1
|
Stocchi F, Bravi D, Emmi A, Antonini A. Parkinson disease therapy: current strategies and future research priorities. Nat Rev Neurol 2024:10.1038/s41582-024-01034-x. [PMID: 39496848 DOI: 10.1038/s41582-024-01034-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/06/2024]
Abstract
Parkinson disease (PD) is the fastest growing neurological disorder globally and poses substantial management challenges owing to progressive disability, emergence of levodopa-resistant symptoms, and treatment-related complications. In this Review, we examine the current state of research into PD therapies and outline future priorities for advancing our understanding and treatment of the disease. We identify two main research priorities for the coming years: first, slowing the progression of the disease through the integration of sensitive biomarkers and targeted biological therapies, and second, enhancing existing symptomatic treatments, encompassing surgical and infusion therapies, with the goal of postponing complications and improving long-term patient management. The path towards disease modification is impeded by the multifaceted pathophysiology and diverse mechanisms underlying PD. Ongoing studies are directed at α-synuclein aggregation, complemented by efforts to address specific pathways associated with the less common genetic forms of the disease. The success of these efforts relies on establishing robust end points, incorporating technology, and identifying reliable biomarkers for early diagnosis and continuous monitoring of disease progression. In the context of symptomatic treatment, the focus should shift towards refining existing approaches and fostering the development of novel therapeutic strategies that target levodopa-resistant symptoms and clinical manifestations that substantially impair quality of life.
Collapse
Affiliation(s)
- Fabrizio Stocchi
- Department of Neurology, University San Raffaele, Rome, Italy.
- Deptartment of Neurology, Institute for Research and Medical Care, IRCCS San Raffaele, Rome, Italy.
| | - Daniele Bravi
- Deptartment of Neurology, Institute for Research and Medical Care, IRCCS San Raffaele, Rome, Italy
| | - Aron Emmi
- Center for Neurodegenerative Diseases (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy
| | - Angelo Antonini
- Center for Neurodegenerative Diseases (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases (ERN-RND), Department of Neuroscience, Padua Neuroscience Center (PNC), University of Padova, Padova, Italy
| |
Collapse
|
2
|
Pang H, Li X, Yu Z, Yu H, Bu S, Wang J, Zhao M, Liu Y, Jiang Y, Fan G. Disentangling gray matter atrophy and its neurotransmitter architecture in drug-naïve Parkinson's disease: an atlas-based correlation analysis. Cereb Cortex 2024; 34:bhae420. [PMID: 39420471 DOI: 10.1093/cercor/bhae420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/19/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Parkinson's disease is characterized by multiple neurotransmitter systems beyond the traditional dopaminergic pathway, yet their influence on volumetric alterations is not well comprehended. We included 72 de novo, drug-naïve Parkinson's disease patients and 61 healthy controls. Voxel-wise gray matter volume was evaluated between Parkinson's disease and healthy controls, as well as among Parkinson's disease subgroups categorized by clinical manifestations. The Juspace toolbox was utilized to explore the spatial relationship between gray matter atrophy and neurotransmitter distribution. Parkinson's disease patients exhibited widespread GM atrophy in the cerebral and cerebellar regions, with spatial correlations with various neurotransmitter receptors (FDR-P < 0.05). Cognitively impaired Parkinson's disease patients showed gray matter atrophy in the left middle temporal atrophy, which is associated with serotoninergic, dopaminergic, cholinergic, and glutamatergic receptors (FDR-P < 0.05). Postural and gait disorder patients showed atrophy in the right precuneus, which is correlated with serotoninergic, dopaminergic, gamma-aminobutyric acid, and opioid receptors (FDR-P < 0.05). Patients with anxiety showed atrophy in the right superior orbital frontal region; those with depression showed atrophy in the left lingual and right inferior occipital regions. Both conditions were linked to serotoninergic and dopaminergic receptors (FDR-P < 0.05). Parkinson's disease patients exhibited regional gray matter atrophy with a significant distribution of specific neurotransmitters, which might provide insights into the underlying pathophysiology of clinical manifestations and develop targeted intervention strategies.
Collapse
Affiliation(s)
- Huize Pang
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | - Xiaolu Li
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | - Ziyang Yu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, 38 Zheda Road, Xihu District, Hangzhou, Zhejiang Province, 310027, China
| | - Hongmei Yu
- Department of Neurology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | - Shuting Bu
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | - Juzhou Wang
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | - Mengwan Zhao
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | - Yu Liu
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | - Yueluan Jiang
- MR Research Collaboration, Siemens Healthineers, 7 Wangjing Zhonghuan South Road, Chaoyang District, Beijing, 100102, China
| | - Guoguang Fan
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, China
| |
Collapse
|
3
|
Kataoka H, Sugie K. Early-morning OFF in Parkinson's disease: A systematic literature review and current therapeutics. Clin Neurol Neurosurg 2024; 245:108493. [PMID: 39178635 DOI: 10.1016/j.clineuro.2024.108493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 08/26/2024]
Abstract
OBJECTIVE Early morning OFF (EMO) is one of the first motor complications to manifest and frequently signals the onset of additional motor complications in Parkinson's Disease (PD). Although EOM are frequently observed in patients with PD and many caregivers must help with their motor inability, the treatment is still unsatisfactory. The majority of research that has been conducted on the wearing-off state of patients with PD has focused on daytime symptoms; evening and early morning symptoms have received much less attention.This study aimed to review the clinical perspectives of current therapies for EMO. MATERIALS AND METHODS We reviewed the searching relevant publications from the key words such as morning off. A total of 456 publications were identified and we reviewed 21 clinical trials as well as other relevant clinical studies and reviews. RESULTS EMO are frequently disregarded or undervalued, which could have resulted in unintentional risks, inadequate management, and an increased burden of care. Oral medication is still the primary medical intervention for EMO. However, new developments in non-oral medications and advanced formulations aim to reduce the delay in experiencing the benefits of oral levodopa due to gastrointestinal problems. CONCLUSIONS The current therapies for EMO could be helpful in selecting a limited practical treatment. Advancements in non-oral medications and oral formulations hold promise for improving efficacy in EMO.
Collapse
Affiliation(s)
- Hiroshi Kataoka
- Department of Neurology, Nara Medical University, Nara, Japan.
| | - Kazuma Sugie
- Department of Neurology, Nara Medical University, Nara, Japan
| |
Collapse
|
4
|
Goldstein I, Chidambaram N, Dobs A, King S, Miner M, Ramasamy R, Khera FA, Khera M. Newer formulations of oral testosterone undecanoate: development and liver side effects. Sex Med Rev 2024:qeae062. [PMID: 39291780 DOI: 10.1093/sxmrev/qeae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/27/2024] [Indexed: 09/19/2024]
Abstract
INTRODUCTION Testosterone deficiency is a clinical disorder due to either failure of the testes to produce testosterone or failure of the hypothalamus or pituitary to produce sufficient gonadotropins. Previous formulations of oral testosterone therapy, particularly methyltestosterone, have been associated with adverse liver effects. Many different routes of testosterone delivery have been developed, each with their own administrative benefits and challenges. Newer formulations of oral testosterone undecanoate (TU) provide a convenient administration option, although their use has been limited by hepatotoxicity concerns based on older methyltestosterone data, and prescribing physicians may still be concerned about adverse liver effects. OBJECTIVES In this review, we discuss the history of oral testosterone development, clarify the mechanism of action of oral TU, and describe the relevant liver safety findings. METHODS Relevant literature was allocated to present a review on the history of oral TU development and the mechanism of action of oral TU. We pooled data from individual studies of oral TU products to present a safety summary. RESULTS Overall, safety results from studies of the newer formulations of oral TU showed that increased liver function test values are not generally associated with oral TU formulations and that no clinically significant liver toxicities were noted in clinical trials of oral TU. CONCLUSION Continued research into the safety of oral TU will contribute to a better understanding of the potential risks in patients receiving this therapy, an outcome that highlights the importance of providing patient education and reassurance regarding oral TU safety.
Collapse
Affiliation(s)
- Irwin Goldstein
- University of California at San Diego, San Diego, CA 92120, United States
| | | | - Adrian Dobs
- The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Shelby King
- Halozyme, San Diego, CA 92130, United States
| | - Martin Miner
- Men's Health Center, Miriam Hospital, Providence, RI 02906, United States
| | - Ranjith Ramasamy
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Faysal A Khera
- Department of Urology, University of California Irvine, Irvine, CA 92660, United States
| | - Mohit Khera
- Baylor College of Medicine, Houston, TX 77030, United States
| |
Collapse
|
5
|
Yeni Y, Genc S, Ertugrul MS, Nadaroglu H, Gezer A, Mendil AS, Hacımuftuoglu A. Neuroprotective effects of L-Dopa-modified zinc oxide nanoparticles on the rat model of 6-OHDA-ınduced Parkinson's disease. Sci Rep 2024; 14:19077. [PMID: 39154054 PMCID: PMC11330516 DOI: 10.1038/s41598-024-69324-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024] Open
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative case. As the disease progresses, the response time to doses of levodopa (L-Dopa) becomes shorter and the effects of the drug are severely limited by some undesirable side effects such as the 'on-off' phenomenon. In several diseases, including Parkinson's, nanoparticles can deliver antioxidant compounds that reduce oxidative stress. This study evaluates and compares the neuroprotective effects of L-Dopa-modified zinc nanoparticles (ZnNPs) in the 6-hydroxydopamine (6-OHDA)-induced PD rat model. For this purpose, the synthesis of NPs was carried out. Scanning electron microscopy, X-ray diffraction and Fourier transform infrared spectrophotometer were used for characterization. The rats were randomized into 9 experimental groups: control, lesion group (6-OHDA), 6-OHDA + 5 mg/kg L-Dopa, 6-OHDA + 10 mg/kg L-Dopa, 6-OHDA + 20 mg/kg L-Dopa, 6-OHDA + 20 mg/kg ZnNPs, 6-OHDA + 40 mg/kg ZnNPs, 6-OHDA + 30 mg/kg ZnNPs + L-Dopa, and 6-OHDA + 60 mg/kg ZnNPs + L-Dopa. Behavioral tests were performed on all groups 14 days after treatment. Phosphatase and tensin homolog, Excitatory amino acid transporter 1/2, and Glutamine synthetase gene analyses were performed on brain samples taken immediately after the tests. In addition, histological and immunohistochemical methods were used to determine the general structure and properties of the tissues. We obtained important findings that L-Dopa-modified ZnNPs increased the activity of glutamate transporters. Our experiment showed that glutamate increases neuronal cell vitality and improves behavioral performance. Therefore, L-Dopa-modified ZnNPs can be used to prevent neurotoxicity. According to what we found, results show that L-Dopa-modified ZnNPs will lend to the effective avoidance and therapy of PD.
Collapse
Affiliation(s)
- Yesim Yeni
- Department of Medical Pharmacology, Faculty of Medicine, Malatya Turgut Ozal University, 44210, Battalgazi, Malatya, Turkey.
| | - Sıdıka Genc
- Department of Medical Pharmacology, Faculty of Medicine, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Muhammed Sait Ertugrul
- Department of Food, Feed and Medicine, Hemp Research Institute, Ondokuz Mayıs University, Samsun, Turkey
| | - Hayrunnisa Nadaroglu
- Department of Food Technology, Vocational College of Technical Science, Ataturk University, 25240, Erzurum, Turkey
| | - Arzu Gezer
- Department of Health Care Services, Vocational School of Health Services, Ataturk University, 25240, Erzurum, Turkey
| | - Ali Sefa Mendil
- Department of Pathology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Ahmet Hacımuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
6
|
Ferreira AFF, Ulrich H, Feng ZP, Sun HS, Britto LR. Neurodegeneration and glial morphological changes are both prevented by TRPM2 inhibition during the progression of a Parkinson's disease mouse model. Exp Neurol 2024; 377:114780. [PMID: 38649091 DOI: 10.1016/j.expneurol.2024.114780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by dopaminergic neuron death and neuroinflammation. Emerging evidence points to the involvement of the transient receptor potential melastatin 2 (TRPM2) channel in neuron death and glial activation in several neurodegenerative diseases. However, the involvement of TRPM2 in PD and specifically its relation to the neuroinflammation aspect of the disease remains poorly understood. Here, we hypothesized that AG490, a TRPM2 inhibitor, can be used as a treatment in a mouse model of PD. Mice underwent stereotaxic surgery for 6-hydroxydopamine (6-OHDA) administration in the right striatum. Motor behavioral tests (apomorphine, cylinder, and rotarod) were performed on day 3 post-injection to confirm the PD model induction. AG490 was then daily injected i.p. between days 3 to 6 after surgery. On day 6, motor behavior was assessed again. Substantia nigra (SNc) and striatum (CPu) were collected for immunohistochemistry, immunoblotting, and RT-qPCR analysis on day 7. Our results revealed that AG490 post-treatment reduced motor behavior impairment and nigrostriatal neurodegeneration. In addition, the compound prevented TRPM2 upregulation and changes of the Akt/GSK-3β/caspase-3 signaling pathway. The TRPM2 inhibition also avoids the glial morphology changes observed in the PD group. Remarkably, the morphometrical analysis revealed that the ameboid-shaped microglia, found in 6-OHDA-injected animals, were no longer present in the AG490-treated group. These results indicate that AG490 treatment can reduce dopaminergic neuronal death and suppress neuroinflammation in a PD mouse model. Inhibition of TRPM2 by AG490 could then represent a potential therapeutical strategy to be evaluated for PD treatment.
