris 06, Paris, France
- Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 47–83 boulevard de l'Hôpital, Paris, France, and French National Reference Centre for Gilles de la Tourette Syndrome, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - E. Pelosin
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa Genoa, Italy
| | - A. Hartmann
- UMR S 975, CNRS UMR 7225, ICM, Sorbonne Universités, UPMC University Paris 06, Paris, France
- Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 47–83 boulevard de l'Hôpital, Paris, France, and French National Reference Centre for Gilles de la Tourette Syndrome, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Y. Worbe
- UMR S 975, CNRS UMR 7225, ICM, Sorbonne Universités, UPMC University Paris 06, Paris, France
- Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 47–83 boulevard de l'Hôpital, Paris, France, and French National Reference Centre for Gilles de la Tourette Syndrome, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Department of Neurophysiology, Saint-Antoine Hospital, Paris, France
| | - L. Avanzino
- Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, Department of Experimental Medicine, University of Genoa Genoa, Italy
- * E-mail:
| |
Collapse
|
5
|
Du X, Kochunov P, Summerfelt A, Chiappelli J, Choa FS, Hong LE. The role of white matter microstructure in inhibitory deficits in patients with schizophrenia. Brain Stimul 2016; 10:283-290. [PMID: 27867023 DOI: 10.1016/j.brs.2016.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/01/2016] [Accepted: 11/10/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Inhibitory-excitatory (I-E) imbalance has increasingly been proposed as a fundamental mechanism giving rise to many schizophrenia-related pathophysiology. The integrity of I-E functions should require precise and rapid electrical signal transmission. OBJECTIVE/HYPOTHESIS We hypothesized that part of the I-E abnormality in schizophrenia may originate from their known abnormal white matter connectivity that may interfere the I-E functions. METHODS We test this using short-interval intracortical inhibition (SICI) vs. intracortical facilitation (ICF) which is a non-invasive measurement of I-E signaling. SICI-ICF from left motor cortex and white matter microstructure were assessed in schizophrenia patients and healthy controls. RESULTS Schizophrenia patients showed significantly reduced SICI but not ICF. White matter microstructure as measured by fraction anisotropy (FA) in diffusion tensor imaging had a significant effect on SICI in patients, such that weaker SICI was associated with lower FA in several white matter tracts, most strongly with left corona radiata (r = -0.68, p = 0.0002) that contains the fibers connecting with left motor cortex. Left corticospinal tract, which carries the motor fibers to peripheral muscular output, also showed significant correlation with SICI (r = -0.54, p = 0.005). Mediation analysis revealed that much of the schizophrenia disease effect on SICI can be accounted for by mediation through left corona radiata. SICI was also significantly associated with the performance of processing speed in patients. CONCLUSION This study demonstrated the importance of structural circuitry integrity in inhibitory signaling in schizophrenia, and encouraged modeling the I-E dysfunction in schizophrenia from a circuitry perspective.
Collapse
Affiliation(s)
- Xiaoming Du
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ann Summerfelt
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joshua Chiappelli
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Fow-Sen Choa
- The Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD, USA
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Abstract
Tourette syndrome (TS) is a childhood onset neurologic disorder with manifestations including multiple motor and phonic tics, and in most cases a variety of behavioral comorbidities such as attention deficit hyperactivity disorder, obsessive compulsive disorder, and other impulse control disorders. Although it is considered a hereditary disorder, likely modified by environmental factors, genetic studies have yet to uncover relevant causative genes and there is no animal model that mimics the broad clinical phenomenology of TS. There has been a marked increase in the number of neurophysiological, neuroimaging, and other studies on TS. The findings from these studies, however, have been difficult to interpret because of small sample sizes, variability of symptoms across patients, and comorbidities. Although anti-dopaminergic drugs are the most widely used medications in the treatment of TS, there has been increasing interest in other drugs, behavioral therapies, and surgical approaches including deep brain stimulation. Herein, we review the current literature and discuss the complexities of TS and the challenges in understanding its pathophysiology and in selecting the most appropriate treatment. We also offer an expert's view of where the field of TS may be headed.
