1
|
Zielinska Z, Oldak L, Gorodkiewicz E. Biosensing systems for the detection of biomarkers of neurodegenerative diseases: A review. Talanta 2025; 284:127247. [PMID: 39586209 DOI: 10.1016/j.talanta.2024.127247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/23/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS) are pathologies associated with neuronal disorders and degradation. They are difficult to detect in their early stages, when it is crucial for appropriate treatment to be implemented. Currently, many biosensors are being developed to enable the determination of compounds characteristic of the aforementioned diseases. This review includes a de-scription of the structure of biosensors, as well as their applications in many areas of qualitative and quantitative analysis, with particular emphasis on diagnostics. The structures of biosensors that can potentially be used for the diagnosis of AD, PD and MS are discussed, as well as their characteristics, which depend on the technique used for the analysis and the type of recognition element capable of specifically binding a given biomarker. A description is also given of biosensors classified according to the type of sample used for quantitative determinations.
Collapse
Affiliation(s)
- Zuzanna Zielinska
- Doctoral School of Exact and Natural Science, Faculty of Chemistry, Bioanalysis Laboratory, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland.
| | - Lukasz Oldak
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland.
| | - Ewa Gorodkiewicz
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland.
| |
Collapse
|
2
|
Namdari M, McDonnell FS. Extracellular vesicles as emerging players in glaucoma: Mechanisms, biomarkers, and therapeutic targets. Vision Res 2025; 226:108522. [PMID: 39581065 PMCID: PMC11640964 DOI: 10.1016/j.visres.2024.108522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024]
Abstract
In recent years, extracellular vesicles (EVs) have attracted significant scientific interest due to their widespread distribution, their potential as disease biomarkers, and their promising applications in therapy. Encapsulated by lipid bilayers these nanovesicles include small extracellular vesicles (sEV) (30-150 nm), microvesicles (100-1000 nm), and apoptotic bodies (100-5000 nm) and are essential for cellular communication, immune responses, biomolecular transport, and physiological regulation. As they reflect the condition and functionality of their originating cells, EVs play critical roles in numerous physiological processes and diseases. Therefore, EVs offer valuable opportunities for uncovering disease mechanisms, enhancing drug delivery systems, and identifying novel biomarkers. In the context of glaucoma, a leading cause of irreversible blindness, the specific roles of EVs are still largely unexplored. This review examines the emerging role of EVs in the pathogenesis of glaucoma, with a focus on their potential as diagnostic biomarkers and therapeutic agents. Through a thorough analysis of current literature, we summarize key advancements in EV research and identify areas where further investigation is needed to fully understand their function in glaucoma.
Collapse
Affiliation(s)
- Maral Namdari
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Fiona S McDonnell
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Pharmacology and Toxicology, University of Utah Salt Lake City, UT, USA.
| |
Collapse
|
3
|
Yan M, Wu H, Wu T, Wang Y, Su C, Li D, Han X. Microcystin-LR Exposure Damages Neurons by Inducing α-Syn Aggregation via MAPK4/GATA2/SNCA and PP2A/GRKs Pathways. Mol Neurobiol 2024:10.1007/s12035-024-04683-7. [PMID: 39738876 DOI: 10.1007/s12035-024-04683-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025]
Abstract
Microcystin-LR (MC-LR) is a natural neurotoxin with strong toxicity, and studies have demonstrated that chronic MC-LR exposure generated Parkinson-like dyskinesia in mice. Parkinson's disease (PD) is a neurologic degenerative disease mostly occurring in elderly people, and the progressive loss of dopaminergic neurons and the formation of Lewy bodies are the hallmark pathological features. The main component of Lewy bodies is α-synuclein (α-syn) encoded by the SNCA gene, and the copy number mutation of SNCA gene can promote the overexpression of α-syn. A mouse model of MC-LR exposure for 15 months was established to confirm the deposition of Lewy bodies. SH-SY5Y cells exposed to MC-LR were constructed as an in vitro model of PD, and the transcription factor that regulated the SNCA gene (the encoding gene of α-syn) was identified through the database. MC-LR enhanced the transcription level of SNCA gene and upregulated α-syn protein expression by promoting MAPK4 into the nucleus and binding to GATA2 295-480 fragment. In addition, MC-LR inhibited PP2A activity and activated GRKs kinase to promote α-syn phosphorylation at Ser129. These results suggest that MC-LR is involved in α-syn aggregate formation and PD pathogenesis by enhancing SNCA transcriptional activity to promote α-syn elevation via the MAPK4/GATA2 pathway and inducing α-syn phosphorylation via the PP2A/GRKs pathway.
Collapse
Affiliation(s)
- Minghao Yan
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Huifang Wu
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Tong Wu
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Yuhan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Chengxiang Su
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Dongmei Li
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Xiaodong Han
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China.
| |
Collapse
|
4
|
De Bartolo MI, Belvisi D, Mancinelli R, Costanzo M, Caturano C, Leodori G, Berardelli A, Fabbrini G, Vivacqua G. A systematic review of salivary biomarkers in Parkinson's disease. Neural Regen Res 2024; 19:2613-2625. [PMID: 38595280 PMCID: PMC11168506 DOI: 10.4103/nrr.nrr-d-23-01677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/25/2023] [Accepted: 01/25/2024] [Indexed: 04/11/2024] Open
Abstract
The search for reliable and easily accessible biomarkers in Parkinson's disease is receiving a growing emphasis, to detect neurodegeneration from the prodromal phase and to enforce disease-modifying therapies. Despite the need for non-invasively accessible biomarkers, the majority of the studies have pointed to cerebrospinal fluid or peripheral biopsies biomarkers, which require invasive collection procedures. Saliva represents an easily accessible biofluid and an incredibly wide source of molecular biomarkers. In the present study, after presenting the morphological and biological bases for looking at saliva in the search of biomarkers for Parkinson's disease, we systematically reviewed the results achieved so far in the saliva of different cohorts of Parkinson's disease patients. A comprehensive literature search on PubMed and SCOPUS led to the discovery of 289 articles. After screening and exclusion, 34 relevant articles were derived for systematic review. Alpha-synuclein, the histopathological hallmark of Parkinson's disease, has been the most investigated Parkinson's disease biomarker in saliva, with oligomeric alpha-synuclein consistently found increased in Parkinson's disease patients in comparison to healthy controls, while conflicting results have been reported regarding the levels of total alpha-synuclein and phosphorylated alpha-synuclein, and few studies described an increased oligomeric alpha-synuclein/total alpha-synuclein ratio in Parkinson's disease. Beyond alpha-synuclein, other biomarkers targeting different molecular pathways have been explored in the saliva of Parkinson's disease patients: total tau, phosphorylated tau, amyloid-β1-42 (pathological protein aggregation biomarkers); DJ-1, heme-oxygenase-1, metabolites (altered energy homeostasis biomarkers); MAPLC-3beta (aberrant proteostasis biomarker); cortisol, tumor necrosis factor-alpha (inflammation biomarkers); DNA methylation, miRNA (DNA/RNA defects biomarkers); acetylcholinesterase activity (synaptic and neuronal network dysfunction biomarkers); Raman spectra, proteome, and caffeine. Despite a few studies investigating biomarkers targeting molecular pathways different from alpha-synuclein in Parkinson's disease, these results should be replicated and observed in studies on larger cohorts, considering the potential role of these biomarkers in determining the molecular variance among Parkinson's disease subtypes. Although the need for standardization in sample collection and processing, salivary-based biomarkers studies have reported encouraging results, calling for large-scale longitudinal studies and multicentric assessments, given the great molecular potentials and the non-invasive accessibility of saliva.
Collapse
Affiliation(s)
| | - Daniele Belvisi
- IRCCS Neuromed, Pozzilli, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Claudia Caturano
- Department of Experimental Morphology and Microscopy -Integrated Research Center (PRAAB) -Campus Biomedico University of Rome, Rome, Italy
| | - Giorgio Leodori
- IRCCS Neuromed, Pozzilli, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Giovanni Fabbrini
- IRCCS Neuromed, Pozzilli, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Giorgio Vivacqua
- Department of Experimental Morphology and Microscopy -Integrated Research Center (PRAAB) -Campus Biomedico University of Rome, Rome, Italy
| |
Collapse
|
5
|
Byrne MD, Petramfar P, Lee JK, Smeyne RJ. Templating of Monomeric Alpha-Synuclein Induces Inflammation and SNpc Dopamine Neuron Death in a Genetic Mouse Model of Synucleinopathy. RESEARCH SQUARE 2024:rs.3.rs-5269499. [PMID: 39606453 PMCID: PMC11601858 DOI: 10.21203/rs.3.rs-5269499/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
While the etiology of most cases of Parkinson's disease (PD) are idiopathic, it has been estimated that 5-10% of PD arise from known genetic mutations. The first mutations described that leads to the development of an autosomal dominant form of PD are in the SNCA gene that codes for the protein alpha-synuclein (α-syn). α-syn is an abundant presynaptic protein that is natively disordered and whose function is still unclear. In PD, α-syn misfolds into multimeric b-pleated sheets that aggregate in neurons (Lewy Bodies/neurites) and spread throughout the neuraxis in a pattern that aligns with disease progression. Here, using IHC, HC, HPLC, and cytokine analysis, we examined the sequelae of intraparenchymal brain seeding of pre-formed fibrils (PFFs) and monomeric α-syn in C57BL/6J (WT) and A53T SNCA mutant mice. We found that injection of PFFs, but not monomeric α-syn, into the striatum of C57BL/6J mice induced spread of aggregated α-syn, loss of SNpc DA neurons and increased neuroinflammation. However, in A53T SNCA mice, we found that both PFFs and monomeric α-syn induced this pathology. This suggests that the conformation changes in α-syn seen in the A53T strain can recruit wild-type α-syn to a pathological misfolded conformation which may provide a mechanism for the induction of PD in humans with SNCA duplication/triplication.
Collapse
|
6
|
Uddin A. Compositional Features and Codon Usage Pattern of Genes Associated with Parkinson's Disease. Mol Neurobiol 2024; 61:8279-8292. [PMID: 38488980 DOI: 10.1007/s12035-024-04091-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/29/2024] [Indexed: 03/17/2024]
Abstract
Codon usage bias (CUB) is the phenomenon of non-uniform usage of synonymous codons in which some codons are more used than others and it helps in understanding the molecular organization of genome. Bioinformatic approach was used to analyze the protein-coding sequences of genes associated with Parkinson's disease (PD) to explore compositional features and codon usage pattern as no details work was reported yet. The average improved effective number of codons (Nc) and Nc prime were 42.74 and 44.26 respectively, indicated that CUB was low in these genes. In most of the genes, the overall GC content was almost 50% and GC content at the 1st codon position was the highest while GC content at the 2nd codon position was lowest. Relative synonymous codon usage (RSCU) analysis elucidated over-represented (p > 1.6) and under-represented codons (p < 0.6). The GTG (Val) is the only codon over-represented in all genes. Over-represented codons except (GTG) were A or T ending while under-represented codons (except ACT) were G or C ending. The codons namely TTA (Leu), CTA (Leu), ATC (Ile), ATA (Ile), AGT (Ser), AAC (Asn), TGT (Cys), TGC (Cys), CGC (Arg), AGA (Arg), and AGG (Arg) were absent in SNCA1 to SNCA8 genes. The codon TCG (Ser) was absent in all genes except UCHL1 and PINK1. Correspondence analysis (COA) revealed that the pattern of codon usage differs among genes associated with PD. Neutrality plot analysis indicated some of the points are diagonal distribution suggested that mutation pressure influenced the CUB in genes associated with PD.
Collapse
Affiliation(s)
- Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi-788150, Assam, India.
| |
Collapse
|
7
|
Maddocks GM, Eisenstein M, Soh HT. Biosensors for Parkinson's Disease: Where Are We Now, and Where Do We Need to Go? ACS Sens 2024; 9:4307-4327. [PMID: 39189973 DOI: 10.1021/acssensors.4c00790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Parkinson's Disease is the second most common neurological disease in the United States, yet there is no cure, no pinpointed cause, and no definitive diagnostic procedure. Parkinson's is typically diagnosed when patients present with motor symptoms such as slowness of movement and tremors. However, none of these are specific to Parkinson's, and a confident diagnosis of Parkinson's is typically only achieved when 60-80% of dopaminergic neurons are no longer functioning, at which point much of the damage to the brain is irreversible. This Perspective details ongoing efforts and accomplishments in biosensor research with the goal of overcoming these issues for Parkinson's diagnosis and care, with a focus on the potential impact of early diagnosis and associated opportunities to pinpoint a cause and a cure. We critically analyze the strengths and shortcomings of current technologies and discuss the ideal characteristics of a diagnostic technology toolbox to guide future research decisions in this space. Finally, we assess what role biosensors can play in facilitating precision medicine for Parkinson's patients.