Collapse
Affiliation(s)
- Ana Flavia F Ferreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Zhong-Ping Feng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Hong-Shuo Sun
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Luiz Roberto Britto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Azzahrani M, Algasim A. Ear Dyskinesia in the Absence of Neuroleptics: A Case Report. Cureus 2024; 16:e63637. [PMID: 39092359 PMCID: PMC11293891 DOI: 10.7759/cureus.63637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Ear dyskinesia, also known as "moving ear syndrome," is a rare movement disorder characterized by involuntary, rhythmic, or semi-rhythmic contractions of the external ear muscles. The condition is not well-documented in the medical literature, with only a few case reports available. We present the case of a 37-year-old teacher from Saudi Arabia who developed a history of sudden, progressive involuntary movement of the posterior head region, provoking movement of the external ears, over the course of one year. The movements were non-rhythmical, more prominent on the right side, and associated with occasional involvement of the face and anterior neck muscles. The patient had no history of neuroleptic use or other relevant medical conditions. Examination confirmed the presence of palpable muscle contractions originating mainly from the posterior region, with the movements not synchronized across the two sides. Investigations, including blood tests and brain MRI, did not reveal any underlying pathology. A diagnosis of ear dyskinesia was made, and botulinum toxin treatment was recommended; however, the treatment showed no results, and then the patient was subsequently lost to follow-up. This case adds to the limited literature on the rare phenomenon of ear dyskinesia, highlighting the clinical presentation and the challenges in the management of this unusual movement disorder. Further research is needed to better understand the underlying mechanisms and optimal treatment approaches for this condition.
Collapse
Affiliation(s)
| | - Abeer Algasim
- Family Medicine, Rosedale Medical Center, Toronto, CAN
| |
Collapse
|
8
|
Correa A, Ponzi A, Calderón VM, Migliore R. Pathological cell assembly dynamics in a striatal MSN network model. Front Comput Neurosci 2024; 18:1410335. [PMID: 38903730 PMCID: PMC11188713 DOI: 10.3389/fncom.2024.1410335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
Under normal conditions the principal cells of the striatum, medium spiny neurons (MSNs), show structured cell assembly activity patterns which alternate sequentially over exceedingly long timescales of many minutes. It is important to understand this activity since it is characteristically disrupted in multiple pathologies, such as Parkinson's disease and dyskinesia, and thought to be caused by alterations in the MSN to MSN lateral inhibitory connections and in the strength and distribution of cortical excitation to MSNs. To understand how these long timescales arise we extended a previous network model of MSN cells to include synapses with short-term plasticity, with parameters taken from a recent detailed striatal connectome study. We first confirmed the presence of sequentially switching cell clusters using the non-linear dimensionality reduction technique, Uniform Manifold Approximation and Projection (UMAP). We found that the network could generate non-stationary activity patterns varying extremely slowly on the order of minutes under biologically realistic conditions. Next we used Simulation Based Inference (SBI) to train a deep net to map features of the MSN network generated cell assembly activity to MSN network parameters. We used the trained SBI model to estimate MSN network parameters from ex-vivo brain slice calcium imaging data. We found that best fit network parameters were very close to their physiologically observed values. On the other hand network parameters estimated from Parkinsonian, decorticated and dyskinetic ex-vivo slice preparations were different. Our work may provide a pipeline for diagnosis of basal ganglia pathology from spiking data as well as for the design pharmacological treatments.
Collapse
Affiliation(s)
- Astrid Correa
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Adam Ponzi
- Institute of Biophysics, National Research Council, Palermo, Italy
- Center for Human Nature, Artificial Intelligence, and Neuroscience, Hokkaido University, Sapporo, Japan
| | - Vladimir M. Calderón
- Department of Developmental Neurobiology and Neurophysiology, Neurobiology Institute, National Autonomous University of Mexico, Querétaro, Mexico
| | - Rosanna Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy
| |
Collapse
|
9
|
Wegman E, Wosiski-Kuhn M, Luo Y. The dual role of striatal interneurons: circuit modulation and trophic support for the basal ganglia. Neural Regen Res 2024; 19:1277-1283. [PMID: 37905876 PMCID: PMC11467944 DOI: 10.4103/1673-5374.382987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/26/2023] [Accepted: 07/30/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT Striatal interneurons play a key role in modulating striatal-dependent behaviors, including motor activity and reward and emotional processing. Interneurons not only provide modulation to the basal ganglia circuitry under homeostasis but are also involved in changes to plasticity and adaptation during disease conditions such as Parkinson's or Huntington's disease. This review aims to summarize recent findings regarding the role of striatal cholinergic and GABAergic interneurons in providing circuit modulation to the basal ganglia in both homeostatic and disease conditions. In addition to direct circuit modulation, striatal interneurons have also been shown to provide trophic support to maintain neuron populations in adulthood. We discuss this interesting and novel role of striatal interneurons, with a focus on the maintenance of adult dopaminergic neurons from interneuron-derived sonic-hedgehog.
Collapse
Affiliation(s)
- Elliot Wegman
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA
| | - Marlena Wosiski-Kuhn
- Department of Emergency Medicine at the School of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Yu Luo
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
10
|
Sringean J, Udomsirithamrong O, Bhidayasiri R. Too little or too much nocturnal movements in Parkinson's disease: A practical guide to managing the unseen. Clin Park Relat Disord 2024; 10:100258. [PMID: 38845753 PMCID: PMC11153921 DOI: 10.1016/j.prdoa.2024.100258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
Nocturnal and sleep-related motor disorders in people with Parkinson's disease (PD) have a wide spectrum of manifestations and present a complex clinical picture. Problems can arise due to impaired movement ability (hypokinesias), e.g. nocturnal hypokinesia or early-morning akinesia, or to excessive movement (hyperkinesias), e.g. end-of-the-day dyskinesia, parasomnias, periodic limb movement during sleep and restless legs syndrome. These disorders can have a significant negative impact on the sleep, daytime functional ability, and overall quality of life of individuals with PD and their carers. The debilitating motor issues are often accompanied by a combination of non-motor symptoms, including pain and cramping, which add to the overall burden. Importantly, nocturnal motor disorders encompass a broader timeline than just the period of sleep, often starting in the evening, as well as occurring throughout the night and on awakening, and are not just limited to problems of insomnia or sleep fragmentation. Diagnosis can be challenging as, in many cases, the 'gold standard' assessment method is video polysomnography, which may not be available in all settings. Various validated questionnaires are available to support evaluation, and alternative approaches, using wearable sensors and digital technology, are now being developed to facilitate early diagnosis and monitoring. This review sets out the parameters of what can be considered normal nocturnal movement and describes the clinical manifestations, usual clinical or objective assessment methods, and evidence for optimal management strategies for the common nocturnal motor disorders that neurologists will encounter in people with PD in their clinical practice.
Collapse
Affiliation(s)
- Jirada Sringean
- Chulalongkorn Centre of Excellence for Parkinson’s Disease & Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
| | - Ornanong Udomsirithamrong
- Chulalongkorn Centre of Excellence for Parkinson’s Disease & Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
| | - Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson’s Disease & Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok 10330, Thailand
| |
Collapse
|
11
|
Hislop J, Margolesky J, Shpiner DS. Sublingual apomorphine in treatment of Parkinson's disease: a review. Int J Neurosci 2024; 134:474-480. [PMID: 35986574 DOI: 10.1080/00207454.2022.2115908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/15/2022] [Accepted: 07/29/2022] [Indexed: 10/15/2022]
Abstract
PURPOSE A majority of advanced Parkinson's disease (PD) patients on oral levodopa experience motor fluctuations, including sudden OFF and delayed ON periods. Fast-acting rescue medications are a vital part of the clinician's armamentarium in the treatment of motor fluctuations. Sublingual apomorphine is the first sublingual rescue medication on the market for the treatment of OFF times in PD.Materials and Methods: Here, we review the development and pharmacology of apomorphine in the treatment of PD as well as the safety and efficacy of sublingual apomorphine established in clinical trials. Finally, we compare sublingual apomorphine to the other rescue medications available and provide our opinion on the use of sublingual apomorphine in clinical practice.Results: Clinical trials have demonstrated that sublingual apomorphine is a safe and effective option in the treatment of motor fluctuations in PD. In a Phase II trial, 100% of patients who achieved a full ON response did so within 30 min and 40% did so within 15 min. The mean duration of effect was 50 min. In a Phase III trial, 77.3% of patients achieved a full ON response. Side effects such as nausea, dizziness and somnolence were common but were generally mild. No patients experienced worsening dyskinesia.Conclusions: Sublingual apomorphine will provide patients with motor fluctuations due to advanced PD another safe and effective option for the treatment of OFF times.
Collapse
Affiliation(s)
- Jennifer Hislop
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jason Margolesky
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Danielle S Shpiner
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
12
|
Huang YT, Chen YW, Lin TY, Chen JC. Suppression of presynaptic corticostriatal glutamate activity attenuates L-dopa-induced dyskinesia in 6-OHDA-lesioned Parkinson's disease mice. Neurobiol Dis 2024; 193:106452. [PMID: 38401650 DOI: 10.1016/j.nbd.2024.106452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024] Open
Abstract
A common adverse effect of Parkinson's disease (PD) treatment is L-dopa-induced dyskinesia (LID). This condition results from both dopamine (DA)-dependent and DA-independent mechanisms, as glutamate inputs from corticostriatal projection neurons impact DA-responsive medium spiny neurons in the striatum to cause the dyskinetic behaviors. In this study, we explored whether suppression of presynaptic corticostriatal glutamate inputs might affect the behavioral and biochemical outcomes associated with LID. We first established an animal model in which 6-hydroxydopamine (6-OHDA)-lesioned mice were treated daily with L-dopa (10 mg/kg, i.p.) for 2 weeks; these mice developed stereotypical abnormal involuntary movements (AIMs). When the mice were pretreated with the NMDA antagonist, amantadine, we observed suppression of AIMs and reductions of phosphorylated ERK1/2 and NR2B in the striatum. We then took an optogenetic approach to manipulate glutamatergic activity. Slc17a6 (vGluT2)-Cre mice were injected with pAAV5-Ef1a-DIO-eNpHR3.0-mCherry and received optic fiber implants in either the M1 motor cortex or dorsolateral striatum. Optogenetic inactivation at either optic fiber implant location could successfully reduce the intensity of AIMs after 6-OHDA lesioning and L-dopa treatment. Both optical manipulation strategies also suppressed phospho-ERK1/2 and phospho-NR2B signals in the striatum. Finally, we performed intrastriatal injections of LDN 212320 in the dyskenesic mice to enhance expression of glutamate uptake transporter GLT-1. Sixteen hours after the LDN 212320 treatment, L-dopa-induced AIMs were reduced along with the levels of striatal phospho-ERK1/2 and phospho-NR2B. Together, our results affirm a critical role of corticostriatal glutamate neurons in LID and strongly suggest that diminishing synaptic glutamate, either by suppression of neuronal activity or by upregulation of GLT-1, could be an effective approach for managing LID.
Collapse
Affiliation(s)
- Yu-Ting Huang
- Graduate Institute of Biomedical Sciences, School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Ya-Wen Chen
- Graduate Institute of Biomedical Sciences, School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Tze-Yen Lin
- Department and Graduate Institute of Physiology, National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Jin-Chung Chen
- Graduate Institute of Biomedical Sciences, School of Medicine, Chang-Gung University, Taoyuan, Taiwan; Department of Physiology and Pharmacology, Healthy Ageing Research Center, Chang-Gung University, Taiwan; Neuroscience Research Center and Department of Psychiatry, Chang-Gung Memorial Hospitall, Linkou, Taiwan.
| |
Collapse
|
13
|
Aquino CHD, Moscovich M, Marinho MM, Barcelos LB, Felício AC, Halverson M, Hamani C, Ferraz HB, Munhoz RP. Fundamentals of deep brain stimulation for Parkinson's disease in clinical practice: part 1. ARQUIVOS DE NEURO-PSIQUIATRIA 2024; 82:1-9. [PMID: 38653485 PMCID: PMC11039067 DOI: 10.1055/s-0044-1786026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 02/22/2024] [Indexed: 04/25/2024]
Abstract
Deep brain stimulation (DBS) is recognized as an established therapy for Parkinson's disease (PD) and other movement disorders in the light of the developments seen over the past three decades. Long-term efficacy is established for PD with documented improvement in the cardinal motor symptoms of PD and levodopa-induced complications, such as motor fluctuations and dyskinesias. Timing of patient selection is crucial to obtain optimal benefits from DBS therapy, before PD complications become irreversible. The objective of this first part review is to examine the fundamental concepts of DBS for PD in clinical practice, discussing the historical aspects, patient selection, potential effects of DBS on motor and non-motor symptoms, and the practical management of patients after surgery.
Collapse
Affiliation(s)
- Camila Henriques de Aquino
- University of Calgary, Cumming School of Medicine, Department of Clinical Neurosciences, Calgary, AB, Canada.
- University of Calgary, Hotchkiss Brain Institute, Calgary, AB, Canada.
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil.
| | - Mariana Moscovich
- Christian-Albrechts University, Department of Neurology, Kiel, Germany.
| | - Murilo Martinez Marinho
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil.
| | - Lorena Broseghini Barcelos
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil.
| | | | - Matthew Halverson
- University of Utah, Department of Neurology, Salt Lake City, Utah, United States.
| | - Clement Hamani
- University of Toronto, Sunnybrook Hospital, Toronto, ON, Canada.
| | - Henrique Ballalai Ferraz
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil.
| | | |
Collapse
|
14
|
Gupta HV, Lenka A, Dhamija RK, Fasano A. A video-atlas of levodopa-induced dyskinesia in Parkinson's disease: terminology matters. Neurol Sci 2024; 45:1389-1397. [PMID: 37987930 DOI: 10.1007/s10072-023-07209-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Dyskinesia is a common complication of long-term levodopa therapy in patients with Parkinson's disease (PD), which often worsens the quality of life. It is usually dose-dependent and emerges possibly due to pulsatile stimulation of dopamine receptors. Delineating the pattern of dyskinesia is crucial for determining the most effective therapeutic approach, a task that often presents challenges for numerous neurologists. This article comprehensively describes various patterns of dyskinesia in PD patients and features video demonstration of some of the common forms of dyskinesia. We have used a real case scenario as an example to lead the discussion on the phenomenology, distinguishing features, and management of various types of dyskinesia. A comprehensive literature search was conducted in PubMed using "dyskinesia" as a keyword. The prototype case with videos highlights the differentiating features of dyskinesia along with the treatment strategies. A wide range of descriptive rubrics have been used for certain dyskinesia which are described in detail in this article. The newer types of dyskinesia associated with continuous dopaminergic stimulation in patients with advanced PD and their implications have been described. As there are distinct ways of managing various types of dyskinesia, understanding the phenomenology and chronology of dyskinesia is vital for the optimal management of dyskinetic PD patients. We suggest that dyskinesia should be classified broadly into peak-dose dyskinesia (PDD), biphasic dyskinesia (BD), and OFF-period dystonia. The occurrence of low-dose dyskinesia and complex dyskinesia of continuous dopaminergic treatments should be known to specialists and will require additional studies.
