1
|
Lee CW, Krüger MT, Akram H, Zrinzo L, Rubin J, Birchall MA, Fishman JM. Central Mechanisms and Pathophysiology of Laryngeal Dystonia: An Up-to-Date Review. J Voice 2024:S0892-1997(24)00217-0. [PMID: 39138040 DOI: 10.1016/j.jvoice.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 08/15/2024]
Abstract
OBJECTIVE Laryngeal dystonia (LD), previously termed spasmodic dysphonia, is an isolated focal dystonia that involves involuntary, uncontrolled contractions of the laryngeal muscles during speech. It is a severely disabling condition affecting patients' work and social lives through prevention of normal speech production. Our understanding of the pathophysiology of LD and available therapeutic options are currently limited. The aim of this short review is to provide an up-to-date summary of what is known about the central mechanisms and the pathophysiology of LD. METHODS A systematic review of the literature was performed searching Embase, CINHAL, Medline, and Cochrane with the cover period January 1990-October 2023 with a search strategy (("Laryngeal dystonia" OR "Spasmodic dysphonia") AND ("Central Mechanism" OR "Pathophysiology")). Original studies involving LD patients that discussed central mechanisms and/or pathophysiology of LD were chosen. RESULTS Two hundred twenty-six articles were identified of which 27 articles were included to formulate this systematic review following the screening inclusion and exclusion criteria. LD is a central neurological disorder involving a multiregional altered neural network. Affected neural circuits not only involve the motor control circuit, but also the feedforward, and the feedback circuits of the normal speech production neural network, involving higher-order planning, somatosensory perception and integration regions of the brain. CONCLUSION Speech production is a complex process, and LD is a central neurological disorder involving multiregional neural network connectivity alteration reflecting this. Neuromodulation targeting the central nervous system could therefore be considered and explored as a new potential therapeutic option for LD in the future, and should assist in elucidating the underlying central mechanisms responsible for causing the condition.
Collapse
Affiliation(s)
- Chang Woo Lee
- Department of Otolaryngology-Head and Neck Surgery, University Hospitals Dorset NHS Foundation Trust, Poole, UK.
| | - Marie T Krüger
- Department of Neurosurgery, UCL Functional Neurosurgery Unit, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London, UK; Department of Neurosurgery, University Medical Centre, Freiburg, Germany
| | - Harith Akram
- Department of Neurosurgery, UCL Functional Neurosurgery Unit, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London, UK
| | - Ludvic Zrinzo
- Department of Neurosurgery, UCL Functional Neurosurgery Unit, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London, UK
| | - John Rubin
- Department of Otolaryngology-Head and Neck Surgery, The Royal National ENT Voice Centre, The Royal National ENT Hospital, University College London Hospitals NHS Trust, London, UK
| | - Martin A Birchall
- Department of Otolaryngology-Head and Neck Surgery, The Royal National ENT Voice Centre, The Royal National ENT Hospital, University College London Hospitals NHS Trust, London, UK
| | - Jonathan M Fishman
- Department of Otolaryngology-Head and Neck Surgery, The Royal National ENT Voice Centre, The Royal National ENT Hospital, University College London Hospitals NHS Trust, London, UK
| |
Collapse
|
2
|
Calakos N, Caffall ZF. The integrated stress response pathway and neuromodulator signaling in the brain: lessons learned from dystonia. J Clin Invest 2024; 134:e177833. [PMID: 38557486 PMCID: PMC10977992 DOI: 10.1172/jci177833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
The integrated stress response (ISR) is a highly conserved biochemical pathway involved in maintaining proteostasis and cell health in the face of diverse stressors. In this Review, we discuss a relatively noncanonical role for the ISR in neuromodulatory neurons and its implications for synaptic plasticity, learning, and memory. Beyond its roles in stress response, the ISR has been extensively studied in the brain, where it potently influences learning and memory, and in the process of synaptic plasticity, which is a substrate for adaptive behavior. Recent findings demonstrate that some neuromodulatory neuron types engage the ISR in an "always-on" mode, rather than the more canonical "on-demand" response to transient perturbations. Atypical demand for the ISR in neuromodulatory neurons introduces an additional mechanism to consider when investigating ISR effects on synaptic plasticity, learning, and memory. This basic science discovery emerged from a consideration of how the ISR might be contributing to human disease. To highlight how, in scientific discovery, the route from starting point to outcomes can often be circuitous and full of surprise, we begin by describing our group's initial introduction to the ISR, which arose from a desire to understand causes for a rare movement disorder, dystonia. Ultimately, the unexpected connection led to a deeper understanding of its fundamental role in the biology of neuromodulatory neurons, learning, and memory.