Collapse
Affiliation(s)
- Grace M Maddocks
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - M Eisenstein
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - H Tom Soh
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
8
|
Fu Y, Gu Z, Cao H, Zuo C, Huang Y, Song Y, Jiang Y, Wang F. The role of the gut microbiota in neurodegenerative diseases targeting metabolism. Front Neurosci 2024; 18:1432659. [PMID: 39391755 PMCID: PMC11464490 DOI: 10.3389/fnins.2024.1432659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024] Open
Abstract
In recent years, the incidence of neurodegenerative diseases (NDs) has gradually increased over the past decades due to the rapid aging of the global population. Traditional research has had difficulty explaining the relationship between its etiology and unhealthy lifestyle and diets. Emerging evidence had proved that the pathogenesis of neurodegenerative diseases may be related to changes of the gut microbiota's composition. Metabolism of gut microbiota has insidious and far-reaching effects on neurodegenerative diseases and provides new directions for disease intervention. Here, we delineated the basic relationship between gut microbiota and neurodegenerative diseases, highlighting the metabolism of gut microbiota in neurodegenerative diseases and also focusing on treatments for NDs based on gut microbiota. Our review may provide novel insights for neurodegeneration and approach a broadly applicable basis for the clinical therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Yufeng Fu
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongya Gu
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan Cao
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chengchao Zuo
- Department of Rehabilitation, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yaqi Huang
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Song
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongsheng Jiang
- Cancer Center of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Furong Wang
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging (HUST), Ministry of Education, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
9
|
Lokhov PG, Trifonova OP, Balashova EE, Maslov DL, Ugrumov MV, Archakov AI. Application of clinical blood metabogram for diagnosis of early-stage Parkinson's disease: a pilot study. Front Mol Biosci 2024; 11:1407974. [PMID: 39206052 PMCID: PMC11350164 DOI: 10.3389/fmolb.2024.1407974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
In terms of time, cost, and reproducibility of clinical laboratory tests, a mass spectrometric clinical blood metabogram (CBM) enables the investigation of the blood metabolome. Metabogram's components provide clinically relevant information by describing related groups of blood metabolites connected to humoral regulation, the metabolism of lipids, carbohydrates and amines, lipid intake into the organism, and liver function. For further development of the CBM approach, the ability of CBM to detect metabolic changes in the blood in the early stages of Parkinson's disease (PD) was studied in this work. In a case-control study (n = 56), CBM enabled the detection of the signature in blood metabolites related to 1-2.5 clinical stages of PD, according to the modified Hoehn and Yahr scale, which is formed by alterations in eicosanoids, phospholipids and, presumably, in the butadione metabolism. The CBM component-based diagnostic accuracy reached 77%, with a specificity of 71% and sensitivity of 82%. The research results extend the range of disorders for which CBM is applicable and offer new opportunities for revealing PD-specific metabolic alterations and diagnosing early-stage PD.
Collapse
Affiliation(s)
- Petr G. Lokhov
- Laboratory of Mass Spectrometric Metabolomic Diagnostics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Oxana P. Trifonova
- Laboratory of Mass Spectrometric Metabolomic Diagnostics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Elena E. Balashova
- Laboratory of Mass Spectrometric Metabolomic Diagnostics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Dmitry L. Maslov
- Laboratory of Mass Spectrometric Metabolomic Diagnostics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Michael V. Ugrumov
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Alexander I. Archakov
- Laboratory of Mass Spectrometric Metabolomic Diagnostics, Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
10
|
Kambanis L, Ayoub A, Bedding MJ, Egelund PHG, Maxwell JWC, Franck C, Lambrechts L, Hawkins PME, Chisholm TS, Mackay JP, Sierecki E, Gambin Y, Kulkarni SS, Payne RJ. Expressed Protein Ligation in Flow. J Am Chem Soc 2024; 146:22027-22035. [PMID: 39052634 DOI: 10.1021/jacs.4c07462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The development of a flow chemistry platform for the generation of modified protein targets via expressed protein ligation (EPL) is described. The flow EPL platform enables efficient ligation reactions with high recoveries of target protein products and superior reaction rates compared to corresponding batch processes. The utility of the flow EPL technology was first demonstrated through the semisynthesis of the tick-derived chemokine-binding protein ACA-01 containing two tyrosine sulfate modifications. Full-length, sulfated ACA-01 could be efficiently assembled by ligating a recombinantly expressed C-terminal protein fragment and a synthetic sulfopeptide thioester in flow. Following folding, the semisynthetic sulfoprotein was shown to exhibit potent binding to a variety of pro-inflammatory chemokines. In a second modified protein target, we employed an in-line flow EPL-photodesulfurization strategy to generate both unmodified and phosphorylated forms of human β-synuclein by fusing a recombinant protein thioester, generated through cleavage of an intein fusion protein, and a synthetic (phospho)peptide. The semisynthetic proteins were assembled in 90 min in flow, a significant improvement over corresponding batch protein assembly, and enabled access to tens of milligrams of high purity material. Flow EPL has the potential to serve as a robust technology to streamline access to homogeneously modified proteins for a variety of applications in both academia, as well as in the pharmaceutical and biotechnology sector.
Collapse
Affiliation(s)
- Lucas Kambanis
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Anthony Ayoub
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Max J Bedding
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Peter H G Egelund
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
- Novo Nordisk A/S, CMC API Development, DK-2880 Bagsværd, Denmark
| | - Joshua W C Maxwell
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Charlotte Franck
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Lucien Lambrechts
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Paige M E Hawkins
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Timothy S Chisholm
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Emma Sierecki
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yann Gambin
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Sameer S Kulkarni
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
11
|
Afsheen S, Rehman AS, Jamal A, Khan N, Parvez S. Understanding role of pesticides in development of Parkinson's disease: Insights from Drosophila and rodent models. Ageing Res Rev 2024; 98:102340. [PMID: 38759892 DOI: 10.1016/j.arr.2024.102340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/11/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
Parkinson's disease is a neurodegenerative illness linked to ageing, marked by the gradual decline of dopaminergic neurons in the midbrain. The exact aetiology of Parkinson's disease (PD) remains uncertain, with genetic predisposition and environmental variables playing significant roles in the disease's frequency. Epidemiological data indicates a possible connection between pesticide exposure and brain degeneration. Specific pesticides have been associated with important characteristics of Parkinson's disease, such as mitochondrial dysfunction, oxidative stress, and α-synuclein aggregation, which are crucial for the advancement of the disease. Recently, many animal models have been developed for Parkinson's disease study. Although these models do not perfectly replicate the disease's pathology, they provide valuable insights that improve our understanding of the condition and the limitations of current treatment methods. Drosophila, in particular, has been useful in studying Parkinson's disease induced by toxins or genetic factors. The review thoroughly analyses many animal models utilised in Parkinson's research, with an emphasis on issues including pesticides, genetic and epigenetic changes, proteasome failure, oxidative damage, α-synuclein inoculation, and mitochondrial dysfunction. The text highlights the important impact of pesticides on the onset of Parkinson's disease (PD) and stresses the need for more research on genetic and mechanistic alterations linked to the condition.
Collapse
Affiliation(s)
- Saba Afsheen
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Ahmed Shaney Rehman
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Azfar Jamal
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Nazia Khan
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
12
|
Chahla C, Kovacic H, Ferhat L, Leloup L. Pathological Impact of Redox Post-Translational Modifications. Antioxid Redox Signal 2024; 41:152-180. [PMID: 38504589 DOI: 10.1089/ars.2023.0252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Oxidative stress is involved in the development of several pathologies. The different reactive oxygen species (ROS) produced during oxidative stress are at the origin of redox post-translational modifications (PTMs) on proteins and impact nucleic acids and lipids. This review provides an overview of recent data on cysteine and methionine oxidation and protein carbonylation following oxidative stress in a pathological context. Oxidation, like nitration, is a selective process and not all proteins are impacted. It depends on multiple factors, including amino acid environment, accessibility, and physical and chemical properties, as well as protein structures. Thiols can undergo reversible oxidations and others that are irreversible. On the contrary, carbonylation represents irreversible PTM. To date, hundreds of proteins were shown to be modified by ROS and reactive nitrogen species (RNS). We reviewed recent advances in the impact of redox-induced PTMs on protein functions and activity, as well as its involvement in disease development or treatment. These data show a complex situation of the involvement of redox PTM on the function of targeted proteins. Many proteins can have their activity decreased by the oxidation of cysteine thiols or methionine S-methyl thioethers, while for other proteins, this oxidation will be activating. This complexity of redox PTM regulation suggests that a global antioxidant therapeutic approach, as often proposed, is unlikely to be effective. However, the specificity of the effect obtained by targeting a cysteine or methionine residue to be able to inactivate or activate a particular protein represents a major interest if it is possible to consider this targeting from a therapeutic point of view with our current pharmacological tools. Antioxid. Redox Signal. 41, 152-180.
Collapse
Affiliation(s)
- Charbel Chahla
- Faculté de Médecine, INP, Institut de neurophysiopathologie, Aix Marseille Université, CNRS, Marseille, France
| | - Hervé Kovacic
- Faculté de Médecine, INP, Institut de neurophysiopathologie, Aix Marseille Université, CNRS, Marseille, France
| | - Lotfi Ferhat
- Faculté de Médecine, INP, Institut de neurophysiopathologie, Aix Marseille Université, CNRS, Marseille, France
| | - Ludovic Leloup
- Faculté de Médecine, INP, Institut de neurophysiopathologie, Aix Marseille Université, CNRS, Marseille, France
| |
Collapse
|
13
|
Pietracupa S, Ojha A, Belvisi D, Piervincenzi C, Tommasin S, Petsas N, De Bartolo MI, Costanzo M, Fabbrini A, Conte A, Berardelli A, Pantano P. Understanding the role of cerebellum in early Parkinson's disease: a structural and functional MRI study. NPJ Parkinsons Dis 2024; 10:119. [PMID: 38898032 PMCID: PMC11187155 DOI: 10.1038/s41531-024-00727-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Increasing evidence suggests that the cerebellum may have a role in the pathophysiology of Parkinson's disease (PD). Hence, the scope of this study was to investigate whether there are structural and functional alterations of the cerebellum and whether they correlate with motor and non-motor symptoms in early PD patients. Seventy-six patients with early PD and thirty-one age and sex-matched healthy subjects (HS) were enrolled and underwent a 3 T magnetic resonance imaging (MRI) protocol. The following MRI analyses were performed: (1) volumes of 5 cerebellar regions of interest (sensorimotor and cognitive cerebellum, dentate, interposed, and fastigial nuclei); (2) microstructural integrity of the cerebellar white matter connections (inferior, middle, and superior cerebellar peduncles); (3) functional connectivity at rest of the 5 regions of interest already described in point 1 with the rest of brain. Compared to controls, early PD patients showed a significant decrease in gray matter volume of the dentate, interposed and fastigial nuclei, bilaterally. They also showed abnormal, bilateral white matter microstructural integrity in all 3 cerebellar peduncles. Functional connectivity of the 5 cerebellar regions of interest with several areas in the midbrain, basal ganglia and cerebral cortex was altered. Finally, there was a positive correlation between abnormal functional connectivity of the fastigial nucleus with the volume of the nucleus itself and a negative correlation with axial symptoms severity. Our results showed that structural and functional alterations of the cerebellum are present in PD patients and these changes contribute to the pathophysiology of PD in the early phase.
