1
|
Garg D, Holla VV, Ganguly J, Rajan R, Saini A, Agarwal A, Radhakrishnan DM, Basu P, Mondal B, Dhar D, Kamble N, Yadav R, Muthusamy B, Kumar H, Srivastava AK, Pal PK. Expanding the phenotypic and genotypic spectrum of DYT-TUBB4A with seven patients from India. Parkinsonism Relat Disord 2024; 124:107012. [PMID: 38762926 DOI: 10.1016/j.parkreldis.2024.107012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Variants in the TUBB4A gene are associated with dystonia (DYT-TUBB4A), Hypomyelination with Atrophy of the Basal Ganglia and Cerebellum (H-ABC) and spastic paraplegia. Phenotypes intermediate to these three broad phenotypes are also observed. These are rare disorders, and data from diverse populations remains limited. We report seven Indian cases with dystonia phenotype related to TUBB4A mutation. CASES Among these seven patients, age at onset ranged from 5 to 48 years. Five patients had cranio-cervical onset of dystonia. One patient had prominent parkinsonism with dystonia. Patients responded well to botulinum toxin injected for laryngeal, cervical and jaw dystonia. The patient with parkinsonism responded well to levodopa, albeit with development of dyskinesias. Apart from the common p.Arg2Gly variant in three patients with DYT-TUBB4A, other variants included p.Arg262Pro, p.Arg39Cys and p.Asp245Asn. CONCLUSIONS We report the first collection of cases with TUBB4A mutation from India. We expand the phenotype to include levodopa-responsive parkinsonism. Indian patients, consistent with global literature, harbor prominent adductor dysphonia, cervical and jaw dystonia, which responds well to botulinum treatment.
Collapse
Affiliation(s)
- Divyani Garg
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India.
| | - Vikram V Holla
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Jacky Ganguly
- Department of Neurology, Institute of Neurosciences, Kolkata, India
| | - Roopa Rajan
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Arti Saini
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Ayush Agarwal
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Purba Basu
- Department of Neurology, Institute of Neurosciences, Kolkata, India
| | - Banashree Mondal
- Department of Neurology, Institute of Neurosciences, Kolkata, India
| | - Debjyoti Dhar
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Babylakshmi Muthusamy
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India
| | - Hrishikesh Kumar
- Department of Neurology, Institute of Neurosciences, Kolkata, India
| | | | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| |
Collapse
|
2
|
Abugable AA, Antar S, El-Khamisy SF. Chromosomal single-strand break repair and neurological disease: Implications on transcription and emerging genomic tools. DNA Repair (Amst) 2024; 135:103629. [PMID: 38266593 DOI: 10.1016/j.dnarep.2024.103629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024]
Abstract
Cells are constantly exposed to various sources of DNA damage that pose a threat to their genomic integrity. One of the most common types of DNA breaks are single-strand breaks (SSBs). Mutations in the repair proteins that are important for repairing SSBs have been reported in several neurological disorders. While several tools have been utilised to investigate SSBs in cells, it was only through recent advances in genomics that we are now beginning to understand the architecture of the non-random distribution of SSBs and their impact on key cellular processes such as transcription and epigenetic remodelling. Here, we discuss our current understanding of the genome-wide distribution of SSBs, their link to neurological disorders and summarise recent technologies to investigate SSBs at the genomic level.
Collapse
Affiliation(s)
- Arwa A Abugable
- School of Biosciences, Firth Court, University of Sheffield, Sheffield, UK; The healthy Lifespan and Neuroscience Institutes, University of Sheffield, Sheffield, UK
| | - Sarah Antar
- School of Biosciences, Firth Court, University of Sheffield, Sheffield, UK; The healthy Lifespan and Neuroscience Institutes, University of Sheffield, Sheffield, UK; Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Egypt
| | - Sherif F El-Khamisy
- School of Biosciences, Firth Court, University of Sheffield, Sheffield, UK; The healthy Lifespan and Neuroscience Institutes, University of Sheffield, Sheffield, UK; Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, UK.
| |
Collapse
|
3
|
Thomsen M, Lange LM, Zech M, Lohmann K. Genetics and Pathogenesis of Dystonia. ANNUAL REVIEW OF PATHOLOGY 2024; 19:99-131. [PMID: 37738511 DOI: 10.1146/annurev-pathmechdis-051122-110756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Dystonia is a clinically and genetically highly heterogeneous neurological disorder characterized by abnormal movements and postures caused by involuntary sustained or intermittent muscle contractions. A number of groundbreaking genetic and molecular insights have recently been gained. While they enable genetic testing and counseling, their translation into new therapies is still limited. However, we are beginning to understand shared pathophysiological pathways and molecular mechanisms. It has become clear that dystonia results from a dysfunctional network involving the basal ganglia, cerebellum, thalamus, and cortex. On the molecular level, more than a handful of, often intertwined, pathways have been linked to pathogenic variants in dystonia genes, including gene transcription during neurodevelopment (e.g., KMT2B, THAP1), calcium homeostasis (e.g., ANO3, HPCA), striatal dopamine signaling (e.g., GNAL), endoplasmic reticulum stress response (e.g., EIF2AK2, PRKRA, TOR1A), autophagy (e.g., VPS16), and others. Thus, different forms of dystonia can be molecularly grouped, which may facilitate treatment development in the future.
Collapse
Affiliation(s)
- Mirja Thomsen
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany;
| | - Lara M Lange
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany;
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany;
| |
Collapse
|
4
|
Williams LJ, Qiu J, Tchan M, Morris J, Morales‐Briceno H, Fung VS. Seeing What Is Not There: Revisiting a Diagnostic Conundrum in the Clinic. Mov Disord Clin Pract 2023; 10:S54-S57. [PMID: 37636225 PMCID: PMC10448618 DOI: 10.1002/mdc3.13767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/16/2023] [Accepted: 04/03/2023] [Indexed: 08/29/2023] Open
Affiliation(s)
- Laura J. Williams
- Movement Disorder Unit, Department of NeurologyWestmead HospitalWestmeadNew South WalesAustralia
| | - Jessica Qiu
- Movement Disorder Unit, Department of NeurologyWestmead HospitalWestmeadNew South WalesAustralia
| | - Michel Tchan
- Department of Medical GeneticsWestmead HospitalWestmeadNew South WalesAustralia
- Sydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
| | - John Morris
- Movement Disorder Unit, Department of NeurologyWestmead HospitalWestmeadNew South WalesAustralia
| | - Hugo Morales‐Briceno
- Movement Disorder Unit, Department of NeurologyWestmead HospitalWestmeadNew South WalesAustralia
| | - Victor S.C. Fung
- Movement Disorder Unit, Department of NeurologyWestmead HospitalWestmeadNew South WalesAustralia
- Sydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
5
|
Erro R, Magrinelli F, Bhatia KP. Paroxysmal movement disorders: Paroxysmal dyskinesia and episodic ataxia. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:347-365. [PMID: 37620078 DOI: 10.1016/b978-0-323-98817-9.00033-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Paroxysmal movement disorders have traditionally been classified into paroxysmal dyskinesia (PxD), which consists in attacks of involuntary movements (mainly dystonia and/or chorea) without loss of consciousness, and episodic ataxia (EA), which features spells of cerebellar dysfunction with or without interictal neurological manifestations. In this chapter, PxD will be discussed first according to the trigger-based classification, thus reviewing clinical, genetic, and molecular features of paroxysmal kinesigenic dyskinesia, paroxysmal nonkinesigenic dyskinesia, and paroxysmal exercise-induced dyskinesia. EA will be presented thereafter according to their designated gene or genetic locus. Clinicogenetic similarities among paroxysmal movement disorders have progressively emerged, which are herein highlighted along with growing evidence that their pathomechanisms overlap those of epilepsy and migraine. Advances in our comprehension of the biological pathways underlying paroxysmal movement disorders, which involve ion channels as well as proteins associated with the vesical synaptic cycle or implicated in neuronal energy metabolism, may represent the cornerstone for defining a shared pathophysiologic framework and developing target-specific therapies.
Collapse
Affiliation(s)
- Roberto Erro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Baronissi, Salerno, Italy
| | - Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
6
|
Attard TJ, Welburn JPI, Marsh JA. Understanding molecular mechanisms and predicting phenotypic effects of pathogenic tubulin mutations. PLoS Comput Biol 2022; 18:e1010611. [PMID: 36206299 PMCID: PMC9581425 DOI: 10.1371/journal.pcbi.1010611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/19/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022] Open
Abstract
Cells rely heavily on microtubules for several processes, including cell division and molecular trafficking. Mutations in the different tubulin-α and -β proteins that comprise microtubules have been associated with various diseases and are often dominant, sporadic and congenital. While the earliest reported tubulin mutations affect neurodevelopment, mutations are also associated with other disorders such as bleeding disorders and infertility. We performed a systematic survey of tubulin mutations across all isotypes in order to improve our understanding of how they cause disease, and increase our ability to predict their phenotypic effects. Both protein structural analyses and computational variant effect predictors were very limited in their utility for differentiating between pathogenic and benign mutations. This was even worse for those genes associated with non-neurodevelopmental disorders. We selected tubulin-α and -β disease mutations that were most poorly predicted for experimental characterisation. These mutants co-localise to the mitotic spindle in HeLa cells, suggesting they may exert dominant-negative effects by altering microtubule properties. Our results show that tubulin mutations represent a blind spot for current computational approaches, being much more poorly predicted than mutations in most human disease genes. We suggest that this is likely due to their strong association with dominant-negative and gain-of-function mechanisms.
Collapse
Affiliation(s)
- Thomas J. Attard
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Julie P. I. Welburn
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Joseph A. Marsh
- MRC Human Genetics Unit, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
7
|
H-ABC tubulinopathy revealed by label-free second harmonic generation microscopy. Sci Rep 2022; 12:14417. [PMID: 36002546 PMCID: PMC9402540 DOI: 10.1038/s41598-022-18370-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 08/10/2022] [Indexed: 11/08/2022] Open
Abstract
Hypomyelination with atrophy of the basal ganglia and cerebellum is a recently described tubulinopathy caused by a mutation in the tubulin beta 4a isoform, expressed in oligodendrocytes. The taiep rat is the only spontaneous tubulin beta 4a mutant available for the study of this pathology. We aimed to identify the effects of the tubulin mutation on freshly collected, unstained samples of the central white matter of taiep rats using second harmonic generation microscopy. Cytoskeletal differences between the central white matter of taiep rats and control animals were found. Nonlinear emissions from the processes and somata of oligodendrocytes in tubulin beta 4a mutant rats were consistently detected, in the shape of elongated structures and cell-like bodies, which were never detected in the controls. This signal represents the second harmonic trademark of the disease. The tissue was also fluorescently labeled and analyzed to corroborate the origin of the nonlinear signal. Besides enabling the description of structural and molecular aspects of H-ABC, our data open the door to the diagnostic use of nonlinear optics in the study of neurodegenerative diseases, with the additional advantage of a label-free approach that preserves tissue morphology and vitality.
