1
|
Gale K, Dybdal D, Wicker E, Campos-Rodriguez C, Maior RS, Elorette C, Malkova L, Forcelli PA. Piriform cortex is an ictogenic trigger zone in the primate brain. Epilepsia 2025; 66:569-582. [PMID: 39636294 DOI: 10.1111/epi.18201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVE Area tempestas, a functionally defined region in the anterior piriform cortex, was identified as a crucial ictogenic trigger zone in the rat brain in the 1980s. However, whether the primate piriform cortex can trigger seizures remains unknown. Here, in a nonhuman primate model, we aimed to localize a similar trigger zone in the piriform cortex and, subsequently, evaluated the ability of focal inhibition of the substantia nigra pars reticulata (SNpr) to suppress the evoked seizures. METHODS Focal microinjection of the γ-aminobutyric acid type A (GABAA) antagonist bicuculline methiodide into the piriform cortex was performed, in macaque monkeys, on a within-subject basis to map the ictogenic regions within this area. Glutamate antagonists were used to characterize the local circuit pharmacology. Focal inhibition of the substantia nigra by infusion of the GABAA agonist muscimol suppressed seizures evoked from piriform cortex. RESULTS We documented a well-defined region highly susceptible to bicuculline-induced seizures in the piriform cortex, just posterior to the junction of the frontal and temporal lobes, indicating that a functional homolog to the rodent area tempestas is present in the primate brain. Focal infusion of glutamate receptor antagonists into the area tempestas revealed that α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-mediated, but not N-methyl-D-aspartate-mediated, neurotransmission was necessary for the expression of seizures. Pharmacological inhibition of the SNpr robustly suppressed area tempestas-evoked seizures. SIGNIFICANCE Together, these data point to the area tempestas as a potent ictogenic zone in the primate brain and underscore the antiseizure effects of inhibition of the SNpr. Building on decades of studies in rodents, our present findings emphasize the relevance of these targets to the primate brain and provide further rationale for exploring these targets for clinical use.
Collapse
Affiliation(s)
- Karen Gale
- Department of Pharmacology and Physiology, Georgetown University, Washington, District of Columbia, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, District of Columbia, USA
| | - David Dybdal
- Department of Pharmacology and Physiology, Georgetown University, Washington, District of Columbia, USA
| | - Evan Wicker
- Department of Pharmacology and Physiology, Georgetown University, Washington, District of Columbia, USA
| | - Carolina Campos-Rodriguez
- Department of Pharmacology and Physiology, Georgetown University, Washington, District of Columbia, USA
| | - Rafael S Maior
- Department of Pharmacology and Physiology, Georgetown University, Washington, District of Columbia, USA
- Department of Neuroscience, Georgetown University, Washington, District of Columbia, USA
| | - Catherine Elorette
- Department of Pharmacology and Physiology, Georgetown University, Washington, District of Columbia, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, District of Columbia, USA
| | - Ludise Malkova
- Department of Pharmacology and Physiology, Georgetown University, Washington, District of Columbia, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, District of Columbia, USA
| | - Patrick A Forcelli
- Department of Pharmacology and Physiology, Georgetown University, Washington, District of Columbia, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, District of Columbia, USA
- Laboratory of Neuroscience and Behavior, Department of Physiological Sciences, Institute of Biology, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
2
|
Jacobs JT, Maior RS, Waguespack HF, Campos-Rodriguez C, Malkova L, Forcelli PA. Focal pharmacological manipulation of serotonin signaling in the amygdala does not alter social behavior. Psychopharmacology (Berl) 2025; 242:101-115. [PMID: 39019996 DOI: 10.1007/s00213-024-06651-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/07/2024] [Indexed: 07/19/2024]
Abstract
Serotonin signaling plays critical roles in social and emotional behaviors. Likewise, decades of research demonstrate that the amygdala is a prime modulator of social behavior. Permanent excitotoxic lesions and transient amygdala inactivation consistently increase social behaviors in non-human primates. In rodents, acute systemic administration of drugs that increase serotonin signaling is associated with decreased social interactions. However, in primates, the direct involvement of serotonin signaling in the amygdala, particularly in affiliative social interaction, remains unexplored. Here, we examined the effects of serotonin manipulations within the amygdala on social behavior in eight pairs of familiar male macaques. We microinfused drugs targeting the serotonin system into either the basolateral (BLA) or central (CeA) amygdala and measured changes in social behavior. Surprisingly, the results demonstrated no significant differences in social behavior following the infusion of a selective serotonin reuptake inhibitor, 5-HT1A agonist or antagonist, 5-HT2A agonist or antagonist, or 5-HT3 agonist or antagonist into either the BLA or CeA. These findings suggest that serotonin signaling in the amygdala does not directly contribute to the regulation of social behavior between familiar conspecifics. Future research should explore alternative mechanisms and potential interactions with other brain regions to gain a comprehensive understanding of the complex neural circuitry governing social behavior.
Collapse
Affiliation(s)
- Jessica T Jacobs
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, USA
| | - Rafael S Maior
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, USA
- Laboratory of Neurosciences and Behavior, Department of Physiological Sciences, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Hannah F Waguespack
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, USA
| | | | - Ludise Malkova
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA.
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, USA.
| | - Patrick A Forcelli
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA.
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, USA.
- Department of Neuroscience, Georgetown University, Washington, DC, USA.
| |
Collapse
|
3
|
Hyder SK, Lazarini-Lopes W, Toib J, Williams G, Sukharev A, Forcelli PA. Optogenetic stimulation of dorsal striatum bidirectionally controls seizures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613710. [PMID: 39345377 PMCID: PMC11429780 DOI: 10.1101/2024.09.18.613710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Engagement of the striatum (caudate/putamen) and other basal ganglia nuclei during seizures was first observed over 75 years ago. Basal ganglia output nuclei, and the substantia nigra pars reticulata, in particular, have well-established anti-seizure effects across a large array of experimental models. However, striatal control of seizures is understudied. To address this gap, we used optogenetic approaches to activate and inactivate neurons in the dorsal striatum of Sprague-Dawley rats submitted to the gamma-butyrolactone (GBL) model of absence epilepsy, amygdala kindling model of temporal lobe epilepsy, and pilocarpine-induced Status Epilepticus (SE). All tests were performed on a within-subject basis. Animals were tested in two different light frequencies (5 Hz and 100 Hz). Open-loop (continuous light delivery) optogenetic activation of the dorsal striatal neurons robustly suppressed seizures in all models. On the other hand, optogenetic silencing of the dorsal striatal neurons increased absence seizure expression and facilitated SE onset but had no effect on kindled limbic seizures. In the GBL model, we also verified if the closed- loop strategy (light delivery in response to seizure detection) would be enough to induce antiseizure effects. On-demand light delivery in ChR2-expressing animals reduced SWD duration, while the same approach in ArchT-expressing animals increased SWD duration. These results demonstrated previously unrecognized anti-absence effects associated with striatal continuous and on-demand neuromodulation. Together, these findings document a robust, bidirectional role of the dorsal striatum in the control of seizure generation and propagation in a variety of seizure models, including focal seizure onset and generalized seizures.
Collapse
|
4
|
Waguespack HF, Jacobs JT, Park J, Campos-Rodriguez C, Maior RS, Forcelli PA, Malkova L. Pharmacological Inhibition of the Nucleus Accumbens Increases Dyadic Social Interaction in Macaques. eNeuro 2024; 11:ENEURO.0085-24.2024. [PMID: 38575350 PMCID: PMC11036116 DOI: 10.1523/eneuro.0085-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Abstract
The nucleus accumbens (NAc) is a central component of the brain circuitry that mediates motivated behavior, including reward processing. Since the rewarding properties of social stimuli have a vital role in guiding behavior (both in humans and nonhuman animals), the NAc is likely to contribute to the brain circuitry controlling social behavior. In rodents, prior studies have found that focal pharmacological inhibition of NAc and/or elevation of dopamine in NAc increases social interactions. However, the role of the NAc in social behavior in nonhuman primates remains unknown. We measured the social behavior of eight dyads of male macaques following (1) pharmacological inhibition of the NAc using the GABAA agonist muscimol and (2) focal application of quinpirole, an agonist at the D2 family of dopamine receptors. Transient inhibition of the NAc with muscimol increased social behavior when drug was infused in submissive, but not dominant partners of the dyad. Focal application of quinpirole was without effect on social behavior when infused into the NAc of either dominant or submissive subjects. Our data demonstrate that the NAc contributes to social interactions in nonhuman primates.