Collapse
Affiliation(s)
- Nicole Calakos
- Department of Neurology
- Department of Neurobiology, and
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | | |
Collapse
|
3
|
Tomić A, Sarasso E, Basaia S, Dragašević-Misković N, Svetel M, Kostić VS, Filippi M, Agosta F. Structural brain heterogeneity underlying symptomatic and asymptomatic genetic dystonia: a multimodal MRI study. J Neurol 2024; 271:1767-1775. [PMID: 38019294 DOI: 10.1007/s00415-023-12098-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Most of DYT genotypes follow an autosomal dominant inheritance pattern with reduced penetrance; the mechanisms underlying the disease development remain unclear. The objective of the study was to investigate cortical thickness, grey matter (GM) volumes and white matter (WM) alterations in asymptomatic (DYT-A) and symptomatic dystonia (DYT-S) mutation carriers. METHODS Eight DYT-A (four DYT-TOR1A and four DYT-THAP1), 14 DYT-S (seven DYT-TOR1A, and seven DYT-THAP1), and 37 matched healthy controls underwent 3D T1-weighted and diffusion tensor (DT) MRI to study cortical thickness, cerebellar and basal ganglia GM volumes and WM microstructural changes. RESULTS DYT-S showed thinning of the frontal and motor cortical regions related to sensorimotor and cognitive processing, together with putaminal atrophy and subcortical microstructural WM damage of both motor and extra-motor tracts such as cerebral peduncle, corona radiata, internal and external capsule, temporal and orbitofrontal WM, and corpus callosum. DYT-A had cortical thickening of middle frontal areas and WM damage of the corona radiata. CONCLUSIONS DYT genes phenotypic expression is associated with alterations of both motor and extra-motor WM and GM regions. Asymptomatic genetic status is characterized by a very subtle affection of the WM motor pathway, together with an increased cortical thickness of higher-order frontal regions that might interfere with phenotypic presentation and disease manifestation.
Collapse
Affiliation(s)
- Aleksandra Tomić
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Elisabetta Sarasso
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Genoa, Italy
| | - Silvia Basaia
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Marina Svetel
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir S Kostić
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
4
|
Corp DT, Morrison-Ham J, Jinnah HA, Joutsa J. The functional anatomy of dystonia: Recent developments. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:105-136. [PMID: 37482390 DOI: 10.1016/bs.irn.2023.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
While dystonia has traditionally been viewed as a disorder of the basal ganglia, the involvement of other key brain structures is now accepted. However, just what these structures are remains to be defined. Neuroimaging has been an especially valuable tool in dystonia, yet traditional cross-sectional designs have not been able to separate causal from compensatory brain activity. Therefore, this chapter discusses recent studies using causal brain lesions, and animal models, to converge upon the brain regions responsible for dystonia with increasing precision. This evidence strongly implicates the basal ganglia, thalamus, brainstem, cerebellum, and somatosensory cortex, yet shows that different types of dystonia involve different nodes of this brain network. Nearly all of these nodes fall within the recently identified two-way networks connecting the basal ganglia and cerebellum, suggesting dysfunction of these specific pathways. Localisation of the functional anatomy of dystonia has strong implications for targeted treatment options, such as deep brain stimulation, and non-invasive brain stimulation.
Collapse
Affiliation(s)
- Daniel T Corp
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA, United States.