Collapse
|
8
|
Hashiguchi M, Monden Y, Nozaki Y, Watanabe K, Nakashima M, Saitsu H, Yamagata T, Osaka H. A TUBB4A Met363Thr variant in pediatric hypomyelination without atrophy of the basal ganglia. Hum Genome Var 2022; 9:19. [PMID: 35661708 PMCID: PMC9166743 DOI: 10.1038/s41439-022-00198-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/21/2022] [Accepted: 05/02/2022] [Indexed: 01/11/2023] Open
Abstract
TUBB4A gene variants cause dystonia type 4 and hypomyelination with atrophy of the basal ganglia and cerebellum. We report the case of a child with delayed motor development, intellectual disability, and dystonia. Magnetic resonance imaging revealed hypomyelination and progressive cerebellar atrophy without atrophy of the basal ganglia. Whole-exome sequencing revealed a de novo heterozygous variant, c.1088T > C, p.(Met363Thr), in TUBB4A. The present case further supports the vulnerability of the cerebellum in patients with TUBB4A pathogenic variants.
Collapse
Affiliation(s)
- Marina Hashiguchi
- grid.410804.90000000123090000Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Yukifumi Monden
- grid.410804.90000000123090000Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Yasuyuki Nozaki
- grid.410804.90000000123090000Department of Pediatrics, Jichi Medical University, Tochigi, Japan ,Department of Pediatrics, Shin-Oyama City Hospital, Tochigi, Japan
| | - Kazuki Watanabe
- grid.505613.40000 0000 8937 6696Department of Biochemistry, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Mitsuko Nakashima
- grid.505613.40000 0000 8937 6696Department of Biochemistry, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Hirotomo Saitsu
- grid.505613.40000 0000 8937 6696Department of Biochemistry, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Takanori Yamagata
- grid.410804.90000000123090000Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Hitoshi Osaka
- grid.410804.90000000123090000Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
9
|
Fellner A, Goldberg Y, Lev D, Basel-Salmon L, Shor O, Benninger F. In-silico phenotype prediction by normal mode variant analysis in TUBB4A-related disease. Sci Rep 2022; 12:58. [PMID: 34997144 PMCID: PMC8741991 DOI: 10.1038/s41598-021-04337-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/21/2021] [Indexed: 11/09/2022] Open
Abstract
TUBB4A-associated disorder is a rare condition affecting the central nervous system. It displays a wide phenotypic spectrum, ranging from isolated late-onset torsion dystonia to a severe early-onset disease with developmental delay, neurological deficits, and atrophy of the basal ganglia and cerebellum, therefore complicating variant interpretation and phenotype prediction in patients carrying TUBB4A variants. We applied entropy-based normal mode analysis (NMA) to investigate genotype–phenotype correlations in TUBB4A-releated disease and to develop an in-silico approach to assist in variant interpretation and phenotype prediction in this disorder. Variants included in our analysis were those reported prior to the conclusion of data collection for this study in October 2019. All TUBB4A pathogenic missense variants reported in ClinVar and Pubmed, for which associated clinical information was available, and all benign/likely benign TUBB4A missense variants reported in ClinVar, were included in the analysis. Pathogenic variants were divided into five phenotypic subgroups. In-silico point mutagenesis in the wild-type modeled protein structure was performed for each variant. Wild-type and mutated structures were analyzed by coarse-grained NMA to quantify protein stability as entropy difference value (ΔG) for each variant. Pairwise ΔG differences between all variant pairs in each structural cluster were calculated and clustered into dendrograms. Our search yielded 41 TUBB4A pathogenic variants in 126 patients, divided into 11 partially overlapping structural clusters across the TUBB4A protein. ΔG-based cluster analysis of the NMA results revealed a continuum of genotype–phenotype correlation across each structural cluster, as well as in transition areas of partially overlapping structural clusters. Benign/likely benign variants were integrated into the genotype–phenotype continuum as expected and were clearly separated from pathogenic variants. We conclude that our results support the incorporation of the NMA-based approach used in this study in the interpretation of variant pathogenicity and phenotype prediction in TUBB4A-related disease. Moreover, our results suggest that NMA may be of value in variant interpretation in additional monogenic conditions.
Collapse
Affiliation(s)
- Avi Fellner
- Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Hospital, 49100, Petah Tikva, Israel. .,Department of Neurology, Rabin Medical Center, Beilinson Hospital, 49100, Petah Tikva, Israel.
| | - Yael Goldberg
- Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Hospital, 49100, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, 69978, Tel-Aviv, Israel
| | - Dorit Lev
- Sackler Faculty of Medicine, Tel-Aviv University, 69978, Tel-Aviv, Israel.,Metabolic-Neurogenetic Clinic, Wolfson Medical Center, 58220, Holon, Israel.,Rina Mor Institute of Medical Genetics, Wolfson Medical Center, 58220, Holon, Israel
| | - Lina Basel-Salmon
- Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Hospital, 49100, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, 69978, Tel-Aviv, Israel.,Felsenstein Medical Research Center, 49100, Petah Tikva, Israel
| | - Oded Shor
- Department of Neurology, Rabin Medical Center, Beilinson Hospital, 49100, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, 69978, Tel-Aviv, Israel.,Felsenstein Medical Research Center, 49100, Petah Tikva, Israel
| | - Felix Benninger
- Department of Neurology, Rabin Medical Center, Beilinson Hospital, 49100, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, 69978, Tel-Aviv, Israel.,Felsenstein Medical Research Center, 49100, Petah Tikva, Israel
| |
Collapse
|
10
|
Mukherjee A, Sarkar P, Sarkar S, Agrawal R, Dubey S, Pandit A. Adult-onset dystonia with late-onset epilepsy in TUBB4A-Related hypomyelinating leukodystrophy—A new intermediate phenotype. Ann Indian Acad Neurol 2022; 25:562-565. [PMID: 35936629 PMCID: PMC9350765 DOI: 10.4103/aian.aian_952_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/02/2022] [Accepted: 01/14/2022] [Indexed: 11/12/2022] Open
|
11
|
Gavazzi F, Charsar BA, Williams C, Shults J, Alves CA, Adang L, Vanderver A. Acquisition of Developmental Milestones in Hypomyelination With Atrophy of the Basal Ganglia and Cerebellum and Other TUBB4A-Related Leukoencephalopathy. J Child Neurol 2021; 36:805-811. [PMID: 34514881 PMCID: PMC8505576 DOI: 10.1177/08830738211000977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mutations in TUBB4A are associated with a spectrum of neurologic disorders categorized as TUBB4A-related leukoencephalopathy. Affected children can present with global developmental delay or normal early development, followed by a variable loss of skills over time. Further research is needed to characterize the factors associated with the divergent developmental trajectories in this rare monogenic disorder because this phenotypic spectrum is not fully explained by genotype alone.To characterize early psychomotor features, developmental milestones and age of disease onset were collected from medical records (n=54 individuals). Three subcohorts were identified: individuals with the common p.Asp249Asn variant vs all other genotypes with either early (<12 months of age) or late onset of presentation. Individuals with the p.Asp249Asn variant or those with non-p.Asp249Asn genotypes with later disease onset attained key milestones, including head control, sitting, and independent walking. Subjects with early-onset, non-p.Asp249Asn-associated disease were less likely to achieve developmental milestones. Next, we defined the developmental severity as the percentage of milestones attained by age 2 years. The mild form was defined as attaining at least 75% of key developmental milestones. Among cohort categorized as mild, individuals with p.Asp249Asn variant were more likely to lose acquired abilities when compared with non-p.Asp249Asn individuals.Our results suggest multiple influences on developmental trajectory, including a strong contribution from genotype and age of onset. Further studies are needed to identify additional factors that influence overall outcomes to better counsel families and to design clinical trials with appropriate clinical endpoints.
Collapse
Affiliation(s)
- Francesco Gavazzi
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA,Department of Molecular and Translational Medicine, University of Brescia, Italy
| | | | - Catherine Williams
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Justine Shults
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA,Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Cesar A. Alves
- Division of Neuroradiology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Laura Adang
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Adeline Vanderver
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
12
|
Delorme C, Roze E, Karachi C, Vidailhet M, Hainque E. Whispering dysphonia in TUBB4A-related disorders responsive to bipallidal deep brain stimulation. Eur J Neurol 2021; 28:1082-1083. [PMID: 33084096 DOI: 10.1111/ene.14602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Mutations in TUBB4A are associated with a wide phenotypic spectrum including generalized dystonia with whispering dysphonia (DYT-TUBB4A). METHODS We report the case of a 44-year-old patient with DYT-TUBB4A with a clinical presentation of disabling progressive dystonia, with a prominent laryngeal, cervical and facial involvement. RESULTS Bipallidal deep brain stimulation (DBS) resulted in a 55% reduction of dystonia severity assessed by the Burke-Fahn-Marsden scale score 6 months after surgery. The effect was obvious on the cervical and facial components of dystonia. CONCLUSION We suggest that bipallidal DBS should be considered in patients with disabling dystonia related to TUBB4A variants.
Collapse
Affiliation(s)
- Cécile Delorme
- Département de Neurologie, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France.,Faculté de Médecine de Sorbonne Université, UMR S 1127, Inserm U 1127, and CNRS UMR 7225, Institut du Cerveau et de la Moëlle Epinière, Paris, France
| | - Emmanuel Roze
- Département de Neurologie, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France.,Faculté de Médecine de Sorbonne Université, UMR S 1127, Inserm U 1127, and CNRS UMR 7225, Institut du Cerveau et de la Moëlle Epinière, Paris, France
| | - Carine Karachi
- Faculté de Médecine de Sorbonne Université, UMR S 1127, Inserm U 1127, and CNRS UMR 7225, Institut du Cerveau et de la Moëlle Epinière, Paris, France.,Service de Neurochirurgie, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Marie Vidailhet
- Département de Neurologie, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France.,Faculté de Médecine de Sorbonne Université, UMR S 1127, Inserm U 1127, and CNRS UMR 7225, Institut du Cerveau et de la Moëlle Epinière, Paris, France
| | - Elodie Hainque
- Département de Neurologie, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France.,Faculté de Médecine de Sorbonne Université, UMR S 1127, Inserm U 1127, and CNRS UMR 7225, Institut du Cerveau et de la Moëlle Epinière, Paris, France
| |
Collapse
|
13
|
Alata M, González-Vega A, Piazza V, Kleinert-Altamirano A, Cortes C, Ahumada-Juárez JC, Eguibar JR, López-Juárez A, Hernandez VH. Longitudinal Evaluation of Cerebellar Signs of H-ABC Tubulinopathy in a Patient and in the taiep Model. Front Neurol 2021; 12:702039. [PMID: 34335454 PMCID: PMC8317997 DOI: 10.3389/fneur.2021.702039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/08/2021] [Indexed: 01/20/2023] Open
Abstract
Hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC) is a central neurodegenerative disease due to mutations in the tubulin beta-4A (TUBB4A) gene, characterized by motor development delay, abnormal movements, ataxia, spasticity, dysarthria, and cognitive deficits. Diagnosis is made by integrating clinical data and radiological signs. Differences in MRIs have been reported in patients that carry the same mutation; however, a quantitative study has not been performed so far. Our study aimed to provide a longitudinal analysis of the changes in the cerebellum (Cb), corpus callosum (CC), ventricular system, and striatum in a patient suffering from H-ABC and in the taiep rat. We correlated the MRI signs of the patient with the results of immunofluorescence, gait analysis, segmentation of cerebellum, CC, and ventricular system, performed in the taiep rat. We found that cerebellar and callosal changes, suggesting a potential hypomyelination, worsened with age, in concomitance with the emergence of ataxic gait. We also observed a progressive lateral ventriculomegaly in both patient and taiep, possibly secondary to the atrophy of the white matter. These white matter changes are progressive and can be involved in the clinical deterioration. Hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC) gives rise to a spectrum of clinical signs whose pathophysiology still needs to be understood.