Collapse
Affiliation(s)
- S Pietracupa
- IRCCS Neuromed, Pozzilli, IS, Italy
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - A Ojha
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - D Belvisi
- IRCCS Neuromed, Pozzilli, IS, Italy
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - C Piervincenzi
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy.
| | - S Tommasin
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - N Petsas
- Department of Public Health and Infectious Disease, Sapienza University of Rome, Rome, Italy
| | | | | | - A Fabbrini
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - A Conte
- IRCCS Neuromed, Pozzilli, IS, Italy
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - A Berardelli
- IRCCS Neuromed, Pozzilli, IS, Italy
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - P Pantano
- IRCCS Neuromed, Pozzilli, IS, Italy
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
14
|
Çamoğlu T, Yurttaş Z, Kına ÜY, Akkuş Süt P, Sahin F, Dursun E, Gezen-Ak D. Fibrillar Alpha-Synuclein Alters the Intracellular Chaperone Levels within Hours of Its Internalization. ACS OMEGA 2024; 9:17185-17194. [PMID: 38645348 PMCID: PMC11025075 DOI: 10.1021/acsomega.3c10036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 04/23/2024]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder worldwide. According to the Braak hypothesis, the disease spreads along specific neuroanatomical pathways. Studies indicate that fibrillar alpha-synuclein (F-αSyn) can propagate from cell-to-cell by following intercellular connections, leading to the selective death of certain cell groups like substantia nigra dopaminergic neurons and advancing the pathology. Internalized F-αSyn can be eliminated by lysosomes, proteasomes, or chaperones before it replicates inside the cell. Research has shown that F-αSyn can somehow escape from endosomes, lysosomes, and proteasomes and replicate itself. However, the impact of chaperones on intracellular levels during the initial hours of their internalization remains unknown. The present study investigates the effect of F-αSyn on chaperone levels within the first 6 and 12 h after internalization. Our findings showed that within the first 6 h, Hsc70 and Hsp90 levels were increased, while within 12 h, F-αSyn leads to a decrease or suppression of numerous intracellular chaperone levels. Exploring the pathological effects of PD on cells will contribute to identifying more targets for therapeutic interventions.
Collapse
Affiliation(s)
- Tugay Çamoğlu
- Brain
and Neurodegenerative Disorders Research Laboratories, Department
of Neuroscience, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey
| | - Zuhal Yurttaş
- Brain
and Neurodegenerative Disorders Research Laboratories, Department
of Neuroscience, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey
| | - Ümit Yaşar Kına
- Beykoz
Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul 34093, Turkey
| | - Pınar Akkuş Süt
- Department
of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul 34755, Turkey
| | - Fikrettin Sahin
- Department
of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul 34755, Turkey
| | - Erdinç Dursun
- Brain
and Neurodegenerative Disorders Research Laboratories, Department
of Neuroscience, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey
| | - Duygu Gezen-Ak
- Brain
and Neurodegenerative Disorders Research Laboratories, Department
of Neuroscience, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey
| |
Collapse
|
15
|
Dar NJ, John U, Bano N, Khan S, Bhat SA. Oxytosis/Ferroptosis in Neurodegeneration: the Underlying Role of Master Regulator Glutathione Peroxidase 4 (GPX4). Mol Neurobiol 2024; 61:1507-1526. [PMID: 37725216 DOI: 10.1007/s12035-023-03646-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
Oxytosis/ferroptosis is an iron-dependent oxidative form of cell death triggered by lethal accumulation of phospholipid hydroperoxides (PLOOHs) in membranes. Failure of the intricate PLOOH repair system is a principle cause of ferroptotic cell death. Glutathione peroxidase 4 (GPX4) is distinctly vital for converting PLOOHs in membranes to non-toxic alcohols. As such, GPX4 is known as the master regulator of oxytosis/ferroptosis. Ferroptosis has been implicated in a number of disorders such as neurodegenerative diseases (amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), etc.), ischemia/reperfusion injury, and kidney degeneration. Reduced function of GPX4 is frequently observed in degenerative disorders. In this study, we examine how diminished GPX4 function may be a critical event in triggering oxytosis/ferroptosis to perpetuate or initiate the neurodegenerative diseases and assess the possible therapeutic importance of oxytosis/ferroptosis in neurodegenerative disorders. These discoveries are important for advancing our understanding of neurodegenerative diseases because oxytosis/ferroptosis may provide a new target to slow the course of the disease.
Collapse
Affiliation(s)
- Nawab John Dar
- School of Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
| | - Urmilla John
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India
- School of Studies in Zoology, Jiwaji University, Gwalior, India
| | - Nargis Bano
- Faculty of Life Sciences, Department of Zoology, Aligarh Muslim University, Aligarh, U.P, India
| | - Sameera Khan
- Faculty of Life Sciences, Department of Zoology, Aligarh Muslim University, Aligarh, U.P, India
| | - Shahnawaz Ali Bhat
- Faculty of Life Sciences, Department of Zoology, Aligarh Muslim University, Aligarh, U.P, India.
| |
Collapse
|
16
|
Narwal S, Singh A, Tare M. Analysis of α-syn and parkin interaction in mediating neuronal death in Drosophila model of Parkinson's disease. Front Cell Neurosci 2024; 17:1295805. [PMID: 38239290 PMCID: PMC10794313 DOI: 10.3389/fncel.2023.1295805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/01/2023] [Indexed: 01/22/2024] Open
Abstract
One of the hallmarks of Parkinson's Disease (PD) is aggregation of incorrectly folded α-synuclein (SNCA) protein resulting in selective death of dopaminergic neurons. Another form of PD is characterized by the loss-of-function of an E3-ubiquitin ligase, parkin. Mutations in SNCA and parkin result in impaired mitochondrial morphology, causing loss of dopaminergic neurons. Despite extensive research on the individual effects of SNCA and parkin, their interactions in dopaminergic neurons remain understudied. Here we employ Drosophila model to study the effect of collective overexpression of SNCA along with the downregulation of parkin in the dopaminergic neurons of the posterior brain. We found that overexpression of SNCA along with downregulation of parkin causes a reduction in the number of dopaminergic neuronal clusters in the posterior region of the adult brain, which is manifested as progressive locomotor dysfunction. Overexpression of SNCA and downregulation of parkin collectively results in altered mitochondrial morphology in a cluster-specific manner, only in a subset of dopaminergic neurons of the brain. Further, we found that SNCA overexpression causes transcriptional downregulation of parkin. However, this downregulation is not further enhanced upon collective SNCA overexpression and parkin downregulation. This suggests that the interactions of SNCA and parkin may not be additive. Our study thus provides insights into a potential link between α-synuclein and parkin interactions. These interactions result in altered mitochondrial morphology in a cluster-specific manner for dopaminergic neurons over a time, thus unraveling the molecular interactions involved in the etiology of Parkinson's Disease.
Collapse
Affiliation(s)
- Sonia Narwal
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Meghana Tare
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| |
Collapse
|
17
|
Yang ZX, Zhang Y, Wang Q, Zhang L, Liu YF, Zhang Y, Ren Y, Zhou C, Gao HW, Zhang NX, Feng LY. Addition of α-synuclein aggregates to the intestinal environment recapitulates Parkinsonian symptoms in model systems. Acta Pharmacol Sin 2024; 45:36-51. [PMID: 37684382 PMCID: PMC10770087 DOI: 10.1038/s41401-023-01150-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/02/2023] [Indexed: 09/10/2023] Open
Abstract
The gut-brain axis plays a vital role in Parkinson's disease (PD). The mechanisms of gut-brain transmission mainly focus on α-synuclein deposition, intestinal inflammation and microbiota function. A few studies have shown the trigger of PD pathology in the gut. α-Synuclein is highly conserved in food products, which was able to form β-folded aggregates and to infect the intestinal mucosa. In this study we investigated whether α-synuclein-preformed fibril (PFF) exposure could modulate the intestinal environment and induce rodent models replicating PD pathology. We first showed that PFF could be internalized into co-cultured Caco-2/HT29/Raji b cells in vitro. Furthermore, we demonstrated that PFF perfusion caused the intestinal inflammation and activation of enteric glial cells in an ex vivo intestinal organ culture and in an in vivo intestinal mouse coloclysis model. Moreover, we found that PFF exposure through regular coloclysis induced PD pathology in wild-type (WT) and A53T α-synuclein transgenic mice with various phenotypes. Particularly in A53T mice, PFF induced significant behavioral disorders, intestinal inflammation, α-synuclein deposition, microbiota dysbiosis, glial activation as well as degeneration of dopaminergic neurons in the substantia nigra. In WT mice, however, the PFF induced only mild behavioral abnormalities, intestinal inflammation, α-synuclein deposition, and glial activation, without significant changes in microbiota and dopaminergic neurons. Our results reveal the possibility of α-synuclein aggregates binding to the intestinal mucosa and modeling PD in mice. This study may shed light on the investigation and early intervention of the gut-origin hypothesis in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ze-Xian Yang
- CAS Key Laboratory of Receptor Research, Center for Neurological and Psychiatric Research and Drug Discovery (CNPRDD), Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Yu Zhang
- CAS Key Laboratory of Receptor Research, Center for Neurological and Psychiatric Research and Drug Discovery (CNPRDD), Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China.
| | - Qing Wang
- CAS Key Laboratory of Receptor Research, Center for Neurological and Psychiatric Research and Drug Discovery (CNPRDD), Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Lei Zhang
- CAS Key Laboratory of Receptor Research, Center for Neurological and Psychiatric Research and Drug Discovery (CNPRDD), Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Yi-Fei Liu
- CAS Key Laboratory of Receptor Research, Center for Neurological and Psychiatric Research and Drug Discovery (CNPRDD), Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Ye Zhang
- CAS Key Laboratory of Receptor Research, Center for Neurological and Psychiatric Research and Drug Discovery (CNPRDD), Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Yu Ren
- CAS Key Laboratory of Receptor Research, Center for Neurological and Psychiatric Research and Drug Discovery (CNPRDD), Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Chen Zhou
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hui-Wen Gao
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Nai-Xia Zhang
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Lin-Yin Feng
- CAS Key Laboratory of Receptor Research, Center for Neurological and Psychiatric Research and Drug Discovery (CNPRDD), Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
18
|
Li L, Lei T, Xing C, Du H. Advances in microfluidic chips targeting toxic aggregation proteins for neurodegenerative diseases. Int J Biol Macromol 2024; 256:128308. [PMID: 37992921 DOI: 10.1016/j.ijbiomac.2023.128308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/10/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
Neurodegenerative diseases (NDs) are characterized by nervous system damage, often influenced by genetic and aging factors. Pathological analysis frequently reveals the presence of aggregated toxic proteins. The intricate and poorly understood origins of these diseases have hindered progress in early diagnosis and drug development. The development of novel in-vitro and in-vivo models could enhance our comprehension of ND mechanisms and facilitate clinical treatment advancements. Microfluidic chips are employed to establish three-dimensional culture conditions, replicating the human ecological niche and creating a microenvironment conducive to neuronal cell survival. The incorporation of mechatronic controls unifies the chip, cells, and culture medium optimizing living conditions for the cells. This study provides a comprehensive overview of microfluidic chip applications in drug and biomarker screening for neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, and amyotrophic lateral sclerosis. Our Lab-on-a-Chip system releases toxic proteins to simulate the pathological characteristics of neurodegenerative diseases, encompassing β-amyloid, α-synuclein, huntingtin, TAR DNA-binding protein 43, and Myelin Basic Protein. Investigating molecular and cellular interactions in vitro can enhance our understanding of disease mechanisms while minimizing harmful protein levels and can aid in screening potential therapeutic agents. We anticipate that our research will promote the utilization of microfluidic chips in both fundamental research and clinical applications for neurodegenerative diseases.
Collapse
Affiliation(s)
- Liang Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Tong Lei
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Cencan Xing
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China.
| | - Hongwu Du
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
19
|
Bonaz B. The gut-brain axis in Parkinson's disease. Rev Neurol (Paris) 2024; 180:65-78. [PMID: 38129277 DOI: 10.1016/j.neurol.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
There is a bi-directional communication between the gut, including the microbiota, and the brain through the autonomic nervous system. Accumulating evidence has suggested a bidirectional link between gastrointestinal inflammation and neurodegeneration, in accordance with the concept of the gut-rain axis. An abnormal microbiota-gut-brain interaction contributes to the pathogeny of Parkinson's disease. This supports the hypothesis that Parkinson's disease originates in the gut to spread to the central nervous system, in particular through the vagus nerve. Targeting the gut-to-brain axis with vagus nerve stimulation, fecal microbiota transplantation, gut-selective antibiotics, as well as drugs targeting the leaky gut might be of interest in the management of Parkinson's disease.