| | - Jordan Morrison-Ham
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - H A Jinnah
- Departments of Neurology, Human Genetics, and Pediatrics, Atlanta, GA, United States
| | - Juho Joutsa
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA, United States; Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku, Finland; Turku PET Centre, Neurocenter, Turku University Hospital, Turku, Finland
| |
Collapse
|
5
|
Yao D, O'Flynn LC, Simonyan K. DystoniaBoTXNet: Novel Neural Network Biomarker of Botulinum Toxin Efficacy in Isolated Dystonia. Ann Neurol 2023; 93:460-471. [PMID: 36440757 DOI: 10.1002/ana.26558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Isolated dystonia is characterized by abnormal, often painful, postures and repetitive movements due to sustained or intermittent involuntary muscle contractions. Botulinum toxin (BoTX) injections into the affected muscles are the first line of therapy. However, there are no objective predictive markers or standardized tests of BoTX efficacy that can be utilized for appropriate candidate selection prior to treatment initiation. METHODS We developed a deep learning algorithm, DystoniaBoTXNet, which uses a 3D convolutional neural network architecture and raw structural brain magnetic resonance images (MRIs) to automatically discover and test a neural network biomarker of BoTX efficacy in 284 patients with 4 different forms of focal dystonia, including laryngeal dystonia, blepharospasm, cervical dystonia, and writer's cramp. RESULTS DystoniaBoTXNet identified clusters in superior parietal lobule, inferior and middle frontal gyri, middle orbital gyrus, inferior temporal gyrus, corpus callosum, inferior fronto-occipital fasciculus, and anterior thalamic radiation as components of the treatment biomarker. These regions are known to contribute to both dystonia pathophysiology across a broad clinical spectrum of disorder and the central effects of botulinum toxin treatment. Based on its biomarker, DystoniaBoTXNet achieved an overall accuracy of 96.3%, with 100% sensitivity and 86.1% specificity, in predicting BoTX efficacy in patients with isolated dystonia. The algorithmic decision was computed in 19.2 seconds per case. INTERPRETATION DystoniaBoTXNet and its treatment biomarker have a high translational potential as an objective, accurate, generalizable, fast, and cost-effective algorithmic platform for enhancing clinical decision making for BoTX treatment in patients with isolated dystonia. ANN NEUROL 2023;93:460-471.
Collapse
Affiliation(s)
- Dongren Yao
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA
| | - Lena C O'Flynn
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA.,Program in Speech Hearing Bioscience and Technology, Harvard University, Boston, MA
| | - Kristina Simonyan
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA.,Program in Speech Hearing Bioscience and Technology, Harvard University, Boston, MA.,Department of Neurology, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
6
|
Battistella G, Simonyan K. Clinical Implications of Dystonia as a Neural Network Disorder. ADVANCES IN NEUROBIOLOGY 2023; 31:223-240. [PMID: 37338705 DOI: 10.1007/978-3-031-26220-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Isolated dystonia is a neurological disorder of diverse etiology, multifactorial pathophysiology, and wide spectrum of clinical presentations. We review the recent neuroimaging advances that led to the conceptualization of dystonia as a neural network disorder and discuss how current knowledge is shaping the identification of biomarkers of dystonia and the development of novel pharmacological therapies.
Collapse
Affiliation(s)
- Giovanni Battistella
- Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, USA
| | - Kristina Simonyan
- Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, USA.
- Department of Neurology, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Plasma TDP-43 Reflects Cortical Neurodegeneration and Correlates with Neuropsychiatric Symptoms in Huntington's Disease. Clin Neuroradiol 2022; 32:1077-1085. [PMID: 35238950 DOI: 10.1007/s00062-022-01150-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/02/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE Huntington's disease (HD) is a monogenic neurodegenerative disease with no effective treatment currently available. The pathological hallmark of HD is the aggregation of mutant huntingtin in the medium spiny neurons of the striatum, leading to severe subcortical atrophy. Cortical degeneration also occurs in HD from its very early stages, although its biological origin is poorly understood. Among the possible pathological mechanisms that could promote cortical damage in HD, the in vivo study of TDP-43 pathology remains to be explored, which was the main objective of this work. METHODS We investigated the clinical and structural brain correlates of plasma TDP-43 levels in a sample of 36 HD patients. Neuroimaging alterations were assessed both at the macrostructural (cortical thickness) and microstructural (intracortical diffusivity) levels. Importantly, we controlled for mutant huntingtin and tau biomarkers in order to assess the independent role of TDP-43 in HD neurodegeneration. RESULTS Plasma TDP-43 levels in HD specifically correlated with the presence and severity of apathy (p = 0.003). The TDP-43 levels also reflected cortical thinning and microstructural degeneration, especially in frontal and anterior-temporal regions (p < 0.05 corrected). These TDP-43-related brain alterations correlated, in turn, with the severity of cognitive, motor and behavioral symptoms. CONCLUSION Our results suggest that the presence of TDP-43 pathology in HD has an independent contribution to the severity of neuropsychiatric symptoms and frontotemporal degeneration. These findings point out the importance of TDP-43 as an additional pathological process to be taken into consideration in this devastating disorder.