Collapse
|
7
|
Inter-hemispheric Intrinsic Connectivity as a Neuromarker for the Diagnosis of Boys with Tourette Syndrome. Mol Neurobiol 2016; 54:2781-2789. [PMID: 27011382 DOI: 10.1007/s12035-016-9863-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/17/2016] [Indexed: 12/26/2022]
Abstract
Tourette syndrome (TS) is associated with gross morphological changes in the corpus callosum, suggesting deficits in inter-hemispheric coordination. The present study sought to identify changes in inter-hemispheric functional and anatomical connectivity in boys with "pure" TS as well as their potential value for clinical diagnosis. TS boys without comorbidity (pure TS, n = 24) were selected from a large dataset and compared to age- and education-matched controls (n = 32). Intrinsic functional connectivity (iFC) between bilateral homotopic voxels was computed and compared between groups. Abnormal iFC was found in the bilateral prefronto-striatum-midbrain networks as well as bilateral sensorimotor and temporal cortices. The iFC between the bilateral anterior cingulate cortex (ACC) was negatively correlated with symptom severity. Anatomical connectivity strengths between functionally abnormal regions were estimated by diffusion probabilistic tractography, but no significant between-group difference was found. To test the clinical applicability of these neuroimaging findings, multivariate pattern analysis was used to develop a classification model in half of the total sample. The classification model exhibited excellent classification power for discriminating TS patients from controls in the other half samples. In summary, our findings emphasize the role of inter-hemispheric communication deficits in the pathophysiology of TS and suggest that iFC is a potential quantitative neuromarker for clinical diagnosis.
Collapse
|
8
|
Wolff N, Luehr I, Sender J, Ehrlich S, Schmidt-Samoa C, Dechent P, Roessner V. A DTI study on the corpus callosum of treatment-naïve boys with 'pure' Tourette syndrome. Psychiatry Res Neuroimaging 2016; 247:1-8. [PMID: 26747579 DOI: 10.1016/j.pscychresns.2015.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 11/19/2015] [Accepted: 12/17/2015] [Indexed: 10/22/2022]
Abstract
Disturbances in the corpus callosum (CC) indicating altered interhemispheric connectivity have been associated with Tourette syndrome (TS). The objective of the present study was to refine knowledge about interhemispheric connectivity in TS by analyzing four different diffusion tensor imaging (DTI) parameters in a very homogeneous group of treatment-naïve boys with pure TS in comparison to male healthy controls (HC). Fractional anisotropy (FA), radial diffusivity (RD), axial diffusivity (AD) and mean diffusivity (MD) of five CC-segments were assessed from DTI of 26 treatment-naïve boys with pure TS and 24 HC. We observed no group differences in both FA and RD. However, we found a significant effect for AD and a trend for MD, being both reduced in boys with TS in comparison to HC. Moreover, a negative correlation between AD and the Yale Global Tic Severity Scale total score was observed. Reduced AD of the CC in treatment-naïve boys with pure TS in comparison to HC may indicate that significant alterations in white matter microstructure of the CC contribute to tic symptomatology per se and seem not to be related to confounders such as consequences of long-term medication, tic performance or tic suppression.
Collapse
Affiliation(s)
- Nicole Wolff
- Department of Child and Adolescent Psychiatry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| | - Ina Luehr
- Department of Child and Adolescent Psychiatry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Jennifer Sender
- MR-Research in Neurology and Psychiatry, Department of Cognitive Neurology, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Stefan Ehrlich
- Department of Child and Adolescent Psychiatry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Carsten Schmidt-Samoa
- MR-Research in Neurology and Psychiatry, Department of Cognitive Neurology, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Peter Dechent
- MR-Research in Neurology and Psychiatry, Department of Cognitive Neurology, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
9
|
Kern JK, Geier DA, King PG, Sykes LK, Mehta JA, Geier MR. Shared Brain Connectivity Issues, Symptoms, and Comorbidities in Autism Spectrum Disorder, Attention Deficit/Hyperactivity Disorder, and Tourette Syndrome. Brain Connect 2015; 5:321-35. [PMID: 25602622 DOI: 10.1089/brain.2014.0324] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The prevalence of neurodevelopmental disorders, including autism spectrum disorder (ASD), attention deficit/hyperactivity disorder (ADHD), and Tourette syndrome (TS), has increased over the past two decades. Currently, about one in six children in the United States is diagnosed as having a neurodevelopmental disorder. Evidence suggests that ASD, ADHD, and TS have similar neuropathology, which includes long-range underconnectivity and short-range overconnectivity. They also share similar symptomatology with considerable overlap in their core and associated symptoms and a frequent overlap in their comorbid conditions. Consequently, it is apparent that ASD, ADHD, and TS diagnoses belong to a broader spectrum of neurodevelopmental illness. Biologically, long-range underconnectivity and short-range overconnectivity are plausibly related to neuronal insult (e.g., neurotoxicity, neuroinflammation, excitotoxicity, sustained microglial activation, proinflammatory cytokines, toxic exposure, and oxidative stress). Therefore, these disorders may a share a similar etiology. The main purpose of this review is to critically examine the evidence that ASD, ADHD, and TS belong to a broader spectrum of neurodevelopmental illness, an abnormal connectivity spectrum disorder, which results from neural long-range underconnectivity and short-range overconnectivity. The review also discusses the possible reasons for these neuropathological connectivity findings. In addition, this review examines the role and issue of axonal injury and regeneration in order to better understand the neuropathophysiological interplay between short- and long-range axons in connectivity issues.