Collapse
Affiliation(s)
- B Bonaz
- Service d'hépato-gastroentérologie, Grenoble institut neurosciences, université Grenoble-Alpes, Grenoble, France.
| |
Collapse
|
20
|
Nasrolahi A, Shabani Z, Sadigh-Eteghad S, Salehi-Pourmehr H, Mahmoudi J. Stem Cell Therapy for the Treatment of Parkinson's Disease: What Promise Does it Hold? Curr Stem Cell Res Ther 2024; 19:185-199. [PMID: 36815638 DOI: 10.2174/1574888x18666230222144116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 02/24/2023]
Abstract
Parkinson's disease (PD) is a common, progressive neurodegenerative disorder characterized by substantia nigra dopamine cell death and a varied clinical picture that affects older people. Although more than two centuries have passed since the earliest attempts to find a cure for PD, it remains an unresolved problem. With this in mind, cell replacement therapy is a new strategy for treating PD. This novel approach aims to replace degenerated dopaminergic (DAergic) neurons with new ones or provide a new source of cells that can differentiate into DAergic neurons. Induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), neural stem cells (NSCs), and embryonic stem cells (ESCs) are among the cells considered for transplantation therapies. Recently disease-modifying strategies like cell replacement therapies combined with other therapeutic approaches, such as utilizing natural compounds or biomaterials, are proposed to modify the underlying neurodegeneration. In the present review, we discuss the current advances in cell replacement therapy for PD and summarize the existing experimental and clinical evidence supporting this approach.
Collapse
Affiliation(s)
- Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Shabani
- Center for Cerebrovascular Research, University of California, San Francisco, California, USA
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Salehi-Pourmehr
- Research Center for Evidence-Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
R N, Kh M, Hegde SN, Begum N, Kukkupuni SK, Gowda M, Narendran P. De novo genome assembly and annotation of the medicinal plant Tinospora cordifolia (Willd.) Miers ex Hook. f. & Thom's. Funct Integr Genomics 2023; 23:330. [PMID: 37935874 DOI: 10.1007/s10142-023-01262-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
Indian natural climbing shrub Tinospora cordifolia, often known as "Guduchi" and "Amrita," is a highly esteemed medicinal plant in the Indian system of medicine (ISM). It is a member of the Menispermaceae family which consists of a rich source of protein, micronutrients, and rich source of bioactive components which are used in treating various systemic diseases. The current study was designed to know the biological characterization of the plant genome and biosynthesis of plant metabolites essential for its medicinal applications. Tinospora cordifolia's complete genome was sequenced using Illumina HiSeq2500 sequencing technology. The draft genome was assembled through a de novo method. An integrative genome annotation approach was used to perform functional gene prediction. The pathway analysis was carried out using the KEGG database. The total genome size obtained after genome assembly was 894 Mb with an N50 of 9148 bp. The integrative annotation approach resulted in 35,111 protein-coding genes. In addition, genes responsible for the synthesis of syringin, a secondary metabolite found in plants, were identified. In comparison to the standard drug (dopamine, rasagiline, and selegiline), syringin's molecular docking exhibited a greater binding affinity from the range of - 4.3 to - 6.6 kcal/mol for all the targets of Parkinson's disease and for Alzheimer's targets; it has shown the maximum potency from the range of - 6.5 to - 7.4 kcal/mol with respect to the standard drug (donepezil, galantamine, and rivastigmine). This study provides the genomic information of Tinospora cordifolia which is helpful in understanding genomic insights and metabolic pathways connected to the corresponding plant genome and predicts the possible useful effect for the molecular characterization of therapeutic drugs.
Collapse
Affiliation(s)
- Namitha R
- The University of Trans-Disciplinary Health Sciences and Technology (TDU), 74/2, Post Attur via Yelahanka, Jarakabande Kaval, Bengaluru, 560 064, India
| | - Manasa Kh
- The University of Trans-Disciplinary Health Sciences and Technology (TDU), 74/2, Post Attur via Yelahanka, Jarakabande Kaval, Bengaluru, 560 064, India
| | - Santhosh N Hegde
- The University of Trans-Disciplinary Health Sciences and Technology (TDU), 74/2, Post Attur via Yelahanka, Jarakabande Kaval, Bengaluru, 560 064, India
| | - Noorunnisa Begum
- The University of Trans-Disciplinary Health Sciences and Technology (TDU), 74/2, Post Attur via Yelahanka, Jarakabande Kaval, Bengaluru, 560 064, India
| | - Subrahmanya Kumar Kukkupuni
- The University of Trans-Disciplinary Health Sciences and Technology (TDU), 74/2, Post Attur via Yelahanka, Jarakabande Kaval, Bengaluru, 560 064, India
| | - Malali Gowda
- The University of Trans-Disciplinary Health Sciences and Technology (TDU), 74/2, Post Attur via Yelahanka, Jarakabande Kaval, Bengaluru, 560 064, India.
| | - Pavithra Narendran
- The University of Trans-Disciplinary Health Sciences and Technology (TDU), 74/2, Post Attur via Yelahanka, Jarakabande Kaval, Bengaluru, 560 064, India.
| |
Collapse
|
22
|
Grant H, Anderton R, Gasson N, Lawrence BJ. The gut microbiome and cognition in Parkinson's disease: a systematic review. Nutr Neurosci 2023; 26:932-941. [PMID: 35965446 DOI: 10.1080/1028415x.2022.2110189] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
BACKGROUND The pathology underlying cognitive changes in people with Parkinson's disease (PD) is not well understood. In healthy older adults, gut microbiome composition has been associated with cognitive function. In people with PD, preliminary evidence suggests that cortical spreading of abnormal alpha-synuclein aggregates may be associated with cognitive impairment. As changes in the gut have been linked to PD onset and associated Lewy body pathology, an investigation of the gut microbiome and cognition in PD is warranted. OBJECTIVE To synthesise existing evidence on the relationship between the gut microbiome and cognitive function in PD. METHODS A systematic review was conducted to search for peer-reviewed articles and grey literature published to July 2021 across seven electronic databases (MEDLINE, EMBASE, PsycINFO, Scopus, Cochrane Library, ProQuest, and ProQuest Dissertations and Theses). English language articles reporting the relationship between cognition and the gut microbiome in human participants with PD were considered for inclusion. Results were qualitatively synthesised and evidence quality was assessed using the QualSyst tool for quantitative studies. RESULTS Five cross-sectional studies reporting the association between the gut microbiome and cognition in 395 participants with PD were included. Studies provided preliminary evidence of a relationship between cognition and gut microbiota within the Bacteroidetes and Firmicutes phyla, however, associations with specific genera were inconsistent across studies. CONCLUSIONS Some species of short-chain fatty acid-producing bacteria (e.g. acetate, butyrate, and propionate producers) appear to be reduced in participants with PD with cognitive impairment. More research with larger samples and more consistent methodology is needed to substantiate these findings.
Collapse
Affiliation(s)
- Hayley Grant
- Discipline of Psychology, School of Population Health, Curtin University, Bentley, Australia
| | - Ryan Anderton
- Institute for Health Research, The University of Notre Dame Australia, Fremantle, Australia
| | - Natalie Gasson
- Discipline of Psychology, School of Population Health, Curtin University, Bentley, Australia
| | - Blake J Lawrence
- Discipline of Psychology, School of Population Health, Curtin University, Bentley, Australia
| |
Collapse
|
23
|
Garcia PJB, Huang SKH, De Castro-Cruz KA, Leron RB, Tsai PW. In Silico Neuroprotective Effects of Specific Rheum palmatum Metabolites on Parkinson's Disease Targets. Int J Mol Sci 2023; 24:13929. [PMID: 37762232 PMCID: PMC10530814 DOI: 10.3390/ijms241813929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Parkinson's disease (PD) is one of the large-scale health issues detrimental to human quality of life, and current treatments are only focused on neuroprotection and easing symptoms. This study evaluated in silico binding activity and estimated the stability of major metabolites in the roots of R. palmatum (RP) with main protein targets in Parkinson's disease and their ADMET properties. The major metabolites of RP were subjected to molecular docking and QSAR with α-synuclein, monoamine oxidase isoform B, catechol o-methyltransferase, and A2A adenosine receptor. From this, emodin had the greatest binding activity with Parkinson's disease targets. The chemical stability of the selected compounds was estimated using density functional theory analyses. The docked compounds showed good stability for inhibitory action compared to dopamine and levodopa. According to their structure-activity relationship, aloe-emodin, chrysophanol, emodin, and rhein exhibited good inhibitory activity to specific targets. Finally, mediocre pharmacokinetic properties were observed due to unexceptional blood-brain barrier penetration and safety profile. It was revealed that the major metabolites of RP may have good neuroprotective activity as an additional hit for PD drug development. Also, an association between redox-mediating and activities with PD-relevant protein targets was observed, potentially opening discussion on electrochemical mechanisms with biological functions.
Collapse
Affiliation(s)
- Patrick Jay B. Garcia
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines; (P.J.B.G.); (K.A.D.C.-C.); (R.B.L.)
- School of Graduate Studies, Mapúa University, Manila 1002, Philippines
| | - Steven Kuan-Hua Huang
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan;
- Division of Urology, Department of Surgery, Chi Mei Medical Center, Tainan 711, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Kathlia A. De Castro-Cruz
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines; (P.J.B.G.); (K.A.D.C.-C.); (R.B.L.)
| | - Rhoda B. Leron
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines; (P.J.B.G.); (K.A.D.C.-C.); (R.B.L.)
| | - Po-Wei Tsai
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan;
| |
Collapse
|
24
|
Xiang J, Tao Y, Xia Y, Luo S, Zhao Q, Li B, Zhang X, Sun Y, Xia W, Zhang M, Kang SS, Ahn EH, Liu X, Xie F, Guan Y, Yang JJ, Bu L, Wu S, Wang X, Cao X, Liu C, Zhang Z, Li D, Ye K. Development of an α-synuclein positron emission tomography tracer for imaging synucleinopathies. Cell 2023; 186:3350-3367.e19. [PMID: 37421950 PMCID: PMC10527432 DOI: 10.1016/j.cell.2023.06.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/16/2023] [Accepted: 06/07/2023] [Indexed: 07/10/2023]
Abstract
Synucleinopathies are characterized by the accumulation of α-synuclein (α-Syn) aggregates in the brain. Positron emission tomography (PET) imaging of synucleinopathies requires radiopharmaceuticals that selectively bind α-Syn deposits. We report the identification of a brain permeable and rapid washout PET tracer [18F]-F0502B, which shows high binding affinity for α-Syn, but not for Aβ or Tau fibrils, and preferential binding to α-Syn aggregates in the brain sections. Employing several cycles of counter screenings with in vitro fibrils, intraneuronal aggregates, and neurodegenerative disease brain sections from several mice models and human subjects, [18F]-F0502B images α-Syn deposits in the brains of mouse and non-human primate PD models. We further determined the atomic structure of the α-Syn fibril-F0502B complex by cryo-EM and revealed parallel diagonal stacking of F0502B on the fibril surface through an intense noncovalent bonding network via inter-ligand interactions. Therefore, [18F]-F0502B is a promising lead compound for imaging aggregated α-Syn in synucleinopathies.