Collapse
Affiliation(s)
- Harsh V Gupta
- Department of Neurology, Memorial Healthcare System, Hollywood, FL, USA.
| | - Abhishek Lenka
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Rajinder K Dhamija
- Department of Neurology, Institute of Human Behaviour and Allied Sciences, New Delhi, India
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, ON, Canada
- Division of Neurology, University of Toronto, Toronto, ON, Canada
- Krembil Brain Institute, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Canada
| |
Collapse
|
15
|
Zheng YY, Xu H, Wang YS. Progress in direct reprogramming of dopaminergic cell replacement therapy. Neurol Sci 2024; 45:873-881. [PMID: 37945931 DOI: 10.1007/s10072-023-07175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Parkinson's disease (PD) is a gradual neurodegenerative disease. While drug therapy and surgical treatments have been the primary means of addressing PD, they do not offer a cure, and the risks associated with surgical treatment are high. Recent advances in cell reprogramming have given rise to new prospects for the treatment of Parkinson's disease (PD), with induced pluripotent stem cells (iPSCs), induced dopamine neurons (iDNs), and induced neural stem cells (iNSCs) being created. These cells can potentially be used in the treatment of Parkinson's disease. On the other hand, this article emphasizes the limits of iPSCs and iNSCs in the context of Parkinson's disease treatment, as well as approaches for direct reprogramming of somatic cells into iDNs. The paper will examine the benefits and drawbacks of directly converting somatic cells into iDNs.
Collapse
Affiliation(s)
- Yuan Yuan Zheng
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Hui Xu
- Human Resources Department, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Yue Si Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China.
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, 264003, Shandong, China.
- Yantai Key Laboratory of Stem Cell and Regenerative Medicine, Binzhou Medical University, Yantai, 264003, Shandong, China.
| |
Collapse
|
16
|
Liu Z, Lin S, Zhou J, Wang X, Wang Z, Yang Y, Ma H, Chen Z, Ren K, Wu L, Zhuang H, Ling Y, Feng T. Machine-learning model for the prediction of acute orthostatic hypotension after levodopa administration. CNS Neurosci Ther 2024; 30:e14575. [PMID: 38467597 PMCID: PMC10927600 DOI: 10.1111/cns.14575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/11/2023] [Accepted: 12/06/2023] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Levodopa could induce orthostatic hypotension (OH) in Parkinson's disease (PD) patients. Accurate prediction of acute OH post levodopa (AOHPL) is important for rational drug use in PD patients. Here, we develop and validate a prediction model of AOHPL to facilitate physicians in identifying patients at higher probability of developing AOHPL. METHODS The study involved 497 PD inpatients who underwent a levodopa challenge test (LCT) and the supine-to-standing test (STS) four times during LCT. Patients were divided into two groups based on whether OH occurred during levodopa effectiveness (AOHPL) or not (non-AOHPL). The dataset was randomly split into training (80%) and independent test data (20%). Several models were trained and compared for discrimination between AOHPL and non-AOHPL. Final model was evaluated on independent test data. Shapley additive explanations (SHAP) values were employed to reveal how variables explain specific predictions for given observations in the independent test data. RESULTS We included 180 PD patients without AOHPL and 194 PD patients with AOHPL to develop and validate predictive models. Random Forest was selected as our final model as its leave-one-out cross validation performance [AUC_ROC 0.776, accuracy 73.6%, sensitivity 71.6%, specificity 75.7%] outperformed other models. The most crucial features in this predictive model were the maximal SBP drop and DBP drop of STS before medication (ΔSBP/ΔDBP). We achieved a prediction accuracy of 72% on independent test data. ΔSBP, ΔDBP, and standing mean artery pressure were the top three variables that contributed most to the predictions across all individual observations in the independent test data. CONCLUSIONS The validated classifier could serve as a valuable tool for clinicians, offering the probability of a patient developing AOHPL at an early stage. This supports clinical decision-making, potentially enhancing the quality of life for PD patients.
Collapse
Affiliation(s)
- Zhu Liu
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Shinuan Lin
- GYENNO SCIENCE CO., LTD.ShenzhenChina
- HUST – GYENNO CNS Intelligent Digital Medicine Technology CenterWuhanChina
| | - Junhong Zhou
- Hinda and Arthur Marcus Institute for Aging ResearchHebrew SeniorLifeRoslindaleMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Xuemei Wang
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Zhan Wang
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yaqin Yang
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Huizi Ma
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Zhonglue Chen
- GYENNO SCIENCE CO., LTD.ShenzhenChina
- HUST – GYENNO CNS Intelligent Digital Medicine Technology CenterWuhanChina
| | - Kang Ren
- GYENNO SCIENCE CO., LTD.ShenzhenChina
- HUST – GYENNO CNS Intelligent Digital Medicine Technology CenterWuhanChina
| | - Lingyu Wu
- GYENNO SCIENCE CO., LTD.ShenzhenChina
- HUST – GYENNO CNS Intelligent Digital Medicine Technology CenterWuhanChina
| | - Haimei Zhuang
- GYENNO SCIENCE CO., LTD.ShenzhenChina
- HUST – GYENNO CNS Intelligent Digital Medicine Technology CenterWuhanChina
| | - Yun Ling
- GYENNO SCIENCE CO., LTD.ShenzhenChina
- HUST – GYENNO CNS Intelligent Digital Medicine Technology CenterWuhanChina
| | - Tao Feng
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| |
Collapse
|
17
|
Fung VSC, Aldred J, Arroyo MP, Bergquist F, Boon AJW, Bouchard M, Bray S, Dhanani S, Facheris MF, Fisseha N, Freire-Alvarez E, Hauser RA, Jeong A, Jia J, Kukreja P, Soileau MJ, Spiegel AM, Talapala S, Tarakad A, Urrea-Mendoza E, Zamudio J, Pahwa R. Continuous subcutaneous foslevodopa/foscarbidopa infusion for the treatment of motor fluctuations in Parkinson's disease: Considerations for initiation and maintenance. Clin Park Relat Disord 2024; 10:100239. [PMID: 38419617 PMCID: PMC10900117 DOI: 10.1016/j.prdoa.2024.100239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Background As Parkinson's disease (PD) advances, management is challenged by an increasingly variable and inconsistent response to oral dopaminergic therapy, requiring special considerations by the provider. Continuous 24 h/day subcutaneous infusion of foslevodopa/foscarbidopa (LDp/CDp) provides steady dopaminergic stimulation that can reduce symptom fluctuation. Objective Our aim is to review the initiation, optimization, and maintenance of LDp/CDp therapy, identify possible challenges, and share potential mitigations. Methods Review available LDp/CDp clinical trial data for practical considerations regarding the management of patients during LDp/CDp therapy initiation, optimization, and maintenance based on investigator clinical trial experience. Results LDp/CDp initiation, optimization, and maintenance can be done without hospitalization in the clinic setting. Continuous 24 h/day LDp/CDp infusion can offer more precise symptom control than oral medications, showing improvements in motor fluctuations during both daytime and nighttime hours. Challenges include infusion-site adverse events for which early detection and prompt management may be required, as well as systemic adverse events (eg, hallucinations) that may require adjustment of the infusion rate or other interventions. A learning curve should be anticipated with initiation of therapy, and expectation setting with patients and care partners is key to successful initiation and maintenance of therapy. Conclusion Continuous subcutaneous infusion of LDp/CDp represents a promising therapeutic option for individuals with PD. Individualized dose optimization during both daytime and nighttime hours, coupled with patient education, and early recognition of certain adverse events (plus their appropriate management) are required for the success of this minimally invasive and highly efficacious therapy.
Collapse
Affiliation(s)
- Victor S C Fung
- Movement Disorders Unit, Westmead Hospital, Westmead, NSW, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Jason Aldred
- Inland Northwest Research, Spokane, WA, USA
- Selkirk Neurology, Spokane, WA, USA
| | | | - Filip Bergquist
- Department of Pharmacology, University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Agnita J W Boon
- Department of Neurology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Manon Bouchard
- Clinique Neuro-Lévis, Université Laval, Lévis, QC, Canada
- Centre de Recherche St-Louis, Lévis, QC, Canada
| | - Sarah Bray
- Movement Disorders Unit, Westmead Hospital, Westmead, NSW, Australia
| | - Sara Dhanani
- Banner Sun Health Research Institute, Sun City, AZ, USA
| | | | | | | | - Robert A Hauser
- Parkinson's Disease and Movement Disorders Center, University of South Florida, Tampa, FL, USA
| | | | - Jia Jia
- AbbVie Inc., North Chicago, IL, USA
| | | | | | | | | | - Arjun Tarakad
- Parkinson's Disease Center and Movement Disorders Clinic, Baylor College of Medicine, Houston, TX, USA
| | - Enrique Urrea-Mendoza
- Prisma Health Neurology, Greenville, SC, USA
- School of Medicine, University of South Carolina, Greenville, SC, USA
| | | | - Rajesh Pahwa
- Parkinson's Disease and Movement Disorder Center, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
18
|
Rabeh N, Hajjar B, Maraka JO, Sammanasunathan AF, Khan M, Alkhaaldi SMI, Mansour S, Almheiri RT, Hamdan H, Abd-Elrahman KS. Targeting mGluR group III for the treatment of neurodegenerative diseases. Biomed Pharmacother 2023; 168:115733. [PMID: 37862967 DOI: 10.1016/j.biopha.2023.115733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023] Open
Abstract
Glutamate, an excitatory neurotransmitter, is essential for neuronal function, and it acts on ionotropic or metabotropic glutamate receptors (mGluRs). A disturbance in glutamatergic signaling is a hallmark of many neurodegenerative diseases. Developing disease-modifying treatments for neurodegenerative diseases targeting glutamate receptors is a promising avenue. The understudied group III mGluR 4, 6-8 are commonly found in the presynaptic membrane, and their activation inhibits glutamate release. Thus, targeted mGluRs therapies could aid in treating neurodegenerative diseases. This review describes group III mGluRs and their pharmacological ligands in the context of amyotrophic lateral sclerosis, Parkinson's, Alzheimer's, and Huntington's diseases. Attempts to evaluate the efficacy of these drugs in clinical trials are also discussed. Despite a growing list of group III mGluR-specific pharmacological ligands, research on the use of these drugs in neurodegenerative diseases is limited, except for Parkinson's disease. Future efforts should focus on delineating the contribution of group III mGluR to neurodegeneration and developing novel ligands with superior efficacy and a favorable side effect profile for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Nadia Rabeh
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates; Department of Anesthesiology, Pharmacology and Therapeutics, and Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Baraa Hajjar
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Jude O Maraka
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Ashwin F Sammanasunathan
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Mohammed Khan
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Saif M I Alkhaaldi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Samy Mansour
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Rashed T Almheiri
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Hamdan Hamdan
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates; Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Khaled S Abd-Elrahman
- Department of Anesthesiology, Pharmacology and Therapeutics, and Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Pharmacology and Therapeutics, College of Medicine and Health Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| |
Collapse
|
19
|
Pogorelov VM, Martini ML, Jin J, Wetsel WC, Caron MG. Dopamine-Depleted Dopamine Transporter Knockout (DDD) Mice: Dyskinesia with L-DOPA and Dopamine D1 Agonists. Biomolecules 2023; 13:1658. [PMID: 38002340 PMCID: PMC10669682 DOI: 10.3390/biom13111658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
L-DOPA is the mainstay of treatment for Parkinson's disease (PD). However, over time this drug can produce dyskinesia. A useful acute PD model for screening novel compounds for anti-parkinsonian and L-DOPA-induced dyskinesia (LID) are dopamine-depleted dopamine-transporter KO (DDD) mice. Treatment with α-methyl-para-tyrosine rapidly depletes their brain stores of DA and renders them akinetic. During sensitization in the open field (OF), their locomotion declines as vertical activities increase and upon encountering a wall they stand on one leg or tail and engage in climbing behavior termed "three-paw dyskinesia". We have hypothesized that L-DOPA induces a stereotypic activation of locomotion in DDD mice, where they are unable to alter the course of their locomotion, and upon encountering walls engage in "three-paw dyskinesia" as reflected in vertical counts or beam-breaks. The purpose of our studies was to identify a valid index of LID in DDD mice that met three criteria: (a) sensitization with repeated L-DOPA administration, (b) insensitivity to a change in the test context, and (c) stimulatory or inhibitory responses to dopamine D1 receptor agonists (5 mg/kg SKF81297; 5 and 10 mg/kg MLM55-38, a novel compound) and amantadine (45 mg/kg), respectively. Responses were compared between the OF and a circular maze (CM) that did not hinder locomotion. We found vertical counts and climbing were specific for testing in the OF, while oral stereotypies were sensitized to L-DOPA in both the OF and CM and responded to D1R agonists and amantadine. Hence, in DDD mice oral stereotypies should be used as an index of LID in screening compounds for PD.
Collapse
Affiliation(s)
- Vladimir M. Pogorelov
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, 354 Sands Building, 303 Research Drive, Durham, NC 27710, USA
| | - Michael L. Martini
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.L.M.); (J.J.)