Collapse
Affiliation(s)
- Janet K Kern
- 1 Institute of Chronic Illnesses, Inc. , Silver Spring, Maryland
| | - David A Geier
- 1 Institute of Chronic Illnesses, Inc. , Silver Spring, Maryland
| | | | | | - Jyutika A Mehta
- 3 Communication Sciences & Disorders, Texas Woman's University , Denton, Texas
| | - Mark R Geier
- 1 Institute of Chronic Illnesses, Inc. , Silver Spring, Maryland
| |
Collapse
|
10
|
Worbe Y, Marrakchi-Kacem L, Lecomte S, Valabregue R, Poupon F, Guevara P, Tucholka A, Mangin JF, Vidailhet M, Lehericy S, Hartmann A, Poupon C. Altered structural connectivity of cortico-striato-pallido-thalamic networks in Gilles de la Tourette syndrome. ACTA ACUST UNITED AC 2014; 138:472-82. [PMID: 25392196 PMCID: PMC4306818 DOI: 10.1093/brain/awu311] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
See Jackson (doi:10.1093/brain/awu338) for a scientific commentary on this article. The neural substrate of Gilles de la Tourette syndrome is unknown. Worbe et al. use probabilistic tractography to demonstrate widespread structural abnormalities in cortico-striato-pallido-thalamic white matter pathways—likely arising from abnormal brain development—in patients with this syndrome. Gilles de la Tourette syndrome is a childhood-onset syndrome characterized by the presence and persistence of motor and vocal tics. A dysfunction of cortico-striato-pallido-thalamo-cortical networks in this syndrome has been supported by convergent data from neuro-pathological, electrophysiological as well as structural and functional neuroimaging studies. Here, we addressed the question of structural integration of cortico-striato-pallido-thalamo-cortical networks in Gilles de la Tourette syndrome. We specifically tested the hypothesis that deviant brain development in Gilles de la Tourette syndrome could affect structural connectivity within the input and output basal ganglia structures and thalamus. To this aim, we acquired data on 49 adult patients and 28 gender and age-matched control subjects on a 3 T magnetic resonance imaging scanner. We used and further implemented streamline probabilistic tractography algorithms that allowed us to quantify the structural integration of cortico-striato-pallido-thalamo-cortical networks. To further investigate the microstructure of white matter in patients with Gilles de la Tourette syndrome, we also evaluated fractional anisotropy and radial diffusivity in these pathways, which are both sensitive to axonal package and to myelin ensheathment. In patients with Gilles de la Tourette syndrome compared to control subjects, we found white matter abnormalities in neuronal pathways connecting the cerebral cortex, the basal ganglia and the thalamus. Specifically, striatum and thalamus had abnormally enhanced structural connectivity with primary motor and sensory cortices, as well as paracentral lobule, supplementary motor area and parietal cortices. This enhanced connectivity of motor cortex positively correlated with severity of tics measured by the Yale Global Tics Severity Scale and was not influenced by current medication status, age or gender of patients. Independently of the severity of tics, lateral and medial orbito-frontal cortex, inferior frontal, temporo-parietal junction, medial temporal and frontal pole also had enhanced structural connectivity with the striatum and thalamus in patients with Gilles de la Tourette syndrome. In addition, the cortico-striatal pathways were characterized by elevated fractional anisotropy and diminished radial diffusivity, suggesting microstructural axonal abnormalities of white matter in Gilles de la Tourette syndrome. These changes were more prominent in females with Gilles de la Tourette syndrome compared to males and were not related to the current medication status. Taken together, our data showed widespread structural abnormalities in cortico-striato-pallido-thalamic white matter pathways in patients with Gilles de la Tourette, which likely result from abnormal brain development in this syndrome.