Collapse
Affiliation(s)
- Jie Xiang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurobiology, Fourth Military Medical University, Xi'an, China
| | - Youqi Tao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China; Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiyuan Xia
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Biomedical Sciences, School of Medicine, JiangHan University, #8, Sanjiaohu Rd., Wuhan 430056, China
| | - Shilin Luo
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Qinyue Zhao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China; Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bowei Li
- Shenzhen Institute of Advanced Technology, University of Chinese Academy of Science, Shenzhen, Guangdong 518055, China
| | - Xiaoqian Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, China
| | - Yunpeng Sun
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Wencheng Xia
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Mingming Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Seong Su Kang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Eun-Hee Ahn
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Fang Xie
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yihui Guan
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jenny J Yang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Lihong Bu
- PET-CT/MRI Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shengxi Wu
- Department of Neurobiology, Fourth Military Medical University, Xi'an, China
| | - Xiaochuan Wang
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China; Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
25
|
Cherian A, K P D, Vijayaraghavan A. Parkinson's disease - genetic cause. Curr Opin Neurol 2023; Publish Ahead of Print:00019052-990000000-00070. [PMID: 37366140 DOI: 10.1097/wco.0000000000001167] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
PURPOSE OF REVIEW Our knowledge of the genetic architecture underlying Parkinson's disease has vastly improved in the past quarter century. About 5-10% of all patients suffer from a monogenic form of Parkinson's disease. RECENT FINDINGS Mutations in autosomal dominant genes (e.g. SNCA, LRRK2, VPS35) or autosomal recessive genes (e.g. PRKN, PINK1, DJ-1) can cause genetic Parkinson's disease. Recessive DNAJC6 mutations can present predominantly as atypical parkinsonism, but also rarely as typical Parkinson's disease. Majority of Parkinson's disease is genetically complex. Mutation in RIC3, a chaperone of neuronal nicotinic acetylcholine receptor subunit α-7 (CHRNA7), provides strong evidence for the role of cholinergic pathway, for the first time, in cause of Parkinson's disease. X-linked parkinsonism manifests at a young age accompanied by many (atypical) features such as intellectual disability, spasticity, seizures, myoclonus, dystonia, and have poor response to levodopa. SUMMARY This review article aims to provide a comprehensive overview on Parkinson's disease genetics. MAPT, which encodes the microtubule associated protein tau, TMEM230, LRP10, NUS1 and ARSA are the five new putative disease-causing genes in Parkinson's disease. The validation of novel genes and its association with Parkinson's disease remains extremely challenging, as genetically affected families are sparse and globally widespread. In the near future, genetic discoveries in Parkinson's disease will influence our ability to predict and prognosticate the disease, help in defining etiological subtypes that are critical in implementation of precision medicine.
Collapse
Affiliation(s)
- Ajith Cherian
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | | | | |
Collapse
|
26
|
Roterman I, Stapor K, Konieczny L. Structural Specificity of Polymorphic Forms of α-Synuclein Amyloid. Biomedicines 2023; 11:biomedicines11051324. [PMID: 37238996 DOI: 10.3390/biomedicines11051324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/16/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
The structural transformation producing amyloids is a phenomenon that sheds new light on the protein folding problem. The analysis of the polymorphic structures of the α-synuclein amyloid available in the PDB database allows analysis of the amyloid-oriented structural transformation itself, but also the protein folding process as such. The polymorphic amyloid structures of α-synuclein analyzed employing the hydrophobicity distribution (fuzzy oil drop model) reveal a differentiation with a dominant distribution consistent with the micelle-like system (hydrophobic core with polar shell). This type of ordering of the hydrophobicity distribution covers the entire spectrum from the example with all three structural units (single chain, proto-fibril, super-fibril) exhibiting micelle-like form, through gradually emerging examples of local disorder, to structures with an extremely different structuring pattern. The water environment directing protein structures towards the generation of ribbon micelle-like structures (concentration of hydrophobic residues in the center of the molecule forming a hydrophobic core with the exposure of polar residues on the surface) also plays a role in the amyloid forms of α-synuclein. The polymorphic forms of α-synuclein reveal local structural differentiation with a common tendency to accept the micelle-like structuralization in certain common fragments of the polypeptide chain of this protein.
Collapse
Affiliation(s)
- Irena Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University-Medical College, Medyczna 7, 30-688 Krakow, Poland
| | - Katarzyna Stapor
- Department of Applied Informatics, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - Leszek Konieczny
- Medical Biochemistry, Jagiellonian University-Medical College, Kopernika 7, 31-034 Krakow, Poland
| |
Collapse
|
27
|
Rademacher DJ. Potential for Therapeutic-Loaded Exosomes to Ameliorate the Pathogenic Effects of α-Synuclein in Parkinson's Disease. Biomedicines 2023; 11:biomedicines11041187. [PMID: 37189807 DOI: 10.3390/biomedicines11041187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/08/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Pathogenic forms of α-synuclein (α-syn) are transferred to and from neurons, astrocytes, and microglia, which spread α-syn pathology in the olfactory bulb and the gut and then throughout the Parkinson's disease (PD) brain and exacerbate neurodegenerative processes. Here, we review attempts to minimize or ameliorate the pathogenic effects of α-syn or deliver therapeutic cargo into the brain. Exosomes (EXs) have several important advantages as carriers of therapeutic agents including an ability to readily cross the blood-brain barrier, the potential for targeted delivery of therapeutic agents, and immune resistance. Diverse cargo can be loaded via various methods, which are reviewed herein, into EXs and delivered into the brain. Genetic modification of EX-producing cells or EXs and chemical modification of EX have emerged as powerful approaches for the targeted delivery of therapeutic agents to treat PD. Thus, EXs hold great promise for the development of next-generation therapeutics for the treatment of PD.
Collapse
Affiliation(s)
- David J Rademacher
- Department of Microbiology and Immunology and Core Imaging Facility, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
28
|
Izco M, Schleef M, Schmeer M, Carlos E, Verona G, Alvarez-Erviti L. Targeted Extracellular Vesicle Gene Therapy for Modulating Alpha-Synuclein Expression in Gut and Spinal Cord. Pharmaceutics 2023; 15:pharmaceutics15041230. [PMID: 37111717 PMCID: PMC10145068 DOI: 10.3390/pharmaceutics15041230] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The development of effective disease-modifying therapies to halt Parkinson's disease (PD) progression is required. In a subtype of PD patients, alpha-synuclein pathology may start in the enteric nervous system (ENS) or autonomic peripheral nervous system. Consequently, strategies to decrease the expression of alpha-synuclein in the ENS will be an approach to prevent PD progression at pre-clinical stages in these patients. In the present study, we aimed to assess if anti-alpha-synuclein shRNA-minicircles (MC) delivered by RVG-extracellular vesicles (RVG-EV) could downregulate alpha-synuclein expression in the intestine and spinal cord. RVG-EV containing shRNA-MC were injected intravenously in a PD mouse model, and alpha-synuclein downregulation was evaluated by qPCR and Western blot in the cord and distal intestine. Our results confirmed the downregulation of alpha-synuclein in the intestine and spinal cord of mice treated with the therapy. We demonstrated that the treatment with anti-alpha-synuclein shRNA-MC RVG-EV after the development of pathology is effective to downregulate alpha-synuclein expression in the brain as well as in the intestine and spinal cord. Moreover, we confirmed that a multidose treatment is necessary to maintain downregulation for long-term treatments. Our results support the potential use of anti-alpha-synuclein shRNA-MC RVG-EV as a therapy to delay or halt PD pathology progression.
Collapse
Affiliation(s)
- Maria Izco
- Laboratory of Molecular Neurobiology, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 3th Floor, 26006 Logroño, Spain
| | | | - Marco Schmeer
- PlasmidFactory GmbH & Co. KG, 33607 Bielefeld, Germany
| | - Estefania Carlos
- Laboratory of Molecular Neurobiology, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 3th Floor, 26006 Logroño, Spain
| | - Guglielmo Verona
- Centre for Amyloidosis, UCL Medical School, Rowland Hill Street, London NW3 2PF, UK
| | - Lydia Alvarez-Erviti
- Laboratory of Molecular Neurobiology, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 3th Floor, 26006 Logroño, Spain
| |
Collapse
|
29
|
Lillian A, Zuo W, Laham L, Hilfiker S, Ye JH. Pathophysiology and Neuroimmune Interactions Underlying Parkinson's Disease and Traumatic Brain Injury. Int J Mol Sci 2023; 24:7186. [PMID: 37108349 PMCID: PMC10138999 DOI: 10.3390/ijms24087186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder clinically defined by motor instability, bradykinesia, and resting tremors. The clinical symptomatology is seen alongside pathologic changes, most notably the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the accumulation of α-synuclein and neuromelanin aggregates throughout numerous neural circuits. Traumatic brain injury (TBI) has been implicated as a risk factor for developing various neurodegenerative diseases, with the most compelling argument for the development of PD. Dopaminergic abnormalities, the accumulation of α-synuclein, and disruptions in neural homeostatic mechanisms, including but not limited to the release of pro-inflammatory mediators and the production of reactive oxygen species (ROS), are all present following TBI and are closely related to the pathologic changes seen in PD. Neuronal iron accumulation is discernable in degenerative and injured brain states, as is aquaporin-4 (APQ4). APQ4 is an essential mediator of synaptic plasticity in PD and regulates edematous states in the brain after TBI. Whether the cellular and parenchymal changes seen post-TBI directly cause neurodegenerative diseases such as PD is a point of considerable interest and debate; this review explores the vast array of neuroimmunological interactions and subsequent analogous changes that occur in TBI and PD. There is significant interest in exploring the validity of the relationship between TBI and PD, which is a focus of this review.
Collapse
Affiliation(s)
- Alyssa Lillian
- New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 08901, USA
| | - Wanhong Zuo
- New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 08901, USA
| | - Linda Laham
- New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 08901, USA
| | - Sabine Hilfiker
- New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 08901, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 08901, USA
| |
Collapse
|
30
|
Zhang Q, Lin Z, He Y, Jiang J, Hu D. Mendelian Randomization Analysis Reveals No Causal Relationship Between Plasma α-Synuclein and Parkinson's Disease. Mol Neurobiol 2023; 60:2268-2276. [PMID: 36640248 DOI: 10.1007/s12035-023-03206-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023]
Abstract
So far, the studies exploring plasma α-synuclein as a biomarker of Parkinson's disease (PD) have provided contradictory results. Here, we first employed the Mendelian randomization (MR) approach to elucidate their potential causal relationship. Five genetic instrumental variables of plasma α-synuclein were acquired from two publicly available datasets. Three independent genome-wide association studies of PD were used as outcome cohorts (PD cohorts 1, 2, and 3). Two-sample MR analyses were conducted using inverse-variance weighted (IVW), MR-Egger, weighted median, simple mode, and leave-one-out methods. Though the IVW approach demonstrated positive plasma α-synuclein effect on the PD risk in three outcome cohorts (OR = 1.134, 1.164, and 1.189, respectively), the P values were all larger than 0.05. The conclusions were robust under complementary sensitivity analyses. Our results did not support the causal relationship between plasma α-synuclein and PD.
Collapse
Affiliation(s)
- Qi Zhang
- The Department of Neurology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, Jiangsu, China
| | - Zenan Lin
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yan He
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Junhong Jiang
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Di Hu
- Children's Hospital of Fudan University, No.399 Wanyuan Road, Shanghai, 201102, China.
| |
Collapse
|
31
|
Anselmi C, Caicci F, Bocci T, Guidetti M, Priori A, Giusti V, Levy T, Raveh T, Voskoboynik A, Weissman IL, Manni L. Multiple Forms of Neural Cell Death in the Cyclical Brain Degeneration of A Colonial Chordate. Cells 2023; 12:1041. [PMID: 37048113 PMCID: PMC10093557 DOI: 10.3390/cells12071041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Human neuronal loss occurs through different cellular mechanisms, mainly studied in vitro. Here, we characterized neuronal death in B. schlosseri, a marine colonial tunicate that shares substantial genomic homology with mammals and has a life history in which controlled neurodegeneration happens simultaneously in the brains of adult zooids during a cyclical phase named takeover. Using an ultrastructural and transcriptomic approach, we described neuronal death forms in adult zooids before and during the takeover phase while comparing adult zooids in takeover with their buds where brains are refining their structure. At takeover, we found in neurons clear morphologic signs of apoptosis (i.e., chromatin condensation, lobed nuclei), necrosis (swollen cytoplasm) and autophagy (autophagosomes, autolysosomes and degradative multilamellar bodies). These results were confirmed by transcriptomic analyses that highlighted the specific genes involved in these cell death pathways. Moreover, the presence of tubulovesicular structures in the brain medulla alongside the over-expression of prion disease genes in late cycle suggested a cell-to-cell, prion-like propagation recalling the conformational disorders typical of some human neurodegenerative diseases. We suggest that improved understanding of how neuronal alterations are regulated in the repeated degeneration-regeneration program of B. schlosseri may yield mechanistic insights relevant to the study of human neurodegenerative diseases.