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.L.M.); (J.J.)
| | - William C. Wetsel
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, 354 Sands Building, 303 Research Drive, Durham, NC 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA;
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Marc G. Caron
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA;
| |
Collapse
|
20
|
Sharma P, Kishore A, De I, Negi S, Kumar G, Bhardwaj S, Singh M. Mitigating neuroinflammation in Parkinson's disease: Exploring the role of proinflammatory cytokines and the potential of phytochemicals as natural therapeutics. Neurochem Int 2023; 170:105604. [PMID: 37683836 DOI: 10.1016/j.neuint.2023.105604] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Parkinson's disease (PD) is one of the most prevalent neuroinflammatory illnesses, characterized by the progressive loss of neurons in the brain. Proinflammatory cytokines play a key role in initiating and perpetuating neuroinflammation, which can lead to the activation of glial cells and the deregulation of inflammatory pathways, ultimately leading to permanent brain damage. Currently, available drugs for PD mostly alleviate symptoms but do not target underlying inflammatory processes. There is a growing interest in exploring the potential of phytochemicals to mitigate neuroinflammation. Phytochemicals such as resveratrol, apigenin, catechin, anthocyanins, amentoflavone, quercetin, berberine, and genistein have been studied for their ability to scavenge free radicals and reduce proinflammatory cytokine levels in the brain. These plant-derived compounds offer a natural and potentially safe alternative to conventional drugs for managing neuroinflammation in PD and other neurodegenerative diseases. However, further research is necessary to elucidate their underlying mechanisms of action and clinical effectiveness. So, this review delves into the pathophysiology of PD and its intricate relationship with proinflammatory cytokines, and explores how their insidious contributions fuel the disease's initiation and progression via cytokine-dependent signaling pathways. Additionally, we tried to give an account of PD management using existing drugs along with their limitations. Furthermore, our aim is to provide a thorough overview of the diverse groups of phytochemicals, their plentiful sources, and the current understanding of their anti-neuroinflammatory properties. Through this exploration, we posit the innovative idea that consuming nutrient-rich phytochemicals could be an effective approach to preventing and treating PD.
Collapse
Affiliation(s)
- Prashant Sharma
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Abhinoy Kishore
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Indranil De
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Swarnima Negi
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Gulshan Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Sahil Bhardwaj
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Manish Singh
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India.
| |
Collapse
|
21
|
Liu Z, Su D, Zhou J, Wang X, Wang Z, Yang Y, Ma H, Feng T. Acute effect of levodopa on orthostatic hypotension and its association with motor responsiveness in Parkinson's disease: Results of acute levodopa challenge test. Parkinsonism Relat Disord 2023; 115:105860. [PMID: 37742502 DOI: 10.1016/j.parkreldis.2023.105860] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023]
Abstract
OBJECTIVE Levodopa administration can induce or worsen orthostatic hypotension (OH) in patients with Parkinson's disease (PD). Understanding of acute OH post levodopa (AOHPL) is important for rational drug use in PD patients. Primary objective of this study was to investigate the incidence of AOHPL in PD patients. The secondary objectives were a) hemodynamic character of AOHPL; b) risk factors of AOHPL; c) relationship between motor responsiveness and blood pressure (BP) change. METHODS 490 PD inpatients underwent acute levodopa challenge test (LCT). Supine-to-standing test (STS) was done 4 times during LCT, including before levodopa and every hour post levodopa intake within 3 h. Patients were classified into two groups, AOHPL and non-AOHPL. A comprehensive set of clinical features scales was assessed, including both motor (e.g., motor response, wearing-off) and nonmotor symptoms (e.g., autonomic dysfunction, neuropsychology). RESULTS 33.1% PD patients had OH before drug, 50.8% the same subjects had AOHPL during levodopa effectiveness. PD patients who had better response to levodopa likely to have lower standing mean artery pressure (MAP) and severer systolic BP drop after levodopa intake. BP increased when the motor performance worsened and vice versa. Beneficial response was a risk factors of AOHPL (OR = 1.624, P = 0.017). CONCLUSIONS AOHPL was very common in PD patients. We suggested that PD patients with risk factors should monitor hemodynamic change during LCT to avoid AOHPL following the introduction or increase of oral levodopa. The fluctuations of BP were complicated and multifactorial, likely caused by the process of PD and levodopa both.
Collapse
Affiliation(s)
- Zhu Liu
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Dongning Su
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Junhong Zhou
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Roslindale, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Xuemei Wang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhan Wang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yaqin Yang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Huizi Ma
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
22
|
Takeda A, Baba T, Watanabe J, Nakayama M, Hozawa H, Ishido M. Levodopa Prescription Patterns in Patients with Advanced Parkinson's Disease: A Japanese Database Analysis. PARKINSON'S DISEASE 2023; 2023:9404207. [PMID: 37799489 PMCID: PMC10550461 DOI: 10.1155/2023/9404207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 10/07/2023]
Abstract
Prescription doses of levodopa in patients with advanced Parkinson's disease (PD) are generally lower in Japan than in the United States or Europe, although Japanese guidelines for the management of PD recommend increasing the dosage as the disease progresses. However, data regarding levodopa prescription practices in patients with advanced PD in the clinical setting are limited. This retrospective observational study analyzed patterns of drug use for patients with advanced PD in Japan using claims data from hospitalized patients in the Medical Data Vision Co. database. Eligible patients had at least two PD-associated claims in two different quarters between April 1, 2008, and November 30, 2018, and a 10-item activities of daily living score <60 upon hospital discharge (as a proxy for advanced PD). The primary endpoint was the prescribed dosage of levodopa at the index hospitalization. Dosages of other PD drugs (medications with an on-label indication for PD) and non-PD drugs were also assessed. Overall, 4029 patients met the inclusion criteria (mean age, 76.9 years; 83.3% aged ≥70 years). At the index date, 74.0% were receiving levodopa. Patients received a median of one PD drug in addition to levodopa, and 27.4% and 20.2% received one or two concomitant PD drugs, respectively. Patients received a median of two non-PD drugs. The median levodopa dosage and total levodopa equivalent dosage (LED) at the index hospitalization were 418.2 and 634.8 mg/day (adjusted for body weight, 9.0 and 13.7 mg/kg/day), respectively. The median levodopa and total LED dosage in each 6-month increment during the 5 years before and after the index date ranged between 263.9 and 330.2 mg/day (5.0 and 6.5 mg/kg/day) and 402.0 and 504.9 mg/day (8.3 and 10.1 mg/kg/day), respectively. This study suggests that many Japanese patients with advanced PD could receive more intensive treatment with higher doses of levodopa.
Collapse
Affiliation(s)
- Atsushi Takeda
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, 2-11-11 Kagitorihoncho, Taihaku-ku, Sendai 982-8555, Japan
- Department of Cognitive & Motor Aging, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aobaku, Sendai 980-8575, Japan
| | - Toru Baba
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, 2-11-11 Kagitorihoncho, Taihaku-ku, Sendai 982-8555, Japan
| | - Jun Watanabe
- Medical, AbbVie GK, 3-1-21 Shibaura, Minato-ku, Tokyo 108-0023, Japan
| | - Masahiko Nakayama
- Medical, AbbVie GK, 3-1-21 Shibaura, Minato-ku, Tokyo 108-0023, Japan
| | - Hiroyuki Hozawa
- Medical, AbbVie GK, 3-1-21 Shibaura, Minato-ku, Tokyo 108-0023, Japan
| | - Miwako Ishido
- Medical, AbbVie GK, 3-1-21 Shibaura, Minato-ku, Tokyo 108-0023, Japan
| |
Collapse
|
23
|
Morimoto R, Iijima M, Okuma Y, Suzuki K, Yoshii F, Nogawa S, Osada T, Kitagawa K. Associations between non-motor symptoms and patient characteristics in Parkinson's disease: a multicenter cross-sectional study. Front Aging Neurosci 2023; 15:1252596. [PMID: 37744394 PMCID: PMC10511748 DOI: 10.3389/fnagi.2023.1252596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Objective Parkinson's disease (PD) is characterized by various non-motor symptoms (NMS), such as constipation, olfactory disturbance, sleep disturbance, mental disorders, and motor symptoms. This study aimed to investigate factors associated with NMS in patients with PD. Methods Symptoms of PD were evaluated using the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS), Parts I-IV. NMS was assessed using the MDS-UPDRS Part I (self-assessment of NMS) and rapid eye movement sleep behavior disorder (RBD) questionnaires. Patients were categorized by age into <70 years and ≥ 70 years (older adults) groups, according to disease duration into early-stage and advanced-stage groups with a cut-off value of 5 years for motor symptoms, and by sex into male and female groups. Results A total of 431 patients with PD (202 males and 229 females) with a mean age of 67.7 years, a mean disease duration of 6.4 years, and a mean Part I total score of 9.9 participated in this study. The Part I total score was significantly positively correlated (p < 0.01) with disease duration and Part II, III, and IV scores. For Part I sub-item scores, the older group had significantly higher scores for cognitive impairment, hallucinations, sleep problems, urinary problems, and constipation than the <70 years group, whereas the advanced-stage group had significantly higher scores for hallucinations, sleep problems, daytime sleepiness, pain, urinary problems, and constipation (p < 0.05) than the early-stage group. Anxiety was higher in female patients than in male patients, whereas daytime sleepiness, urinary problems, and RBD were higher in male patients than in female patients (p < 0.05). Factors affecting Part I included disease duration, Part II total scores, Part IV total scores, and RBD. Conclusion According to the self-questionnaire assessment, NMS was highly severe in older adult patients, those with longer illness duration, subjective and objective motor function impairments, and RBD. Sex-based differences were also observed.
Collapse
Affiliation(s)
- Remi Morimoto
- Department of Neurology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Mutsumi Iijima
- Department of Neurology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Yasuyuki Okuma
- Department of Neurology, Juntendo University Shizuoka Hospital, Shizuoka, Japan
| | - Keisuke Suzuki
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| | - Fumihito Yoshii
- Department of Neurology, Saiseikai Shonan Hiratsuka Hospital, Kanagawa, Japan
| | - Shigeru Nogawa
- Department of Neurology, Tokai University Hachioji Hospital, Tokyo, Japan
| | - Takashi Osada
- Department of Neurology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kazuo Kitagawa
- Department of Neurology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
24
|
Richmond AM, Lyons KE, Pahwa R. Safety review of current pharmacotherapies for levodopa-treated patients with Parkinson's disease. Expert Opin Drug Saf 2023; 22:563-579. [PMID: 37401865 DOI: 10.1080/14740338.2023.2227096] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/15/2023] [Indexed: 07/05/2023]
Abstract
INTRODUCTION Levodopa remains the gold standard for treatment of Parkinson's disease (PD). Patients develop complications with disease progression, necessitating adjunctive therapy to control fluctuations in motor and non-motor symptoms and dyskinesia. Knowledge of medication safety and tolerability is critical to ascertain the benefit-risk ratio and select an adjunctive therapy that provides the highest chance for medication adherence. Posing a challenge are the sheer abundance of options, stemming from the development of several new drugs in recent years, as well as differences in commercial drug availability worldwide. AREAS COVERED This review evaluates the efficacy, safety, and tolerability of current US FDA-approved pharmacotherapies for levodopa-treated PD patients, including dopamine agonists, monoamine oxidase type-B inhibitors, catechol-O-methyltransferase inhibitors, the N-methyl-D-aspartate receptor antagonist amantadine, and the adenosine receptor antagonist istradefylline. Data were taken from pivotal phase III randomized controlled and post-surveillance studies, when available, that directly led to FDA-approval. EXPERT OPINION No strong evidence exists to support use of a specific adjunctive treatment for improving Off time. Only one medication has demonstrated improvement in dyskinesia in levodopa-treated PD patients; however, every patient cannot tolerate it and therefore adjunctive therapy should be tailored to an individual's symptoms and risk for specific adverse effects.
Collapse
Affiliation(s)
- Angela M Richmond
- Parkinson's and Movement Disorders Division, Department of Neurology, The University of Kansas Medical Center, Kansas, KS, United States of America
| | - Kelly E Lyons
- Research and Education, Parkinson's and Movement Disorders Division, Department of Neurology, The University of Kansas Medical Center, Kansas, KS, United States of America
| | - Rajesh Pahwa
- Laverne & Joyce Rider Professor of Neurology, Chief, Parkinson's and Movement Disorders Division Director, Parkinson's Foundation Center of Excellence, The University of Kansas Medical Center, Kansas, KS, United States of America
| |
Collapse
|
25
|
Clael S, David FJ, Brandão E, Bezerra L. Cross-education in people with Parkinson's disease, a short-term randomized controlled trial. J Bodyw Mov Ther 2023; 35:114-120. [PMID: 37330755 DOI: 10.1016/j.jbmt.2023.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/29/2022] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION People with Parkinson's disease usually have a major impairment on one side of the body. It is hypothesized that unilateral resistance training may improve strength on the most affected limb when compared to bilateral resistance training. AIM 1) To confirm that short-term unilateral resistance training improves strength on the most affected limb in people with PD. 2) To investigate if short-term unilateral resistance training reduces asymmetry. METHODS Seventeen individuals with Parkinson's disease were randomly assigned to unilateral resistance group (UTG, n = 9) and bilateral resistance group (BTG, n = 8). Twenty-four sessions of resistance training were performed. The nine-hole peg and box and blocks tests were performed to assess motor control of the upper limbs. The handgrip strength and isokinetic dynamometry were performed to assess the upper and lower limbs strength, respectively. All tests were assessed unilaterally at baseline (T0), during (T12), and at the end of the intervention (T24). Friedman's ANOVA was used to determine within group differences across the three time-points. In the event of significance, post-hoc analyses were performed using the Wilcoxon signed rank test. The U Mann-Whitney was used to determine between group differences at a specific time point. RESULTS The BTG was significantly better than the UTG group at T24 compared to T12 with respect to peak torque at 60°/s and 180°/s (p < 0.05). CONCLUSION Short-term bilateral resistance training is better than unilateral resistance training to improve strength for lower limbs most affected in people with Parkinson's disease.