Collapse
|
8
|
Yeung W, Richards AL, Novakovic D. Botulinum Neurotoxin Therapy in the Clinical Management of Laryngeal Dystonia. Toxins (Basel) 2022; 14:toxins14120844. [PMID: 36548741 PMCID: PMC9784062 DOI: 10.3390/toxins14120844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Laryngeal dystonia (LD), or spasmodic dysphonia (SD), is a chronic, task-specific, focal movement disorder affecting the larynx. It interferes primarily with the essential functions of phonation and speech. LD affects patients' ability to communicate effectively and significantly diminishes their quality of life. Botulinum neurotoxin was first used as a therapeutic agent in the treatment of LD four decades ago and remains the standard of care for the treatment of LD. This article provides an overview of the clinical application of botulinum neurotoxin in the management of LD, focusing on the classification for this disorder, its pathophysiology, clinical assessment and diagnosis, the role of laryngeal electromyography and a summary of therapeutic injection techniques, including a comprehensive description of various procedural approaches, recommendations for injection sites and dosage considerations.
Collapse
Affiliation(s)
- Winnie Yeung
- Voice Research Laboratory, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia
- Department of Otolaryngology, The Canterbury Hospital, Campsie, NSW 2194, Australia
- Correspondence:
| | - Amanda L. Richards
- Department of Otolaryngology, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| | - Daniel Novakovic
- Voice Research Laboratory, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia
- Department of Otolaryngology, The Canterbury Hospital, Campsie, NSW 2194, Australia
| |
Collapse
|
9
|
MacIver CL, Tax CMW, Jones DK, Peall KJ. Structural magnetic resonance imaging in dystonia: A systematic review of methodological approaches and findings. Eur J Neurol 2022; 29:3418-3448. [PMID: 35785410 PMCID: PMC9796340 DOI: 10.1111/ene.15483] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND PURPOSE Structural magnetic resonance techniques have been widely applied in neurological disorders to better understand tissue changes, probing characteristics such as volume, iron deposition and diffusion. Dystonia is a hyperkinetic movement disorder, resulting in abnormal postures and pain. Its pathophysiology is poorly understood, with normal routine clinical imaging in idiopathic forms. More advanced tools provide an opportunity to identify smaller scale structural changes which may underpin pathophysiology. This review aims to provide an overview of methodological approaches undertaken in structural brain imaging of dystonia cohorts, and to identify commonly identified pathways, networks or regions that are implicated in pathogenesis. METHODS Structural magnetic resonance imaging studies of idiopathic and genetic forms of dystonia were systematically reviewed. Adhering to strict inclusion and exclusion criteria, PubMed and Embase databases were searched up to January 2022, with studies reviewed for methodological quality and key findings. RESULTS Seventy-seven studies were included, involving 1945 participants. The majority of studies employed diffusion tensor imaging (DTI) (n = 45) or volumetric analyses (n = 37), with frequently implicated areas of abnormality in the brainstem, cerebellum, basal ganglia and sensorimotor cortex and their interconnecting white matter pathways. Genotypic and motor phenotypic variation emerged, for example fewer cerebello-thalamic tractography streamlines in genetic forms than idiopathic and higher grey matter volumes in task-specific than non-task-specific dystonias. DISCUSSION Work to date suggests microstructural brain changes in those diagnosed with dystonia, although the underlying nature of these changes remains undetermined. Employment of techniques such as multiple diffusion weightings or multi-exponential relaxometry has the potential to enhance understanding of these differences.