Collapse
Affiliation(s)
| | - Arturo González-Vega
- Department of Chemical, Electronic and Biomedical Engineering, Division of Sciences and Engineering, University of Guanajuato, Guanajuato, Mexico
| | | | | | - Carmen Cortes
- Behavioral Neurophysiology Lab, Institute of Physiology, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Juan C Ahumada-Juárez
- Behavioral Neurophysiology Lab, Institute of Physiology, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Jose R Eguibar
- Behavioral Neurophysiology Lab, Institute of Physiology, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico.,Research Office, Vicerrectory of Research and Postgraduate Studies, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Alejandra López-Juárez
- Department of Chemical, Electronic and Biomedical Engineering, Division of Sciences and Engineering, University of Guanajuato, Guanajuato, Mexico
| | - Victor H Hernandez
- Department of Chemical, Electronic and Biomedical Engineering, Division of Sciences and Engineering, University of Guanajuato, Guanajuato, Mexico
| |
Collapse
|
14
|
Gavazzi F, Charsar BA, Williams C, Shults J, Alves CA, Adang L, Vanderver A. Acquisition of Developmental Milestones in Hypomyelination With Atrophy of the Basal Ganglia and Cerebellum and Other TUBB4A-Related Leukoencephalopathy. J Child Neurol 2021. [PMID: 33843299 DOI: 10.1177/0883073821000977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mutations in TUBB4A are associated with a spectrum of neurologic disorders categorized as TUBB4A-related leukoencephalopathy. Affected children can present with global developmental delay or normal early development, followed by a variable loss of skills over time. Further research is needed to characterize the factors associated with the divergent developmental trajectories in this rare monogenic disorder because this phenotypic spectrum is not fully explained by genotype alone.To characterize early psychomotor features, developmental milestones and age of disease onset were collected from medical records (n=54 individuals). Three subcohorts were identified: individuals with the common p.Asp249Asn variant vs all other genotypes with either early (<12 months of age) or late onset of presentation. Individuals with the p.Asp249Asn variant or those with non-p.Asp249Asn genotypes with later disease onset attained key milestones, including head control, sitting, and independent walking. Subjects with early-onset, non-p.Asp249Asn-associated disease were less likely to achieve developmental milestones. Next, we defined the developmental severity as the percentage of milestones attained by age 2 years. The mild form was defined as attaining at least 75% of key developmental milestones. Among cohort categorized as mild, individuals with p.Asp249Asn variant were more likely to lose acquired abilities when compared with non-p.Asp249Asn individuals.Our results suggest multiple influences on developmental trajectory, including a strong contribution from genotype and age of onset. Further studies are needed to identify additional factors that influence overall outcomes to better counsel families and to design clinical trials with appropriate clinical endpoints.
Collapse
Affiliation(s)
- Francesco Gavazzi
- Division of Neurology, 6567Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Brittany A Charsar
- Sidney Kimmel Medical College, 23217Jefferson University, Philadelphia, PA, USA
| | - Catherine Williams
- Division of Neurology, 6567Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Justine Shults
- Department of Pediatrics, 6567Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cesar A Alves
- Division of Neuroradiology, 6567Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Laura Adang
- Division of Neurology, 6567Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adeline Vanderver
- Division of Neurology, 6567Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
15
|
Magrinelli F, Balint B, Bhatia KP. Challenges in Clinicogenetic Correlations: One Gene - Many Phenotypes. Mov Disord Clin Pract 2021; 8:299-310. [PMID: 33816657 PMCID: PMC8015894 DOI: 10.1002/mdc3.13165] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/02/2020] [Accepted: 12/19/2020] [Indexed: 12/25/2022] Open
Abstract
Background Progress in genetics – particularly the advent of next‐generation sequencing (NGS) – has enabled an unparalleled gene discovery and revealed unmatched complexity of genotype–phenotype correlations in movement disorders. Among other things, it has emerged that mutations in one and the same gene can cause multiple, often markedly different phenotypes. Consequently, movement disorder specialists have increasingly experienced challenges in clinicogenetic correlations. Objectives To deconstruct biological phenomena and mechanistic bases of phenotypic heterogeneity in monogenic movement disorders and neurodegenerative diseases. To discuss the evolving role of movement disorder specialists in reshaping disease phenotypes in the NGS era. Methods This scoping review details phenomena contributing to phenotypic heterogeneity and their underlying mechanisms. Results Three phenomena contribute to phenotypic heterogeneity, namely incomplete penetrance, variable expressivity and pleiotropy. Their underlying mechanisms, which are often shared across phenomena and non‐mutually exclusive, are not fully elucidated. They involve genetic factors (ie, different mutation types, dynamic mutations, somatic mosaicism, intragenic intra‐ and inter‐allelic interactions, modifiers and epistatic genes, mitochondrial heteroplasmy), epigenetic factors (ie, genomic imprinting, X‐chromosome inactivation, modulation of genetic and chromosomal defects), and environmental factors. Conclusion Movement disorders is unique in its reliance on clinical judgment to accurately define disease phenotypes. This has been reaffirmed by the NGS revolution, which provides ever‐growing sequencing data and fuels challenges in variant pathogenicity assertions for such clinically heterogeneous disorders. Deep phenotyping, with characterization and continual updating of “core” phenotypes, and comprehension of determinants of genotype–phenotype complex relationships are crucial for clinicogenetic correlations and have implications for the diagnosis, treatment and counseling.
Collapse
Affiliation(s)
- Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology University College London London United Kingdom.,Department of Neurosciences, Biomedicine and Movement Sciences University of Verona Verona Italy
| | - Bettina Balint
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology University College London London United Kingdom.,Department of Neurology University Hospital Heidelberg Heidelberg Germany
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology University College London London United Kingdom
| |
Collapse
|
16
|
Bally JF, Camargos S, Oliveira Dos Santos C, Kern DS, Lee T, Pereira da Silva-Junior F, Puga RD, Cardoso F, Barbosa ER, Yadav R, Ozelius LJ, de Carvalho Aguiar P, Lang AE. DYT-TUBB4A (DYT4 Dystonia): New Clinical and Genetic Observations. Neurology 2020; 96:e1887-e1897. [PMID: 32943487 DOI: 10.1212/wnl.0000000000010882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 09/04/2020] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE To report 4 novel TUBB4A mutations leading to laryngeal and cervical dystonia with frequent generalization. METHODS We screened 4 families including a total of 11 definitely affected members with a clinical picture resembling the original description. RESULTS Four novel variants in the TUBB4A gene have been identified: D295N, R46M, Q424H, and R121W. In silico modeling showed that all variants have characteristics similar to R2G. The variants segregate with the disease in 3 of the families with evidence of incomplete penetrance in 2 of them. All 4 variants would be classified as likely pathogenic. The clinical picture particularly included laryngeal dystonia (often the site of onset), associated with cervical and upper limb dystonia and frequent generalization. Laryngeal dystonia was extremely prevalent (>90%) both in the original cases and in this case series. The hobby horse gait was evident in only 1 patient in this case series. CONCLUSIONS Our interpretation is that laryngeal involvement is a hallmark feature of DYT-TUBB4A. Nevertheless, TUBB4A mutations remain an exceedingly rare cause of laryngeal or other isolated dystonia.
Collapse
Affiliation(s)
- Julien F Bally
- From the Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (J.F.B., A.E.L.), Toronto Western Hospital and University of Toronto, Ontario, Canada; Department of Neurology (J.F.B.), University of Geneva and University Hospitals of Geneva, Switzerland; Department of Internal Medicine (S.C., F.C.), Universidade Federal de Minas Gerais, Belo Horizonte; Hospital Israelita Albert Einstein (C.O.d.S., R.D.P., P.d.C.A.), Sao Paulo, SP, Brazil; Departments of Neurology (D.S.K., T.L.) and Neurosurgery (D.S.K.), University of Colorado School of Medicine; Aurora; Department of Neurology and Neurosurgery (F.P.d.S.-J., E.R.B., P.d.C.A.), Universidade Federal de Sao Paulo, SP, Brazil; and Department of Neurology (R.Y., L.J.O.), Massachusetts General Hospital, Boston. Dr. Bally is currently at Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Sarah Camargos
- From the Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (J.F.B., A.E.L.), Toronto Western Hospital and University of Toronto, Ontario, Canada; Department of Neurology (J.F.B.), University of Geneva and University Hospitals of Geneva, Switzerland; Department of Internal Medicine (S.C., F.C.), Universidade Federal de Minas Gerais, Belo Horizonte; Hospital Israelita Albert Einstein (C.O.d.S., R.D.P., P.d.C.A.), Sao Paulo, SP, Brazil; Departments of Neurology (D.S.K., T.L.) and Neurosurgery (D.S.K.), University of Colorado School of Medicine; Aurora; Department of Neurology and Neurosurgery (F.P.d.S.-J., E.R.B., P.d.C.A.), Universidade Federal de Sao Paulo, SP, Brazil; and Department of Neurology (R.Y., L.J.O.), Massachusetts General Hospital, Boston. Dr. Bally is currently at Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Camila Oliveira Dos Santos
- From the Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (J.F.B., A.E.L.), Toronto Western Hospital and University of Toronto, Ontario, Canada; Department of Neurology (J.F.B.), University of Geneva and University Hospitals of Geneva, Switzerland; Department of Internal Medicine (S.C., F.C.), Universidade Federal de Minas Gerais, Belo Horizonte; Hospital Israelita Albert Einstein (C.O.d.S., R.D.P., P.d.C.A.), Sao Paulo, SP, Brazil; Departments of Neurology (D.S.K., T.L.) and Neurosurgery (D.S.K.), University of Colorado School of Medicine; Aurora; Department of Neurology and Neurosurgery (F.P.d.S.-J., E.R.B., P.d.C.A.), Universidade Federal de Sao Paulo, SP, Brazil; and Department of Neurology (R.Y., L.J.O.), Massachusetts General Hospital, Boston. Dr. Bally is currently at Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Drew S Kern
- From the Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (J.F.B., A.E.L.), Toronto Western Hospital and University of Toronto, Ontario, Canada; Department of Neurology (J.F.B.), University of Geneva and University Hospitals of Geneva, Switzerland; Department of Internal Medicine (S.C., F.C.), Universidade Federal de Minas Gerais, Belo Horizonte; Hospital Israelita Albert Einstein (C.O.d.S., R.D.P., P.d.C.A.), Sao Paulo, SP, Brazil; Departments of Neurology (D.S.K., T.L.) and Neurosurgery (D.S.K.), University of Colorado School of Medicine; Aurora; Department of Neurology and Neurosurgery (F.P.d.S.-J., E.R.B., P.d.C.A.), Universidade Federal de Sao Paulo, SP, Brazil; and Department of Neurology (R.Y., L.J.O.), Massachusetts General Hospital, Boston. Dr. Bally is currently at Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Teresa Lee