Collapse
Affiliation(s)
- Sacha Clael
- University of Brasilia, Faculty of Physical Education, Distrito Federal, Brasilia, Brazil; Northwestern University, Feinberg School of Medicine, Department of Physical Therapy and Human Movement Sciences, Chicago, IL, USA.
| | - Fabian J David
- Northwestern University, Feinberg School of Medicine, Department of Physical Therapy and Human Movement Sciences, Chicago, IL, USA
| | - Elaine Brandão
- University of Brasilia, Faculty of Physical Education, Distrito Federal, Brasilia, Brazil
| | - Lídia Bezerra
- University of Brasilia, Faculty of Physical Education, Distrito Federal, Brasilia, Brazil
| |
Collapse
|
26
|
Nakamura T, Nishijima H, Mori F, Kinoshita I, Kon T, Suzuki C, Wakabayashi K, Tomiyama M. Axon terminal hypertrophy of striatal projection neurons with levodopa-induced dyskinesia priming. Front Neurosci 2023; 17:1169336. [PMID: 37351424 PMCID: PMC10282195 DOI: 10.3389/fnins.2023.1169336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023] Open
Abstract
Background A rat model of levodopa-induced dyskinesia (LID) showed enlarged axon terminals of striatal direct pathway neurons in the internal segment of the globus pallidus (GPi) with excessive gamma-aminobutyric acid (GABA) storage in them. Massive GABA release to GPi upon levodopa administration determines the emergence of LID. Objectives We examined whether LID and axon terminal hypertrophy gradually develop with repeated levodopa treatment in Parkinsonian rats to examine if the hypertrophy reflects dyskinesia priming. Methods 6-hydroxydopamine-lesioned hemiparkinsonian rats were randomly allocated to receive saline injections (placebo group, 14 days; n = 4), injections of 6 mg/kg levodopa methyl ester combined with 12.5 mg/kg benserazide (levodopa-treated groups, 3-day-treatment; n = 4, 7-day-treatment; n = 4, 14-day-treatment; n = 4), or injections of 6 mg/kg levodopa methyl ester with 12.5 mg/kg benserazide and 1 mg/kg 8-hydroxy-2-(di-n-propylamino)tetralin for 14 days (8-OH-DPAT-treated group; n = 4). We evaluated abnormal involuntary movement (AIM) scores and axon terminals in the GPi. Results The AIM score increased with levodopa treatment, as did the hypertrophy of axon terminals in the GPi, showing an increased number of synaptic vesicles in hypertrophied terminals. Conclusion Increased GABA storage in axon terminals of the direct pathway neurons represents the priming process of LID.
Collapse
Affiliation(s)
- Takashi Nakamura
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Haruo Nishijima
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Fumiaki Mori
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Iku Kinoshita
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tomoya Kon
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Chieko Suzuki
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Koichi Wakabayashi
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masahiko Tomiyama
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
27
|
Santos-Lobato BL, Brito MMCM, Pimentel ÂV, Cavalcanti RTO, Del-Bel E, Tumas V. Doxycycline to treat levodopa-induced dyskinesias in Parkinson's disease: a preliminary study. ARQUIVOS DE NEURO-PSIQUIATRIA 2023; 81:460-468. [PMID: 37257466 DOI: 10.1055/s-0043-1768668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
BACKGROUND Levodopa-induced dyskinesia (LID) is a common motor complication of levodopa therapy in patients with Parkinson's disease (PD). Doxycycline is a widely used and inexpensive tetracycline with anti-inflammatory properties. OBJECTIVE To evaluate the efficacy and safety of doxycycline in patients with PD and LID. METHODS This was an open-label, uncontrolled, single-arm, single-center, phase 2 proof-of-concept study in patients with PD with functional impact of dyskinesia, which used levodopa three times daily, in a movement disorders clinic in Brazil. Participants were treated with doxycycline 200 mg/day for 12 weeks, with evaluations at baseline, week 4, and week 12 of treatment. The primary outcome measure was the change from baseline in the Unified Dyskinesia Rating Scale (UDysRS) total score at week 12, evaluated by two blinded raters. Key secondary outcomes measures were OFF time and ON time with troublesome dyskinesia in the PD home diary. RESULTS Eight patients with PD were treated and evaluated. Doxycycline 200 mg/day reduced the UDysRS total score at week 12, compared with baseline (Friedman χ2 = 9.6; p = 0.008). Further, doxycycline reduced the ON time with troublesome dyskinesia (Friedman χ2 = 10.8; p = 0.004) without worsening parkinsonism. There were no severe adverse events, and dyspepsia was the commonest event. CONCLUSION In this preliminary, open-label and uncontrolled trial, doxycycline was effective in reducing LID and safe after a 12-week treatment. Further well-designed placebo-controlled clinical trials with a longer duration and a larger number of participants are needed. CLINICAL TRIAL REGISTRATION https://ensaiosclinicos.gov.br, identifier: RBR-1047fwbf.
Collapse
Affiliation(s)
- Bruno Lopes Santos-Lobato
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Neurociências e Ciências do Comportamento, Ribeirão Preto SP, Brazil
- Universidade Federal do Pará, Faculdade de Medicina, Laboratório de Neuropatologia Experimental, Belém PA, Brazil
| | | | - Ângela Vieira Pimentel
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Neurociências e Ciências do Comportamento, Ribeirão Preto SP, Brazil
| | - Rômulo Torres Oliveira Cavalcanti
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Neurociências e Ciências do Comportamento, Ribeirão Preto SP, Brazil
| | - Elaine Del-Bel
- Universidade de São Paulo, Faculdade de Odontologia de Ribeirão Preto, Ribeirão Preto SP, Brazil
| | - Vitor Tumas
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Neurociências e Ciências do Comportamento, Ribeirão Preto SP, Brazil
| |
Collapse
|
28
|
Guo X, Feng C, Pu J, Jiang H, Zhu Z, Zheng Z, Zhang J, Chen G, Zhu J, Wu H. Deep Brain Stimulation for Advanced Parkinson Disease in Developing Countries: A Cost-Effectiveness Study From China. Neurosurgery 2023; 92:812-819. [PMID: 36729808 DOI: 10.1227/neu.0000000000002274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/29/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The cost-effectiveness of deep brain stimulation (DBS) is more favorable than best medical treatment (BMT) for advanced Parkinson disease (PD) in developed countries. However, it remains unclear in developing countries, where the cost of DBS may not be reimbursed by health care system. OBJECTIVE To model and evaluate the long-term cost-effectiveness of DBS for advanced PD in China from a patient payer perspective. METHODS We developed a Markov model representing the clinical progress of PD to predict the disease progression and related medical costs in a 15-year time horizon. The incremental cost-effectiveness ratio (ICER) and net benefit were used to evaluate the cost-effectiveness of DBS vs BMT. RESULTS DBS treatment led to discounted total costs of ¥370 768 ($56 515.20) (95% CI, ¥369 621.53-371 914.88), compared with ¥48 808 ($7439.68) (95% CI, ¥48 502.63-49 114.21) for BMT, with an additional 1.51 quality-adjusted life years gained, resulting in an ICER of ¥213 544 ($32 549.96)/quality-adjusted life years (95% CI, ¥208 177.35-218 910.10). Sensitivity analysis showed that DBS-related cost has the most substantial impact on ICER. Nation-wide net benefit of BMT and DBS were ¥33 819 ($5154.94) (95% CI, ¥30 211.24-37 426) and ¥30 361 ($4627.85) (95% CI, ¥25 587.03-39 433.66), respectively. Patient demographic analysis showed that more favorable DBS cost-effectiveness was associated with younger age and less severe disease stage. CONCLUSION DBS is cost-effective for patients with advanced PD over a 15-year time horizon in China. However, compared with developed countries, DBS remains a substantial economic burden for patients when no reimbursement is provided. Our findings may help inform cost-effectiveness-based decision making for clinical care of PD in developing countries.
Collapse
Affiliation(s)
- Xinxia Guo
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Chen Feng
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Jiali Pu
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hongjie Jiang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Zhoule Zhu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Zhe Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Gao Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Junming Zhu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Hemmings Wu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
29
|
Pintér D, Járdaházi E, Balás I, Harmat M, Makó T, Juhász A, Janszky J, Kovács N. Antiparkinsonian Drug Reduction After Directional Versus Omnidirectional Bilateral Subthalamic Deep Brain Stimulation. Neuromodulation 2023; 26:374-381. [PMID: 35190245 DOI: 10.1016/j.neurom.2022.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/15/2021] [Accepted: 01/08/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Several pilot trials and the Clinical Evaluation of the Infinity Deep Brain Stimulation System (PROGRESS) study have found that directional stimulation can provide a wider therapeutic window and lower therapeutic current strength than omnidirectional stimulation. OBJECTIVE We conducted a single-center, open-label, registry-based, comparative trial to test the hypothesis that directional stimulation can be associated with a greater reduction in the total daily dose of antiparkinsonian medications (ApMeds) than omnidirectional stimulation. MATERIALS AND METHODS A total of 52 patients with directional and 57 subjects with omnidirectional bilateral subthalamic deep brain stimulation (STN-DBS) were enrolled. Preoperatively and 12 months postoperatively, the dose of different ApMeds, the number of tablets used daily, the severity of motor and nonmotor symptoms using the Movement Disorder Society-sponsored Unified Parkinson Disease Rating Scale, and the health-related quality of life (HRQoL) using the 39-item Parkinson's Disease Questionnaire (PDQ-39) were assessed. RESULTS According to the changes in the levodopa equivalent daily dose, directional STN-DBS led to a 13% greater reduction in the total daily dose of ApMed. The 10.3% greater reduction in the dose of levodopa was the main contributor to this difference. The number of different ApMed types also could be decreased in a greater manner with directional stimulation. The improvement in the severity of motor and nonmotor symptoms was comparable; however, we detected a 15.8% greater improvement in the global HRQoL among patients with directional stimulation according to the changes in the summary index of the PDQ-39. The total electrical energy delivered per second was comparable between the groups at 12-month postoperative visit, whereas the amplitude of stimulation was significantly lower and the impedance was significantly higher with directional leads. CONCLUSIONS Directional programming can further increase the reduction in the total daily dose of ApMed after STN-DBS. In addition, directional stimulation can have additional beneficial effects on the global HRQoL. The greater reduction of ApMed doses did not require more energy-consuming stimulation with directional stimulation.
Collapse
Affiliation(s)
- Dávid Pintér
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary.
| | - Evelyn Járdaházi
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| | - István Balás
- Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
| | - Márk Harmat
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| | - Tamás Makó
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| | - Annamária Juhász
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| | - József Janszky
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary; MTA-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary
| | - Norbert Kovács
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary; MTA-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary
| |
Collapse
|
30
|
Arasteh E, Mirian MS, Verchere WD, Surathi P, Nene D, Allahdadian S, Doo M, Park KW, Ray S, McKeown MJ. An Individualized Multi-Modal Approach for Detection of Medication "Off" Episodes in Parkinson's Disease via Wearable Sensors. J Pers Med 2023; 13:jpm13020265. [PMID: 36836501 PMCID: PMC9962500 DOI: 10.3390/jpm13020265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
The primary treatment for Parkinson's disease (PD) is supplementation of levodopa (L-dopa). With disease progression, people may experience motor and non-motor fluctuations, whereby the PD symptoms return before the next dose of medication. Paradoxically, in order to prevent wearing-off, one must take the next dose while still feeling well, as the upcoming off episodes can be unpredictable. Waiting until feeling wearing-off and then taking the next dose of medication is a sub-optimal strategy, as the medication can take up to an hour to be absorbed. Ultimately, early detection of wearing-off before people are consciously aware would be ideal. Towards this goal, we examined whether or not a wearable sensor recording autonomic nervous system (ANS) activity could be used to predict wearing-off in people on L-dopa. We had PD subjects on L-dopa record a diary of their on/off status over 24 hours while wearing a wearable sensor (E4 wristband®) that recorded ANS dynamics, including electrodermal activity (EDA), heart rate (HR), blood volume pulse (BVP), and skin temperature (TEMP). A joint empirical mode decomposition (EMD) / regression analysis was used to predict wearing-off (WO) time. When we used individually specific models assessed with cross-validation, we obtained > 90% correlation between the original OFF state logged by the patients and the reconstructed signal. However, a pooled model using the same combination of ASR measures across subjects was not statistically significant. This proof-of-principle study suggests that ANS dynamics can be used to assess the on/off phenomenon in people with PD taking L-dopa, but must be individually calibrated. More work is required to determine if individual wearing-off detection can take place before people become consciously aware of it.