Collapse
Affiliation(s)
- Claire L. MacIver
- Neuroscience and Mental Health Research InstituteDivision of Psychological Medicine and Clinical NeurosciencesCardiff University School of MedicineCardiffUK,Cardiff University Brain Imaging Centre (CUBRIC)Cardiff UniversityCardiffUK
| | - Chantal M. W. Tax
- Cardiff University Brain Imaging Centre (CUBRIC)Cardiff UniversityCardiffUK,Image Sciences InstituteUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Derek K. Jones
- Cardiff University Brain Imaging Centre (CUBRIC)Cardiff UniversityCardiffUK
| | - Kathryn J. Peall
- Neuroscience and Mental Health Research InstituteDivision of Psychological Medicine and Clinical NeurosciencesCardiff University School of MedicineCardiffUK
| |
Collapse
|
10
|
O'Flynn LC, Simonyan K. Short- and Long-term Central Action of Botulinum Neurotoxin Treatment in Laryngeal Dystonia. Neurology 2022; 99:e1178-e1190. [PMID: 35764404 PMCID: PMC9536744 DOI: 10.1212/wnl.0000000000200850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/28/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Laryngeal dystonia (LD) is isolated task-specific focal dystonia selectively impairing speech production. The first choice of LD treatment is botulinum neurotoxin (BoNT) injections into the affected laryngeal muscles. However, whether BoNT has a lasting therapeutic effect on disorder pathophysiology is unknown. We investigated short-term and long-term effects of BoNT treatment on brain function in patients with LD. METHODS A total of 161 participants were included in the functional MRI study. Statistical analyses examined central BoNT effects in patients with LD who were stratified based on the effectiveness and duration of treatment. RESULTS Patients with LD who were treated and benefited from BoNT injections had reduced activity in the left precuneus compared with BoNT-naive and treatment nonbenefiting patients. In addition, BoNT-treated patients with adductor LD had decreased activity in the right thalamus, whereas BoNT-treated abductor patients with LD had reduced activity in the left inferior frontal cortex. No statistically significant differences in brain activity were found between patients with shorter (1-5 years) and longer (13-28 years) treatment durations. However, patients with intermediate treatment duration of 6-12 years showed reduced activity in the right cerebellum compared with patients with both shorter and longer treatment durations and reduced activity in the right prefrontal cortex compared with patients with shorter treatment duration. DISCUSSION Our findings suggest that the left precuneus is the site of short-term BoNT central action in patients with LD, whereas the prefrontal-cerebellar axis is engaged in the BoNT response in patients with intermediate treatment duration of 6-12 years. Involvement of these structures points to indirect action of BoNT treatment on the dystonic sensorimotor network through modulation of motor sequence planning and coordination.
Collapse
Affiliation(s)
- Lena C O'Flynn
- From the Department of Otolaryngology-Head and Neck Surgery (L.C.O., K.S.), Massachusetts Eye and Ear and Harvard Medical School; Program in Speech Hearing Bioscience and Technology (L.C.O., K.S.), Harvard University; and Department of Neurology (K.S.), Massachusetts General Hospital, Boston
| | - Kristina Simonyan
- From the Department of Otolaryngology-Head and Neck Surgery (L.C.O., K.S.), Massachusetts Eye and Ear and Harvard Medical School; Program in Speech Hearing Bioscience and Technology (L.C.O., K.S.), Harvard University; and Department of Neurology (K.S.), Massachusetts General Hospital, Boston.
| |
Collapse
|
11
|
Wu Y, Wang T, Ding Q, Li H, Wu Y, Li D, Sun B, Pan Y. Cortical and Subcortical Structural Abnormalities in Patients With Idiopathic Cervical and Generalized Dystonia. FRONTIERS IN NEUROIMAGING 2022; 1:807850. [PMID: 37555168 PMCID: PMC10406292 DOI: 10.3389/fnimg.2022.807850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/03/2022] [Indexed: 08/10/2023]
Abstract