Collapse
Affiliation(s)
- Yulia Worbe
- 1 Centre de Référence National Maladie Rare 'Syndrome Gilles de la Tourette', Pôle des Maladies du Système Nerveux, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France 2 Sorbonne Universités, UPMC Université Paris 06, UM 75, ICM, F-75013 Paris, France 3 Assistance Publique Hôpitaux de Paris (APHP), INSERM, ICM, Centre d'Investigation Clinique Pitié Neurosciences, CIC-1422, Département des Maladies du Système Nerveux, Hôpital Pitié-Salpêtrière, Paris, France
| | - Linda Marrakchi-Kacem
- 2 Sorbonne Universités, UPMC Université Paris 06, UM 75, ICM, F-75013 Paris, France 4 NeuroSpin, CEA, Gif-Sur-Yvette, France 5 Inria, Aramis project-team, Centre Paris-Rocquencourt, France
| | - Sophie Lecomte
- 2 Sorbonne Universités, UPMC Université Paris 06, UM 75, ICM, F-75013 Paris, France 4 NeuroSpin, CEA, Gif-Sur-Yvette, France 5 Inria, Aramis project-team, Centre Paris-Rocquencourt, France
| | - Romain Valabregue
- 2 Sorbonne Universités, UPMC Université Paris 06, UM 75, ICM, F-75013 Paris, France 6 Centre de NeuroImagerie de Recherche - CENIR, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | | | | | | | | | - Marie Vidailhet
- 1 Centre de Référence National Maladie Rare 'Syndrome Gilles de la Tourette', Pôle des Maladies du Système Nerveux, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France 2 Sorbonne Universités, UPMC Université Paris 06, UM 75, ICM, F-75013 Paris, France 3 Assistance Publique Hôpitaux de Paris (APHP), INSERM, ICM, Centre d'Investigation Clinique Pitié Neurosciences, CIC-1422, Département des Maladies du Système Nerveux, Hôpital Pitié-Salpêtrière, Paris, France
| | - Stephane Lehericy
- 2 Sorbonne Universités, UPMC Université Paris 06, UM 75, ICM, F-75013 Paris, France 6 Centre de NeuroImagerie de Recherche - CENIR, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Andreas Hartmann
- 1 Centre de Référence National Maladie Rare 'Syndrome Gilles de la Tourette', Pôle des Maladies du Système Nerveux, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France 2 Sorbonne Universités, UPMC Université Paris 06, UM 75, ICM, F-75013 Paris, France 3 Assistance Publique Hôpitaux de Paris (APHP), INSERM, ICM, Centre d'Investigation Clinique Pitié Neurosciences, CIC-1422, Département des Maladies du Système Nerveux, Hôpital Pitié-Salpêtrière, Paris, France
| | | |
Collapse
|
11
|
Abstract
Tourette syndrome has been examined using many different neuroimaging techniques. There has been a recent surge of neuroimaging research papers related to Tourette syndrome that are exploring many different aspects of the disorder and its comorbidities. This brief review focuses on recent MRI-based imaging studies of pediatric Tourette syndrome, including anatomical, functional, resting state, and diffusion tensor MRI techniques. Consistencies across studies are explored, and particularly important issues involved in acquiring data from this special population are discussed.
Collapse
Affiliation(s)
- Jessica A Church
- Department of Psychology, University of Texas at Austin, Austin, TX 78712
| | - Bradley L Schlaggar
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110 ; Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110 ; Department of Anatomy&Neurobiology, Washington University School of Medicine, St. Louis, MO 63110 ; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
12
|
Therapeutic applications of repetitive transcranial magnetic stimulation (rTMS) in movement disorders: A review. Parkinsonism Relat Disord 2014; 20:695-707. [DOI: 10.1016/j.parkreldis.2014.03.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 03/10/2014] [Accepted: 03/18/2014] [Indexed: 11/19/2022]
|
13
|
Martín Fernández-Mayoralas D, Fernández-Jaén A, Gómez Herrera J, Jiménez de la Peña M. Trastorno de Tourette y de la lectura en un niño con disrupción del tracto parietofrontal izquierdo. RADIOLOGIA 2014; 56:361-4. [DOI: 10.1016/j.rx.2011.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 06/24/2011] [Accepted: 06/27/2011] [Indexed: 11/29/2022]
|
14
|
Müller-Vahl KR, Grosskreutz J, Prell T, Kaufmann J, Bodammer N, Peschel T. Tics are caused by alterations in prefrontal areas, thalamus and putamen, while changes in the cingulate gyrus reflect secondary compensatory mechanisms. BMC Neurosci 2014; 15:6. [PMID: 24397347 PMCID: PMC3893393 DOI: 10.1186/1471-2202-15-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 12/31/2013] [Indexed: 01/18/2023] Open