Collapse
Affiliation(s)
- Chiara Anselmi
- Hopkins Marine Station, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Pacific Grove, CA 93950, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Federico Caicci
- Dipartimento di Biologia, Università degli Studi di Padova, 35131 Padova, Italy
| | - Tommaso Bocci
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Matteo Guidetti
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Alberto Priori
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | | | - Tom Levy
- Hopkins Marine Station, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Pacific Grove, CA 93950, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tal Raveh
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ayelet Voskoboynik
- Hopkins Marine Station, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Pacific Grove, CA 93950, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Irving L. Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lucia Manni
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
32
|
Zhong Z, Li J, Zhong J, Huang Y, Hu J, Zhang P, Zhang B, Jin Y, Luo W, Liu R, Zhang Y, Ling F. MAPKAPK2, a potential dynamic network biomarker of α-synuclein prior to its aggregation in PD patients. NPJ Parkinsons Dis 2023; 9:41. [PMID: 36927756 PMCID: PMC10020541 DOI: 10.1038/s41531-023-00479-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
One of the important pathological features of Parkinson's disease (PD) is the pathological aggregation of α-synuclein (α-Syn) in the substantia nigra. Preventing the aggregation of α-Syn has become a potential strategy for treating PD. However, the molecular mechanism of α-Syn aggregation is unclear. In this study, using the dynamic network biomarker (DNB) method, we first identified the critical time point when α-Syn undergoes pathological aggregation based on a SH-SY5Y cell model and found that DNB genes encode transcription factors that regulated target genes that were differentially expressed. Interestingly, we found that these DNB genes and their neighbouring genes were significantly enriched in the cellular senescence pathway and thus proposed that the DNB genes HSF1 and MAPKAPK2 regulate the expression of the neighbouring gene SERPINE1. Notably, in Gene Expression Omnibus (GEO) data obtained from substantia nigra, prefrontal cortex and peripheral blood samples, the expression level of MAPKAPK2 was significantly higher in PD patients than in healthy people, suggesting that MAPKAPK2 has potential as an early diagnostic biomarker of diseases related to pathological aggregation of α-Syn, such as PD. These findings provide new insights into the mechanisms underlying the pathological aggregation of α-Syn.
Collapse
Affiliation(s)
- Zhenggang Zhong
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Jiabao Li
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Jiayuan Zhong
- School of Mathematics, South China University of Technology, Guangzhou, Guangdong, China
| | - Yilin Huang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Jiaqi Hu
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Piao Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Baowen Zhang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Yabin Jin
- The First People's Hospital of Foshan, Sun Yat-sen University, Foshan, China
| | - Wei Luo
- The First People's Hospital of Foshan, Sun Yat-sen University, Foshan, China.
| | - Rui Liu
- School of Mathematics, South China University of Technology, Guangzhou, Guangdong, China.
| | - Yuhu Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Fei Ling
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
33
|
Kang EJ, Jang SM, Lee YJ, Jeong YJ, Kim YJ, Kang SS, Ahn EH. The couple of netrin-1/α-Synuclein regulates the survival of dopaminergic neurons via α-Synuclein disaggregation. BMB Rep 2023; 56. [PMID: 36751943 PMCID: PMC9978362 DOI: 10.5483/bmbrep.2023-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
The abnormal accumulation and aggregation of the misfolded α-synuclein protein is the neuropathological hallmark of all α-synucleinopathies, including Parkinson's disease. The secreted proteins known as netrins (netrin-1, netrin-3, and netrin-4) are related to laminin and have a role in the molecular pathway for axon guidance and cell survival. Interestingly, only netrin-1 is significantly expressed in the substantia nigra (SN) of healthy adult brains and its expression inversely correlates with that of α-synuclein, which prompted us to look into the role of α-synuclein and netrin-1 molecular interaction in the future of dopaminergic neurons. Here, we showed that netrin-1 and α-synuclein directly interacted in pre-formed fibrils (PFFs) generation test, real time binding assay, and co-immunoprecipitation with neurotoxin treated cell lysates. Netrin-1 deficiency appeared to activate the dopaminergic neuronal cell death signal pathway via α-synuclein aggregation and hyperphosphorylation of α-synuclein S129. Taken together, netrin-1 can be a promising therapeutic molecule in Parkinson's disease. [BMB Reports 2023; 56(2): 126-131].
Collapse
Affiliation(s)
- Eun Ji Kang
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea, GA 30322, USA
| | - Seung Min Jang
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea, GA 30322, USA
| | - Ye Ji Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea, GA 30322, USA
| | - Ye Ji Jeong
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea, GA 30322, USA
| | - You Jin Kim
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea, GA 30322, USA
| | - Seong Su Kang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Eun Hee Ahn
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea, GA 30322, USA,Corresponding author. Tel: +82-33-248-2583; Fax: +82-33-248-3201; E-mail:
| |
Collapse
|
34
|
Abstract
Abnormalities in gut microbiota have been suggested to be involved in the pathophysiology and progression of Parkinson's disease (PD). Gastrointestinal nonmotor symptoms often precede the onset of motor features in PD, suggesting a role for gut dysbiosis in neuroinflammation and α-synuclein (α-syn) aggregation. In the first part of this chapter, we analyze critical features of healthy gut microbiota and factors (environmental and genetic) that modify its composition. In the second part, we focus on the mechanisms underlying the gut dysbiosis and how it alters anatomically and functionally the mucosal barrier, triggering neuroinflammation and subsequently α-syn aggregation. In the third part, we describe the most common alterations in the gut microbiota of PD patients, dividing the gastrointestinal system in higher and lower tract to examine the association between microbiota abnormalities and clinical features. In the final section, we report on current and future therapeutic approaches to gut dysbiosis aiming to either reduce the risk for PD, modify the disease course, or improve the pharmacokinetic profile of dopaminergic therapies. We also suggest that further studies will be needed to clarify the role of the microbiome in PD subtyping and of pharmacological and nonpharmacological interventions in modifying specific microbiota profiles in individualizing disease-modifying treatments in PD.
Collapse
Affiliation(s)
- Salvatore Bonvegna
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Milan, Italy
| | - Roberto Cilia
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Milan, Italy.
| |
Collapse
|
35
|
Khan MA, Haider N, Singh T, Bandopadhyay R, Ghoneim MM, Alshehri S, Taha M, Ahmad J, Mishra A. Promising biomarkers and therapeutic targets for the management of Parkinson's disease: recent advancements and contemporary research. Metab Brain Dis 2023; 38:873-919. [PMID: 36807081 DOI: 10.1007/s11011-023-01180-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/04/2023] [Indexed: 02/23/2023]
Abstract
Parkinson's disease (PD) is one of the progressive neurological diseases which affect around 10 million population worldwide. The clinical manifestation of motor symptoms in PD patients appears later when most dopaminergic neurons have degenerated. Thus, for better management of PD, the development of accurate biomarkers for the early prognosis of PD is imperative. The present work will discuss the potential biomarkers from various attributes covering biochemical, microRNA, and neuroimaging aspects (α-synuclein, DJ-1, UCH-L1, β-glucocerebrosidase, BDNF, etc.) for diagnosis, recent development in PD management, and major limitations with current and conventional anti-Parkinson therapy. This manuscript summarizes potential biomarkers and therapeutic targets, based on available preclinical and clinical evidence, for better management of PD.
Collapse
Affiliation(s)
- Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nafis Haider
- Prince Sultan Military College of Health Sciences, Dhahran, 34313, Saudi Arabia
| | - Tanveer Singh
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Ritam Bandopadhyay
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, 13713, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Murtada Taha
- Prince Sultan Military College of Health Sciences, Dhahran, 34313, Saudi Arabia
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, 11001, Saudi Arabia
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Sila Katamur (Halugurisuk), Kamrup, Changsari, Assam, 781101, India.
| |
Collapse
|
36
|
Karuppagounder SS, Wang H, Kelly T, Rush R, Nguyen R, Bisen S, Yamashita Y, Sloan N, Dang B, Sigmon A, Lee HW, Marino Lee S, Watkins L, Kim E, Brahmachari S, Kumar M, Werner MH, Dawson TM, Dawson VL. The c-Abl inhibitor IkT-148009 suppresses neurodegeneration in mouse models of heritable and sporadic Parkinson's disease. Sci Transl Med 2023; 15:eabp9352. [PMID: 36652533 DOI: 10.1126/scitranslmed.abp9352] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease of the central nervous system, with an estimated 5,000,000 cases worldwide. PD pathology is characterized by the accumulation of misfolded α-synuclein, which is thought to play a critical role in the pathogenesis of the disease. Animal models of PD suggest that activation of Abelson tyrosine kinase (c-Abl) plays an essential role in the initiation and progression of α-synuclein pathology and initiates processes leading to degeneration of dopaminergic and nondopaminergic neurons. Given the potential role of c-Abl in PD, a c-Abl inhibitor library was developed to identify orally bioavailable c-Abl inhibitors capable of crossing the blood-brain barrier based on predefined characteristics, leading to the discovery of IkT-148009. IkT-148009, a brain-penetrant c-Abl inhibitor with a favorable toxicology profile, was analyzed for therapeutic potential in animal models of slowly progressive, α-synuclein-dependent PD. In mouse models of both inherited and sporadic PD, IkT-148009 suppressed c-Abl activation to baseline and substantially protected dopaminergic neurons from degeneration when administered therapeutically by once daily oral gavage beginning 4 weeks after disease initiation. Recovery of motor function in PD mice occurred within 8 weeks of initiating treatment concomitantly with a reduction in α-synuclein pathology in the mouse brain. These findings suggest that IkT-148009 may have potential as a disease-modifying therapy in PD.
Collapse
Affiliation(s)
- Senthilkumar S Karuppagounder
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hu Wang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Terence Kelly
- Inhibikase Therapeutics Inc., Atlanta, GA 30339, USA
| | - Roger Rush
- Inhibikase Therapeutics Inc., Atlanta, GA 30339, USA
| | - Richard Nguyen
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shivani Bisen
- Zanvyl Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yoko Yamashita
- Zanvyl Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Nicholas Sloan
- Zanvyl Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Brianna Dang
- Zanvyl Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Alexander Sigmon
- Zanvyl Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hyeun Woo Lee
- Zanvyl Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Shirley Marino Lee
- Zanvyl Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Leslie Watkins
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Zanvyl Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Erica Kim
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Saurav Brahmachari
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Manoj Kumar
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
37
|
Buzoianu AD, Sharma A, Muresanu DF, Feng L, Huang H, Chen L, Tian ZR, Nozari A, Lafuente JV, Wiklund L, Sharma HS. Nanodelivery of Histamine H3/H4 Receptor Modulators BF-2649 and Clobenpropit with Antibodies to Amyloid Beta Peptide in Combination with Alpha Synuclein Reduces Brain Pathology in Parkinson's Disease. ADVANCES IN NEUROBIOLOGY 2023; 32:55-96. [PMID: 37480459 DOI: 10.1007/978-3-031-32997-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Parkinson's disease (PD) in military personnel engaged in combat operations is likely to develop in their later lives. In order to enhance the quality of lives of PD patients, exploration of novel therapy based on new research strategies is highly warranted. The hallmarks of PD include increased alpha synuclein (ASNC) and phosphorylated tau (p-tau) in the cerebrospinal fluid (CSF) leading to brain pathology. In addition, there are evidences showing increased histaminergic nerve fibers in substantia niagra pars compacta (SNpc), striatum (STr), and caudate putamen (CP) associated with upregulation of histamine H3 receptors and downregulation of H4 receptors in human brain. Previous studies from our group showed that modulation of potent histaminergic H3 receptor inverse agonist BF-2549 or clobenpropit (CLBPT) partial histamine H4 agonist with H3 receptor antagonist induces neuroprotection in PD brain pathology. Recent studies show that PD also enhances amyloid beta peptide (AβP) depositions in brain. Keeping these views in consideration in this review, nanowired delivery of monoclonal antibodies to AβP together with ASNC and H3/H4 modulator drugs on PD brain pathology is discussed based on our own observations. Our investigation shows that TiO2 nanowired BF-2649 (1 mg/kg, i.p.) or CLBPT (1 mg/kg, i.p.) once daily for 1 week together with nanowired delivery of monoclonal antibodies (mAb) to AβP and ASNC induced superior neuroprotection in PD-induced brain pathology. These observations are the first to show the modulation of histaminergic receptors together with antibodies to AβP and ASNC induces superior neuroprotection in PD. These observations open new avenues for the development of novel drug therapies for clinical strategies in PD.