OBJECTIVES In this study, we sought to investigate structural imaging alterations of patients with idiopathic dystonia at the cortical and subcortical levels. The common and specific changes in two subtypes of dystonia, cervical dystonia (CD) and generalized dystonia (GD), were intended to be explored. Additionally, we sought to identify the morphometric measurements which might be related to patients' clinical characteristics, thus providing more clues of specific brain regions involved in the mechanism of idiopathic dystonia. METHODS 3D T1-weighted MRI scans were acquired from 56 patients with idiopathic dystonia and 30 healthy controls (HC). Patients were classified as CD or GD, according to the distinct symptom distributions. Cortical thickness (CT) of 30 CD and 26 GD were estimated and compared to HCs using Computational Anatomy Toolbox (CAT12), while volumes of subcortical structures and their shape alterations (29 CD, 25 GD, and 27 HCs) were analyzed via FSL software. Further, we applied correlation analyses between the above imaging measurements with significant differences and patients' clinical characteristics. RESULTS The results of comparisons between the two patient groups and HCs were highly consistent, demonstrating increased CT of bilateral postcentral, superiorparietal, superiorfrontal/rostralmiddlefrontal, occipital gyrus, etc., and decreased CT of bilateral cingulate, insula, entorhinal, and fusiform gyrus (PFWE < 0.005 at the cluster level). In CD, trends of negative correlations were found between disease severity and CT alterations mostly located in pre/postcentral, rostralmiddlefrontal, superiorparietal, and supramarginal regions. Besides, volumes of bilateral putamen, caudate, and thalamus were significantly reduced in both patient groups, while pallidum volume reduction was also presented in GD compared to HCs. Caudate volume reduction had a trend of correlation to increasing disease severity in GD. Last, shape analysis directly demonstrated regional surface alterations in bilateral thalamus and caudate, where the atrophy located in the head of caudate had a trend of correlation to earlier ages of onset in GD. CONCLUSIONS Our study demonstrates wide-spread morphometric changes of CT, subcortical volumes, and shapes in idiopathic dystonia. CD and GD presented similar patterns of morphometric abnormalities, indicating shared underlying mechanisms in two different disease forms. Especially, the clinical associations of CT of multiple brain regions with disease severity, and altered volume/shape of caudate with disease severity/age of onset separately in CD and GD might serve as potential biomarkers for further disease exploration.
Collapse
Affiliation(s)
- Yunhao Wu
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Wang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiong Ding
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Hongxia Li
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Wu
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dianyou Li
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixin Pan
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Caffall ZF, Wilkes BJ, Hernández-Martinez R, Rittiner JE, Fox JT, Wan KK, Shipman MK, Titus SA, Zhang YQ, Patnaik S, Hall MD, Boxer MB, Shen M, Li Z, Vaillancourt DE, Calakos N. The HIV protease inhibitor, ritonavir, corrects diverse brain phenotypes across development in mouse model of DYT-TOR1A dystonia. Sci Transl Med 2021; 13:13/607/eabd3904. [PMID: 34408078 DOI: 10.1126/scitranslmed.abd3904] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/14/2020] [Accepted: 06/03/2021] [Indexed: 12/22/2022]
Abstract
Dystonias are a group of chronic movement-disabling disorders for which highly effective oral medications or disease-modifying therapies are lacking. The most effective treatments require invasive procedures such as deep brain stimulation. In this study, we used a high-throughput assay based on a monogenic form of dystonia, DYT1 (DYT-TOR1A), to screen a library of compounds approved for use in humans, the NCATS Pharmaceutical Collection (NPC; 2816 compounds), and identify drugs able to correct mislocalization of the disease-causing protein variant, ∆E302/3 hTorsinA. The HIV protease inhibitor, ritonavir, was among 18 compounds found to normalize hTorsinA mislocalization. Using a DYT1 knock-in mouse model to test efficacy on brain pathologies, we found that ritonavir restored multiple brain abnormalities across development. Ritonavir acutely corrected striatal cholinergic interneuron physiology in the mature brain and yielded sustained correction of diffusion tensor magnetic resonance imaging signals when delivered during a discrete early developmental window. Mechanistically, we found that, across the family of HIV protease inhibitors, efficacy correlated with integrated stress response activation. These preclinical results identify ritonavir as a drug candidate for dystonia with disease-modifying potential.