Abstract
Background Despite strong evidence that the pathophysiology of Tourette syndrome (TS) involves structural and functional disturbances of the basal ganglia and cortical frontal areas, findings from in vivo imaging studies have provided conflicting results. In this study we used whole brain diffusion tensor imaging (DTI) to investigate the microstructural integrity of white matter pathways and brain tissue in 19 unmedicated, adult, male patients with TS “only” (without comorbid psychiatric disorders) and 20 age- and sex-matched control subjects. Results Compared to normal controls, TS patients showed a decrease in the fractional anisotropy index (FA) bilaterally in the medial frontal gyrus, the pars opercularis of the left inferior frontal gyrus, the middle occipital gyrus, the right cingulate gyrus, and the medial premotor cortex. Increased apparent diffusion coefficient (ADC) maps were detected in the left cingulate gyrus, prefrontal areas, left precentral gyrus, and left putamen. There was a negative correlation between tic severity and FA values in the left superior frontal gyrus, medial frontal gyrus bilaterally, cingulate gyrus bilaterally, and ventral posterior lateral nucleus of the right thalamus, and a positive correlation in the body of the corpus callosum, left thalamus, right superior temporal gyrus, and left parahippocampal gyrus. There was also a positive correlation between regional ADC values and tic severity in the left cingulate gyrus, putamen bilaterally, medial frontal gyrus bilaterally, left precentral gyrus, and ventral anterior nucleus of the left thalamus. Conclusions Our results confirm prior studies suggesting that tics are caused by alterations in prefrontal areas, thalamus and putamen, while changes in the cingulate gyrus seem to reflect secondary compensatory mechanisms. Due to the study design, influences from comorbidities, gender, medication and age can be excluded.
Collapse
Affiliation(s)
- Kirsten R Müller-Vahl
- Clinic of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Street 1, D-30625 Hannover, Germany.
| | | | | | | | | | | |
Collapse
|
15
|
Cheng B, Braass H, Ganos C, Treszl A, Biermann-Ruben K, Hummel FC, Müller-Vahl K, Schnitzler A, Gerloff C, Münchau A, Thomalla G. Altered intrahemispheric structural connectivity in Gilles de la Tourette syndrome. NEUROIMAGE-CLINICAL 2013; 4:174-81. [PMID: 24371800 PMCID: PMC3872720 DOI: 10.1016/j.nicl.2013.11.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/08/2013] [Accepted: 11/28/2013] [Indexed: 11/23/2022]
Abstract
Gilles de la Tourette syndrome (GTS) is a common developmental neuropsychiatric disorder characterized by tics and frequent psychiatric comorbidities, often causing significant disability. Tic generation has been linked to disturbed networks of brain areas involved in planning, controlling and execution of actions, particularly structural and functional disorders in the striatum and cortico–striato–thalamo–cortical loops. We therefore applied structural diffusion tensor imaging (DTI) to characterize changes in intrahemispheric white matter connectivity in cortico-subcortical circuits engaged in motor control in 15 GTS patients without psychiatric comorbidities. White matter connectivity was analyzed by probabilistic fiber tractography between 12 predefined cortical and subcortical regions of interest. Connectivity values were combined with measures of clinical severity rated by the Yale Global Tic Severity Scale (YGTSS). GTS patients showed widespread structural connectivity deficits. Lower connectivity values were found specifically in tracts connecting the supplementary motor areas (SMA) with basal ganglia (pre-SMA–putamen, SMA–putamen) and in frontal cortico-cortical circuits. There was an overall trend towards negative correlations between structural connectivity in these tracts and YGTSS scores. Structural connectivity of frontal brain networks involved in planning, controlling and executing actions is reduced in adult GTS patients which is associated with tic severity. These findings are in line with the concept of GTS as a neurodevelopmental disorder of brain immaturity. We examine white matter pathways in Tourette syndrome with diffusion tensor imaging. GTS patients showed widespread structural connectivity deficits. Altered connectivity in GTS patients was associated with tic severity. Our findings are in line with the concept of GTS as disorder of brain immaturity.