Collapse
Affiliation(s)
- Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan, Hebei Province, China
| | - Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing, China
| | - Lin Chen
- Department of Neurosurgery, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
38
|
Neuroprotective Effects of Some Nutraceuticals against Manganese-Induced Parkinson's Disease in Rats: Possible Modulatory Effects on TLR4/NLRP3/NF-κB, GSK-3β, Nrf2/HO-1, and Apoptotic Pathways. Pharmaceuticals (Basel) 2022; 15:ph15121554. [PMID: 36559006 PMCID: PMC9785377 DOI: 10.3390/ph15121554] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting the substantia nigra where functions controlling body movement take place. Manganese (Mn) overexposure is linked to a neurologic syndrome resembling PD. Sesamol, thymol, wheat grass (WG), and coenzyme Q10 (CoQ10) are potent antioxidants, anti-inflammatory, and anti-apoptotic nutraceuticals. We investigated the potential protective effects of these nutraceuticals alone or in combinations against MnCl2-induced PD in rats. Seven groups of adult male Sprague Dawley rats were categorized as follows: group (I) was the control, while groups 2-7 received MnCl2 either alone (Group II) or in conjunction with oral doses of sesamol (Group III), thymol (Group IV), CoQ10 (Group V), WG (Group VI), or their combination (Group VII). All rats were subjected to four behavioral tests (open-field, swimming, Y-maze, and catalepsy tests). Biochemical changes in brain levels of monoamines, ACHE, BDNF, GSK-3β, GABA/glutamate, as well as oxidative stress, and apoptotic and neuroinflammatory biomarkers were evaluated, together with histopathological examinations of different brain regions. Mn increased catalepsy scores, while decreasing neuromuscular co-ordination, and locomotor and exploratory activity. It also impaired vigilance, spatial memory, and decision making. Most behavioral impairments induced by Mn were improved by sesamol, thymol, WG, or CoQ10, with prominent effect by sesamol and thymol. Notably, the combination group showed more pronounced improvements, which were confirmed by biochemical, molecular, as well as histopathological findings. Sesamol or thymol showed better protection against neuronal degeneration and some behavioral impairments induced by Mn than WG or CoQ10, partly via interplay between Nrf2/HO-1, TLR4/NLRP3/NF-κB, GSK-3β and Bax/Bcl2 pathways.
Collapse
|
39
|
Sevenich M, Honold D, Willuweit A, Kutzsche J, Mohrlüder J, Willbold D. Development of an α-synuclein fibril and oligomer specific tracer for diagnosis of Parkinson's disease, dementia with Lewy bodies and multiple system atrophy. Neurochem Int 2022; 161:105422. [PMID: 36252819 DOI: 10.1016/j.neuint.2022.105422] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/26/2022] [Accepted: 10/02/2022] [Indexed: 11/08/2022]
Abstract
The development of specific disease-associated PET tracers is one of the major challenges, the realization of which in neurodegenerative diseases would enable not only the efficiency of diagnosis but also support the development of disease-modifying therapeutics. Parkinson's disease (PD) is the most common neurodegenerative movement disorder and is characterized by neuronal fibrillary inclusions composed of aggregated α-synuclein (α-syn). However, these deposits are not only found in PD, but also in other related diseases such as multiple system atrophy (MSA) and dementia with Lewy bodies (DLB), which are grouped under the term synucleinopathies. In this study, we used NGS-guided phage display selection to identify short peptides that bind aggregated α-syn. By surface plasmon resonance (SPR)-based affinity screening, we identified the peptide SVLfib-5 that recognizes aggregated α-syn with high complex stability and sequence specificity. Further analysis SPR showed that SVLfib-5 is not only specific for aggregated α-syn, but in particular recognizes fibrillary and oligomeric structures. Moreover, fluorescence microscopy of human brain tissue sections from PD, MSA, and DLB patients with SVLfib-5 allowed specific recognition of α-syn and a clear discrimination between diseased and non-diseased samples. These findings provide the basis for the further development of an α-syn PET tracer for early diagnosis and monitoring of disease progression and therapy progress.
Collapse
Affiliation(s)
- Marc Sevenich
- Priavoid GmbH, Düsseldorf, Germany; Institute of Biological Information Processing (IBI-7), Forschungszsentrum Jülich, Jülich, Germany
| | - Dominik Honold
- Institute of Biological Information Processing (IBI-7), Forschungszsentrum Jülich, Jülich, Germany
| | - Antje Willuweit
- Priavoid GmbH, Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich, Jülich, Germany
| | - Janine Kutzsche
- Institute of Biological Information Processing (IBI-7), Forschungszsentrum Jülich, Jülich, Germany
| | - Jeannine Mohrlüder
- Institute of Biological Information Processing (IBI-7), Forschungszsentrum Jülich, Jülich, Germany
| | - Dieter Willbold
- Institute of Biological Information Processing (IBI-7), Forschungszsentrum Jülich, Jülich, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany; JuStruct, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
40
|
Prunell G, Olivera-Bravo S. A Focus on Astrocyte Contribution to Parkinson's Disease Etiology. Biomolecules 2022; 12:biom12121745. [PMID: 36551173 PMCID: PMC9775515 DOI: 10.3390/biom12121745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Parkinson's disease (PD) is an incurable neurodegenerative disease of high prevalence, characterized by the prominent death of dopaminergic neurons in the substantia nigra pars compacta, which produces dopamine deficiency, leading to classic motor symptoms. Although PD has traditionally been considered as a neuronal cell autonomous pathology, in which the damage of vulnerable neurons is responsible for the disease, growing evidence strongly suggests that astrocytes might have an active role in the neurodegeneration observed. In the present review, we discuss several studies evidencing astrocyte implications in PD, highlighting the consequences of both the loss of normal homeostatic functions and the gain in toxic functions for the wellbeing of dopaminergic neurons. The revised information provides significant evidence that allows astrocytes to be positioned as crucial players in PD etiology, a factor that needs to be taken into account when considering therapeutic targets for the treatment of the disease.
Collapse
Affiliation(s)
- Giselle Prunell
- Laboratorio de Neurodegeneración y Neuroprotección, Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo 11600, Uruguay
- Correspondence: (G.P.); (S.O.-B.); Tel.: +598-24871616 (ext. 121 or 123 or 171) (G.P. & S.O.-B.)
| | - Silvia Olivera-Bravo
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo 11600, Uruguay
- Correspondence: (G.P.); (S.O.-B.); Tel.: +598-24871616 (ext. 121 or 123 or 171) (G.P. & S.O.-B.)
| |
Collapse
|
41
|
Paik J. Targeting toxic forms of α-synuclein with immunotherapy could alter the progression of Parkinson’s disease. DRUGS & THERAPY PERSPECTIVES 2022. [DOI: 10.1007/s40267-022-00950-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Cai X, Chen Z, He C, Zhang P, Nie K, Qiu Y, Wang L, Wang L, Jing P, Zhang Y. Diffusion along perivascular spaces provides evidence interlinking compromised glymphatic function with aging in Parkinson's disease. CNS Neurosci Ther 2022; 29:111-121. [PMID: 36184792 PMCID: PMC9804035 DOI: 10.1111/cns.13984] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/12/2022] [Accepted: 09/20/2022] [Indexed: 02/06/2023] Open
Abstract
AIMS The aim of the study was to evaluate the glymphatic function and its related factors in patients with Parkinson's disease (PD) and patients with PD of different ages using the diffusion tensor image analysis along the perivascular space (DTI-ALPS) method. METHODS Medical records and imaging data of 93 patients with idiopathic PD and 42 age- and sex-matched healthy controls (HCs) were retrospectively reviewed and analyzed. The diffusivity along the perivascular spaces, projection fibers, and association fibers were calculated on diffusion tensor imaging (DTI) to acquire the analysis along the perivascular space (ALPS) index. RESULTS PD patients exhibited a reduced ALPS index compared with the HCs. Negative correlations between the ALPS index and clinical information including age, age at disease onset, Parkinson's disease sleep scale 2nd version (PDSS-2) scores, and history of diabetes mellitus were revealed in the PD group. Besides, a negative correlation between the ALPS index and the severity of motor symptoms was identified in the subgroup aged 65 and above, rather than in the younger ones. CONCLUSIONS The results demonstrate that reduced ALPS index, a potential noninvasive measure of compromised glymphatic activity, is involved in the pathophysiology of PD, especially in the aged ones and those with sleep disorders.
Collapse
Affiliation(s)
- Xin Cai
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina,The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouChina,Department of NeurologyShenzhen Samii Medical CenterShenzhenChina
| | - Zhenzhen Chen
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina,Department of Neurology, The Central Hospital of Wuhan, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Chentao He
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Piao Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Kun Nie
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Yihui Qiu
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Limin Wang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Lijuan Wang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Ping Jing
- Department of Neurology, The Central Hospital of Wuhan, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuhu Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina,The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
43
|
Toomey CE, Heywood WE, Evans JR, Lachica J, Pressey SN, Foti SC, Al Shahrani M, D’Sa K, Hargreaves IP, Heales S, Orford M, Troakes C, Attems J, Gelpi E, Palkovits M, Lashley T, Gentleman SM, Revesz T, Mills K, Gandhi S. Mitochondrial dysfunction is a key pathological driver of early stage Parkinson's. Acta Neuropathol Commun 2022; 10:134. [PMID: 36076304 PMCID: PMC9461181 DOI: 10.1186/s40478-022-01424-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The molecular drivers of early sporadic Parkinson's disease (PD) remain unclear, and the presence of widespread end stage pathology in late disease masks the distinction between primary or causal disease-specific events and late secondary consequences in stressed or dying cells. However, early and mid-stage Parkinson's brains (Braak stages 3 and 4) exhibit alpha-synuclein inclusions and neuronal loss along a regional gradient of severity, from unaffected-mild-moderate-severe. Here, we exploited this spatial pathological gradient to investigate the molecular drivers of sporadic PD. METHODS We combined high precision tissue sampling with unbiased large-scale profiling of protein expression across 9 brain regions in Braak stage 3 and 4 PD brains, and controls, and verified these results using targeted proteomic and functional analyses. RESULTS We demonstrate that the spatio-temporal pathology gradient in early-mid PD brains is mirrored by a biochemical gradient of a changing proteome. Importantly, we identify two key events that occur early in the disease, prior to the occurrence of alpha-synuclein inclusions and neuronal loss: (i) a metabolic switch in the utilisation of energy substrates and energy production in the brain, and (ii) perturbation of the mitochondrial redox state. These changes may contribute to the regional vulnerability of developing alpha-synuclein pathology. Later in the disease, mitochondrial function is affected more severely, whilst mitochondrial metabolism, fatty acid oxidation, and mitochondrial respiration are affected across all brain regions. CONCLUSIONS Our study provides an in-depth regional profile of the proteome at different stages of PD, and highlights that mitochondrial dysfunction is detectable prior to neuronal loss, and alpha-synuclein fibril deposition, suggesting that mitochondrial dysfunction is one of the key drivers of early disease.
Collapse
Affiliation(s)
- Christina E. Toomey
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
| | - Wendy E. Heywood
- Translational Mass Spectrometry Research Group, Genetic & Genomic Medicine, Institute of Child Health, UCL, London, UK
| | - James R. Evans
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
| | - Joanne Lachica
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Sarah N. Pressey
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Sandrine C. Foti
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Mesfer Al Shahrani
- National Hospital for Neurology and Neurosurgery & Neurometabolic Unit, UCL Great Ormond Street Institute of Child Health, London, UK
- College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Karishma D’Sa
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
| | - Iain P. Hargreaves
- National Hospital for Neurology and Neurosurgery & Neurometabolic Unit, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Simon Heales
- National Hospital for Neurology and Neurosurgery & Neurometabolic Unit, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Michael Orford
- National Hospital for Neurology and Neurosurgery & Neurometabolic Unit, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Claire Troakes
- London Neurodegenerative Diseases Brain Bank, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Johannes Attems
- Newcastle Brain Tissue Resource, Institute of Neuroscience and Newcastle University Institute for Ageing, Newcastle upon Tyne, UK
| | - Ellen Gelpi
- Neurological Tissue Bank, University of Barcelona, Barcelona, Spain
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Miklos Palkovits
- Human Brain Tissue Bank, Budapest, Semmelweis University, Budapest, Hungary
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | | | - Tamas Revesz
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Kevin Mills
- Translational Mass Spectrometry Research Group, Genetic & Genomic Medicine, Institute of Child Health, UCL, London, UK
| | - Sonia Gandhi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
| |
Collapse
|
44
|
Mysiris DS, Vavougios GD, Karamichali E, Papoutsopoulou S, Stavrou VT, Papayianni E, Boutlas S, Mavridis T, Foka P, Zarogiannis SG, Gourgoulianis K, Xiromerisiou G. Post-COVID-19 Parkinsonism and Parkinson's Disease Pathogenesis: The Exosomal Cargo Hypothesis. Int J Mol Sci 2022; 23:9739. [PMID: 36077138 PMCID: PMC9456372 DOI: 10.3390/ijms23179739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease after Alzheimer's disease, globally. Dopaminergic neuron degeneration in substantia nigra pars compacta and aggregation of misfolded alpha-synuclein are the PD hallmarks, accompanied by motor and non-motor symptoms. Several viruses have been linked to the appearance of a post-infection parkinsonian phenotype. Coronavirus disease 2019 (COVID-19), caused by emerging severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, has evolved from a novel pneumonia to a multifaceted syndrome with multiple clinical manifestations, among which neurological sequalae appear insidious and potentially long-lasting. Exosomes are extracellular nanovesicles bearing a complex cargo of active biomolecules and playing crucial roles in intercellular communication under pathophysiological conditions. Exosomes constitute a reliable route for misfolded protein transmission, contributing to PD pathogenesis and diagnosis. Herein, we summarize recent evidence suggesting that SARS-CoV-2 infection shares numerous clinical manifestations and inflammatory and molecular pathways with PD. We carry on hypothesizing that these similarities may be reflected in exosomal cargo modulated by the virus in correlation with disease severity. Travelling from the periphery to the brain, SARS-CoV-2-related exosomal cargo contains SARS-CoV-2 RNA, viral proteins, inflammatory mediators, and modified host proteins that could operate as promoters of neurodegenerative and neuroinflammatory cascades, potentially leading to a future parkinsonism and PD development.