Collapse
Affiliation(s)
- Emad Arasteh
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, 3585 EA Utrecht, The Netherlands
- Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, B-3001 Leuven, Belgium
| | - Maryam S. Mirian
- Pacific Parkinson’s Research Centre, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Wyatt D. Verchere
- Pacific Parkinson’s Research Centre, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Pratibha Surathi
- Clinical Fellow-Neurophysiology, Columbia New York Presbyterian, New York, NY 1032, USA
| | - Devavrat Nene
- Department of Medicine, Division of Neurology, The University of Ottawa, Ottawa, ON K1Y 4E9, Canada
| | - Sepideh Allahdadian
- Pacific Parkinson’s Research Centre, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 2B5, Canada
- Department of Neurology, Penn State Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Michelle Doo
- Pacific Parkinson’s Research Centre, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Kye Won Park
- Pacific Parkinson’s Research Centre, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Somdattaa Ray
- Pacific Parkinson’s Research Centre, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Martin J. McKeown
- Pacific Parkinson’s Research Centre, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 2B5, Canada
- Faculty of Medicine (Neurology), University of British Columbia, Vancouver, BC V6T 2B5, Canada
- Correspondence:
| |
Collapse
|
31
|
Fabbri M, Barbosa R, Rascol O. Off-time Treatment Options for Parkinson's Disease. Neurol Ther 2023; 12:391-424. [PMID: 36633762 PMCID: PMC10043092 DOI: 10.1007/s40120-022-00435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Motor fluctuations (MF) are deemed by patients with Parkinson's disease (PD) as the most troublesome disease feature resulting from the increasing impairment in responsiveness to dopaminergic drug treatments. MF are characterized by the loss of a stable response to levodopa over the nychthemeron with the reappearance of motor (and non-motor) parkinsonian clinical signs at various moments during the day and night. They normally appear after a few years of levodopa treatment and with a variable, though overall increasing severity, over the disease course. The armamentarium of first-line treatment options has widened in the last decade with new once-a-daily compounds, including a catechol O-methyltransferase inhibitor - Opicapone-, two MAO-B inhibitors plus channel blocker - Zonisamide and Safinamide and one amantadine extended-release formulation - ADS5012. In addition to apomorphine injection or oral levodopa dispersible tablets, which have been available for a long time, new on-demand therapies such as apomorphine sublingual or levodopa inhaled formulations have recently shown efficacy as rescue therapies for Off-time treatment. When the management of MF becomes difficult in spite of oral/on-demand options, more complex therapies should be considered, including surgical, i.e. deep brain stimulation, or device-aided therapies with pump systems delivering continuous subcutaneous or intestinal levodopa or subcutaneous apomorphine formulation. Older and less commonly used ablative techniques (radiofrequency pallidotomy) may also be effective while there is still scarce data regarding Off-time reduction using a new lesional approach, i.e. magnetic resonance-guided focused ultrasound. The choice between the different advanced therapies options is a shared decision that should consider physician opinion on contraindication/main target symptom, patients' preference, caregiver's availability together with public health systems and socio-economic environment. The choice of the right/first add-on treatment is still a matter of debate as well as the proper time for an advanced therapy to be considered. In this narrative review, we discuss all the above cited aspects of MF in patients with PD, including their phenomenology, management, by means of pharmacological and advanced therapies, on-going clinical trials and future research and treatment perspectives.
Collapse
Affiliation(s)
- Margherita Fabbri
- Department of Clinical Pharmacology and Neurosciences, Toulouse Parkinson Expert Centre, Toulouse NeuroToul Center of Excellence in Neurodegeneration (COEN), French NS-Park/F-CRIN Network, University of Toulouse 3, CHU of Toulouse, INSERM, Toulouse, France.
| | - Raquel Barbosa
- Department of Clinical Pharmacology and Neurosciences, Toulouse Parkinson Expert Centre, Toulouse NeuroToul Center of Excellence in Neurodegeneration (COEN), French NS-Park/F-CRIN Network, University of Toulouse 3, CHU of Toulouse, INSERM, Toulouse, France.,Department of Neurology, Hospital de Egas Moniz Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal.,NOVA Medical School, Faculdade de Ciências Médicas Universidade Nova de Lisboa, Lisbon, Portugal
| | - Olivier Rascol
- Department of Clinical Pharmacology and Neurosciences, Toulouse Parkinson Expert Centre, Toulouse NeuroToul Center of Excellence in Neurodegeneration (COEN), French NS-Park/F-CRIN Network, University of Toulouse 3, CHU of Toulouse, INSERM, Toulouse, France
| |
Collapse
|
32
|
Weerasinghe-Mudiyanselage PD, Kang S, Kim JS, Moon C. Therapeutic Approaches to Non-Motor Symptoms of Parkinson's Disease: A Current Update on Preclinical Evidence. Curr Neuropharmacol 2023; 21:560-577. [PMID: 36200159 PMCID: PMC10207906 DOI: 10.2174/1570159x20666221005090126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/22/2022] Open
Abstract
Despite being classified as a movement disorder, Parkinson's disease (PD) is characterized by a wide range of non-motor symptoms that significantly affect the patients' quality of life. However, clear evidence-based therapy recommendations for non-motor symptoms of PD are uncommon. Animal models of PD have previously been shown to be useful for advancing the knowledge and treatment of motor symptoms. However, these models may provide insight into and assess therapies for non-motor symptoms in PD. This paper highlights non-motor symptoms in preclinical models of PD and the current position regarding preclinical therapeutic approaches for these non-motor symptoms. This information may be relevant for designing future preclinical investigations of therapies for nonmotor symptoms in PD.
Collapse
Affiliation(s)
- Poornima D.E. Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| |
Collapse
|
33
|
Huang T, Li M, Huang J. Recent trends in wearable device used to detect freezing of gait and falls in people with Parkinson's disease: A systematic review. Front Aging Neurosci 2023; 15:1119956. [PMID: 36875701 PMCID: PMC9975590 DOI: 10.3389/fnagi.2023.1119956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/23/2023] [Indexed: 02/17/2023] Open
Abstract
Background The occurrence of freezing of gait (FOG) is often observed in moderate to last-stage Parkinson's disease (PD), leading to a high risk of falls. The emergence of the wearable device has offered the possibility of FOG detection and falls of patients with PD allowing high validation in a low-cost way. Objective This systematic review seeks to provide a comprehensive overview of existing literature to establish the forefront of sensors type, placement and algorithm to detect FOG and falls among patients with PD. Methods Two electronic databases were screened by title and abstract to summarize the state of art on FOG and fall detection with any wearable technology among patients with PD. To be eligible for inclusion, papers were required to be full-text articles published in English, and the last search was completed on September 26, 2022. Studies were excluded if they; (i) only examined cueing function for FOG, (ii) only used non-wearable devices to detect or predict FOG or falls, and (iii) did not provide sufficient details about the study design and results. A total of 1,748 articles were retrieved from two databases. However, only 75 articles were deemed to meet the inclusion criteria according to the title, abstract and full-text reviewed. Variable was extracted from chosen research, including authorship, details of the experimental object, type of sensor, device location, activities, year of publication, evaluation in real-time, the algorithm and detection performance. Results A total of 72 on FOG detection and 3 on fall detection were selected for data extraction. There were wide varieties of the studied population (from 1 to 131), type of sensor, placement and algorithm. The thigh and ankle were the most popular device location, and the combination of accelerometer and gyroscope was the most frequently used inertial measurement unit (IMU). Furthermore, 41.3% of the studies used the dataset as a resource to examine the validity of their algorithm. The results also showed that increasingly complex machine-learning algorithms had become the trend in FOG and fall detection. Conclusion These data support the application of the wearable device to access FOG and falls among patients with PD and controls. Machine learning algorithms and multiple types of sensors have become the recent trend in this field. Future work should consider an adequate sample size, and the experiment should be performed in a free-living environment. Moreover, a consensus on provoking FOG/fall, methods of assessing validity and algorithm are necessary.Systematic Review Registration: PROSPERO, identifier CRD42022370911.
Collapse
Affiliation(s)
- Tinghuai Huang
- Laboratory of Laser Sports Medicine, South China Normal University, Guangzhou, Guangdong, China
| | - Meng Li
- Laboratory of Laser Sports Medicine, South China Normal University, Guangzhou, Guangdong, China
| | - Jianwei Huang
- Department of Gastroenterology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
34
|
LeWitt PA, Stocchi F, Arkadir D, Caraco Y, Adar L, Perlstein I, Case R, Giladi N. The pharmacokinetics of continuous subcutaneous levodopa/carbidopa infusion: Findings from the ND0612 clinical development program. Front Neurol 2022; 13:1036068. [PMID: 36438968 PMCID: PMC9686322 DOI: 10.3389/fneur.2022.1036068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/24/2022] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND While treatment with levodopa remains the cornerstone of Parkinson's disease (PD) management, chronic oral therapy is often associated with the development of motor complications, that correlate to fluctuating levodopa plasma concentrations, limiting its clinical utility. Continuous infusion is considered to be the optimal delivery route for treating PD patients with motor fluctuations, but current infusion systems require invasive surgery. Subcutaneous infusion of (SC) levodopa has the potential to provide a better tolerated and more convenient route of continuous levodopa delivery. ND0612 is in development as a combination product providing continuous levodopa/carbidopa via a minimally invasive, subcutaneous delivery system for PD patients experiencing motor response fluctuations. We present pharmacokinetic results from a series of studies that analyzed plasma concentrations after SC levodopa delivery with ND0612 to inform the clinical development program. METHODS We performed a series of six Phase I and II studies to characterize the pharmacokinetics of levodopa and carbidopa derived from ND0612 infusion with/without adjunct oral therapy of the same ingredients. These studies were conducted in healthy volunteers and in PD patients experiencing motor response fluctuations while on their current levodopa therapy regimen. RESULTS Taken together, the results demonstrate dose-proportionality dependent on rate of subcutaneous levodopa infusion leading to stable and sustained plasma concentrations of levodopa. Subcutaneous infusion of ND0612 administered with oral levodopa/carbidopa maintained near-constant, therapeutic levodopa plasma concentrations, thereby avoiding the troughs in levodopa plasma concentrations that are associated with OFF time in PD. The data generated in this series of studies also confirmed that a levodopa/carbidopa dose ratio of 8:1 would be the most reasonable choice for ND0612 development. CONCLUSIONS This series of clinical pharmacokinetic studies have demonstrated that ND0612, administered continuously with a levodopa concentration of 60 mg/ml combined with carbidopa 7.5 mg/ml, and complemented with oral levodopa/carbidopa, is suitable for 24 h continuous administration in patients with PD. The stable plasma concentrations of levodopa achieved predict utility of ND0612 as a parenteral formulation for achieving clinically useful delivery of levodopa for PD patients.
Collapse
Affiliation(s)
- Peter A. LeWitt
- Department of Neurology, Wayne State University School of Medicine and Henry Ford Hospital, Detroit, MI, United States
| | - Fabrizio Stocchi
- Department of Neurology, University and Institute for Research and Medical Care Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, Rome, Italy
| | - David Arkadir
- Department of Neurology, The Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yoseph Caraco
- Clinical Pharmacology Unit, Division of Medicine, Hadassah Hebrew-University Medical Center, Jerusalem, Israel
| | | | | | | | - Nir Giladi
- Sackler School of Medicine, Tel Aviv Medical Center and Sagol School of Neurosciences, Neurological Institute, Tel-Aviv University, Tel Aviv-Yafo, Israel
| |
Collapse
|
35
|
Fan QY, Zhang XD, Hu ZD, Huang SS, Zhu SG, Chen CP, Zhang X, Wang JY. Case report: Blepharospasm in peak-dose dyskinesia may benefit from amantadine in Parkinson's disease. Front Neurol 2022; 13:961758. [PMID: 36247788 PMCID: PMC9561359 DOI: 10.3389/fneur.2022.961758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction Blepharospasm is uncommon in Parkinson's disease, especially in the peak-dose dyskinesia period. Case presentation We herein present the case of a patient with PD who developed blepharospasm in the peak-dose dyskinesia period. The symptom was improved by taking amantadine. Conclusion The current report expands the phenomenology of peak-dose dykinesia in PD to include dystonic blepharospasm. This complication of levodopa therapy may respond to amantadine despite the dystonic appearance of movements.
Collapse
Affiliation(s)
- Qian-Ya Fan
- Department of Neurology, The First People's Hospital of Jiande, Hangzhou, China
| | - Xiao-Dong Zhang
- Department of Cerebral Surgery, The First People's Hospital of Jiande, Hangzhou, China
| | - Ze-Di Hu
- Institute of Geriatric Neurology, Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shi-Shi Huang
- Institute of Geriatric Neurology, Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shi-Guo Zhu
- Institute of Geriatric Neurology, Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | | | - Xiong Zhang
- Institute of Geriatric Neurology, Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xiong Zhang
| | - Jian-Yong Wang
- Institute of Geriatric Neurology, Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
- Jian-Yong Wang
| |
Collapse
|
36
|
Hu H, Xiao D, Rhodin H, Murphy TH. Towards a Visualizable, De-identified Synthetic Biomarker of Human Movement Disorders. JOURNAL OF PARKINSON'S DISEASE 2022; 1:2085-2096. [PMID: 36057831 PMCID: PMC10473142 DOI: 10.3233/jpd-223351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 12/15/2022]
Abstract
Human motion analysis has been a common thread across modern and early medicine. While medicine evolves, analysis of movement disorders is mostly based on clinical presentation and trained observers making subjective assessments using clinical rating scales. Currently, the field of computer vision has seen exponential growth and successful medical applications. While this has been the case, neurology, for the most part, has not embraced digital movement analysis. There are many reasons for this including: the limited size of labeled datasets, accuracy and nontransparent nature of neural networks, and potential legal and ethical concerns. We hypothesize that a number of opportunities are made available by advancements in computer vision that will enable digitization of human form, movements, and will represent them synthetically in 3D. Representing human movements within synthetic body models will potentially pave the way towards objective standardized digital movement disorder diagnosis and building sharable open-source datasets from such processed videos. We provide a perspective of this emerging field and describe how clinicians and computer scientists can navigate this new space. Such digital movement capturing methods will be important for both machine learning-based diagnosis and computer vision-aided clinical assessment. It would also supplement face-to-face clinical visits and be used for longitudinal monitoring and remote diagnosis.
Collapse
Affiliation(s)
- Hao Hu
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Detwiller Pavilion, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Dongsheng Xiao
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Detwiller Pavilion, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Helge Rhodin
- Department of Computer Science, University of British Columbia, Vancouver, BC, Canada
| | - Timothy H. Murphy
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Detwiller Pavilion, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
37
|
Chan GHF. The Role of Genetic Data in Selecting Device-Aided Therapies in Patients With Advanced Parkinson's Disease: A Mini-Review. Front Aging Neurosci 2022; 14:895430. [PMID: 35754954 PMCID: PMC9226397 DOI: 10.3389/fnagi.2022.895430] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD) is a common neurodegenerative disease. At present, 5–10% of PD patients are found to have monogenic form of the disease. Each genetic mutation has its own unique clinical features and disease trajectory. It is unclear if the genetic background can affect the outcome of device-aided therapies in these patients. In general, monogenic PD patients have satisfactory motor outcome after receiving invasive therapies. However, their long-term outcome can vary with their genetic mutations. It appears that patients with leucine-rich repeat kinase-2 (LRRK2) and PRKN mutations tended to have good outcome following deep brain stimulation (DBS) surgery. However, those with Glucocerebrosidase (GBA) mutation were found to have poorer cognitive performance, especially after undergoing subthalamic nucleus DBS surgery. In this review, we will provide an overview of the outcomes of device-aided therapies in PD patients with different genetic mutations.