Collapse
Affiliation(s)
- Bastian Cheng
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Hanna Braass
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Christos Ganos
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany ; Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK ; Department of Pediatric and Adult Movement Disorders and Neuropsychiatry, Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, Lübeck, Germany
| | - Andras Treszl
- Institute for Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Katja Biermann-Ruben
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine-University, Medical Faculty, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Friedhelm C Hummel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Kirsten Müller-Vahl
- Clinic of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine-University, Medical Faculty, Moorenstraße 5, 40225 Düsseldorf, Germany ; Movement Disorders and Neuromodulation Unit, Department of Neurology, Düsseldorf University Hospital, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Alexander Münchau
- Department of Pediatric and Adult Movement Disorders and Neuropsychiatry, Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, Lübeck, Germany
| | - Götz Thomalla
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| |
Collapse
|
16
|
Thomalla G, Jonas M, Bäumer T, Siebner HR, Biermann-Ruben K, Ganos C, Orth M, Hummel FC, Gerloff C, Müller-Vahl K, Schnitzler A, Münchau A. Costs of control: decreased motor cortex engagement during a Go/NoGo task in Tourette’s syndrome. Brain 2013; 137:122-36. [DOI: 10.1093/brain/awt288] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
17
|
Motor control and neural plasticity through interhemispheric interactions. Neural Plast 2012; 2012:823285. [PMID: 23326685 PMCID: PMC3541646 DOI: 10.1155/2012/823285] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 11/16/2012] [Accepted: 12/03/2012] [Indexed: 11/18/2022] Open
Abstract
The corpus callosum, which is the largest white matter structure in the human brain, connects the 2 cerebral hemispheres. It plays a crucial role in maintaining the independent processing of the hemispheres and in integrating information between both hemispheres. The functional integrity of interhemispheric interactions can be tested electrophysiologically in humans by using transcranial magnetic stimulation, electroencephalography, and functional magnetic resonance imaging. As a brain structural imaging, diffusion tensor imaging has revealed the microstructural connectivity underlying interhemispheric interactions. Sex, age, and motor training in addition to the size of the corpus callosum influence interhemispheric interactions. Several neurological disorders change hemispheric asymmetry directly by impairing the corpus callosum. Moreover, stroke lesions and unilateral peripheral impairments such as amputation alter interhemispheric interactions indirectly. Noninvasive brain stimulation changes the interhemispheric interactions between both motor cortices. Recently, these brain stimulation techniques were applied in the clinical rehabilitation of patients with stroke by ameliorating the deteriorated modulation of interhemispheric interactions. Here, we review the interhemispheric interactions and mechanisms underlying the pathogenesis of these interactions and propose rehabilitative approaches for appropriate cortical reorganization.
Collapse
|
18
|
Ganos C, Roessner V, Münchau A. The functional anatomy of Gilles de la Tourette syndrome. Neurosci Biobehav Rev 2012; 37:1050-62. [PMID: 23237884 DOI: 10.1016/j.neubiorev.2012.11.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 10/23/2012] [Accepted: 11/05/2012] [Indexed: 01/18/2023]
Abstract
Gilles de la Tourette syndrome (GTS) holds a prime position as a disorder transgressing the brittle boundaries of neurology and psychiatry with an entangling web of motor and behavioral problems. With tics as the disorder's hallmark and myriads of related signs such as echo-, pali- and coprophenomena, paralleled by a broad neuropsychiatric spectrum of comorbidities encompassing attention deficit hyperactivity disorder, obsessive-compulsive disorder and self-injurious behavior and depression, GTS pathophysiology remains enigmatic. In this review, in the light of GTS phenomenology, we will focus on current theories of tic-emergence related to aberrant activity in the basal ganglia and abnormal basal ganglia-cortex interplay through cortico-striato-thalamocortical loops from an anatomical, neurophysiological and functional-neuroimaging perspective. We will attempt a holistic view to the countless major and minor drawbacks of the GTS brain and comment on future directions of neuroscientific research to elucidate this common and complex neuropsychiatric syndrome, which merits scientific understanding and social acceptance.
Collapse
Affiliation(s)
- Christos Ganos
- Department of Neurology, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg 20246, Germany.
| | | | | |
Collapse
|
19
|
Fine motor skills in adult Tourette patients are task-dependent. BMC Neurol 2012; 12:120. [PMID: 23057645 PMCID: PMC3527195 DOI: 10.1186/1471-2377-12-120] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 10/10/2012] [Indexed: 11/21/2022] Open
Abstract
Background Tourette syndrome is a neuropsychiatric disorder characterized by motor and phonic tics. Deficient motor inhibition underlying tics is one of the main hypotheses in its pathophysiology. Therefore the question arises whether this supposed deficient motor inhibition affects also voluntary movements. Despite severe motor tics, different personalities who suffer from Tourette perform successfully as neurosurgeon, pilot or professional basketball player. Methods For the investigation of fine motor skills we conducted a motor performance test battery in an adult Tourette sample and an age matched group of healthy controls. Results The Tourette patients showed a significant lower performance in the categories steadiness of both hands and aiming of the right hand in comparison to the healthy controls. A comparison of patients’ subgroup without comorbidities or medication and healthy controls revealed a significant difference in the category steadiness of the right hand. Conclusions Our results show that steadiness and visuomotor integration of fine motor skills are altered in our adult sample but not precision and speed of movements. This alteration pattern might be the clinical vignette of complex adaptations in the excitability of the motor system on the basis of altered cortical and subcortical components. The structurally and functionally altered neuronal components could encompass orbitofrontal, ventrolateral prefrontal and parietal cortices, the anterior cingulate, amygdala, primary motor and sensorimotor areas including altered corticospinal projections, the corpus callosum and the basal ganglia.