- From the Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (J.F.B., A.E.L.), Toronto Western Hospital and University of Toronto, Ontario, Canada; Department of Neurology (J.F.B.), University of Geneva and University Hospitals of Geneva, Switzerland; Department of Internal Medicine (S.C., F.C.), Universidade Federal de Minas Gerais, Belo Horizonte; Hospital Israelita Albert Einstein (C.O.d.S., R.D.P., P.d.C.A.), Sao Paulo, SP, Brazil; Departments of Neurology (D.S.K., T.L.) and Neurosurgery (D.S.K.), University of Colorado School of Medicine; Aurora; Department of Neurology and Neurosurgery (F.P.d.S.-J., E.R.B., P.d.C.A.), Universidade Federal de Sao Paulo, SP, Brazil; and Department of Neurology (R.Y., L.J.O.), Massachusetts General Hospital, Boston. Dr. Bally is currently at Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Francisco Pereira da Silva-Junior
- From the Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (J.F.B., A.E.L.), Toronto Western Hospital and University of Toronto, Ontario, Canada; Department of Neurology (J.F.B.), University of Geneva and University Hospitals of Geneva, Switzerland; Department of Internal Medicine (S.C., F.C.), Universidade Federal de Minas Gerais, Belo Horizonte; Hospital Israelita Albert Einstein (C.O.d.S., R.D.P., P.d.C.A.), Sao Paulo, SP, Brazil; Departments of Neurology (D.S.K., T.L.) and Neurosurgery (D.S.K.), University of Colorado School of Medicine; Aurora; Department of Neurology and Neurosurgery (F.P.d.S.-J., E.R.B., P.d.C.A.), Universidade Federal de Sao Paulo, SP, Brazil; and Department of Neurology (R.Y., L.J.O.), Massachusetts General Hospital, Boston. Dr. Bally is currently at Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Renato David Puga
- From the Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (J.F.B., A.E.L.), Toronto Western Hospital and University of Toronto, Ontario, Canada; Department of Neurology (J.F.B.), University of Geneva and University Hospitals of Geneva, Switzerland; Department of Internal Medicine (S.C., F.C.), Universidade Federal de Minas Gerais, Belo Horizonte; Hospital Israelita Albert Einstein (C.O.d.S., R.D.P., P.d.C.A.), Sao Paulo, SP, Brazil; Departments of Neurology (D.S.K., T.L.) and Neurosurgery (D.S.K.), University of Colorado School of Medicine; Aurora; Department of Neurology and Neurosurgery (F.P.d.S.-J., E.R.B., P.d.C.A.), Universidade Federal de Sao Paulo, SP, Brazil; and Department of Neurology (R.Y., L.J.O.), Massachusetts General Hospital, Boston. Dr. Bally is currently at Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Francisco Cardoso
- From the Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (J.F.B., A.E.L.), Toronto Western Hospital and University of Toronto, Ontario, Canada; Department of Neurology (J.F.B.), University of Geneva and University Hospitals of Geneva, Switzerland; Department of Internal Medicine (S.C., F.C.), Universidade Federal de Minas Gerais, Belo Horizonte; Hospital Israelita Albert Einstein (C.O.d.S., R.D.P., P.d.C.A.), Sao Paulo, SP, Brazil; Departments of Neurology (D.S.K., T.L.) and Neurosurgery (D.S.K.), University of Colorado School of Medicine; Aurora; Department of Neurology and Neurosurgery (F.P.d.S.-J., E.R.B., P.d.C.A.), Universidade Federal de Sao Paulo, SP, Brazil; and Department of Neurology (R.Y., L.J.O.), Massachusetts General Hospital, Boston. Dr. Bally is currently at Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Egberto Reis Barbosa
- From the Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (J.F.B., A.E.L.), Toronto Western Hospital and University of Toronto, Ontario, Canada; Department of Neurology (J.F.B.), University of Geneva and University Hospitals of Geneva, Switzerland; Department of Internal Medicine (S.C., F.C.), Universidade Federal de Minas Gerais, Belo Horizonte; Hospital Israelita Albert Einstein (C.O.d.S., R.D.P., P.d.C.A.), Sao Paulo, SP, Brazil; Departments of Neurology (D.S.K., T.L.) and Neurosurgery (D.S.K.), University of Colorado School of Medicine; Aurora; Department of Neurology and Neurosurgery (F.P.d.S.-J., E.R.B., P.d.C.A.), Universidade Federal de Sao Paulo, SP, Brazil; and Department of Neurology (R.Y., L.J.O.), Massachusetts General Hospital, Boston. Dr. Bally is currently at Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Rachita Yadav
- From the Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (J.F.B., A.E.L.), Toronto Western Hospital and University of Toronto, Ontario, Canada; Department of Neurology (J.F.B.), University of Geneva and University Hospitals of Geneva, Switzerland; Department of Internal Medicine (S.C., F.C.), Universidade Federal de Minas Gerais, Belo Horizonte; Hospital Israelita Albert Einstein (C.O.d.S., R.D.P., P.d.C.A.), Sao Paulo, SP, Brazil; Departments of Neurology (D.S.K., T.L.) and Neurosurgery (D.S.K.), University of Colorado School of Medicine; Aurora; Department of Neurology and Neurosurgery (F.P.d.S.-J., E.R.B., P.d.C.A.), Universidade Federal de Sao Paulo, SP, Brazil; and Department of Neurology (R.Y., L.J.O.), Massachusetts General Hospital, Boston. Dr. Bally is currently at Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Laurie J Ozelius
- From the Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (J.F.B., A.E.L.), Toronto Western Hospital and University of Toronto, Ontario, Canada; Department of Neurology (J.F.B.), University of Geneva and University Hospitals of Geneva, Switzerland; Department of Internal Medicine (S.C., F.C.), Universidade Federal de Minas Gerais, Belo Horizonte; Hospital Israelita Albert Einstein (C.O.d.S., R.D.P., P.d.C.A.), Sao Paulo, SP, Brazil; Departments of Neurology (D.S.K., T.L.) and Neurosurgery (D.S.K.), University of Colorado School of Medicine; Aurora; Department of Neurology and Neurosurgery (F.P.d.S.-J., E.R.B., P.d.C.A.), Universidade Federal de Sao Paulo, SP, Brazil; and Department of Neurology (R.Y., L.J.O.), Massachusetts General Hospital, Boston. Dr. Bally is currently at Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Patricia de Carvalho Aguiar
- From the Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (J.F.B., A.E.L.), Toronto Western Hospital and University of Toronto, Ontario, Canada; Department of Neurology (J.F.B.), University of Geneva and University Hospitals of Geneva, Switzerland; Department of Internal Medicine (S.C., F.C.), Universidade Federal de Minas Gerais, Belo Horizonte; Hospital Israelita Albert Einstein (C.O.d.S., R.D.P., P.d.C.A.), Sao Paulo, SP, Brazil; Departments of Neurology (D.S.K., T.L.) and Neurosurgery (D.S.K.), University of Colorado School of Medicine; Aurora; Department of Neurology and Neurosurgery (F.P.d.S.-J., E.R.B., P.d.C.A.), Universidade Federal de Sao Paulo, SP, Brazil; and Department of Neurology (R.Y., L.J.O.), Massachusetts General Hospital, Boston. Dr. Bally is currently at Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Anthony E Lang
- From the Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (J.F.B., A.E.L.), Toronto Western Hospital and University of Toronto, Ontario, Canada; Department of Neurology (J.F.B.), University of Geneva and University Hospitals of Geneva, Switzerland; Department of Internal Medicine (S.C., F.C.), Universidade Federal de Minas Gerais, Belo Horizonte; Hospital Israelita Albert Einstein (C.O.d.S., R.D.P., P.d.C.A.), Sao Paulo, SP, Brazil; Departments of Neurology (D.S.K., T.L.) and Neurosurgery (D.S.K.), University of Colorado School of Medicine; Aurora; Department of Neurology and Neurosurgery (F.P.d.S.-J., E.R.B., P.d.C.A.), Universidade Federal de Sao Paulo, SP, Brazil; and Department of Neurology (R.Y., L.J.O.), Massachusetts General Hospital, Boston. Dr. Bally is currently at Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Switzerland.
| |
Collapse
|
17
|
Lopez-Juarez A, Gonzalez-Vega A, Kleinert-Altamirano A, Piazza V, Garduno-Robles A, Alata M, Villaseñor-Mora C, Eguibar JR, Cortes C, Padierna LC, Hernandez VH. Auditory impairment in H-ABC tubulinopathy. J Comp Neurol 2020; 529:957-968. [PMID: 32681585 DOI: 10.1002/cne.24990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/12/2020] [Accepted: 07/10/2020] [Indexed: 12/20/2022]
Abstract
Hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC) is a neurodegenerative disease due to mutations in TUBB4A. Patients suffer from extrapyramidal movements, spasticity, ataxia, and cognitive deficits. Magnetic resonance imaging features are hypomyelination and atrophy of the striatum and cerebellum. A correlation between the mutations and their cellular, tissue and organic effects is largely missing. The effects of these mutations on sensory functions have not been described so far. We have previously reported a rat carrying a TUBB4A (A302T) mutation and sharing most of the clinical and radiological signs with H-ABC patients. Here, for the first time, we did a comparative study of the hearing function in an H-ABC patient and in this mutant model. By analyzing hearing function, we found that there are no significant differences in the auditory brainstem response (ABR) thresholds between mutant rats and WT controls. Nevertheless, ABRs show longer latencies in central waves (II-IV) that in some cases disappear when compared to WT. The patient also shows abnormal AEPs presenting only Waves I and II. Distortion product of otoacoustic emissions and immunohistochemistry in the rat show that the peripheral hearing function and morphology of the organ of Corti are normal. We conclude that the tubulin mutation severely impairs the central hearing pathway most probably by progressive central white matter degeneration. Hearing function might be affected in a significant fraction of patients with H-ABC; therefore, screening for auditory function should be done on patients with tubulinopathies to evaluate hearing support therapies.
Collapse
Affiliation(s)
| | - Arturo Gonzalez-Vega
- Division of Sciences and Engineering, University of Guanajuato, Guanajuato, Mexico
| | | | | | - Angeles Garduno-Robles
- Division of Sciences and Engineering, University of Guanajuato, Guanajuato, Mexico.,Center of Research in Optics, Leon, Mexico
| | | | | | - Jose R Eguibar
- Institute of Physiology, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico.,Vicerrectoría de Investigación y Estudios de Posgrado, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Carmen Cortes
- Institute of Physiology, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Luis Carlos Padierna
- Division of Sciences and Engineering, University of Guanajuato, Guanajuato, Mexico
| | - Victor H Hernandez
- Division of Sciences and Engineering, University of Guanajuato, Guanajuato, Mexico
| |
Collapse
|
18
|
Baizabal-Carvallo JF, Cardoso F. Chorea in children: etiology, diagnostic approach and management. J Neural Transm (Vienna) 2020; 127:1323-1342. [DOI: 10.1007/s00702-020-02238-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/01/2020] [Indexed: 01/07/2023]
|
19
|
Deep brain stimulation reduces (nocturnal) dyskinetic exacerbations in patients with ADCY5 mutation: a case series. J Neurol 2020; 267:3624-3631. [PMID: 32647899 PMCID: PMC7674568 DOI: 10.1007/s00415-020-09871-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 12/19/2022]
Abstract
Mutations in the ADCY5 gene can cause a complex hyperkinetic movement disorder. Episodic exacerbations of dyskinesia are a particularly disturbing symptom as they occur predominantly during night and interrupt sleep. We present the clinical short- and long-term effects of pallidal deep brain stimulation (DBS) in three patients with a confirmed pathogenic ADCY5 mutation. Patients were implanted with bilateral pallidal DBS at the age of 34, 20 and 13 years. Medical records were reviewed for clinical history. Pre- and postoperative video files were assessed using the “Abnormal Involuntary Movement Scale” (AIMS) as well as the motor part of the “Burke Fahn Marsden Dystonia Rating Scale” (BFMDRS). All patients reported subjective general improvement ranging from 40 to 60%, especially the reduction of nocturnal episodic dyskinesias (80–90%). Objective scales revealed only a mild decrease of involuntary movements in all and reduced dystonia in one patient. DBS-induced effects were sustained up to 13 years after implantation. We demonstrate that treatment with pallidal DBS was effective in reducing nocturnal dyskinetic exacerbations in patients with ADCY5-related movement disorder, which was sustained over the long term.