Collapse
|
38
|
Coutant B, Frontera JL, Perrin E, Combes A, Tarpin T, Menardy F, Mailhes-Hamon C, Perez S, Degos B, Venance L, Léna C, Popa D. Cerebellar stimulation prevents Levodopa-induced dyskinesia in mice and normalizes activity in a motor network. Nat Commun 2022; 13:3211. [PMID: 35680891 PMCID: PMC9184492 DOI: 10.1038/s41467-022-30844-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 05/23/2022] [Indexed: 11/09/2022] Open
Abstract
Chronic Levodopa therapy, the gold-standard treatment for Parkinson's Disease (PD), leads to the emergence of involuntary movements, called levodopa-induced dyskinesia (LID). Cerebellar stimulation has been shown to decrease LID severity in PD patients. Here, in order to determine how cerebellar stimulation induces LID alleviation, we performed daily short trains of optogenetic stimulations of Purkinje cells (PC) in freely moving LID mice. We demonstrated that these stimulations are sufficient to suppress LID or even prevent their development. This symptomatic relief is accompanied by the normalization of aberrant neuronal discharge in the cerebellar nuclei, the motor cortex and the parafascicular thalamus. Inhibition of the cerebello-parafascicular pathway counteracted the beneficial effects of cerebellar stimulation. Moreover, cerebellar stimulation reversed plasticity in D1 striatal neurons and normalized the overexpression of FosB, a transcription factor causally linked to LID. These findings demonstrate LID alleviation and prevention by daily PC stimulations, which restore the function of a wide motor network, and may be valuable for LID treatment.
Collapse
Affiliation(s)
- Bérénice Coutant
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Jimena Laura Frontera
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Elodie Perrin
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - Adèle Combes
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Thibault Tarpin
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Fabien Menardy
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Caroline Mailhes-Hamon
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Sylvie Perez
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - Bertrand Degos
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - Laurent Venance
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - Clément Léna
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France.
| | - Daniela Popa
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France.
| |
Collapse
|
39
|
Chaudhuri KR, Odin P, Ferreira JJ, Antonini A, Rascol O, Kurtis MM, Storch A, Bannister K, Soares-da-Silva P, Costa R, Magalhães D, Rocha JF. Opicapone versus placebo in the treatment of Parkinson’s disease patients with end-of-dose motor fluctuation-associated pain: rationale and design of the randomised, double-blind OCEAN (OpiCapone Effect on motor fluctuations and pAiN) trial. BMC Neurol 2022; 22:88. [PMID: 35279112 PMCID: PMC8917369 DOI: 10.1186/s12883-022-02602-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 02/23/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Optimisation of dopaminergic therapy may alleviate fluctuation-related pain in Parkinson’s disease (PD). Opicapone (OPC) is a third-generation, once-daily catechol-O-methyltransferase inhibitor shown to be generally well tolerated and efficacious in reducing OFF-time in two pivotal trials in patients with PD and end-of-dose motor fluctuations. The OpiCapone Effect on motor fluctuations and pAiN (OCEAN) trial aims to investigate the efficacy of OPC 50 mg in PD patients with end-of-dose motor fluctuations and associated pain, when administered as adjunctive therapy to existing treatment with levodopa/dopa decarboxylase inhibitor (DDCi).
Methods
OCEAN is a Phase IV, international, multicentre, randomised, double-blind, placebo-controlled, parallel-group, interventional trial in PD patients with end-of-dose motor fluctuations and associated pain. It consists of a 1-week screening period, 24-week double-blind treatment period and 2-week follow-up period. Eligible patients will be randomised 1:1 to OPC 50 mg or placebo once daily while continuing current treatment with levodopa/DDCi and other chronic, stable anti-PD and/or analgesic treatments. The primary efficacy endpoint is change from baseline in Domain 3 (fluctuation-related pain) of the King’s Parkinson’s disease Pain Scale (KPPS). The key secondary efficacy endpoint is change from baseline in Domain B (anxiety) of the Movement Disorder Society-sponsored Non-Motor rating Scale (MDS-NMS). Additional secondary efficacy assessments include other domains and total scores of the KPPS and MDS-NMS, the Parkinson’s Disease Questionnaire (PDQ-8), the MDS-sponsored Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) Parts III and IV, Clinical and Patient’s Global Impressions of Change, and change in functional status via Hauser’s diary. Safety assessments include the incidence of treatment-emergent adverse events. The study will be conducted in approximately 140 patients from 50 clinical sites in Germany, Italy, Portugal, Spain and the United Kingdom. Recruitment started in February 2021 and the last patient is expected to complete the study by late 2022.
Discussion
The OCEAN trial will help determine whether the use of adjunctive OPC 50 mg treatment can improve fluctuation-associated pain in PD patients with end-of-dose motor fluctuations. The robust design of OCEAN will address the current lack of reliable evidence for dopaminergic-based therapy in the treatment of PD-associated pain.
Trial registration
EudraCT number 2020–001175-32; registered on 2020-08-07.
Collapse
|
40
|
Rascol O, Medori R, Baayen C, Such P, Meulien D. A Randomized, Double-Blind, Controlled Phase II Study of Foliglurax in Parkinson's Disease. Mov Disord 2022; 37:1088-1093. [PMID: 35218231 PMCID: PMC9303267 DOI: 10.1002/mds.28970] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Agents targeting the metabotropic glutamate receptor 4 have emerged as a potentially attractive new class of drugs for the treatment of Parkinson's disease (PD). OBJECTIVE The objective of this study was to evaluate the efficacy and safety of foliglurax in reducing off time and dyskinesia in patients with PD. METHODS This was a 28-day, multicenter, randomized, placebo-controlled, double-blind clinical trial of foliglurax 10 and 30 mg as adjunct to levodopa in 157 randomly assigned patients with PD and motor complications. RESULTS Although dose-dependent decreases in daily awake off time were apparent following treatment with foliglurax, the change from baseline to day 28 in off time (primary endpoint) and dyskinesia (secondary endpoint) did not improve significantly compared with placebo for either foliglurax dose. Treatment with foliglurax was generally safe, and there were no relevant safety signals. CONCLUSIONS There was no evidence in this study that foliglurax has efficacy in improving levodopa-induced motor complications in PD. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Olivier Rascol
- Clinical Investigation Center CIC1436, Department of Clinical Pharmacology and Neurosciences, Parkinson Expert Centre, NeuroToul Center of Excellence in Neurodegeneration (COEN) of Toulouse and NS-Park/FCRIN Network; INSERM, University of Toulouse 3, CHU of Toulouse, Toulouse, France
| | | | | | | | | | | |
Collapse
|
41
|
[Relevance of COMT inhibitors in the treatment of motor fluctuations]. DER NERVENARZT 2022; 93:1035-1045. [PMID: 35044481 DOI: 10.1007/s00115-021-01237-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/18/2021] [Indexed: 10/19/2022]
Abstract
Catechol O‑methyltransferase (COMT) inhibitors have been established in the treatment of Parkinson's disease for more than 20 years. They are considered the medication of choice for treating motor fluctuations. The available COMT inhibitors, entacapone, opicapone and tolcapone, differ pharmacokinetically in terms of their half-lives with implications for the dose frequency, in their indication requirements and in their spectrum of side effects, including diarrhea and yellow discoloration of urine. Many patients with motor fluctuations are currently not treated with COMT inhibitors and are, therefore, unlikely to receive individually optimized drug treatment. This manuscript summarizes the results of a working group including several Parkinson's disease experts, in which the value of COMT inhibitors was critically discussed.
Collapse
|
42
|
Ferreira AFF, Singulani MP, Ulrich H, Feng ZP, Sun HS, Britto LR. Inhibition of TRPM2 by AG490 Is Neuroprotective in a Parkinson's Disease Animal Model. Mol Neurobiol 2022; 59:1543-1559. [PMID: 35000153 DOI: 10.1007/s12035-022-02723-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/30/2021] [Indexed: 10/19/2022]
Abstract
Parkinson's disease (PD) is characterized by motor impairment and dopaminergic neuronal loss. There is no cure for the disease, and treatments have several limitations. The transient receptor potential melastatin 2 (TRPM2), a calcium-permeable non-selective cation channel, has been reported to be upregulated in neuronal death. However, there are no in vivo studies evaluating TRPM2's role and neuroprotective effects in PD. Here, we test the hypothesis that TRPM2 is upregulated in the 6-hydroxydopamine (6-OHDA) mouse model of PD and that its inhibition, by the AG490, is neuroprotective. For that, AG490 or vehicle were intraperitoneally administered into C57BL/6 mice. Mice then received 6-OHDA into the right striatum. Motor behavior assessments were evaluated 6, 13, and 20 days after surgery using the cylinder and apomorphine-induced rotational testes, and 7, 14, and 21 days after surgery using rotarod test. Brain samples of substantia nigra (SNc) and striatum (CPu) were collected for immunohistochemistry and immunoblotting on days 7 and 21. We showed that TRPM2 protein expression was upregulated in 6-OHDA-treated animals. In addition, AG490 prevented dopaminergic neuron loss, microglial activation, and astrocyte reactivity in 6-OHDA-treated animals. The compound improved motor behaviors and Akt/GSK-3β/caspase-3 signaling. We conclude that TRPM2 inhibition by AG490 is neuroprotective in the 6-OHDA model and that the TRPM2 channel may represent a potential therapeutic target for PD.
Collapse
Affiliation(s)
- Ana Flávia Fernandes Ferreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Monique Patricio Singulani
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Neurosciences - LIM27, Department & Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Zhong-Ping Feng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Hong-Shuo Sun
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.,Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Luiz Roberto Britto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
43
|
Ahmad J, Haider N, Khan MA, Md S, Alhakamy NA, Ghoneim MM, Alshehri S, Sarim Imam S, Ahmad MZ, Mishra A. Novel therapeutic interventions for combating Parkinson's disease and prospects of Nose-to-Brain drug delivery. Biochem Pharmacol 2021; 195:114849. [PMID: 34808125 DOI: 10.1016/j.bcp.2021.114849] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023]
Abstract
Parkinson disease (PD) is a progressive neurodegenerative disorder prevalent mainly in geriatric population. While, L-DOPA remains one of the major choices for the therapeutic management of PD, various motor and non-motor manifestations complicate the management of PD. In the last two decades, exhaustive research has been carried out to explore novel therapeutic approaches for mitigating motor and non-motor symptoms of PD. These approaches majorly include receptor-based, anti-inflammatory, stem-cell and nucleic acid based. The major limitations of existing therapeutic interventions (of commonly oral route) are low efficacy due to low brain bioavailability and associated side effects. Nanotechnology has been exploited and has gained wide attention in the recent years as an approach for enhancement of bioavailability of various small molecule drugs in the brain. To address the challenges associated with PD therapy, nose-to-brain delivery utilizing nanomedicine-based approaches has been found to be encouraging in published evidence. Therefore, the present work summarises the major challenges and limitations with antiparkinsonian drugs, novel therapeutic interventions, and scope of nanomedicine-based nose-to-brain delivery in addressing the current challenges of antiparkinsonian therapy. The manuscript tries to sensitize the researchers for designing brain-targeted nanomedicine loaded with natural/synthetic scaffolds, biosimilars, and nucleic acids that can bypass the first-pass effect for the effective management of PD.
Collapse
Affiliation(s)
- Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia.
| | - Nafis Haider
- Prince Sultan Military College of Health Sciences, Dhahran 34313, Saudi Arabia.
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia.
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia.
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Changsari, Kamrup Assam-781101, India.
| |
Collapse
|
44
|
Ruan X, Lin F, Wu D, Chen L, Weng H, Yu J, Wang Y, Chen Y, Chen X, Ye Q, Meng F, Cai G. Comparative Efficacy and Safety of Dopamine Agonists in Advanced Parkinson's Disease With Motor Fluctuations: A Systematic Review and Network Meta-Analysis of Double-Blind Randomized Controlled Trials. Front Neurosci 2021; 15:728083. [PMID: 34776841 PMCID: PMC8586709 DOI: 10.3389/fnins.2021.728083] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/22/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Movement fluctuations are the main complication of Parkinson's disease (PD) patients receiving long-term levodopa (L-dopa) treatment. We compared and ranked the efficacy and safety of dopamine agonists (DAs) with regard to motor fluctuations by using a Bayesian network meta-analysis (NMA) to quantify information from randomized controlled trials (RCTs). Methods and Findings: We carried out a systematic review and meta-analysis, and only RCTs comparing DAs for advanced PD were included. Electronic databases (PubMed, Embase, and Cochrane Library) were systematically searched for relevant studies published until January 2021. Two reviewers independently extracted individual study data and evaluated studies for risk of bias using the Cochrane Risk of Bias tool. Network meta-analyses using a Bayesian framework were used to calculate the related parameters. The pre-specified primary and secondary outcomes were efficacy (“ON” time without troublesome dyskinesia, “OFF” time, “ON” time, “UPDRS-III,” and “UPDRS-II”) and safety [treatment-emergent adverse events (TEAE) and other adverse events] of DAs. The results are presented as the surface under the cumulative ranking (SUCRA) curve. A total of 20 RCTs assessing 6,560 patients were included. The general DA effects were ranked from high to low with respect to the amount of “ON” time without troublesome dyskinesia as follows: apomorphine (SUCRA = 97.08%), pramipexole_IR (probability = 79.00%), and ropinirole_PR (SUCRA = 63.92%). The general safety of DAs was ranked from high to low with respect to TEAE as follows: placebo (SUCRA = 74.49%), pramipexole_ER (SUCRA = 63.6%), sumanirole (SUCRA = 54.07%), and rotigotine (SUCRA = 53.84%). Conclusions: This network meta-analysis shows that apomorphine increased “ON” time without troublesome dyskinesia and decreased “OF” time for advanced PD patients. The addition of pramipexole, ropinirole, or rotigotine to levodopa treatment in advanced PD patients with motor fluctuations increased “ON” time without troublesome dyskinesia, improved the UPDRS III scores, and ultimately ameliorated the UPDRS II scores, thereby maximizing its benefit. This NMA of pramipexole, ropinirole, and rotigotine represents an effective treatment option and has an acceptable safety profile in patients with advanced PD.