Collapse
Affiliation(s)
- Hannah F Waguespack
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20007
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC 20007
| | - Jessica T Jacobs
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20007
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC 20007
| | - Janis Park
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC 20007
| | | | - Rafael S Maior
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC 20007
- Laboratory of Neurosciences and Behavior, Department of Physiological Sciences, Institute of Biology, University of Brasilia, Brasilia 70.910-900, Brazil
| | - Patrick A Forcelli
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20007
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC 20007
- Department of Neuroscience, Georgetown University, Washington, DC 20007
| | - Ludise Malkova
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20007
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC 20007
| |
Collapse
|
5
|
Jacobs JT, Maior RS, Waguespack HF, Campos-Rodriguez C, Forcelli PA, Malkova L. Pharmacological Inactivation of the Bed Nucleus of the Stria Terminalis Increases Affiliative Social Behavior in Rhesus Macaques. J Neurosci 2023; 43:3331-3338. [PMID: 37012054 PMCID: PMC10162455 DOI: 10.1523/jneurosci.2090-22.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/06/2023] [Accepted: 02/27/2023] [Indexed: 04/05/2023] Open
Abstract
The bed nucleus of the stria terminalis (BNST) has been implicated in a variety of social behaviors, including aggression, maternal care, mating behavior, and social interaction. Limited evidence from rodent studies suggests that activation of the BNST results in a decrease in social interaction between unfamiliar animals. The role of the BNST in social interaction in primates remains wholly unexamined. Nonhuman primates provide a valuable model for studying social behavior because of both their rich social repertoire and neural substrates of behavior with high translational relevance to humans. To test the hypothesis that the primate BNST is a critical modulator of social behavior, we performed intracerebral microinfusions of the GABAA agonist muscimol to transiently inactivate the BNST in male macaque monkeys. We measured changes in social interaction with a familiar same-sex conspecific. Inactivation of the BNST resulted in significant increase in total social contact. This effect was associated with an increase in passive contact and a significant decrease in locomotion. Other nonsocial behaviors (sitting passively alone, self-directed behaviors, and manipulation) were not impacted by BNST inactivation. As part of the "extended amygdala," the BNST is highly interconnected with the basolateral (BLA) and central (CeA) nuclei of the amygdala, both of which also play critical roles in regulating social interaction. The precise pattern of behavioral changes we observed following inactivation of the BNST partially overlaps with our prior reports in the BLA and CeA. Together, these data demonstrate that the BNST is part of a network regulating social behavior in primates.SIGNIFICANCE STATEMENT The bed nucleus of the stria terminalis (BNST) has a well-established role in anxiety behaviors, but its role in social behavior is poorly understood. No prior studies have evaluated the impact of BNST manipulations on social behavior in primates. We found that transient pharmacological inactivation of the BNST increased social behavior in pairs of macaque monkeys. These data suggest the BNST contributes to the brain networks regulating sociability.
Collapse
Affiliation(s)
- Jessica T Jacobs
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, 20057
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, 20057
| | - Rafael S Maior
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, 20057
- Laboratory of Neurosciences, Metabolism and Behavior, Department of Physiological Sciences, Institute of Biology, University of Brasilia, 70910-900, Brasilia, Brazil
| | - Hannah F Waguespack
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, 20057
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, 20057
| | | | - Patrick A Forcelli
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, 20057
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, 20057
- Department of Neuroscience, Georgetown University, Washington, DC 20057
| | - Ludise Malkova
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, 20057
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, 20057
| |
Collapse
|
6
|
Gernert M, MacKeigan D, Deking L, Kaczmarek E, Feja M. Acute and chronic convection-enhanced muscimol delivery into the rat subthalamic nucleus induces antiseizure effects associated with high responder rates. Epilepsy Res 2023; 190:107097. [PMID: 36736200 DOI: 10.1016/j.eplepsyres.2023.107097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Intracerebral drug delivery is an emerging treatment strategy aiming to manage seizures in patients with systemic drug-resistant epilepsies. In rat seizure and epilepsy models, the GABAA receptor agonist muscimol has shown powerful antiseizure potential when injected acutely into the subthalamic nucleus (STN), known for its capacity to provide remote control of different seizure types. However, chronic intrasubthalamic muscimol delivery required for long-term seizure suppression has not yet been investigated. We tested the hypothesis that chronic convection-enhanced delivery (CED) of muscimol into the STN produces long-lasting antiseizure effects in the intravenous pentylenetetrazole seizure threshold test in female rats. Acute microinjection was included to verify efficacy of intrasubthalamic muscimol delivery in this seizure model and caused significant antiseizure effects at 30 and 60 ng per hemisphere with a dose-dependent increase of responders and efficacy and only mild adverse effects compared to controls. For the chronic study, muscimol was bilaterally infused into the STN over three weeks at daily doses of 60, 300, or 600 ng per hemisphere using an implantable pump and cannula system. Chronic intrasubthalamic CED of muscimol caused significant long-lasting antiseizure effects for up to three weeks at 300 and 600 ng daily. Drug responder rate increased dose-dependently, as did drug tolerance rates. Transient ataxia and body weight loss were the main adverse effects. Drug distribution was comparable (about 2-3 mm) between acute and chronic delivery. This is the first study providing proof-of-concept that not only acute, but also chronic, continuous CED of muscimol into the STN raises seizure thresholds.
Collapse
Affiliation(s)
- Manuela Gernert
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany; Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Bünteweg 2, D-30559 Hannover, Germany.
| | - Devlin MacKeigan
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany; Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Bünteweg 2, D-30559 Hannover, Germany
| | - Lillian Deking
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany
| | - Edith Kaczmarek
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany
| | - Malte Feja
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany; Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Bünteweg 2, D-30559 Hannover, Germany.
| |
Collapse
|
7
|
Szalisznyó K, Silverstein DN. Why Does Tardive Dyskinesia Have Oro-facial Predominance? A Network Analysis. Brain Topogr 2023; 36:99-105. [PMID: 36592263 PMCID: PMC9834360 DOI: 10.1007/s10548-022-00931-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/27/2022] [Indexed: 01/03/2023]
Abstract
Tardive dyskinesia is a involuntary hyperkinetic disorder which usually occurs in older patients after long-term treatment with antipsychotic drugs. These dyskinesias are mostly irreversible and are frequently expressed in the tongue, cheeks, mandible, perioral area and other regions of the face. In this theoretical study we asked the question, why does tardive dyskinesia often have orofacial predominance? What might be the underlying neural network structure which contributes to this propensity? Graph analysis of high-level cortico-striato-thalamo-cortical network structure suggests a connectivity bottleneck. The number of walks of different lengths from the substantia nigra pars reticulata (SNr) to other vertices, as well as the returning cycles are the lowest in the network, which may indicate a higher damage susceptibility of this node. Analysis was also performed on published data from a recent high resolution histological study on cortico-striato-thalamo-cortical networks in rodents. Finer network partitioning and adjacency matrices demonstrated that the SNr has a heterogeneous connectivity structure and the number of local walks from nodes neighboring orofacial neural representation is higher, indicating possible early compensatory escape routes. However, with more extensive SNr damage the larger circuit compensation might be limited. This area of inquiry is important for future research, because identifying key vulnerable structures may provide more targeted therapeutical interventions.