Collapse
|
20
|
Garduno-Robles A, Alata M, Piazza V, Cortes C, Eguibar JR, Pantano S, Hernandez VH. MRI Features in a Rat Model of H-ABC Tubulinopathy. Front Neurosci 2020; 14:555. [PMID: 32581692 PMCID: PMC7284052 DOI: 10.3389/fnins.2020.00555] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/05/2020] [Indexed: 11/22/2022] Open
Abstract
Tubulinopathies are a group of recently described diseases characterized by mutations in the tubulin genes. Mutations in TUBB4A produce diseases such as dystonia type 4 (DYT4) and hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC), which are clinically diagnosed by magnetic resonance imaging (MRI). We propose the taiep rat as the first animal model for tubulinopathies. The spontaneous mutant suffers from a syndrome related to a central leukodystrophy and characterized by tremor, ataxia, immobility, epilepsy, and paralysis. The pathological signs presented by these rats and the morphological changes we found by our longitudinal MRI study are similar to those of patients with mutations in TUBB4A. The diffuse atrophy we found in brain, cerebellum and spinal cord is related to the changes detectable in many human tubulinopathies and in particular in H-ABC patients, where myelin degeneration at the level of putamen and cerebellum is a clinical trademark of the disease. We performed Tubb4a exon analysis to corroborate the genetic defect and formulated hypotheses about the effect of amino acid 302 change on protein physiology. Optical microscopy of taiep rat cerebella and spinal cord confirmed the optical density loss in white matter associated with myelin loss, despite the persistence of neural fibers.
Collapse
Affiliation(s)
- Angeles Garduno-Robles
- Departament of Chemical, Electronic and Biomedical Engineering, DCI, University of Guanajuato, Guanajuato, Mexico.,Center of Research in Optics, Leon, Mexico
| | | | | | - Carmen Cortes
- Institute of Physiology, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Jose R Eguibar
- Institute of Physiology, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico.,Research Office of the Vice-rectory of Research and Postgraduate Studies, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Sergio Pantano
- Group of Biomolecular Simulations, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Victor H Hernandez
- Departament of Chemical, Electronic and Biomedical Engineering, DCI, University of Guanajuato, Guanajuato, Mexico
| |
Collapse
|
21
|
Ashrafi MR, Amanat M, Garshasbi M, Kameli R, Nilipour Y, Heidari M, Rezaei Z, Tavasoli AR. An update on clinical, pathological, diagnostic, and therapeutic perspectives of childhood leukodystrophies. Expert Rev Neurother 2019; 20:65-84. [PMID: 31829048 DOI: 10.1080/14737175.2020.1699060] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Leukodystrophies constitute heterogenous group of rare heritable disorders primarily affecting the white matter of central nervous system. These conditions are often under-appreciated among physicians. The first clinical manifestations of leukodystrophies are often nonspecific and can occur in different ages from neonatal to late adulthood periods. The diagnosis is, therefore, challenging in most cases.Area covered: Herein, the authors discuss different aspects of leukodystrophies. The authors used MEDLINE, EMBASE, and GOOGLE SCHOLAR to provide an extensive update about epidemiology, classifications, pathology, clinical findings, diagnostic tools, and treatments of leukodystrophies. Comprehensive evaluation of clinical findings, brain magnetic resonance imaging, and genetic studies play the key roles in the early diagnosis of individuals with leukodystrophies. No cure is available for most heritable white matter disorders but symptomatic treatments can significantly decrease the burden of events. New genetic methods and stem cell transplantation are also under investigation to further increase the quality and duration of life in affected population.Expert opinion: The improvements in molecular diagnostic tools allow us to identify the meticulous underlying etiology of leukodystrophies and result in higher diagnostic rates, new classifications of leukodystrophies based on genetic information, and replacement of symptomatic managements with more specific targeted therapies.Abbreviations: 4H: Hypomyelination, hypogonadotropic hypogonadism and hypodontia; AAV: Adeno-associated virus; AD: autosomal dominant; AGS: Aicardi-Goutieres syndrome; ALSP: Axonal spheroids and pigmented glia; APGBD: Adult polyglucosan body disease; AR: autosomal recessive; ASO: Antisense oligonucleotide therapy; AxD: Alexander disease; BAEP: Brainstem auditory evoked potentials; CAA: Cerebral amyloid angiopathy; CADASIL: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy; CARASAL: Cathepsin A-related arteriopathy with strokes and leukoencephalopathy; CARASIL: Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy; CGH: Comparative genomic hybridization; ClC2: Chloride Ion Channel 2; CMTX: Charcot-Marie-Tooth disease, X-linked; CMV: Cytomegalovirus; CNS: central nervous system; CRISP/Cas9: Clustered regularly interspaced short palindromic repeat/CRISPR-associated 9; gRNA: Guide RNA; CTX: Cerebrotendinous xanthomatosis; DNA: Deoxyribonucleic acid; DSB: Double strand breaks; DTI: Diffusion tensor imaging; FLAIR: Fluid attenuated inversion recovery; GAN: Giant axonal neuropathy; H-ABC: Hypomyelination with atrophy of basal ganglia and cerebellum; HBSL: Hypomyelination with brainstem and spinal cord involvement and leg spasticity; HCC: Hypomyelination with congenital cataracts; HEMS: Hypomyelination of early myelinated structures; HMG CoA: Hydroxy methylglutaryl CoA; HSCT: Hematopoietic stem cell transplant; iPSC: Induced pluripotent stem cells; KSS: Kearns-Sayre syndrome; L-2-HGA: L-2-hydroxy glutaric aciduria; LBSL: Leukoencephalopathy with brainstem and spinal cord involvement and elevated lactate; LCC: Leukoencephalopathy with calcifications and cysts; LTBL: Leukoencephalopathy with thalamus and brainstem involvement and high lactate; MELAS: Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke; MERRF: Myoclonic epilepsy with ragged red fibers; MLC: Megalencephalic leukoencephalopathy with subcortical cysts; MLD: metachromatic leukodystrophy; MRI: magnetic resonance imaging; NCL: Neuronal ceroid lipofuscinosis; NGS: Next generation sequencing; ODDD: Oculodentodigital dysplasia; PCWH: Peripheral demyelinating neuropathy-central-dysmyelinating leukodystrophy-Waardenburg syndrome-Hirschprung disease; PMD: Pelizaeus-Merzbacher disease; PMDL: Pelizaeus-Merzbacher-like disease; RNA: Ribonucleic acid; TW: T-weighted; VWM: Vanishing white matter; WES: whole exome sequencing; WGS: whole genome sequencing; X-ALD: X-linked adrenoleukodystrophy; XLD: X-linked dominant; XLR: X-linked recessive.
Collapse
Affiliation(s)
- Mahmoud Reza Ashrafi
- Myelin Disorders Clinic, Department of Pediatric Neurology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Man Amanat
- Faculty of Medicine, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reyhaneh Kameli
- Myelin Disorders Clinic, Department of Pediatric Neurology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Yalda Nilipour
- Pediatric pathology research center, research institute for children's health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morteza Heidari
- Myelin Disorders Clinic, Department of Pediatric Neurology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Rezaei
- Myelin Disorders Clinic, Department of Pediatric Neurology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Reza Tavasoli
- Myelin Disorders Clinic, Department of Pediatric Neurology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Di Fonzo A, Franco G, Barone P, Erro R. Parkinsonism in diseases predominantly presenting with dystonia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 149:307-326. [PMID: 31779818 DOI: 10.1016/bs.irn.2019.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
If the presence of dystonia is a well-recognized phenomenon in disorders predominantly presenting with parkinsonism, including sporadic Parkinson Disease, the term dystonia-parkinsonism usually refers to rare conditions, often genetic, in which the severity of dystonia usually equates that of parkinsonism. At variance with parkinsonian syndromes with additional dystonia, the conditions reviewed in this chapter have usually their onset in childhood and their diagnostic work-up is different. In fact, the phenotype is not usually specific of the underlying defect and additional investigations are therefore required. Here, we review the diseases predominantly presenting with dystonia where parkinsonism can develop, according to their main pathophysiological mechanism including disorders of dopamine biosynthesis, neurotransmitter transporter disorders, disorder of metal metabolism (i.e., iron, copper and manganese) and other inherited dystonia-parkinsonism conditions.
Collapse
Affiliation(s)
- Alessio Di Fonzo
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giulia Franco
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Paolo Barone
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Roberto Erro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| |
Collapse
|
23
|
Abstract
Within the field of movement disorders, the conceptual understanding of dystonia has continued to evolve. Clinical advances have included improvements in recognition of certain features of dystonia, such as tremor, and understanding of phenotypic spectrums in the genetic dystonias and dystonia terminology and classification. Progress has also been made in the understanding of underlying biological processes which characterize dystonia from discoveries using approaches such as neurophysiology, functional imaging, genetics, and animal models. Important advances include the role of the cerebellum in dystonia, the concept of dystonia as an aberrant brain network disorder, additional evidence supporting the concept of dystonia endophenotypes, and new insights into psychogenic dystonia. These discoveries have begun to shape treatment approaches as, in parallel, important new treatment modalities, including magnetic resonance imaging-guided focused ultrasound, have emerged and existing interventions such as deep brain stimulation have been further refined. In this review, these topics are explored and discussed.
Collapse
Affiliation(s)
- Stephen Tisch
- Faculty of Medicine, University of New South Wales, Sydney, Australia.,Department of Neurology, St Vincent's Hospital, Sydney, Australia
| |
Collapse
|
24
|
Di Fonzo A, Monfrini E, Erro R. Genetics of Movement Disorders and the Practicing Clinician; Who and What to Test for? Curr Neurol Neurosci Rep 2018; 18:37. [PMID: 29789954 DOI: 10.1007/s11910-018-0847-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW This review aims to provide the basic knowledge on the genetics of hypokinetic and hyperkinetic movement disorders to guide clinicians in the decision of "who and what to test for?" RECENT FINDINGS In recent years, the identification of various genetic causes of hypokinetic and hyperkinetic movement disorders has had a great impact on a better definition of different clinical syndromes. Indeed, the advent of next-generation sequencing (NGS) techniques has provided an impressive step forward in the easy identification of genetic forms. However, this increased availability of genetic testing has challenges, including the ethical issue of genetic testing in unaffected family members, "commercially" available home testing kits and the increasing number and relevance of "variants of unknown significance." The emergent role of genetic factors has important implications on clinical practice and counseling. As a consequence, it is fundamental that practicing neurologists have a proper knowledge of the genetic background of the diseases and perform an accurate selection of who has to be tested and for which gene mutations.