Collapse
Affiliation(s)
- Zachary F Caffall
- Department of Neurology, Duke University Medical Center, Durham, NC 27715, USA
| | - Bradley J Wilkes
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | | | - Joseph E Rittiner
- Department of Neurology, Duke University Medical Center, Durham, NC 27715, USA
| | - Jennifer T Fox
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Kanny K Wan
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Miranda K Shipman
- Department of Neurology, Duke University Medical Center, Durham, NC 27715, USA
| | - Steven A Titus
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Ya-Qin Zhang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Samarjit Patnaik
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Matthew B Boxer
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Zhuyin Li
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - David E Vaillancourt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA.,Department of Neurology, Fixel Institute for Neurological Diseases, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Nicole Calakos
- Department of Neurology, Duke University Medical Center, Durham, NC 27715, USA. .,Department of Neurobiology, Duke University Medical Center, Durham, NC 27715, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC 27715, USA.,Duke Institute for Brain Sciences, Duke University, Durham, NC 27715, USA
| |
Collapse
|
13
|
Smit M, Albanese A, Benson M, Edwards MJ, Graessner H, Hutchinson M, Jech R, Krauss JK, Morgante F, Pérez Dueñas B, Reilly RB, Tinazzi M, Contarino MF, Tijssen MAJ. Dystonia Management: What to Expect From the Future? The Perspectives of Patients and Clinicians Within DystoniaNet Europe. Front Neurol 2021; 12:646841. [PMID: 34149592 PMCID: PMC8211212 DOI: 10.3389/fneur.2021.646841] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/19/2021] [Indexed: 01/02/2023] Open
Abstract
Improved care for people with dystonia presents a number of challenges. Major gaps in knowledge exist with regard to how to optimize the diagnostic process, how to leverage discoveries in pathophysiology into biomarkers, and how to develop an evidence base for current and novel treatments. These challenges are made greater by the realization of the wide spectrum of symptoms and difficulties faced by people with dystonia, which go well-beyond motor symptoms. A network of clinicians, scientists, and patients could provide resources to facilitate information exchange at different levels, share mutual experiences, and support each other's innovative projects. In the past, collaborative initiatives have been launched, including the American Dystonia Coalition, the European Cooperation in Science and Technology (COST-which however only existed for a limited time), and the Dutch DystonieNet project. The European Reference Network on Rare Neurological Diseases includes dystonia among other rare conditions affecting the central nervous system in a dedicated stream. Currently, we aim to broaden the scope of these initiatives to a comprehensive European level by further expanding the DystoniaNet network, in close collaboration with the ERN-RND. In line with the ERN-RND, the mission of DystoniaNet Europe is to improve care and quality of life for people with dystonia by, among other endeavors, facilitating access to specialized care, overcoming the disparity in education of medical professionals, and serving as a solid platform to foster international clinical and research collaborations. In this review, both professionals within the dystonia field and patients and caregivers representing Dystonia Europe highlight important unsolved issues and promising new strategies and the role that a European network can play in activating them.
Collapse
Affiliation(s)
- Marenka Smit
- Expertise Centre Movement Disorders Groningen, Department of Neurology, University Medical Centre Groningen, Groningen, Netherlands
| | - Alberto Albanese
- Department of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Milan, Italy
| | | | - Mark J. Edwards
- Neuroscience Research Centre, Institute of Molecular and Clinical Sciences, St George's University of London, London, United Kingdom
| | - Holm Graessner
- Institute of Medical Genetics and Applied Genomics and Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Michael Hutchinson
- Department of Neurology, St. Vincent's University Hospital, Dublin, Ireland
| | - Robert Jech
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Joachim K. Krauss
- Department of Neurosurgery, Medizinische Hochschule Hannover, Hanover, Germany
| | - Francesca Morgante
- Neuroscience Research Centre, Institute of Molecular and Clinical Sciences, St George's University of London, London, United Kingdom
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Belen Pérez Dueñas
- Pediatric Neurology Research Group, Hospital Vall d'Hebron–Institut de Recerca (VHIR), Barcelona, Spain
| | - Richard B. Reilly
- School of Medicine, Trinity College, The University of Dublin, Dublin, Ireland
| | - Michele Tinazzi
- Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Verona, Italy
| | - Maria Fiorella Contarino
- Department of Neurology, Leiden University Medical Centre, Leiden, Netherlands
- Department of Neurology, Haga Teaching Hospital, The Hague, Netherlands
| | - Marina A. J. Tijssen
- Expertise Centre Movement Disorders Groningen, Department of Neurology, University Medical Centre Groningen, Groningen, Netherlands
| | | |
Collapse
|
14
|
Simonyan K, Barkmeier-Kraemer J, Blitzer A, Hallett M, Houde JF, Jacobson Kimberley T, Ozelius LJ, Pitman MJ, Richardson RM, Sharma N, Tanner K. Laryngeal Dystonia: Multidisciplinary Update on Terminology, Pathophysiology, and Research Priorities. Neurology 2021; 96:989-1001. [PMID: 33858994 DOI: 10.1212/wnl.0000000000011922] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE To delineate research priorities for improving clinical management of laryngeal dystonia, the NIH convened a multidisciplinary panel of experts for a 1-day workshop to examine the current progress in understanding its etiopathophysiology and clinical care. METHODS The participants reviewed the current terminology of disorder and discussed advances in understanding its pathophysiology since a similar workshop was held in 2005. Clinical and research gaps were identified, and recommendations for future directions were delineated. RESULTS The panel unanimously agreed to adopt the term "laryngeal dystonia" instead of "spasmodic dysphonia" to reflect the current progress in characterizations of this disorder. Laryngeal dystonia was recognized as a multifactorial, phenotypically heterogeneous form of isolated dystonia. Its etiology remains unknown, whereas the pathophysiology likely involves large-scale functional and structural brain network disorganization. Current challenges include the lack of clinically validated diagnostic markers and outcome measures and the paucity of therapies that address the disorder pathophysiology. CONCLUSION Research priorities should be guided by challenges in clinical management of laryngeal dystonia. Identification of disorder-specific biomarkers would allow the development of novel diagnostic tools and unified measures of treatment outcome. Elucidation of the critical nodes within neural networks that cause or modulate symptoms would allow the development of targeted therapies that address the underlying pathophysiology. Given the rarity of laryngeal dystonia, future rapid research progress may be facilitated by multicenter, national and international collaborations.