Collapse
Affiliation(s)
- Krisztina Szalisznyó
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala University Hospital, 75185 Uppsala, Sweden
- Computational Sciences Department, Theoretical Neuroscience and Complex Systems Research Group, Wigner Research Centre for Physics, Budapest, 1121 Hungary
| | | |
Collapse
|
8
|
Waguespack HF, Aguilar BL, Malkova L, Forcelli PA. Inhibition of the Deep and Intermediate Layers of the Superior Colliculus Disrupts Sensorimotor Gating in Monkeys. Front Behav Neurosci 2020; 14:610702. [PMID: 33414708 PMCID: PMC7783047 DOI: 10.3389/fnbeh.2020.610702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/30/2020] [Indexed: 12/01/2022] Open
Abstract
The deep and intermediate layers of the superior colliculus (DLSC) respond to visual, auditory, and tactile inputs and act as a multimodal sensory association area. In turn, activity in the DLSC can drive orienting and avoidance responses-such as saccades and head and body movements-across species, including in rats, cats, and non-human primates. As shown in rodents, DLSC also plays a role in regulating pre-pulse inhibition (PPI) of the acoustic startle response (ASR), a form of sensorimotor gating. DLSC lesions attenuate PPI and electrical stimulation of DLSC inhibits the startle response. While the circuitry mediating PPI is well-characterized in rodents, less is known about PPI regulation in primates. Two recent studies from our labs reported a species difference in the effects of pharmacological inhibition of the basolateral amygdala and substantia nigra pars reticulata (SNpr) on PPI between rats and macaques: in rats, inhibition of these structures decreased PPI, while in macaques, it increased PPI. Given that the SNpr sends direct inhibitory projections to DLSC, we next sought to determine if this species difference was similarly evident at the level of DLSC. Here, we transiently inactivated DLSC in four rhesus macaques by focal microinfusion of the GABAA receptor agonist muscimol. Similar to findings reported in rodents, we observed that bilateral inhibition of the DLSC in macaques significantly disrupted PPI. The impairment was specific to the PPI as the ASR itself was not affected. These results indicate that our previously reported species divergence at the level of the SNpr is not due to downstream differences at the level of the DLSC. Species differences at the level of the SNpr and basolateral amygdala emphasize the importance of studying the underlying circuitry in non-human primates, as impairment in PPI has been reported in several disorders in humans, including schizophrenia, autism, and PTSD.
Collapse
Affiliation(s)
- Hannah F. Waguespack
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, United States
| | - Brittany L. Aguilar
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, United States
| | - Ludise Malkova
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, United States
| | - Patrick A. Forcelli
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, United States
- Department of Neuroscience, Georgetown University, Washington, DC, United States
| |
Collapse
|
9
|
Bröer S. Not Part of the Temporal Lobe, but Still of Importance? Substantia Nigra and Subthalamic Nucleus in Epilepsy. Front Syst Neurosci 2020; 14:581826. [PMID: 33381016 PMCID: PMC7768985 DOI: 10.3389/fnsys.2020.581826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/09/2020] [Indexed: 01/15/2023] Open
Abstract
The most researched brain region in epilepsy research is the temporal lobe, and more specifically, the hippocampus. However, numerous other brain regions play a pivotal role in seizure circuitry and secondary generalization of epileptic activity: The substantia nigra pars reticulata (SNr) and its direct input structure, the subthalamic nucleus (STN), are considered seizure gating nuclei. There is ample evidence that direct inhibition of the SNr is capable of suppressing various seizure types in experimental models. Similarly, inhibition via its monosynaptic glutamatergic input, the STN, can decrease seizure susceptibility as well. This review will focus on therapeutic interventions such as electrical stimulation and targeted drug delivery to SNr and STN in human patients and experimental animal models of epilepsy, highlighting the opportunities for overcoming pharmacoresistance in epilepsy by investigating these promising target structures.
Collapse
Affiliation(s)
- Sonja Bröer
- Faculty of Veterinary Medicine, Institute of Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
10
|
Gernert M, Feja M. Bypassing the Blood-Brain Barrier: Direct Intracranial Drug Delivery in Epilepsies. Pharmaceutics 2020; 12:pharmaceutics12121134. [PMID: 33255396 PMCID: PMC7760299 DOI: 10.3390/pharmaceutics12121134] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsies are common chronic neurological diseases characterized by recurrent unprovoked seizures of central origin. The mainstay of treatment involves symptomatic suppression of seizures with systemically applied antiseizure drugs (ASDs). Systemic pharmacotherapies for epilepsies are facing two main challenges. First, adverse effects from (often life-long) systemic drug treatment are common, and second, about one-third of patients with epilepsy have seizures refractory to systemic pharmacotherapy. Especially the drug resistance in epilepsies remains an unmet clinical need despite the recent introduction of new ASDs. Apart from other hypotheses, epilepsy-induced alterations of the blood-brain barrier (BBB) are thought to prevent ASDs from entering the brain parenchyma in necessary amounts, thereby being involved in causing drug-resistant epilepsy. Although an invasive procedure, bypassing the BBB by targeted intracranial drug delivery is an attractive approach to circumvent BBB-associated drug resistance mechanisms and to lower the risk of systemic and neurologic adverse effects. Additionally, it offers the possibility of reaching higher local drug concentrations in appropriate target regions while minimizing them in other brain or peripheral areas, as well as using otherwise toxic drugs not suitable for systemic administration. In our review, we give an overview of experimental and clinical studies conducted on direct intracranial drug delivery in epilepsies. We also discuss challenges associated with intracranial pharmacotherapy for epilepsies.
Collapse
Affiliation(s)
- Manuela Gernert
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany;
- Center for Systems Neuroscience, D-30559 Hannover, Germany
- Correspondence: ; Tel.: +49-(0)511-953-8527
| | - Malte Feja
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany;
- Center for Systems Neuroscience, D-30559 Hannover, Germany
| |
Collapse
|
11
|
Elorette C, Aguilar BL, Novak V, Forcelli PA, Malkova L. Dysregulation of behavioral and autonomic responses to emotional and social stimuli following bidirectional pharmacological manipulation of the basolateral amygdala in macaques. Neuropharmacology 2020; 179:108275. [PMID: 32835765 DOI: 10.1016/j.neuropharm.2020.108275] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/24/2020] [Accepted: 08/13/2020] [Indexed: 11/28/2022]
Abstract
The amygdala is a key component of the neural circuits mediating the processing and response to emotionally salient stimuli. Amygdala lesions dysregulate social interactions, responses to fearful stimuli, and autonomic functions. In rodents, the basolateral and central nuclei of the amygdala have divergent roles in behavioral control. However, few studies have selectively examined these nuclei in the primate brain. Moreover, the majority of non-human primate studies have employed lesions, which only allow for unidirectional manipulation of amygdala activity. Thus, the effects of amygdala disinhibition on behavior in the primate are unknown. To address this gap, we pharmacologically inhibited by muscimol or disinhibited by bicuculline methiodide the basolateral complex of the amygdala (BLA; lateral, basal, and accessory basal) in nine awake, behaving male rhesus macaques (Macaca mulatta). We examined the effects of amygdala manipulation on: (1) behavioral responses to taxidermy snakes and social stimuli, (2) food competition and social interaction in dyads, (3) autonomic arousal as measured by cardiovascular response, and (4) prepulse inhibition of the acoustic startle (PPI) response. All modalities were impacted by pharmacological inhibition and/or disinhibition. Amygdala inhibition decreased fear responses to snake stimuli, increased examination of social stimuli, reduced competitive reward-seeking in dominant animals, decreased heart rate, and increased PPI response. Amygdala disinhibition restored fearful response after habituation to snakes, reduced competitive reward-seeking behavior in dominant animals, and lowered heart rate. Thus, both hypoactivity and hyperactivity of the basolateral amygdala can lead to dysregulated behavior, suggesting that a narrow range of activity is necessary for normal functions.