Collapse
Affiliation(s)
- Alessio Di Fonzo
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Edoardo Monfrini
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Roberto Erro
- Neurodegenerative disease center (CEMAND), Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.
| |
Collapse
|
25
|
Curiel J, Rodríguez Bey G, Takanohashi A, Bugiani M, Fu X, Wolf NI, Nmezi B, Schiffmann R, Bugaighis M, Pierson T, Helman G, Simons C, van der Knaap MS, Liu J, Padiath Q, Vanderver A. TUBB4A mutations result in specific neuronal and oligodendrocytic defects that closely match clinically distinct phenotypes. Hum Mol Genet 2018; 26:4506-4518. [PMID: 28973395 DOI: 10.1093/hmg/ddx338] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/24/2017] [Indexed: 12/16/2022] Open
Abstract
Hypomyelinating leukodystrophies are heritable disorders defined by lack of development of brain myelin, but the cellular mechanisms of hypomyelination are often poorly understood. Mutations in TUBB4A, encoding the tubulin isoform tubulin beta class IVA (Tubb4a), result in the symptom complex of hypomyelination with atrophy of basal ganglia and cerebellum (H-ABC). Additionally, TUBB4A mutations are known to result in a broad phenotypic spectrum, ranging from primary dystonia (DYT4), isolated hypomyelination with spastic quadriplegia, and an infantile onset encephalopathy, suggesting multiple cell types may be involved. We present a study of the cellular effects of TUBB4A mutations responsible for H-ABC (p.Asp249Asn), DYT4 (p.Arg2Gly), a severe combined phenotype with hypomyelination and encephalopathy (p.Asn414Lys), as well as milder phenotypes causing isolated hypomyelination (p.Val255Ile and p.Arg282Pro). We used a combination of histopathological, biochemical and cellular approaches to determine how these different mutations may have variable cellular effects in neurons and/or oligodendrocytes. Our results demonstrate that specific mutations lead to either purely neuronal, combined neuronal and oligodendrocytic or purely oligodendrocytic defects that closely match their respective clinical phenotypes. Thus, the DYT4 mutation that leads to phenotypes attributable to neuronal dysfunction results in altered neuronal morphology, but with unchanged tubulin quantity and polymerization, with normal oligodendrocyte morphology and myelin gene expression. Conversely, mutations associated with isolated hypomyelination (p.Val255Ile and p.Arg282Pro) and the severe combined phenotype (p.Asn414Lys) resulted in normal neuronal morphology but were associated with altered oligodendrocyte morphology, myelin gene expression, and microtubule dysfunction. The H-ABC mutation (p.Asp249Asn) that exhibits a combined neuronal and myelin phenotype had overlapping cellular defects involving both neuronal and oligodendrocyte cell types in vitro. Only mutations causing hypomyelination phenotypes showed altered microtubule dynamics and acted through a dominant toxic gain of function mechanism. The DYT4 mutation had no impact on microtubule dynamics suggesting a distinct mechanism of action. In summary, the different clinical phenotypes associated with TUBB4A reflect the selective and specific cellular effects of the causative mutations. Cellular specificity of disease pathogenesis is relevant to developing targeted treatments for this disabling condition.
Collapse
Affiliation(s)
- Julian Curiel
- Center for Neuroscience Research, Children's National Health System, Children's Research Institute, Washington, DC 20010, USA
| | | | - Asako Takanohashi
- Center for Genetic Medicine Research, Children's National Health System, Children's Research Institute, Washington, DC 20010, USA.,Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Xiaoqin Fu
- Center for Neuroscience Research, Children's National Health System, Children's Research Institute, Washington, DC 20010, USA
| | - Nicole I Wolf
- VU University Medical Center, Amsterdam, The Netherlands
| | - Bruce Nmezi
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Raphael Schiffmann
- Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX 75204, USA
| | - Mona Bugaighis
- Center for Neuroscience Research, Children's National Health System, Children's Research Institute, Washington, DC 20010, USA
| | - Tyler Pierson
- Departments of Pediatrics and Neurology, Cedar Sinai Medical Center, Board of Governors Regenerative Medicine Institute, Los Angeles, CA 90048, USA
| | - Guy Helman
- Center for Genetic Medicine Research, Children's National Health System, Children's Research Institute, Washington, DC 20010, USA.,Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia.,Department of Neurology, Children's National Health System, Washington, DC 20010, USA
| | - Cas Simons
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | | | - Judy Liu
- Center for Neuroscience Research, Children's National Health System, Children's Research Institute, Washington, DC 20010, USA
| | - Quasar Padiath
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Adeline Vanderver
- Center for Genetic Medicine Research, Children's National Health System, Children's Research Institute, Washington, DC 20010, USA.,Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Neurology, Children's National Health System, Washington, DC 20010, USA.,Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
26
|
Slow EJ, Lang AE. Oculogyric crises: A review of phenomenology, etiology, pathogenesis, and treatment. Mov Disord 2017; 32:193-202. [PMID: 28218460 DOI: 10.1002/mds.26910] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 12/02/2016] [Accepted: 12/09/2016] [Indexed: 12/19/2022] Open
Abstract
Oculogyric crises are a rare movement disorder characterized by paroxysmal, conjugate, tonic, usually upwards, deviation of the eyes. Causes for oculogyric crises are limited and include complications of dopamine-receptor blocking medications and neurometabolic disorders affecting dopamine metabolism, suggesting that an underlying hypodopaminergic state is important to the pathogenesis. Mimickers of oculogyric crises exist, and we propose diagnostic criteria to distinguish true oculogyric crises. Recognition of oculogyric crises is important for the diagnosis and appropriate treatment of rare disorders, and an approach to investigations in oculogyric crises is proposed. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Elizabeth J Slow
- Movement Disorders Center, Division of Neurology, TWH, University of Toronto, Toronto, Ontario, Canada
| | - Anthony E Lang
- Movement Disorders Center, Division of Neurology, TWH, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
27
|
Ruiz-Lopez M, Fasano A. Rethinking status dystonicus. Mov Disord 2017; 32:1667-1676. [PMID: 29144565 DOI: 10.1002/mds.27207] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 10/01/2017] [Accepted: 10/06/2017] [Indexed: 01/18/2023] Open
Abstract
Status dystonicus is a movement disorder emergency that has been a source of controversy in terms of terminology, phenomenology, and management since it was first described in 1982. Here we argue that the current use of the term status dystonicus falls well short of the precision needed for either clinical or academic use. We performed a critical review on this topic, describing possible pathophysiological mechanisms and areas of uncertainties. This review also addresses the problems derived by the extreme clinical heterogeneity of this condition, as the lack of an objective criterion useful for the definition, or the fact that status dystonicus may present not only in the context of a known dystonic syndrome. We propose a new possible definition that includes not only dystonia but also other hyperkinetic movements in the wide range of movement disorders that can be seen during an episode. The new definition keeps the term status dystonicus and highlights the fact that this is a medical emergency based on the impairment of bulbar and/or respiratory function requiring hospital admission as the principal feature. Furthermore, the new definition should not consider as necessary unspecific features as patient's condition at baseline, the distribution of dystonia, occurrence of systemic symptoms such as fever or laboratory findings. We hope that this proposal will stimulate the debate on this subject among our peers, further developing a clinical and pathophysiological understanding of status dystonicus. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Marta Ruiz-Lopez
- Morton and Gloria Shulman Movement Disorders Centre and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Alfonso Fasano
- Morton and Gloria Shulman Movement Disorders Centre and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Abstract
Mainly due to the advent of next-generation sequencing (NGS), the field of genetics of dystonia has rapidly grown in recent years, which led to the discovery of a number of novel dystonia genes and the development of a new classification and nomenclature for inherited dystonias. In addition, new findings from both in vivo and in vitro studies have been published on the role of previously known dystonia genes, extending our understanding of the pathophysiology of dystonia. We here review the current knowledge and recent findings in the known genes for isolated dystonia TOR1A, THAP1, and GNAL as well as for the combined dystonias due to mutations in GCH1, ATP1A3, and SGCE. We present confirmatory evidence for a role of dystonia genes that had not yet been unequivocally established including PRKRA, TUBB4A, ANO3, and TAF1. We finally discuss selected novel genes for dystonia such as KMT2B and VAC14 along with the challenges for gene identification in the NGS era and the translational importance of dystonia genetics in clinical practice.
Collapse
|
29
|
A novel TUBB4A mutation G96R identified in a patient with hypomyelinating leukodystrophy onset beyond adolescence. Hum Genome Var 2017; 4:17035. [PMID: 28791129 PMCID: PMC5540734 DOI: 10.1038/hgv.2017.35] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/26/2017] [Accepted: 06/26/2017] [Indexed: 12/22/2022] Open
Abstract
The tubulin beta-4A gene (TUBB4A) is associated with two different clinical conditions, dystonia type 4 (DYT4) and hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC). We identified a novel TUBB4A mutation, c.286G>A (p.G96R), in an adult male patient who suffered neurological symptoms beyond adolescence. This patient shows intermediate clinical features between DYT4 and H-ABC, suggesting that the TUBB4A disorder would constitute a spectrum disorder.
Collapse
|
30
|
Estrada-Cuzcano A, Martin S, Chamova T, Synofzik M, Timmann D, Holemans T, Andreeva A, Reichbauer J, De Rycke R, Chang DI, van Veen S, Samuel J, Schöls L, Pöppel T, Mollerup Sørensen D, Asselbergh B, Klein C, Zuchner S, Jordanova A, Vangheluwe P, Tournev I, Schüle R. Loss-of-function mutations in the ATP13A2/PARK9 gene cause complicated hereditary spastic paraplegia (SPG78). Brain 2017; 140:287-305. [PMID: 28137957 DOI: 10.1093/brain/aww307] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/29/2016] [Accepted: 10/19/2016] [Indexed: 12/23/2022] Open
Abstract
Hereditary spastic paraplegias are heterogeneous neurodegenerative disorders characterized by progressive spasticity of the lower limbs due to degeneration of the corticospinal motor neurons. In a Bulgarian family with three siblings affected by complicated hereditary spastic paraplegia, we performed whole exome sequencing and homozygosity mapping and identified a homozygous p.Thr512Ile (c.1535C > T) mutation in ATP13A2. Molecular defects in this gene have been causally associated with Kufor-Rakeb syndrome (#606693), an autosomal recessive form of juvenile-onset parkinsonism, and neuronal ceroid lipofuscinosis (#606693), a neurodegenerative disorder characterized by the intracellular accumulation of autofluorescent lipopigments. Further analysis of 795 index cases with hereditary spastic paraplegia and related disorders revealed two additional families carrying truncating biallelic mutations in ATP13A2. ATP13A2 is a lysosomal P5-type transport ATPase, the activity of which critically depends on catalytic autophosphorylation. Our biochemical and immunocytochemical experiments in COS-1 and HeLa cells and patient-derived fibroblasts demonstrated that the hereditary spastic paraplegia-associated mutations, similarly to the ones causing Kufor-Rakeb syndrome and neuronal ceroid lipofuscinosis, cause loss of ATP13A2 function due to transcript or protein instability and abnormal intracellular localization of the mutant proteins, ultimately impairing the lysosomal and mitochondrial function. Moreover, we provide the first biochemical evidence that disease-causing mutations can affect the catalytic autophosphorylation activity of ATP13A2. Our study adds complicated hereditary spastic paraplegia (SPG78) to the clinical continuum of ATP13A2-associated neurological disorders, which are commonly hallmarked by lysosomal and mitochondrial dysfunction. The disease presentation in our patients with hereditary spastic paraplegia was dominated by an adult-onset lower-limb predominant spastic paraparesis. Cognitive impairment was present in most of the cases and ranged from very mild deficits to advanced dementia with fronto-temporal characteristics. Nerve conduction studies revealed involvement of the peripheral motor and sensory nerves. Only one of five patients with hereditary spastic paraplegia showed clinical indication of extrapyramidal involvement in the form of subtle bradykinesia and slight resting tremor. Neuroimaging cranial investigations revealed pronounced vermian and hemispheric cerebellar atrophy. Notably, reduced striatal dopamine was apparent in the brain of one of the patients, who had no clinical signs or symptoms of extrapyramidal involvement.