Collapse
|
20
|
Ganos C, Ogrzal T, Schnitzler A, Münchau A. The pathophysiology of echopraxia/echolalia: relevance to Gilles de la Tourette syndrome. Mov Disord 2012; 27:1222-9. [PMID: 22807284 DOI: 10.1002/mds.25103] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 05/10/2012] [Accepted: 06/11/2012] [Indexed: 11/09/2022] Open
Abstract
Echopraxia and echolalia are subsets of imitative behavior. They are essential developmental elements in social learning. Their persistence or reemergence after a certain age, though, can be a sign of underlying brain dysfunction. Although echophenomena have been acknowledged as a typical sign in Gilles de la Tourette syndrome (GTS) since its first description, their clinical significance and neural correlates are largely unknown. Here, we review the course of their scientific historical development and focus on their clinical phenomenology and differential diagnosis with a particular view to GTS. The neural basis of echophenomena will also be addressed. © 2012 Movement Disorder Society.
Collapse
Affiliation(s)
- Christos Ganos
- Department of Neurology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | | | | | | |
Collapse
|
21
|
Jackson SR, Parkinson A, Manfredi V, Millon G, Hollis C, Jackson GM. Motor excitability is reduced prior to voluntary movements in children and adolescents with Tourette syndrome. J Neuropsychol 2012; 7:29-44. [PMID: 22804795 PMCID: PMC3618371 DOI: 10.1111/j.1748-6653.2012.02033.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tourette syndrome (TS) is a neuro-developmental disorder characterized by the occurrence of motor and vocal tics: involuntary, repetitive, stereotyped behaviours that occur with a limited duration, often typically many times in a single day. Previous studies suggest that children and adolescents with TS may undergo compensatory, neuroplastic changes in brain structure and function that help them gain control over their tics. In the current study we used single-pulse and dual-site paired-pulse transcranial magnetic stimulation (TMS), in conjunction with a manual choice reaction time task that induces high levels of inter-manual conflict, to investigate this conjecture in a group of children and adolescents with TS, but without co-morbid Attention Deficit Hyperactivity Disorder (ADHD). We found that performance on the behavioural response-conflict task did not differ between the adolescents with TS and a group of age-matched typically developing individuals. By contrast, our study demonstrated that cortical excitability, as measured by TMS-induced motor-evoked potentials (MEPs), was significantly reduced in the TS group in the period immediately preceding a finger movement. This effect is interpreted as consistent with previous suggestions that the cortical hyper-excitability that may give rise to tics in TS is actively suppressed by cognitive control mechanisms. Finally, we found no reliable evidence for altered patterns of functional inter-hemispheric connectivity in TS. These results provide evidence for compensatory brain reorganization that may underlie the increased self-regulation mechanisms that have been hypothesized to bring about the control of tics during adolescence.
Collapse
|
22
|
Buse J, August J, Bock N, Dörfel D, Rothenberger A, Roessner V. Fine motor skills and interhemispheric transfer in treatment-naive male children with Tourette syndrome. Dev Med Child Neurol 2012; 54:629-35. [PMID: 22568779 DOI: 10.1111/j.1469-8749.2012.04273.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM This study addressed whether Tourette syndrome is associated with an impairment of fine motor skills or altered interhemispheric transfer. We additionally investigated the association between interhemispheric transfer and size of the corpus callosum. METHOD The sample, a subsample of our larger neuroimaging sample, included 27 treatment-naive males with 'pure' Tourette syndrome (age range 10y 2mo-14y 4mo; mean age 11y 10mo, SD 1y 2mo) and 26 matched healthy comparison children (age range 10y 2mo-14y 4mo; mean age 11y 10mo, SD 1y 1mo). A finger tapping task and the Purdue Pegboard were used to assess fine motor skills. Interhemispheric transfer time (ITT) was measured with the Poffenberger paradigm. The neuroanatomical data were derived from our previous neuroimaging study. RESULTS ITT was negatively correlated with the size of callosal subregion 3 (r=-0.366, p=0.028), indicating that a shorter ITT was associated with a larger corpus callosum. INTERPRETATION Our findings support the assumption that previously reported impairment of motor skills in Tourette syndrome does not directly result from tics but from other factors such as medication or comorbidities. Following the assumption that callosal subregion 3 in Tourette syndrome grows as a consequence of tic performance over years, our preliminary results suggest that this growth might accelerate interhemispheric transfer in Tourette syndrome.