Collapse
Affiliation(s)
- Catherine Elorette
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, USA; Department of Pharmacology & Physiology, Georgetown University Medical Center, USA
| | - Brittany L Aguilar
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, USA; Department of Pharmacology & Physiology, Georgetown University Medical Center, USA
| | - Vera Novak
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, USA
| | - Patrick A Forcelli
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, USA; Department of Pharmacology & Physiology, Georgetown University Medical Center, USA; Department of Neuroscience, Georgetown University Medical Center, USA.
| | - Ludise Malkova
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, USA; Department of Pharmacology & Physiology, Georgetown University Medical Center, USA.
| |
Collapse
|
12
|
Faynveitz A, Lavian H, Jacob A, Korngreen A. Proliferation of Inhibitory Input to the Substantia Nigra in Experimental Parkinsonism. Front Cell Neurosci 2019; 13:417. [PMID: 31572130 PMCID: PMC6753199 DOI: 10.3389/fncel.2019.00417] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/30/2019] [Indexed: 12/17/2022] Open
Abstract
The substantia nigra pars reticulata (SNr) is one of the output nuclei of the basal ganglia (BG) and plays a vital role in movement execution. Death of dopaminergic neurons in the neighboring nucleus, the substantia nigra pars compacta (SNc), leads to Parkinson's disease. The ensuing dopamine depletion affects all BG nuclei. However, the long-term effects of dopamine depletion on BG output are less characterized. In this in vitro study, we applied electrophysiological and immunohistochemical techniques to investigate the long-term effects of dopamine depletion on GABAergic transmission to the SNr. The findings showed a reduction in firing rate and regularity in SNr neurons after unilateral dopamine depletion with 6-OHDA, which we associate with homeostatic mechanisms. The strength of the GABAergic synapses between the globus pallidus (GP) and the SNr increased but not their short-term dynamics. Consistent with this observation, there was an increase in the frequency and amplitude of spontaneous inhibitory synaptic events to SNr neurons. Immunohistochemistry revealed an increase in the density of vGAT-labeled puncta in dopamine depleted animals. Overall, these results may suggest that synaptic proliferation can explain how dopamine depletion augments GABAergic transmission in the SNr.
Collapse
Affiliation(s)
- Anna Faynveitz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - Hagar Lavian
- The Leslie and Susan Gonda Interdisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| | - Avi Jacob
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - Alon Korngreen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel.,The Leslie and Susan Gonda Interdisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
13
|
Aguilar BL, Forcelli PA, Malkova L. Inhibition of the substantia nigra pars reticulata produces divergent effects on sensorimotor gating in rats and monkeys. Sci Rep 2018; 8:9369. [PMID: 29921848 PMCID: PMC6008324 DOI: 10.1038/s41598-018-27577-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/06/2018] [Indexed: 11/30/2022] Open
Abstract
The basal ganglia are an evolutionarily old group of structures, with gross organization conserved across species. Despite this conservation, there is evidence suggesting that anatomical organization of a key output nucleus of the basal ganglia, the substantia nigra pars reticulata (SNpr), diverges across species. Nevertheless, there are relatively few comparative studies examining the impact of manipulations of SNpr across species. Here, we evaluated the role of SNpr in a highly conserved behavior: prepulse inhibition of the acoustic startle response (PPI). We performed parallel experiments in both rats and rhesus macaques using intracranial microinfusions of GABAA agonist muscimol to investigate the role of SNpr in PPI. SNpr inactivation significantly disrupted PPI in rats, congruent with prior studies; however, in macaques, SNpr inactivation resulted in facilitation of PPI. We suggest that this difference in circuit function results from a divergence in anatomical connectivity, underscoring the importance of circuit dissection studies across species.
Collapse
Affiliation(s)
- Brittany L Aguilar
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington DC, 20057, USA
- Department of Pharmacology & Physiology, Georgetown University, Washington DC, 20057, USA
| | - Patrick A Forcelli
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington DC, 20057, USA.
- Department of Pharmacology & Physiology, Georgetown University, Washington DC, 20057, USA.
- Department of Neuroscience, Georgetown University, Washington DC, 20057, USA.
| | - Ludise Malkova
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington DC, 20057, USA.
- Department of Pharmacology & Physiology, Georgetown University, Washington DC, 20057, USA.
| |
Collapse
|
14
|
Wicker E, Turchi J, Malkova L, Forcelli PA. Mediodorsal thalamus is required for discrete phases of goal-directed behavior in macaques. eLife 2018; 7:37325. [PMID: 29848447 PMCID: PMC6010338 DOI: 10.7554/elife.37325] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/31/2018] [Indexed: 01/01/2023] Open
Abstract
Reward contingencies are dynamic: outcomes that were valued at one point may subsequently lose value. Action selection in the face of dynamic reward associations requires several cognitive processes: registering a change in value of the primary reinforcer, adjusting the value of secondary reinforcers to reflect the new value of the primary reinforcer, and guiding action selection to optimal choices. Flexible responding has been evaluated extensively using reinforcer devaluation tasks. Performance on this task relies upon amygdala, Areas 11 and 13 of orbitofrontal cortex (OFC), and mediodorsal thalamus (MD). Differential contributions of amygdala and Areas 11 and 13 of OFC to specific sub-processes have been established, but the role of MD in these sub-processes is unknown. Pharmacological inactivation of the macaque MD during specific phases of this task revealed that MD is required for reward valuation and action selection. This profile is unique, differing from both amygdala and subregions of the OFC. Most of us have experienced feeling full after a main course, only to discover that we somehow still have room for dessert. Eating a particular foodstuff to the point of satiety makes that item temporarily less appealing. This is an example of reward devaluation. We typically respond to this phenomenon by adjusting our behavior. We give up on the main course, for example, and turn our attention instead to dessert. This ability to adjust our actions based on changes in the value of their outcomes is a form of behavioral flexibility. Several brain regions contribute to behavioral flexibility. These include the amygdala, parts of the orbitofrontal cortex, and the mediodorsal thalamus. Wicker et al. have now explored the role of the mediodorsal thalamus by temporarily inactivating it in monkeys performing a task involving reward devaluation. The monkeys learned to associate one set of objects with peanuts and another with fruit. They were then given unlimited access to either peanuts or fruit. Finally, they were offered a choice between the two sets of objects. Like people who opt for dessert rather than another helping of a main course, the monkeys that had received peanuts chose the objects associated with fruit, and vice versa. Temporarily inactivating the mediodorsal thalamus prevented this change in behavior. This occurred if the inactivation took place while the monkeys had unlimited access to the reward, or if it took place while they were choosing between the two objects. The mediodorsal thalamus is thus required both to update the value of a reward and to select the best course of action. This is in contrast to the amygdala and the orbitofrontal cortex, which each support only one of these processes. Impaired behavioral flexibility is a hallmark of neuropsychiatric disorders, including addiction. Understanding the brain networks that support flexible responding may help improve the treatment of such disorders. As therapies that involve electrically stimulating the brain become more common, knowing which regions to avoid will be just as important as identifying new targets.
Collapse
Affiliation(s)
- Evan Wicker
- Department of Pharmacology and Physiology, Georgetown University, Washington, United States
| | - Janita Turchi
- Laboratory of Neuropsychology, National Institute of Mental Health, Maryland, United States
| | - Ludise Malkova
- Department of Pharmacology and Physiology, Georgetown University, Washington, United States.,Interdisciplinary Program in Neuroscience, Georgetown University, Washington, United States
| | - Patrick A Forcelli
- Department of Pharmacology and Physiology, Georgetown University, Washington, United States.,Interdisciplinary Program in Neuroscience, Georgetown University, Washington, United States.,Department of Neuroscience, Georgetown University, Washington, United States
| |
Collapse
|
15
|
Disrupted superior collicular activity may reveal cervical dystonia disease pathomechanisms. Sci Rep 2017; 7:16753. [PMID: 29196716 PMCID: PMC5711841 DOI: 10.1038/s41598-017-17074-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/21/2017] [Indexed: 11/13/2022] Open
Abstract
Cervical dystonia is a common neurological movement disorder characterised by muscle contractions causing abnormal movements and postures affecting the head and neck. The neural networks underpinning this condition are incompletely understood. While animal models suggest a role for the superior colliculus in its pathophysiology, this link has yet to be established in humans. The present experiment was designed to test the hypothesis that disrupted superior collicular processing is evident in affected patients and in relatives harbouring a disease-specific endophenotype (abnormal temporal discrimination). The study participants were 16 cervical dystonia patients, 16 unaffected first-degree relatives with abnormal temporal discrimination, 16 unaffected first-degree relatives with normal temporal discrimination and 16 healthy controls. The response of participant’s superior colliculi to looming stimuli was assessed by functional magnetic resonance imaging. Cervical dystonia patients and relatives with abnormal temporal discrimination demonstrated (i) significantly reduced superior collicular activation for whole brain and region of interest analysis; (ii) a statistically significant negative correlation between temporal discrimination threshold and superior collicular peak values. Our results support the hypothesis that disrupted superior collicular processing is involved in the pathogenesis of cervical dystonia. These findings, which align with animal models of cervical dystonia, shed new light on pathomechanisms in humans.