Collapse
Affiliation(s)
- Alejandro Estrada-Cuzcano
- Molecular Neurogenomics Group, VIB Department of Molecular Genetics, University of Antwerp, Universiteitsplein 1, 2610 Antwerpen, Belgium
| | - Shaun Martin
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven; 3000 Leuven, Belgium
| | - Teodora Chamova
- Department of Neurology, Medical University-Sofia, 1431 Sofia, Bulgaria
| | - Matthis Synofzik
- Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Dagmar Timmann
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Tine Holemans
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven; 3000 Leuven, Belgium
| | - Albena Andreeva
- Department of Neurology, Medical University-Sofia, 1431 Sofia, Bulgaria
| | - Jennifer Reichbauer
- Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | - Riet De Rycke
- Inflammation Research Center, VIB, Ghent, Belgium and Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Dae-In Chang
- Inflammation Research Center, VIB, Ghent, Belgium and Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Sarah van Veen
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven; 3000 Leuven, Belgium
| | - Jean Samuel
- Department of Neurology, Medical University-Sofia, 1431 Sofia, Bulgaria
| | - Ludger Schöls
- Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Thorsten Pöppel
- Department of Nuclear Medicine, Essen University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Danny Mollerup Sørensen
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven; 3000 Leuven, Belgium
| | - Bob Asselbergh
- VIB Department of Molecular Genetics, University of Antwerp, Universiteitsplein 1, 2610 Antwerpen, Belgium
| | - Christine Klein
- Molecular Neurogenomics Group, VIB Department of Molecular Genetics, University of Antwerp, Universiteitsplein 1, 2610 Antwerpen, Belgium.,Molecular Neurogenomics Group, VIB Department of Molecular Genetics, University of Antwerp, Universiteitsplein 1, 2610 Antwerpen, Belgium
| | - Stephan Zuchner
- Molecular Neurogenomics Group, VIB Department of Molecular Genetics, University of Antwerp, Universiteitsplein 1, 2610 Antwerpen, Belgium
| | - Albena Jordanova
- Molecular Neurogenomics Group, VIB Department of Molecular Genetics, University of Antwerp, Universiteitsplein 1, 2610 Antwerpen, Belgium.,Molecular Neurogenomics Group, VIB Department of Molecular Genetics, University of Antwerp, Universiteitsplein 1, 2610 Antwerpen, Belgium.,Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven; 3000 Leuven, Belgium
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven; 3000 Leuven, Belgium
| | - Ivailo Tournev
- Department of Neurology, Medical University-Sofia, 1431 Sofia, Bulgaria.,Molecular Neurogenomics Group, VIB Department of Molecular Genetics, University of Antwerp, Universiteitsplein 1, 2610 Antwerpen, Belgium.,Department of Neurology, Medical University-Sofia, 1431 Sofia, Bulgaria
| | - Rebecca Schüle
- Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany .,German Center of Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany.,Molecular Neurogenomics Group, VIB Department of Molecular Genetics, University of Antwerp, Universiteitsplein 1, 2610 Antwerpen, Belgium
| |
Collapse
|
31
|
|
32
|
de Gusmão CM, Fuchs T, Moses A, Multhaupt-Buell T, Song PC, Ozelius LJ, Franco RA, Sharma N. Dystonia-Causing Mutations as a Contribution to the Etiology of Spasmodic Dysphonia. Otolaryngol Head Neck Surg 2016; 155:624-8. [PMID: 27188707 DOI: 10.1177/0194599816648293] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/15/2016] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Spasmodic dysphonia is a focal dystonia of the larynx with heterogeneous manifestations and association with familial risk factors. There are scarce data to allow precise understanding of etiology and pathophysiology. Screening for dystonia-causing genetic mutations has the potential to allow accurate diagnosis, inform about genotype-phenotype correlations, and allow a better understanding of mechanisms of disease. STUDY DESIGN Cross-sectional study. SETTING Tertiary academic medical center. SUBJECTS AND METHODS We enrolled patients presenting with spasmodic dysphonia to the voice clinic of our academic medical center. Data included demographics, clinical features, family history, and treatments administered. The following genes with disease-causing mutations previously associated with spasmodic dysphonia were screened: TOR1A (DYT1), TUBB4 (DYT4), and THAP1 (DYT6). RESULTS Eighty-six patients were recruited, comprising 77% females and 23% males. A definite family history of neurologic disorder was present in 15% (13 of 86). Average age (± standard deviation) of symptom onset was 42.1 ± 15.7 years. Most (99%; 85 of 86) were treated with botulinum toxin, and 12% (11 of 86) received oral medications. Genetic screening was negative in all patients for the GAG deletion in TOR1A (DYT1) and in the 5 exons currently associated with disease-causing mutations in TUBB4 (DYT4). Two patients tested positive for novel/rare variants in THAP1 (DYT6). CONCLUSION Genetic screening targeted at currently known disease-causing mutations in TOR1A, THAP1, and TUBB4 appears to have low diagnostic yield in sporadic spasmodic dysphonia. In our cohort, only 2 patients tested positive for novel/rare variants in THAP1. Clinicians should make use of genetic testing judiciously and in cost-effective ways.
Collapse
Affiliation(s)
- Claudio M de Gusmão
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Tania Fuchs
- Department of Genetics and Genomics, Icahn School of Medicine at Mt Sinai, New York, New York, USA
| | - Andrew Moses
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | | | - Phillip C Song
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Laurie J Ozelius
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ramon A Franco
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
33
|
Domingo A, Erro R, Lohmann K. Novel Dystonia Genes: Clues on Disease Mechanisms and the Complexities of High-Throughput Sequencing. Mov Disord 2016; 31:471-7. [PMID: 26991507 DOI: 10.1002/mds.26600] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 02/08/2016] [Accepted: 02/11/2016] [Indexed: 12/24/2022] Open
Abstract
Dystonia is a genetically heterogenous disease and a prototype disorder where next-generation sequencing has facilitated the identification of new pathogenic genes. This includes the first two genes linked to recessively inherited isolated dystonia, that is, HPCA (hippocalcin) and COL6A3 (collagen VI alpha 3). These genes are proposed to underlie cases of the so-called DYT2-like dystonia, while also reiterating two distinct pathways in dystonia pathogenesis. First, deficiency in HPCA function is thought to alter calcium homeostasis, a mechanism that has previously been forwarded for CACNA1A and ANO3. The novel myoclonus-dystonia genes KCTD17 and CACNA1B also implicate abnormal calcium signaling in dystonia. Second, the phenotype in COL6A3-loss-of-function zebrafish models argues for a neurodevelopmental defect, which has previously been suggested as a possible biological mechanism for THAP1, TOR1A, and TAF1 based on expression data. The newly reported myoclonus-dystonia gene, RELN, plays also a role in the formation of brain structures. Defects in neurodevelopment likewise seem to be a recurrent scheme underpinning mainly complex dystonias, for example those attributable to biallelic mutations in GCH1, TH, SPR, or to heterozygous TUBB4A mutations. To date, it remains unclear whether dystonia is a common phenotypic outcome of diverse underlying disease mechanisms, or whether the different genetic causes converge in a single pathway. Importantly, the relevance of pathways highlighted by novel dystonia genes identified by high-throughput sequencing depends on the confirmation of mutation pathogenicity in subsequent genetic and functional studies. However, independent, careful validation of genetic findings lags behind publications of newly identified genes. We conclude with a discussion on the characteristics of true-positive reports.
Collapse
Affiliation(s)
- Aloysius Domingo
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| | - Roberto Erro
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, United Kingdom
- Dipartimento di Scienze Neurologiche e del Movimento, Università di Verona, Verona, Italy
| | - Katja Lohmann
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| |
Collapse
|
34
|
Ganos C, Crowe B, Stamelou M, Kresojević N, Lukić MJ, Bras J, Guerreiro R, Taiwo F, Balint B, Batla A, Schneider SA, Erro R, Svetel M, Kostić V, Kurian MA, Bhatia KP. The clinical syndrome of dystonia with anarthria/aphonia. Parkinsonism Relat Disord 2016; 24:20-7. [DOI: 10.1016/j.parkreldis.2016.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/10/2016] [Accepted: 01/25/2016] [Indexed: 10/22/2022]
|
35
|
Tonduti D, Aiello C, Renaldo F, Dorboz I, Saaman S, Rodriguez D, Fettah H, Elmaleh M, Biancheri R, Barresi S, Boccone L, Orcesi S, Pichiecchio A, Zangaglia R, Maurey H, Rossi A, Boespflug-Tanguy O, Bertini E. TUBB4A-related hypomyelinating leukodystrophy: New insights from a series of 12 patients. Eur J Paediatr Neurol 2016; 20:323-330. [PMID: 26643067 DOI: 10.1016/j.ejpn.2015.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/23/2015] [Accepted: 11/05/2015] [Indexed: 11/24/2022]
Abstract
BACKGROUND Hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC) was first described in 2002. After the recent identification of TUBB4A mutation as the genetic basis of the disease, the clinical and neuroimaging phenotype related to TUBB4A mutations expanded, ranging from primary dystonia type 4 with normal MRI to severe H-ABC cases. PATIENTS AND METHODS The study included patients referred to us for an unclassified hypomyelinating leukodystrophy. We selected patients with deleterious heterozygous TUBB4A mutations. Molecular analysis of TUBB4A was performed on genomic DNA extracted from peripheral blood. RESULTS The series included 12 patients (5 females and 7 males). Five patients carried the common mutation c.745G > A (p.Asp249Asn), while the remaining harbored different mutations. Three new mutations were found in 5 patients. Clinical and neuroimaging observations are described. A clear correlation between the clinical presentation and the genotype seems to be absent in our group of 12 patients. CONCLUSIONS TUBB4A-mutated patients manifest a comparable clinical and neuroimaging picture but they can differ from each other in terms of rate of disease progression. Extrapyramidal signs can be absent in the first stages of the disease, and a careful evaluation of MRI is fundamental to obtain the final diagnosis. From a therapeutic perspective a trial with l-dopa should be considered in all patients presenting extrapyramidal symptoms.