Collapse
Affiliation(s)
- Xinglin Ruan
- Department of Neurology, Fujian Medical University Union Hospital, Fujian, China
| | - Fabin Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fujian, China.,Department of Clinical Medicine, Fujian Medical University, Fujian, China
| | - Dihang Wu
- Department of Neurology, Fujian Medical University Union Hospital, Fujian, China.,Department of Clinical Medicine, Fujian Medical University, Fujian, China
| | - Lina Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fujian, China
| | - Huidan Weng
- Department of Neurology, Fujian Medical University Union Hospital, Fujian, China
| | - Jiao Yu
- Department of Neurology, Fujian Medical University Union Hospital, Fujian, China
| | - Yingqing Wang
- Department of Neurology, Fujian Medical University Union Hospital, Fujian, China
| | - Ying Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fujian, China
| | - Xiaochun Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fujian, China
| | - Qinyong Ye
- Department of Neurology, Fujian Medical University Union Hospital, Fujian, China
| | - Fangang Meng
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guoen Cai
- Department of Neurology, Fujian Medical University Union Hospital, Fujian, China
| |
Collapse
|
45
|
Frouni I, Belliveau S, Maddaford S, Nuara SG, Gourdon JC, Huot P. Effect of the glycine transporter 1 inhibitor ALX-5407 on dyskinesia, psychosis-like behaviours and parkinsonism in the MPTP-lesioned marmoset. Eur J Pharmacol 2021; 910:174452. [PMID: 34480885 DOI: 10.1016/j.ejphar.2021.174452] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/26/2022]
Abstract
Dyskinesia and psychosis are complications encountered in advanced Parkinson's disease (PD) following long-term therapy with L-3,4-dihydroxyphenylalanine (L-DOPA). Disturbances in the glutamatergic system have been associated with both dyskinesia and psychosis, making glutamatergic modulation a potential therapeutic approach for these. Treatments thus far have sought to dampen glutamatergic transmission, for example through blockade of N-methyl-D-aspartate (NMDA) receptors or modulation of metabotropic glutamate receptors 5. In contrast, activation of the glycine-binding site on NMDA receptors is required for their physiological response. Here, we investigated whether indirectly enhancing glutamatergic transmission through inhibition of glycine re-uptake would be efficacious in diminishing both dyskinesia and psychosis-like behaviours (PLBs) in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned common marmoset. Six marmosets were rendered parkinsonian by MPTP injection. Following repeated administration of L-DOPA to induce dyskinesia and PLBs, they underwent acute challenges of the glycine transporter 1 (GlyT1) inhibitor ALX-5407 (0.01, 0.1 and 1 mg/kg) or vehicle, in combination with L-DOPA, after which the severity of dyskinesia, PLBs and parkinsonian disability was evaluated. In combination with L-DOPA, ALX-5407 0.1 and 1 mg/kg significantly reduced the severity of dyskinesia, by 51% and 41% (both P < 0.001), when compared to vehicle. ALX-5407 0.01, 0.1 and 1 mg/kg also decreased the severity of global PLBs, by 25%, 51% and 38% (all P < 0.001), when compared to vehicle. The benefits on dyskinesia and PLBs were achieved without compromising the therapeutic effect of L-DOPA on parkinsonism. Our results suggest that GlyT1 inhibition may be a novel strategy to attenuate dyskinesia and PLBs in PD, without interfering with L-DOPA anti-parkinsonian action.
Collapse
Affiliation(s)
- Imane Frouni
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada; Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Sébastien Belliveau
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | | | - Stephen G Nuara
- Comparative Medicine & Animal Resource Centre, McGill University, Montreal, QC, Canada
| | - Jim C Gourdon
- Comparative Medicine & Animal Resource Centre, McGill University, Montreal, QC, Canada
| | - Philippe Huot
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada; Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; Movement Disorder Clinic, Division of Neurology, Department of Neuroscience, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
46
|
Ahmed-Farid OA, Taha M, Bakeer RM, Radwan OK, Hendawy HAM, Soliman AS, Yousef E. Effects of bee venom and dopamine-loaded nanoparticles on reserpine-induced Parkinson's disease rat model. Sci Rep 2021; 11:21141. [PMID: 34707203 PMCID: PMC8551202 DOI: 10.1038/s41598-021-00764-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/18/2021] [Indexed: 02/08/2023] Open
Abstract
Parkinson's disease (PD) is a progressive chronic neurodegenerative condition characterized by the loss of dopaminergic neurons within the substantia nigra. Current PD therapeutic strategies are mainly symptomatic and can lead to motor complications overtime. As a result, alternative medicine may provide an effective adjuvant treatment for PD as an addition to or as a replacement of the conventional therapies. The aim of this work was to evaluate the effects of Bee Venom (BV) and dopamine (DA)-loaded nanoparticles in a reserpine-induced animal model of PD. After inducing PD with reserpine injection, different groups of male rats were treated with L-Dopa, BV, DA-nanoparticles. Our findings showed that BV and DA-nanoparticles administration restored monoamines, balanced glutamate/GABA levels, halted DNA fragmentation, decreased pro-inflammatory mediators (IL-1β and TNF-α), and elevated anti-inflammatory mediators (PON1) and neurotropic factor (BDNF) levels in comparison with conventional therapy of PD. Furthermore, in a reserpine-induced PD rat model, the ameliorative effects of BV were significantly superior to that of DA-nanoparticles. These findings imply that BV and DA-nanoparticles could be useful as adjuvant treatments for PD.
Collapse
Affiliation(s)
- Omar A Ahmed-Farid
- Physiology Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Mohamed Taha
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Giza, Egypt.
| | - Rofanda M Bakeer
- Pathology Department, Faculty of Medicine, Helwan University, Helwan, Egypt
| | - Omyma K Radwan
- Physiology Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | | | - Ayman S Soliman
- Medical Physiology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Einas Yousef
- Basic Medical Sciences Department, College of Medicine, Dar Al Uloom University, Riyadh, Kingdom of Saudi Arabia
- Histology and Cell Biology Department, Faculty of Medicine, Menoufia University, Shibin El Kom, Egypt
| |
Collapse
|
47
|
Levodopa-Induced Ocular Dyskinesia in an Early-Onset Parkinson Disease Patient With GBA Mutation. Clin Neuropharmacol 2021; 44:201-204. [PMID: 34654015 PMCID: PMC8594500 DOI: 10.1097/wnf.0000000000000484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Supplemental digital content is available in the text. Objectives The aim of this study was to report a case of levodopa-induced ocular dyskinesia in an early-onset Parkinson disease patient and to investigate the pathogenic gene. Methods We report the case of a 49-year-old male patient with a 13-year history of Parkinson disease. Involuntary eye movements were noticed after treatment with amantadine for limb dyskinesias. Levodopa-induced ocular dyskinesias involving repetitive, transient, and stereotyped rightward deviations of gaze appeared after intake of an antiparkinsonian drug. Limb dyskinesias also occurred simultaneously. We used a next-generation sequencing targeted gene panel and found a heterozygous missense mutation (p.R535H) in GBA. Direct Sanger sequencing verified the missense mutation. Conclusions We report the case of an uncommon early-onset PD patient carrying a GBA mutation presenting ocular dyskinesia. Genetic screening may provide a better mechanistic insight into dyskinesias.
Collapse
|
48
|
Jenner P, Rocha JF, Ferreira JJ, Rascol O, Soares-da-Silva P. Redefining the strategy for the use of COMT inhibitors in Parkinson's disease: the role of opicapone. Expert Rev Neurother 2021; 21:1019-1033. [PMID: 34525893 DOI: 10.1080/14737175.2021.1968298] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Levodopa remains the gold-standard Parkinson's disease (PD) treatment, but the inevitable development of motor complications has led to intense activity in pursuit of its optimal delivery. AREAS COVERED Peripheral inhibition of dopa-decarboxylase has long been considered an essential component of levodopa treatment at every stage of illness. In contrast, only relatively recently have catechol-O-methyltransferase (COMT) inhibitors been utilized to block the other major pathway of degradation and optimize levodopa delivery to the brain. First and second-generation COMT inhibitors were deficient because of toxicity, sub-optimal pharmacokinetics or a short duration of effect. As such, they have only been employed once 'wearing-off' has developed. However, the third-generation COMT inhibitor, opicapone has overcome these difficulties and exhibits long-lasting enzyme inhibition without the toxicity observed with previous generations of COMT inhibitors. In clinical trials and real-world PD studies opicapone improves the levodopa plasma profile and results in a significant improvement in ON time in 'fluctuating' disease, but it has not yet been included in the algorithm for early treatment. EXPERT OPINION This review argues for a shift in the positioning of COMT inhibition with opicapone in the PD algorithm and lays out a pathway for proving its effectiveness in early disease.
Collapse
Affiliation(s)
- Peter Jenner
- Institute of Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | | | - Joaquim J Ferreira
- Laboratory of Clinical Pharmacology and Therapeutics, Faculdade De Medicina, Universidade De Lisboa, Lisboa, Portugal.,CNS - Campus Neurológico, Torres Vedras, Portugal
| | - Olivier Rascol
- Clinical Investigation Center CIC1436, Departments of Clinical Pharmacology and Neurosciences, NS-Park/FCRIN Network and Toulouse NeuroToul Coen Center; Inserm, University Hospital of Toulouse, and University of Toulouse 3, Toulouse, France
| | - Patrício Soares-da-Silva
- Department of Research & Development, BIAL - Portela & Ca SA, Portugal.,Department of Pharmacology and Therapeutics, Faculty of Medicine, University Porto, Porto, Portugal
| |
Collapse
|
49
|
Pharmacokinetics of Levodopa and 3-O-Methyldopa in Parkinsonian Patients Treated with Levodopa and Ropinirole and in Patients with Motor Complications. Pharmaceutics 2021; 13:pharmaceutics13091395. [PMID: 34575471 PMCID: PMC8472364 DOI: 10.3390/pharmaceutics13091395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 01/23/2023] Open
Abstract
Parkinson’s disease (PD) is a progressive, neurodegenerative disorder primarily affecting dopaminergic neuronal systems, with impaired motor function as a consequence. The most effective treatment for PD remains the administration of oral levodopa (LD). Long-term LD treatment is frequently associated with motor fluctuations and dyskinesias, which exert a serious impact on a patient’s quality of life. The aim of our study was to determine the pharmacokinetics of LD: used as monotherapy or in combination with ropinirole, in patients with advanced PD. Furthermore, an effect of ropinirole on the pharmacokinetics of 3-OMD (a major LD metabolite) was assessed. We also investigated the correlation between the pharmacokinetic parameters of LD and 3-OMD and the occurrence of motor complications. Twenty-seven patients with idiopathic PD participated in the study. Thirteen patients received both LD and ropinirole, and fourteen administered LD monotherapy. Among 27 patients, twelve experienced fluctuations and/or dyskinesias, whereas fifteen were free of motor complications. Inter- and intra-individual variation in the LD and 3-OMD concentrations were observed. There were no significant differences in the LD and 3-OMD concentrations between the patients treated with a combined therapy of LD and ropinirole, and LD monotherapy. There were no significant differences in the LD concentrations in patients with and without motor complications; however, plasma 3-OMD levels were significantly higher in patients with motor complications. A linear one-compartment pharmacokinetic model with the first-order absorption was adopted for LD and 3-OMD. Only mean exit (residence) time for 3-OMD was significantly shorter in patients treated with ropinirole. Lag time, V/F, CL/F and tmax of LD had significantly lower values in patients with motor complications. On the other hand, AUC were significantly higher in these patients, both for LD and 3-OMD. 3-OMD Cmax was significantly higher in patients with motor complications as well. Our results showed that ropinirole does not influence LD or 3-OMD concentrations. Higher 3-OMD levels play a role in inducing motor complications during long-term levodopa therapy.
Collapse
|
50
|
Majali MA, Sunnaa M, Chand P. Emerging Pharmacotherapies for Motor Symptoms in Parkinson's Disease. J Geriatr Psychiatry Neurol 2021; 34:263-273. [PMID: 34219526 DOI: 10.1177/08919887211018275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is the second commonest neurodegenerative disorder in the older adult and is characterized by progressive disabling motor symptoms of bradykinesia, tremor, rigidity, postural instability and also non motor symptoms that affect quality of life. The pharmacotherapy of PD consists of oral, transdermal, and subcutaneous medications, as well as invasive advanced therapies at later stages of the disease. PD medications are often started as monotherapy but with the progression of the illness often there is a need to add more medications and frequently comprises of a challenging polypharmacotherapy. Adverse effects of pharmacotherapy often add to the problems of adequate treatment. Patients and physicians have to prioritize treatment goals on the most disabling symptoms and the safest and most effective treatments. Almost every year newer medications and modes of delivery continue to be researched and added to the therapeutic armamentarium. This review article outlines existing and emerging pharmacotherapies for motor symptoms in PD.
Collapse
Affiliation(s)
- Mohammad Al Majali
- Department Of Neurology, 12274St Louis University School of Medicine, Spring, St Louis, MO, USA
| | - Michael Sunnaa
- Department Of Neurology, 12274St Louis University School of Medicine, Spring, St Louis, MO, USA
| | - Pratap Chand
- Department Of Neurology, 12274St Louis University School of Medicine, Spring, St Louis, MO, USA
| |
Collapse
|