Collapse
|
16
|
Bidirectional Control of Social Behavior by Activity within Basolateral and Central Amygdala of Primates. J Neurosci 2017; 36:8746-56. [PMID: 27535919 DOI: 10.1523/jneurosci.0333-16.2016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 07/02/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Both hypoactivity and hyperactivity in the amygdala are associated with perturbations in social behavior. While >60 years of experimental manipulations of the amygdala in animal models have shown that amygdala is critical for social behavior, many of these studies contradict one another. Moreover, several questions remain unaddressed. (1) What effect does activation of amygdala have on social behavior? (2) What is the effect of transient silencing, rather than permanent damage? (3) Is there a dissociation between the roles of the central (CeA) and basolateral amygdala (BLA) in regulating social behavior? (4) Can the prosocial effects of amygdala manipulations be explained by anxiolytic effects? We focally manipulated activity within the CeA or BLA in macaques by intracerebral microinjection of muscimol (to inactivate) or bicuculline (to activate) to these amygdaloid subregions. Social interactions were observed in pairs of highly familiar monkeys. We compared these effects to those achieved with systemic diazepam. Activation of the BLA but not CeA suppressed social behavior. Inhibition of either structure increased social behavior, although the effect was greater following inhibition of the BLA. Systemic diazepam was without effect. These studies, which are the first to bidirectionally manipulate the primate amygdala for effects on social behavior, revealed that (1) the amygdala, as a critical regulator of the social network, is bidirectionally sensitive to perturbations in activity, and (2) increased sociability after amygdala inactivation cannot be solely explained by decreased fear. SIGNIFICANCE STATEMENT Many previous studies reported loss of social interactions following permanent damage to the amygdala in nonhuman primates. In contrast, we report that transient inhibition of the basolateral amygdala triggered a profound increase in social interactions in dyads of monkeys highly familiar with each other. We compared these effects to those of systemic diazepam, which failed to increase social behavior. While it has been suggested that suppression of "fear" could underlie the prosocial effects of amygdala manipulations, our data strongly suggest that impairment in fear processing per se cannot account for the prosocial effects of amygdala inhibition. Furthermore, our studies are the first to examine activation of the amygdala and to assess the separate roles of the amygdaloid nuclei in social behavior in primates.
Collapse
|
17
|
Forcelli PA, Waguespack HF, Malkova L. Defensive Vocalizations and Motor Asymmetry Triggered by Disinhibition of the Periaqueductal Gray in Non-human Primates. Front Neurosci 2017; 11:163. [PMID: 28424576 PMCID: PMC5372797 DOI: 10.3389/fnins.2017.00163] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/13/2017] [Indexed: 11/13/2022] Open
Abstract
Rapid and reflexive responses to threats are present across phylogeny. The neural circuitry mediating reflexive defense reactions has been well-characterized in a variety of species, for example, in rodents and cats, the detection of and species-typical response to threats is mediated by a network of structures including the midbrain tectum (deep and intermediate layers of the superior colliculus [DLSC]), periaqueductal gray (PAG), and forebrain structures such as the amygdala and hypothalamus. However, relatively little is known about the functional architecture of defense circuitry in primates. We have previously reported that pharmacological activation of the DLSC evokes locomotor asymmetry, defense-associated vocalizations, cowering behavior, escape responses, and attack of inanimate objects (Holmes et al., 2012; DesJardin et al., 2013; Forcelli et al., 2016). Here, we sought to determine if pharmacological activation of the PAG would induce a similar profile of responses. We activated the PAG in three awake, behaving macaques by microinfusion of GABA-A receptor antagonist, bicuculline methiodide. Activation of PAG evoked defense-associated vocalizations and postural/locomotor asymmetry, but not motor defense responses (e.g., cowering, escape behavior). These data suggest a partial dissociation between the role of the PAG and the DLSC in the defense network of macaques, but a general conservation of the role of PAG in defense responses across species.
Collapse
Affiliation(s)
- Patrick A Forcelli
- Department of Pharmacology and Physiology, Georgetown UniversityWashington, DC, USA.,Interdisciplinary Program in Neuroscience, Georgetown UniversityWashington, DC, USA.,Department of Neuroscience, Georgetown UniversityWashington, DC, USA
| | - Hannah F Waguespack
- Department of Pharmacology and Physiology, Georgetown UniversityWashington, DC, USA
| | - Ludise Malkova
- Department of Pharmacology and Physiology, Georgetown UniversityWashington, DC, USA.,Interdisciplinary Program in Neuroscience, Georgetown UniversityWashington, DC, USA
| |
Collapse
|
18
|
Forcelli PA, Wellman LL, Malkova L. Blockade of glutamatergic transmission in the primate basolateral amygdala suppresses active behavior without altering social interaction. Behav Neurosci 2017; 131:192-200. [PMID: 28221080 DOI: 10.1037/bne0000187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The amygdala is an integrator of affective processing, and a key component of a network regulating social behavior. While decades of lesion studies in nonhuman primates have shown alterations in social interactions after amygdala damage, acute manipulations of the amygdala in primates have been underexplored. We recently reported (Wellman, Forcelli, Aguilar, & Malkova, 2016) that acute pharmacological inhibition of the basolateral complex of the amygdala (BLA) or the central nucleus of the amygdala increased affiliative social interactions in experimental dyads of macaques; this was achieved through microinjection of a GABA-A receptor agonist. Prior studies in rodents have shown similar effects achieved by blocking NMDA receptors or AMPA receptors within the BLA. Here, we sought to determine the role of these receptor systems in the primate BLA in the context of social behavior. In familiar dyads, we microinjected the NMDA receptor antagonist 2-amino-7-phosphonoheptanoic acid (AP7) or the AMPA receptor antagonist 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX) and observed behaviors and social interactions in the immediate postinjection period. In striking contrast with our prior report using GABA agonists, and in contrast with prior reports in rodents using glutamate antagonists, we found that neither NMDA nor AMPA blockade increase social interaction. Both treatments, however, were associated with decreases in locomotion and manipulation and increases in passive behavior. These data suggest that local blockade of glutamatergic neurotransmission in BLA is not the functional equivalent of local activation of GABAergic signaling, and raise interesting questions regarding the functional microcircuitry of the nonhuman primate amygdala in the context of social behavior. (PsycINFO Database Record
Collapse
Affiliation(s)
| | - Laurie L Wellman
- Department of Pharmacology and Physiology, Georgetown University
| | - Ludise Malkova
- Department of Pharmacology and Physiology, Georgetown University
| |
Collapse
|
19
|
Forcelli PA, DesJardin JT, West EA, Holmes AL, Elorette C, Wellman LL, Malkova L. Amygdala selectively modulates defensive responses evoked from the superior colliculus in non-human primates. Soc Cogn Affect Neurosci 2016; 11:2009-2019. [PMID: 27510499 DOI: 10.1093/scan/nsw111] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/22/2016] [Accepted: 08/03/2016] [Indexed: 11/14/2022] Open
Abstract
Brain circuitry underlying defensive behaviors includes forebrain modulatory sites, e.g. the amygdala and hypothalamus, and midbrain effector regions, such as the deep/intermediate layers of the superior colliculus (DLSC). When disinhibited, this network biases behavior towards reflexive defense reactions. While well characterized in rodent models, little is known about this system in the primate brain. Employing focal pharmacological manipulations, we have previously shown that activation of the DLSC triggers reflexive defensive responses, including cowering, escape behaviors and defensive vocalizations. Here, we show that activation of the DLSC also disrupts normal dyadic social interactions between familiar pairs of monkeys. When the basolateral complex of the amygdala (BLA) was inhibited concurrent with DLSC activation, cowering behavior was attenuated, whereas escape behaviors and defensive vocalizations were not. Moreover, inhibition of the BLA, previously shown to produce a profound increase in dyadic social interactions, was unable to normalize the decrease in social behavior resulting from DLSC activation. Together these data provide an understanding of forebrain-midbrain interactions in a species and circuit with translational relevance for the psychiatry of anxiety and post-traumatic stress disorders.