Collapse
Affiliation(s)
- Davide Tonduti
- Department of Child Neurology, Neurological Institute C. Besta Foundation IRCCS, Milan, Italy; INSERM UMR1141, Paris Diderot University, Sorbonne Paris Cité, DHU PROTECT, France.
| | - Chiara Aiello
- Unit of Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesu' Children's Research Hospital, Rome, Italy
| | - Florence Renaldo
- INSERM UMR1141, Paris Diderot University, Sorbonne Paris Cité, DHU PROTECT, France; AP-HP, Departement of Neuropediatrics and Metabolic Diseases, National Reference Center for Leukodystrophies, Robert Debré Hospital, Paris, France
| | - Imen Dorboz
- INSERM UMR1141, Paris Diderot University, Sorbonne Paris Cité, DHU PROTECT, France
| | - Simon Saaman
- AP-HP, Department of Human Genetic, Molecular Biology Unit, Robert Debré Hospital, Paris, France
| | - Diana Rodriguez
- INSERM UMR1141, Paris Diderot University, Sorbonne Paris Cité, DHU PROTECT, France; AP-HP, Department of Child Neurology, Hôpital Armand-Trousseau, GHUEP, Paris, France
| | - Houda Fettah
- AP-HP, Departement of Neuropediatrics and Metabolic Diseases, National Reference Center for Leukodystrophies, Robert Debré Hospital, Paris, France; INSERM UMR1141, Paris Diderot University, Sorbonne Paris Cité, DHU PROTECT, France
| | | | - Roberta Biancheri
- Dubowitz Neuromuscular Centre, Great Ormond Street Hospital, London, UK
| | - Sabina Barresi
- Unit of Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesu' Children's Research Hospital, Rome, Italy
| | - Loredana Boccone
- Genetics and Rare Diseases Unit, II Division of Pediatrics, Ospedale Microcitemico, Cagliari, Italy
| | - Simona Orcesi
- Child Neurology and Psychiatry Unit, C. Mondino National Neurological Institute, Pavia, Italy
| | - Anna Pichiecchio
- Department of Neuroradiology, C. Mondino National Neurological Institute, Pavia, Italy
| | - Roberta Zangaglia
- Movement Disorders Unit, C. Mondino National Neurological Institute, Pavia, Italy
| | - Hélène Maurey
- AP-HP, Neuropediatric Departement, Reference Center for Leukodystrophies Kremlin Bicêtre Hospital, Paris, France
| | - Andrea Rossi
- Department of Child Neurology, Neurological Institute C. Besta Foundation IRCCS, Milan, Italy
| | - Odile Boespflug-Tanguy
- INSERM UMR1141, Paris Diderot University, Sorbonne Paris Cité, DHU PROTECT, France; AP-HP, Departement of Neuropediatrics and Metabolic Diseases, National Reference Center for Leukodystrophies, Robert Debré Hospital, Paris, France
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesu' Children's Research Hospital, Rome, Italy
| |
Collapse
|
36
|
Chamova T, Kancheva D, Guergueltcheva V, Mitev V, Azmanov DN, Kalaydjieva L, Jordanova A, Tournev I. Reply: Mutations in TUBB4A and spastic paraplegia. Mov Disord 2015; 30:1858-9. [PMID: 26477690 DOI: 10.1002/mds.26442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 09/07/2015] [Indexed: 11/06/2022] Open
Affiliation(s)
- Teodora Chamova
- Medical University of Sofia, Faculty of Medicine, Department of Neurology, Clinic of Neurology, University Hospital Alexandrovska, Sofia, Bulgaria
| | - Dahlia Kancheva
- Molecular Neurogenomics Group, Department of Molecular Genetics, Antwerp, Belgium.,Neurogenetics Laboratory, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical University-Sofia, Sofia, Bulgaria
| | | | - Vanio Mitev
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical University-Sofia, Sofia, Bulgaria
| | - Dimitar N Azmanov
- Department of Diagnostic Genomics, PathWest, QEII Medical Centre, Nedlands, WA, Australia.,Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, Australia
| | - Luba Kalaydjieva
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, Australia
| | - Albena Jordanova
- Molecular Neurogenomics Group, Department of Molecular Genetics, Antwerp, Belgium.,Neurogenetics Laboratory, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical University-Sofia, Sofia, Bulgaria
| | - Ivailo Tournev
- Medical University of Sofia, Faculty of Medicine, Department of Neurology, Clinic of Neurology, University Hospital Alexandrovska, Sofia, Bulgaria.,Department of Cognitive Science and Psychology, New Bulgarian University, Sofia, Bulgaria
| |
Collapse
|
37
|
Kumar KR, Vulinovic F, Lohmann K, Park JS, Schaake S, Sue CM, Klein C. Mutations in TUBB4A and spastic paraplegia. Mov Disord 2015; 30:1857-8. [PMID: 26477786 DOI: 10.1002/mds.26444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/30/2015] [Accepted: 08/03/2015] [Indexed: 12/23/2022] Open
Affiliation(s)
- Kishore R Kumar
- Department of Neurogenetics, Kolling Institute of Medical Research and Royal North Shore Hospital, The University of Sydney, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, Sydney, Australia
| | - Franca Vulinovic
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Jin-Sung Park
- Department of Neurogenetics, Kolling Institute of Medical Research and Royal North Shore Hospital, The University of Sydney, Australia
| | - Susen Schaake
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Carolyn M Sue
- Department of Neurogenetics, Kolling Institute of Medical Research and Royal North Shore Hospital, The University of Sydney, Australia
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
38
|
Zech M, Boesch S, Jochim A, Graf S, Lichtner P, Peters A, Gieger C, Mueller J, Poewe W, Haslinger B, Winkelmann J. Large-scale TUBB4A mutational screening in isolated dystonia and controls. Parkinsonism Relat Disord 2015; 21:1278-81. [PMID: 26318963 DOI: 10.1016/j.parkreldis.2015.08.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/05/2015] [Accepted: 08/17/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Mutations in TUBB4A have recently been implicated in two seemingly different disease entities, namely DYT4-isolated dystonia and hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC), a disorder characterized by considerable clinical variability. While several follow-up studies confirmed the importance of TUBB4A mutations in the development of H-ABC, their contribution to isolated dystonia remains uncertain. METHODS We screened the TUBB4A coding regions in a large population of 709 isolated dystonia patients of German/Austrian ancestry as well as in 376 ancestry-matched control subjects by means of Sanger sequencing and high-resolution melting. In addition, we assessed the overall frequency of rare non-synonymous TUBB4A genetic variation in the huge exome dataset released by the Exome Aggregation Consortium (ExAC). RESULTS We were unable to identify any possibly pathogenic sequence alteration in either patients or controls. According to ExAC, the overall prevalence of rare missense and loss-of-function alleles in the TUBB4A gene can be estimated at ∼1:706. CONCLUSIONS In accordance with previous work, our data indicate that TUBB4A coding mutations do not play a critical role in the broad population of isolated dystonia patients. Rather, isolated dystonia as seen in DYT4 might be an exceptional feature occurring in the heterogeneous phenotypic spectrum due to TUBB4A mutations.
Collapse
Affiliation(s)
- Michael Zech
- Neurologische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Institut für Neurogenomik, Helmholtz Zentrum München, Munich, Germany
| | - Sylvia Boesch
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Angela Jochim
- Neurologische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Sebastian Graf
- Neurologische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Peter Lichtner
- Institut für Humangenetik, Helmholtz Zentrum München, Munich, Germany; Institut für Humangenetik, Technische Universität München, Munich, Germany
| | - Annette Peters
- Institute of Epidemiology II, Helmholtz Zentrum München, Munich, Germany
| | - Christian Gieger
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, Munich, Germany
| | - Joerg Mueller
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria; Vivantes Klinikum Spandau, Berlin, Germany
| | - Werner Poewe
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Bernhard Haslinger
- Neurologische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Juliane Winkelmann
- Neurologische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Institut für Neurogenomik, Helmholtz Zentrum München, Munich, Germany; Munich Cluster for Systems Neurology, SyNergy, Munich, Germany.
| |
Collapse
|
39
|
Kancheva D, Chamova T, Guergueltcheva V, Mitev V, Azmanov DN, Kalaydjieva L, Tournev I, Jordanova A. Mosaic dominant TUBB4A
mutation in an inbred family with complicated hereditary spastic paraplegia. Mov Disord 2015; 30:854-8. [DOI: 10.1002/mds.26196] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/20/2015] [Accepted: 01/26/2015] [Indexed: 11/06/2022] Open
Affiliation(s)
- Dahlia Kancheva
- Molecular Neurogenomics Group; Department of Molecular Genetics; VIB Antwerp Belgium
- Neurogenetics Laboratory, Institute Born-Bunge, University of Antwerp; Antwerp Belgium
- Department of Medical Chemistry and Biochemistry; Molecular Medicine Center, Medical University-Sofia; Sofia Bulgaria
| | - Teodora Chamova
- Department of Neurology; Medical University-Sofia; Sofia Bulgaria
| | | | - Vanio Mitev
- Department of Medical Chemistry and Biochemistry; Molecular Medicine Center, Medical University-Sofia; Sofia Bulgaria
| | - Dimitar N. Azmanov
- Department of Diagnostic Genomics; PathWest, QEII Medical Centre; Nedlands WA Australia
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia; Perth Australia
| | - Luba Kalaydjieva
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia; Perth Australia
| | - Ivailo Tournev
- Department of Neurology; Medical University-Sofia; Sofia Bulgaria
- Department of Cognitive Science and Psychology; New Bulgarian University; Sofia Bulgaria
| | - Albena Jordanova
- Molecular Neurogenomics Group; Department of Molecular Genetics; VIB Antwerp Belgium
- Neurogenetics Laboratory, Institute Born-Bunge, University of Antwerp; Antwerp Belgium
- Department of Medical Chemistry and Biochemistry; Molecular Medicine Center, Medical University-Sofia; Sofia Bulgaria
| |
Collapse
|
40
|
Balint B, Bhatia KP. Isolated and combined dystonia syndromes - an update on new genes and their phenotypes. Eur J Neurol 2015; 22:610-7. [DOI: 10.1111/ene.12650] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 11/12/2014] [Indexed: 11/27/2022]
Affiliation(s)
- B. Balint
- Sobell Department of Motor Neuroscience and Movement Disorders; UCL Institute of Neurology; London UK
- Department of Neurology; University Hospital Heidelberg; Heidelberg Germany
| | - K. P. Bhatia
- Sobell Department of Motor Neuroscience and Movement Disorders; UCL Institute of Neurology; London UK
| |
Collapse
|
41
|
Erro R, Hersheson J, Houlden H, Bhatia KP. A novel TUBB4A mutation suggests that genotype-phenotype correlation of H-ABC syndrome needs to be revisited. Brain 2015; 138:e370. [PMID: 25614026 DOI: 10.1093/brain/awu403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Roberto Erro
- 1 Sobell Department of Motor Neuroscience and Movement Disorders, University College London (UCL) Institute of Neurology, London, UK 2 Dipartimento di Scienze Neurologiche e del Movimento, Università di Verona, Verona, Italy
| | - Joshua Hersheson
- 3 Department of Molecular Neuroscience, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Henry Houlden
- 3 Department of Molecular Neuroscience, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Kailash P Bhatia
- 1 Sobell Department of Motor Neuroscience and Movement Disorders, University College London (UCL) Institute of Neurology, London, UK
| |
Collapse
|