Collapse
Affiliation(s)
| | - George D. Vavougios
- Department of Neurology, Faculty of Medicine, University of Cyprus, Lefkosia 1678, Cyprus
- Laboratory of Pulmonary Testing and Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Eirini Karamichali
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Stamatia Papoutsopoulou
- Department of Biochemistry and Biotechnology, Faculty of Life Sciences, University of Thessaly, Mezourlo, 41500 Larissa, Greece
| | - Vasileios T. Stavrou
- Laboratory of Pulmonary Testing and Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Eirini Papayianni
- Laboratory of Pulmonary Testing and Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Stylianos Boutlas
- Laboratory of Pulmonary Testing and Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Theodoros Mavridis
- 1st Neurology Department, Eginition Hospital, Medical School, National & Kapodistrian University of Athens, 11528 Athens, Greece
| | - Pelagia Foka
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Sotirios G. Zarogiannis
- Department of Physiology, Faculty of Medicine, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Konstantinos Gourgoulianis
- Laboratory of Pulmonary Testing and Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Georgia Xiromerisiou
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| |
Collapse
|
45
|
Berg A, Bech S, Aasly J, Farrer MJ, Skaalum Petersen M. Autonomic dysfunction in Parkinson's disease: Results from the Faroese Parkinson's disease cohort. Neurosci Lett 2022; 785:136789. [PMID: 35835395 DOI: 10.1016/j.neulet.2022.136789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 10/17/2022]
Abstract
The presence of autonomic symptoms are a common part of the symptomatology of Parkinsońs disease (PD), with the potential to impact the quality of life of patients. The aim of this study was to assess the frequency of autonomic symptoms among Faroese PD patients compared to a control group, using the Scales for Outcome in Parkinson's Disease - Autonomic (SCOPA-AUT), and to determine the relationship between autonomic and motor symptoms in PD patients using the Unified Parkinsońs Disease Rating Scale - Part III (UPDRS) and Hoehn and Yahr Scale (H&Y). The study included 54 PD patients and 190 control individuals which were unaffected relatives. The mean SCOPA-AUT scores were significantly higher for PD patients in gastrointestinal (OR = 1.62), urinary (OR = 1.38), cardiovascular (OR = 1.65), thermoregulatory (OR = 1.54) and sexual dysfunction (OR = 1.71) scores, as well as the total score (OR = 1.26). UPDRS scores were significant correlated with SCOPA-AUT scores (p = 0.015), while H&Y scores were not (p = 0.103). In conclusion, PD patients experience an increased frequency of autonomic symptoms compared with controls and the frequency is associated with the motor symptoms assessed with UPDRS. Our findings are consistent with similar studies and our current understanding of PD pathology.
Collapse
Affiliation(s)
- Aksel Berg
- Department of Occupational Medicine and Public Health, the Faroese Hospital System, Tórshavn, Faroe Islands.
| | - Sára Bech
- Department of Occupational Medicine and Public Health, the Faroese Hospital System, Tórshavn, Faroe Islands
| | - Jan Aasly
- Department of Neurology, St. Olavs University Hospital, Trondheim, Norway; Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Matthew J Farrer
- Norman Fixel Institute for Neurological Diseases, McKnight Brain Institute, University of Florida, Gainesville, USA
| | - Maria Skaalum Petersen
- Department of Occupational Medicine and Public Health, the Faroese Hospital System, Tórshavn, Faroe Islands; Center of Health Science, University of the Faroe Islands, Tórshavn, Faroe Islands
| |
Collapse
|
46
|
Gene-Based Therapeutics for Parkinson’s Disease. Biomedicines 2022; 10:biomedicines10081790. [PMID: 35892690 PMCID: PMC9331241 DOI: 10.3390/biomedicines10081790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022] Open
Abstract
Parkinson’s disease (PD) is a complex multifactorial disorder that is not yet fully surmised, and it is only when such a disease is tackled on multiple levels simultaneously that we should expect to see fruitful results. Gene therapy is a modern medical practice that theoretically and, so far, practically, has demonstrated its capability in joining the battle against PD and other complex disorders on most if not all fronts. This review discusses how gene therapy can efficiently replace current forms of therapy such as drugs, personalized medicine or invasive surgery. Furthermore, we discuss the importance of enhancing delivery techniques to increase the level of transduction and control of gene expression or tissue specificity. Importantly, the results of current trials establish the safety, efficacy and applicability of gene therapy for PD. Gene therapy’s variety of potential in interfering with PD’s pathology by improving basal ganglial circuitry, enhancing dopamine synthesis, delivering neuroprotection or preventing neurodegeneration may one day achieve symptomatic benefit, disease modification and eradication.
Collapse
|
47
|
Zhang F, Wu Z, Long F, Tan J, Gong N, Li X, Lin C. The Roles of ATP13A2 Gene Mutations Leading to Abnormal Aggregation of α-Synuclein in Parkinson’s Disease. Front Cell Neurosci 2022; 16:927682. [PMID: 35875356 PMCID: PMC9296842 DOI: 10.3389/fncel.2022.927682] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease. PARK9 (also known as ATP13A2) is recognized as one of the key genes that cause PD, and a mutation in this gene was first discovered in a rare case of PD in an adolescent. Lewy bodies (LBs) formed by abnormal aggregation of α-synuclein, which is encoded by the SNCA gene, are one of the pathological diagnostic criteria for PD. LBs are also recognized as one of the most important features of PD pathogenesis. In this article, we first summarize the types of mutations in the ATP13A2 gene and their effects on ATP13A2 mRNA and protein structure; then, we discuss lysosomal autophagy inhibition and the molecular mechanism of abnormal α-synuclein accumulation caused by decreased levels and dysfunction of the ATP13A2 protein in lysosomes. Finally, this article provides a new direction for future research on the pathogenesis and therapeutic targets for ATP13A2 gene-related PD from the perspective of ATP13A2 gene mutations and abnormal aggregation of α-synuclein.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhiwei Wu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Fei Long
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jieqiong Tan
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Key Laboratory of Molecular Precision Medicine of Hunan Province, Center for Medical Genetics, Institute of Molecular Precision Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Ni Gong
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiaorong Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Changwei Lin
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- *Correspondence: Changwei Lin, orcid.org/0000-0003-1676-0912
| |
Collapse
|
48
|
Tiwari D, Mittal N, Jha HC. Unraveling the links between neurodegeneration and Epstein-Barr virus-mediated cell cycle dysregulation. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100046. [PMID: 36685766 PMCID: PMC9846474 DOI: 10.1016/j.crneur.2022.100046] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 01/25/2023] Open
Abstract
The Epstein-Barr virus is a well-known cell cycle modulator. To establish successful infection in the host, EBV alters the cell cycle at multiple steps via antigens such as EBNAs, LMPs, and certain other EBV-encoded transcripts. Interestingly, several recent studies have indicated the possibility of EBV's neurotrophic potential. However, the effects and outcomes of EBV infection in the CNS are under-explored. Additionally, more and more epidemiological evidence implicates the cell-cycle dysregulation in neurodegeneration. Numerous hypotheses which describe the triggers that force post-mitotic neurons to re-enter the cell cycle are prevalent. Apart from the known genetic and epigenetic factors responsible, several reports have shown the association of microbial infections with neurodegenerative pathology. Although, studies implicating the herpesvirus family members in neurodegeneration exist, the involvement of Epstein-Barr virus (EBV), in particular, is under-evaluated. Interestingly, a few clinical studies have reported patients of AD or PD to be seropositive for EBV. Based on the findings mentioned above, in this review, we propose that EBV infection in neurons could drive it towards neurodegeneration through dysregulation of cell-cycle events and induction of apoptosis.
Collapse
Affiliation(s)
- Deeksha Tiwari
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Nitish Mittal
- Computational and Systems Biology, Biozentrum, University of Basel, Klingelbergstrasse 50-70, 4056, Basel, Switzerland,Corresponding author.
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India,Corresponding author.
| |
Collapse
|
49
|
Emdina A, Hermann P, Varges D, Nuhn S, Goebel S, Bunck T, Maass F, Schmitz M, Llorens F, Kruse N, Lingor P, Mollenhauer B, Zerr I. Baseline Cerebrospinal Fluid α-Synuclein in Parkinson's Disease Is Associated with Disease Progression and Cognitive Decline. Diagnostics (Basel) 2022; 12:diagnostics12051259. [PMID: 35626415 PMCID: PMC9140902 DOI: 10.3390/diagnostics12051259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 02/06/2023] Open
Abstract
Biomarkers are increasingly recognized as tools in the diagnosis and prognosis of neurodegenerative diseases. No fluid biomarker for Parkinson’s disease (PD) has been established to date, but α-synuclein, a major component of Lewy bodies in PD and dementia with Lewy bodies (DLB), has become a promising candidate. Here, we investigated CSF α-synuclein in patients with PD (n = 28), PDD (n = 8), and DLB (n = 5), applying an electrochemiluminescence immunoassay. Median values were non-significantly (p = 0.430) higher in patients with PDD and DLB (287 pg/mL) than in PD (236 pg/mL). A group of n = 36 primarily non-demented patients with PD and PDD was clinically followed for up to two years. A higher baseline α-synuclein was associated with increases in Hoehn and Yahr classifications (p = 0.019) and Beck Depression Inventory scores (p < 0.001) as well as worse performance in Trail Making Test A (p = 0.017), Trail Making Test B (p = 0.043), and the Boston Naming Test (p = 0.002) at follow-up. Surprisingly, higher levels were associated with a better performance in semantic verbal fluency tests (p = 0.046). In summary, CSF α-synuclein may be a potential prognostic marker for disease progression, affective symptoms, and executive cognitive function in PD. Larger-scaled studies have to validate these findings and the discordant results for single cognitive tests in this exploratory investigation.
Collapse
Affiliation(s)
- Anna Emdina
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
| | - Peter Hermann
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
- Correspondence: ; Tel.: +49-551-398-955
| | - Daniela Varges
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
| | - Sabine Nuhn
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
| | - Stefan Goebel
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
| | - Timothy Bunck
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
| | - Fabian Maass
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
| | - Matthias Schmitz
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
| | - Franc Llorens
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
- Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, 08908 Barcelona, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Niels Kruse
- Department of Neuropathology, University Medical Centre Göttingen, 37075 Göttingen, Germany;
| | - Paul Lingor
- Department of Neurology, Klinikum Rechts der Isar, Technical University of Munich, 80333 Munich, Germany;
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
- Paracelsus-Elena-Klinik, 34128 Kassel, Germany
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| |
Collapse
|
50
|
Convergent Molecular Pathways in Type 2 Diabetes Mellitus and Parkinson’s Disease: Insights into Mechanisms and Pathological Consequences. Mol Neurobiol 2022; 59:4466-4487. [DOI: 10.1007/s12035-022-02867-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
|