Collapse
Affiliation(s)
- Patrick A Forcelli
- Department of Pharmacology & Physiology and.,Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | - Elizabeth A West
- Department of Pharmacology & Physiology and.,Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Angela L Holmes
- Department of Pharmacology & Physiology and.,Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Catherine Elorette
- Department of Pharmacology & Physiology and.,Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Laurie L Wellman
- Department of Pharmacology & Physiology and.,Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Ludise Malkova
- Department of Pharmacology & Physiology and .,Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| |
Collapse
|
20
|
Cacciola A, Milardi D, Anastasi GP, Basile GA, Ciolli P, Irrera M, Cutroneo G, Bruschetta D, Rizzo G, Mondello S, Bramanti P, Quartarone A. A Direct Cortico-Nigral Pathway as Revealed by Constrained Spherical Deconvolution Tractography in Humans. Front Hum Neurosci 2016; 10:374. [PMID: 27507940 PMCID: PMC4960230 DOI: 10.3389/fnhum.2016.00374] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 07/11/2016] [Indexed: 11/13/2022] Open
Abstract
Substantia nigra is an important neuronal structure, located in the ventral midbrain, that exerts a regulatory function within the basal ganglia circuitry through the nigro-striatal pathway. Although its subcortical connections are relatively well-known in human brain, little is known about its cortical connections. The existence of a direct cortico-nigral pathway has been demonstrated in rodents and primates but only hypothesized in humans. In this study, we aimed at evaluating cortical connections of substantia nigra in vivo in human brain by using probabilistic constrained spherical deconvolution (CSD) tractography on magnetic resonance diffusion weighted imaging data. We found that substantia nigra is connected with cerebral cortex as a whole, with the most representative connections involving prefrontal cortex, precentral and postcentral gyri and superior parietal lobule. These results may be relevant for the comprehension of the pathophysiology of several neurological disorders involving substantia nigra, such as parkinson's disease, schizophrenia, and pathological addictions.
Collapse
Affiliation(s)
- Alberto Cacciola
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina Messina, Italy
| | - Demetrio Milardi
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of MessinaMessina, Italy; IRCCS Centro Neurolesi "Bonino Pulejo"Messina, Italy
| | - Giuseppe P Anastasi
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina Messina, Italy
| | - Gianpaolo A Basile
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina Messina, Italy
| | - Pietro Ciolli
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina Messina, Italy
| | - Mariangela Irrera
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina Messina, Italy
| | - Giuseppina Cutroneo
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina Messina, Italy
| | - Daniele Bruschetta
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina Messina, Italy
| | - Giuseppina Rizzo
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina Messina, Italy
| | - Stefania Mondello
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina Messina, Italy
| | | | - Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of MessinaMessina, Italy; IRCCS Centro Neurolesi "Bonino Pulejo"Messina, Italy
| |
Collapse
|
21
|
Continuous bilateral infusion of vigabatrin into the subthalamic nucleus: Effects on seizure threshold and GABA metabolism in two rat models. Neurobiol Dis 2016; 91:194-208. [DOI: 10.1016/j.nbd.2016.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/07/2016] [Accepted: 03/10/2016] [Indexed: 01/26/2023] Open
|
22
|
Milardi D, Arrigo A, Anastasi G, Cacciola A, Marino S, Mormina E, Calamuneri A, Bruschetta D, Cutroneo G, Trimarchi F, Quartarone A. Extensive Direct Subcortical Cerebellum-Basal Ganglia Connections in Human Brain as Revealed by Constrained Spherical Deconvolution Tractography. Front Neuroanat 2016; 10:29. [PMID: 27047348 PMCID: PMC4796021 DOI: 10.3389/fnana.2016.00029] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/07/2016] [Indexed: 01/08/2023] Open
Abstract
The connections between the cerebellum and basal ganglia were assumed to occur at the level of neocortex. However evidences from animal data have challenged this old perspective showing extensive subcortical pathways linking the cerebellum with the basal ganglia. Here we tested the hypothesis if these connections also exist between the cerebellum and basal ganglia in the human brain by using diffusion magnetic resonance imaging and tractography. Fifteen healthy subjects were analyzed by using constrained spherical deconvolution technique obtained with a 3T magnetic resonance imaging scanner. We found extensive connections running between the subthalamic nucleus and cerebellar cortex and, as novel result, we demonstrated a direct route linking the dentate nucleus to the internal globus pallidus as well as to the substantia nigra. These findings may open a new scenario on the interpretation of basal ganglia disorders.
Collapse
Affiliation(s)
- Demetrio Milardi
- IRCCS Centro Neurolesi "Bonino Pulejo", MessinaItaly; Department of Biomedical Sciences and of Morphological and Functional Images, University of MessinaMessina, Italy
| | - Alessandro Arrigo
- Department of Biomedical Sciences and of Morphological and Functional Images, University of Messina Messina, Italy
| | - Giuseppe Anastasi
- Department of Biomedical Sciences and of Morphological and Functional Images, University of Messina Messina, Italy
| | - Alberto Cacciola
- Department of Biomedical Sciences and of Morphological and Functional Images, University of Messina Messina, Italy
| | - Silvia Marino
- IRCCS Centro Neurolesi "Bonino Pulejo", MessinaItaly; Department of Biomedical Sciences and of Morphological and Functional Images, University of MessinaMessina, Italy
| | - Enricomaria Mormina
- Department of Biomedical Sciences and of Morphological and Functional Images, University of Messina Messina, Italy
| | - Alessandro Calamuneri
- Department of Biomedical Sciences and of Morphological and Functional Images, University of Messina Messina, Italy
| | - Daniele Bruschetta
- Department of Biomedical Sciences and of Morphological and Functional Images, University of Messina Messina, Italy
| | - Giuseppina Cutroneo
- Department of Biomedical Sciences and of Morphological and Functional Images, University of Messina Messina, Italy
| | - Fabio Trimarchi
- Department of Biomedical Sciences and of Morphological and Functional Images, University of Messina Messina, Italy
| | - Angelo Quartarone
- IRCCS Centro Neurolesi "Bonino Pulejo", MessinaItaly; Department of Biomedical Sciences and of Morphological and Functional Images, University of MessinaMessina, Italy
| |
Collapse
|
23
|
Blockade of glutamatergic transmission in perirhinal cortex impairs object recognition memory in macaques. J Neurosci 2015; 35:5043-50. [PMID: 25810533 DOI: 10.1523/jneurosci.4307-14.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The perirhinal cortex (PRc) is essential for visual recognition memory, as shown by electrophysiological recordings and lesion studies in a variety of species. However, relatively little is known about the functional contributions of perirhinal subregions. Here we used a systematic mapping approach to identify the critical subregions of PRc through transient, focal blockade of glutamate receptors by intracerebral infusion of kynurenic acid. Nine macaques were tested for visual recognition memory using the delayed nonmatch-to-sample task. We found that inactivation of medial PRc (consisting of Area 35 together with the medial portion of Area 36), but not lateral PRc (the lateral portion of Area 36), resulted in a significant delay-dependent impairment. Significant impairment was observed with 30 and 60 s delays but not with 10 s delays. The magnitude of impairment fell within the range previously reported after PRc lesions. Furthermore, we identified a restricted area located within the most anterior part of medial PRc as critical for this effect. Moreover, we found that focal blockade of either NMDA receptors by the receptor-specific antagonist AP-7 or AMPA receptors by the receptor-specific antagonist NBQX was sufficient to disrupt object recognition memory. The present study expands the knowledge of the role of PRc in recognition memory by identifying a subregion within this area that is critical for this function. Our results also indicate that, like in the rodent, both NMDA and AMPA-mediated transmission contributes to object recognition memory.