Collapse
Affiliation(s)
- Judith Buse
- Department of Child and Adolescent Psychiatry, Technische Universität Dresden, Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
23
|
Cardoso F. Towards a better definition of the motor phenotype of Tourette syndrome. Dev Med Child Neurol 2012; 54:584. [PMID: 22568868 DOI: 10.1111/j.1469-8749.2012.04306.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Francisco Cardoso
- Neurology Service, Department of Internal Medicine, The Federal University of Minas Gerais, Belo Horizonte - MG, Brazil
| |
Collapse
|
24
|
Hübers A, Klein JC, Kang JS, Hilker R, Ziemann U. The relationship between TMS measures of functional properties and DTI measures of microstructure of the corticospinal tract. Brain Stimul 2012; 5:297-304. [DOI: 10.1016/j.brs.2011.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/21/2011] [Accepted: 03/26/2011] [Indexed: 10/18/2022] Open
|
25
|
Abstract
Tourette syndrome (TS) is a common, chronic neuropsychiatric disorder characterized by the presence of fluctuating motor and phonic tics. The typical age of onset is ∼5-7 years, and the majority of children improve by their late teens or early adulthood. Affected individuals are at increased risk for the development of various comorbid conditions, such as obsessive-compulsive disorder, attention deficit hyperactivity disorder, school problems, depression, and anxiety. There is no cure for tics, and symptomatic therapy includes behavioral and pharmacological approaches. Evidence supports TS being an inherited disorder; however, the precise genetic abnormality remains unknown. Pathologic involvement of cortico-striatal-thalamo-cortical (CSTC) pathways is supported by neurophysiological, brain imaging, and postmortem studies, but results are often confounded by small numbers, age differences, severity of symptoms, comorbidity, use of pharmacotherapy, and other factors. The primary site of abnormality remains controversial. Although numerous neurotransmitters participate in the transmission of messages through CSTC circuits, a dopaminergic dysfunction is considered a leading candidate. Several animal models have been used to study behaviors similar to tics as well as to pursue potential pathophysiological deficits. TS is a complex disorder with features overlapping a variety of scientific fields. Despite description of this syndrome in the late 19th century, there remain numerous unanswered neurobiological questions.
Collapse
|
26
|
Avanzino L, Martino D, Bove M, De Grandis E, Tacchino A, Pelosin E, Mirabelli M, Veneselli E, Abbruzzese G. Movement lateralization and bimanual coordination in children with Tourette syndrome. Mov Disord 2011; 26:2114-8. [PMID: 21932301 DOI: 10.1002/mds.23839] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 05/16/2011] [Accepted: 05/20/2011] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Gilles de la Tourette syndrome is a childhood-onset disorder characterized by persistent motor and vocal tics fluctuating in severity. Although structural changes observed in Gilles de la Tourette syndrome concern brain structures involved in voluntary motor control such as the basal ganglia, the frontoparietal cortex, and the corpus callosum, movement lateralization and bimanual coordination have been underinvestigated. METHODS Using a sensor-engineered glove, we analyzed the performance of repetitive externally paced single-hand and bimanual finger movements in 11 children with Gilles de la Tourette syndrome. RESULTS When requested to perform sequential single-hand finger movements, patients with Gilles de la Tourette syndrome showed longer touch duration, shorter movement time, and more errors than healthy subjects. When requested to execute the task bimanually, healthy subjects exhibited a slight loss in accuracy and an increase in touch duration compared with the single-hand task, whereas patients with Gilles de la Tourette syndrome did not. Further, healthy subjects presented great asymmetry in terms of movement accuracy between left and right hands during the bimanual task, whereas patients with Gilles de la Tourette syndrome did not. CONCLUSIONS These findings suggest that patients with Gilles de la Tourette syndrome may present an abnormal process of sensorimotor integration, movement lateralization, and bimanual coordination during sequential finger movements.
Collapse
Affiliation(s)
- Laura Avanzino
- Department of Neurosciences, Ophthalmology & Genetics and Istituto Nazionale di Neuroscienze, University of Genoa, Genoa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Jankovic J, Kurlan R. Tourette syndrome: Evolving concepts. Mov Disord 2011; 26:1149-56. [DOI: 10.1002/mds.23618] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 11/05/2010] [Accepted: 12/06/2010] [Indexed: 01/06/2023] Open
|