Collapse
|
24
|
Dyskinesias and motor symptoms onset in Parkinson disease. Parkinsonism Relat Disord 2014; 20:1427-9. [DOI: 10.1016/j.parkreldis.2014.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 09/08/2014] [Accepted: 10/02/2014] [Indexed: 11/19/2022]
|
25
|
Milardi D, Gaeta M, Marino S, Arrigo A, Vaccarino G, Mormina E, Rizzo G, Milazzo C, Finocchio G, Baglieri A, Anastasi G, Quartarone A. Basal ganglia network by constrained spherical deconvolution: a possible cortico-pallidal pathway? Mov Disord 2014; 30:342-9. [PMID: 25156805 DOI: 10.1002/mds.25995] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 12/26/2022] Open
Abstract
In the recent past, basal ganglia circuitry was simplified as represented by the direct and indirect pathways and by hyperdirect pathways. Based on data from animal studies, we hypothesized a fourth pathway, the cortico-pallidal, pathway, that complements the hyperdirect pathway to the subthalamus. Ten normal brains were analyzed by using the high angular resolution diffusion imaging-constrained spherical deconvolution (CSD)-based technique. The study was performed with a 3T magnetic resonance imaging (MRI) scanner (Achieva, Philips Healthcare, Best, Netherlands); by using a 32-channel SENSE head coil. We showed that CSD is a powerful technique that allows a fine evaluation of both the long and small tracts between cortex and basal ganglia, including direct, indirect, and hyperdirect pathways. In addition, a pathway directly connecting the cortex to the globus pallidus was seen. Our results confirm that the CSD tractography is a valuable technique allowing a reliable reconstruction of small- and long-fiber pathways in brain regions with multiple fiber orientations, such as basal ganglia. This could open a future scenario in which CSD could be used to focally target with deep brain stimulation (DBS) the small bundles within the basal ganglia loops.
Collapse
Affiliation(s)
- Demetrio Milardi
- Department of Biomedical Sciences and Morphological and Functional Images, University of Messina, Italy; IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Leventhal DK, Stoetzner C, Abraham R, Pettibone J, DeMarco K, Berke JD. Dissociable effects of dopamine on learning and performance within sensorimotor striatum. ACTA ACUST UNITED AC 2014; 4:43-54. [PMID: 24949283 DOI: 10.1016/j.baga.2013.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Striatal dopamine is an important modulator of current behavior, as seen in the rapid and dramatic effects of dopamine replacement therapy in Parkinson Disease (PD). Yet there is also extensive evidence that dopamine acts as a learning signal, modulating synaptic plasticity within striatum to affect future behavior. Disentangling these "performance" and "learning" functions is important for designing effective, long-term PD treatments. We conducted a series of unilateral drug manipulations and dopamine terminal lesions in the dorsolateral striatum of rats highly-trained to perform brief instructed head/neck movements (two-alternative forced choice task). Reaction times and accuracy were measured longitudinally to determine if task behavior changed immediately, progressed over time, and/or persisted after drug withdrawal. Enhanced dopamine signaling with amphetamine caused an immediate, nonprogressive, and bilateral decrease in reaction times (RT). The altered RT distributions were consistent with reduced distance to threshold in the linear approach to threshold with ergodic rate (LATER) model of decision-making. Conversely, the dopamine antagonist flupenthixol caused experience-dependent, persistent changes in RT and accuracy indicative of a "learning" effect. These RT distributions were consistent with a slowed rate of approach to decision threshold. Our results show that dopaminergic signaling makes dissociable contributions to current and future behavior even within a single striatal subregion, and provide important clues for both models of normal decision-making and the design of novel drug therapies in PD.
Collapse
Affiliation(s)
- Daniel K Leventhal
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109 ; Movement Disorders Program, University of Michigan, Ann Arbor, Michigan 48109 ; Neuroscience Program, University of Michigan, Ann Arbor, Michigan 48109
| | - Colin Stoetzner
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| | - Rohit Abraham
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| | - Jeff Pettibone
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| | - Kayla DeMarco
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| | - Joshua D Berke
- Movement Disorders Program, University of Michigan, Ann Arbor, Michigan 48109 ; Neuroscience Program, University of Michigan, Ann Arbor, Michigan 48109 ; Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
27
|
Hutchinson M, Isa T, Molloy A, Kimmich O, Williams L, Molloy F, Moore H, Healy DG, Lynch T, Walsh C, Butler J, Reilly RB, Walsh R, O'Riordan S. Cervical dystonia: a disorder of the midbrain network for covert attentional orienting. Front Neurol 2014; 5:54. [PMID: 24803911 PMCID: PMC4009446 DOI: 10.3389/fneur.2014.00054] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/03/2014] [Indexed: 01/30/2023] Open
Abstract
While the pathogenesis of cervical dystonia remains unknown, recent animal and clinical experimental studies have indicated its probable mechanisms. Abnormal temporal discrimination is a mediational endophenotype of cervical dystonia and informs new concepts of disease pathogenesis. Our hypothesis is that both abnormal temporal discrimination and cervical dystonia are due to a disorder of the midbrain network for covert attentional orienting caused by reduced gamma-aminobutyric acid (GABA) inhibition, resulting, in turn, from as yet undetermined, genetic mutations. Such disinhibition is (a) subclinically manifested by abnormal temporal discrimination due to prolonged duration firing of the visual sensory neurons in the superficial laminae of the superior colliculus and (b) clinically manifested by cervical dystonia due to disinhibited burst activity of the cephalomotor neurons of the intermediate and deep laminae of the superior colliculus. Abnormal temporal discrimination in unaffected first-degree relatives of patients with cervical dystonia represents a subclinical manifestation of defective GABA activity both within the superior colliculus and from the substantia nigra pars reticulata. A number of experiments are required to prove or disprove this hypothesis.
Collapse
Affiliation(s)
- Michael Hutchinson
- Department of Neurology, St. Vincent's University Hospital , Dublin , Ireland ; School of Medicine and Medical Science, University College Dublin , Dublin , Ireland
| | - Tadashi Isa
- Department of Developmental Physiology, National Institute for Physiological Sciences , Okazaki , Japan
| | - Anna Molloy
- Department of Neurology, St. Vincent's University Hospital , Dublin , Ireland ; School of Medicine and Medical Science, University College Dublin , Dublin , Ireland
| | - Okka Kimmich
- Department of Neurology, St. Vincent's University Hospital , Dublin , Ireland ; School of Medicine and Medical Science, University College Dublin , Dublin , Ireland
| | - Laura Williams
- Department of Neurology, St. Vincent's University Hospital , Dublin , Ireland ; School of Medicine and Medical Science, University College Dublin , Dublin , Ireland
| | - Fiona Molloy
- Department of Neurophysiology, Beaumont Hospital , Dublin , Ireland
| | | | - Daniel G Healy
- Department of Neurology, Beaumont Hospital , Dublin , Ireland
| | - Tim Lynch
- Dublin Neurological Institute, Mater Misericordiae Hospital , Dublin , Ireland
| | - Cathal Walsh
- Department of Statistics, Trinity College Dublin , Dublin , Ireland
| | - John Butler
- Trinity Centre for Bioengineering, Trinity College Dublin , Dublin , Ireland
| | - Richard B Reilly
- Trinity Centre for Bioengineering, Trinity College Dublin , Dublin , Ireland
| | - Richard Walsh
- Department of Neurology, The Adelaide and Meath Hospital , Dublin , Ireland
| | - Sean O'Riordan
- Department of Neurology, St. Vincent's University Hospital , Dublin , Ireland ; School of Medicine and Medical Science, University College Dublin , Dublin , Ireland
| |
Collapse
|
28
|
Memory loss in a nonnavigational spatial task after hippocampal inactivation in monkeys. Proc Natl Acad Sci U S A 2014; 111:4315-20. [PMID: 24591610 DOI: 10.1073/pnas.1320562111] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The hippocampus has a well-documented role for spatial navigation across species, but its role for spatial memory in nonnavigational tasks is uncertain. In particular, when monkeys are tested in tasks that do not require navigation, spatial memory seems unaffected by lesions of the hippocampus. However, the interpretation of these results is compromised by long-term compensatory adaptation occurring in the days and weeks after lesions. To test the hypothesis that hippocampus is necessary for nonnavigational spatial memory, we selected a technique that avoids long-term compensatory adaptation. We transiently disrupted hippocampal function acutely at the time of testing by microinfusion of the glutamate receptor antagonist kynurenate. Animals were tested on a self-ordered spatial memory task, the Hamilton Search Task. In the task, animals are presented with an array of eight boxes, each containing a food reinforcer; one box may be opened per trial, with trials separated by a delay. Only the spatial location of the boxes serves as a cue to solve the task. The optimal strategy is to open each box once without returning to previously visited locations. Transient inactivation of hippocampus reduced performance to chance levels in a delay-dependent manner. In contrast, no deficits were seen when boxes were marked with nonspatial cues (color). These results clearly document a role for hippocampus in nonnavigational spatial memory in macaques and demonstrate the efficacy of pharmacological inactivation of this structure in this species. Our data bring the role of the hippocampus in monkeys into alignment with the broader framework of hippocampal function.
Collapse
|
29
|
Altered striatal and pallidal connectivity in cervical dystonia. Brain Struct Funct 2013; 220:513-23. [PMID: 24259114 DOI: 10.1007/s00429-013-0671-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/31/2013] [Indexed: 12/30/2022]
Abstract
Cervical dystonia is a neurological movement disorder characterized by involuntary, abnormal movements of the head and neck. Injecting the overactive muscles with botulinum toxin is the gold standard treatment, supported by good evidence (Delnooz and van de Warrenburg in Ther Adv Neurol Disord 5:221-240, 2012). Current views on its pathophysiology support a role for the basal ganglia, although there are probably more widespread abnormalities in brain networks in which the basal ganglia are important nodes. Their precise role in cervical dystonia is unknown. We sought to address this issue by examining alterations in the functional connectivity of the basal ganglia. Using resting-state functional MRI and functional parcellations, we investigated functional connectivity in cervical dystonia patients and age- and gender-matched healthy controls. We mapped connectivity voxel-wise across the striatum and the globus pallidus for a set of brain masks, defined from well-known resting-state networks. Scans were repeated before and after botulinum toxin injections to see whether connectivity abnormalities were perhaps restored. We found that in cervical dystonia (1) the right mid-dorsal putamen and right external globus pallidus have reduced connectivity with a network comprising left fronto-parietal regions; and (2) the bilateral anterior putamen shows a trend towards enhanced connectivity with a network comprising sensorimotor areas. We observed that botulinum toxin treatment induces reorganization between a network comprising mainly (pre)frontal areas and (1) the right mid-ventral striatum and (2) the right external globus pallidus. Cervical dystonia patients have altered functional connectivity between the basal ganglia and some cortical regions that are part of specific brain networks that in part are influenced by botulinum toxin treatment. These connectivity abnormalities may be primary as well as secondary, perhaps compensatory, phenomena.
Collapse
|
30
|
Weiss D, Walach M, Meisner C, Fritz M, Scholten M, Breit S, Plewnia C, Bender B, Gharabaghi A, Wächter T, Krüger R. Nigral stimulation for resistant axial motor impairment in Parkinson's disease? A randomized controlled trial. ACTA ACUST UNITED AC 2013; 136:2098-108. [PMID: 23757762 PMCID: PMC3692032 DOI: 10.1093/brain/awt122] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Gait and balance disturbances typically emerge in advanced Parkinson’s disease with generally limited response to dopaminergic medication and subthalamic nucleus deep brain stimulation. Therefore, advanced programming with interleaved pulses was put forward to introduce concomittant nigral stimulation on caudal contacts of a subthalamic lead. Here, we hypothesized that the combined stimulation of subthalamic nucleus and substantia nigra pars reticulata improves axial symptoms compared with standard subthalamic nucleus stimulation. Twelve patients were enrolled in this 2 × 2 cross-over double-blind randomized controlled clinical trial and both the safety and efficacy of combined subthalamic nucleus and substantia nigra pars reticulata stimulation were evaluated compared with standard subthalamic nucleus stimulation. The primary outcome measure was the change of a broad-scaled cumulative axial Unified Parkinson’s Disease Rating Scale score (Scale II items 13–15, Scale III items 27–31) at ‘3-week follow-up’. Secondary outcome measures specifically addressed freezing of gait, balance, quality of life, non-motor symptoms and neuropsychiatric symptoms. For the primary outcome measure no statistically significant improvement was observed for combined subthalamic nucleus and substantia nigra pars reticulata stimulation at the ‘3-week follow-up’. The secondary endpoints, however, revealed that the combined stimulation of subthalamic nucleus and substantia nigra pars reticulata might specifically improve freezing of gait, whereas balance impairment remained unchanged. The combined stimulation of subthalamic nucleus and substantia nigra pars reticulata was safe, and of note, no clinically relevant neuropsychiatric adverse effect was observed. Patients treated with subthalamic nucleus and substantia nigra pars reticulata stimulation revealed no ‘global’ effect on axial motor domains. However, this study opens the perspective that concomittant stimulation of the substantia nigra pars reticulata possibly improves otherwise resistant freezing of gait and, therefore, highly warrants a subsequent phase III randomized controlled trial.
Collapse
Affiliation(s)
- Daniel Weiss
- German Centre for Neurodegenerative Diseases (DZNE), Tübingen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Obeso JA, Guridi J, Nambu A, Crossman AR. Motor manifestations and basal ganglia output activity: the paradox continues. Mov Disord 2013; 28:416-8. [PMID: 23494928 DOI: 10.1002/mds.25358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 12/16/2012] [Indexed: 11/06/2022] Open
|
32
|
Defense-like behaviors evoked by pharmacological disinhibition of the superior colliculus in the primate. J Neurosci 2013; 33:150-5. [PMID: 23283329 DOI: 10.1523/jneurosci.2924-12.2013] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Stimulation of the intermediate and deep layers of superior colliculus (DLSC) in rodents evokes both orienting/pursuit (approach) and avoidance/flight (defense) responses (Dean et al., 1989). These two classes of response are subserved by distinct output projections associated with lateral (approach) and medial (defense) DLSC (Comoli et al., 2012). In non-human primates, DLSC has been examined only with respect to orienting/approach behaviors, especially eye movements, and defense-like behaviors have not been reported. Here we examined the profile of behavioral responses evoked by activation of DLSC by unilateral intracerebral infusions of the GABA(A) receptor antagonist, bicuculline methiodide (BIC), in nine freely moving macaques. Across animals, the most consistently evoked behavior was cowering (all animals), followed by increased vocalization and escape-like behaviors (seven animals), and attack of objects (three animals). The effects of BIC were dose-dependent within the range 2.5-14 nmol (threshold dose of 4.6 nmol). The behaviors and their latencies to onset did not vary across different infusion sites within DLSC. Cowering and escape-like behaviors resembled the defense-like responses reported after DLSC stimulation in rats, but in the macaques these responses were evoked from both medial and lateral sites within DLSC. Our findings are unexpected in the context of an earlier theoretical perspective (Dean et al., 1989) that emphasized a preferential role of the primate DLSC for approach rather than defensive responses. Our data provide the first evidence for induction of defense-like behaviors by activation of DLSC in monkeys, suggesting that the role of DLSC in responding to threats is conserved across species.
Collapse
|
33
|
Superior colliculus mediates cervical dystonia evoked by inhibition of the substantia nigra pars reticulata. J Neurosci 2012; 32:13326-32. [PMID: 22993447 DOI: 10.1523/jneurosci.2295-12.2012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cervical dystonia (CD; spasmodic torticollis) can be evoked by inhibition of substantia nigra pars reticulata (SNpr) in the nonhuman primate (Burbaud et al., 1998; Dybdal et al., 2012). Suppression of GABAergic neurons that project from SNpr results in the disinhibition of the targets to which these neurons project. It therefore should be possible to prevent CD by inhibition of the appropriate nigral target region(s). Here we tested the hypothesis that the deep and intermediate layers of the superior colliculus (DLSC), a key target of nigral projections, are required for the emergence of CD. To test this hypothesis, we pretreated the DLSC of four macaques with the GABA(A) agonist muscimol to determine whether this treatment would prevent CD evoked by muscimol infusions in SNpr. Our data supported this hypothesis: inhibition of DLSC attenuated CD evoked by muscimol in SNpr in all four animals. In two of the four subjects, quadrupedal rotations were evoked by muscimol application into SNpr sites that were distinct from those that induced dystonia. We found that inhibition of DLSC did not significantly alter quadrupedal rotations, suggesting that this response is dissociable from the SNpr-evoked CD. Our results are the first to demonstrate a role of DLSC in mediating the expression of CD. Furthermore, these data reveal a functional relationship between SNpr and DLSC in regulating posture and movement in the nonhuman primate, raising the possibility that the nigrotectal pathway has potential as a target for therapeutic interventions for CD.
Collapse
|