Collapse
Affiliation(s)
- Kristina Simonyan
- From the Department of Otolaryngology-Head and Neck Surgery (K.S.), Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, Department of Neurology (K.S., L.J.O., N.S.), Massachusetts General Hospital, Boston, MA; Division of Otolaryngology (J.B.-K.), University of Utah, Salt Lake City, UT; New York Center for Voice and Swallowing Disorders and Department of Neurology (A.B.), Icahn School of Medicine at Mount Sinai, New York, NY; Human Motor Control Section (M.H.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Otolaryngology-Head and Neck Surgery (J.H.), University of California San Francisco, San Francisco, CA; School of Rehabilitation and Health Sciences (T.J.K.), Massachusetts General Hospital Institute of Health Professions, Boston, MA; Department of Otolaryngology-Head and Neck Surgery (M.J.P.), Columbia University Irving Medical Center, New York, NY; Department of Neurosurgery (R.M.R.), Massachusetts General Hospital, Boston, MA; and Department of Communication Disorders (K.T.), Brigham Young University, Provo, UT.
| | - Julie Barkmeier-Kraemer
- From the Department of Otolaryngology-Head and Neck Surgery (K.S.), Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, Department of Neurology (K.S., L.J.O., N.S.), Massachusetts General Hospital, Boston, MA; Division of Otolaryngology (J.B.-K.), University of Utah, Salt Lake City, UT; New York Center for Voice and Swallowing Disorders and Department of Neurology (A.B.), Icahn School of Medicine at Mount Sinai, New York, NY; Human Motor Control Section (M.H.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Otolaryngology-Head and Neck Surgery (J.H.), University of California San Francisco, San Francisco, CA; School of Rehabilitation and Health Sciences (T.J.K.), Massachusetts General Hospital Institute of Health Professions, Boston, MA; Department of Otolaryngology-Head and Neck Surgery (M.J.P.), Columbia University Irving Medical Center, New York, NY; Department of Neurosurgery (R.M.R.), Massachusetts General Hospital, Boston, MA; and Department of Communication Disorders (K.T.), Brigham Young University, Provo, UT
| | - Andrew Blitzer
- From the Department of Otolaryngology-Head and Neck Surgery (K.S.), Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, Department of Neurology (K.S., L.J.O., N.S.), Massachusetts General Hospital, Boston, MA; Division of Otolaryngology (J.B.-K.), University of Utah, Salt Lake City, UT; New York Center for Voice and Swallowing Disorders and Department of Neurology (A.B.), Icahn School of Medicine at Mount Sinai, New York, NY; Human Motor Control Section (M.H.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Otolaryngology-Head and Neck Surgery (J.H.), University of California San Francisco, San Francisco, CA; School of Rehabilitation and Health Sciences (T.J.K.), Massachusetts General Hospital Institute of Health Professions, Boston, MA; Department of Otolaryngology-Head and Neck Surgery (M.J.P.), Columbia University Irving Medical Center, New York, NY; Department of Neurosurgery (R.M.R.), Massachusetts General Hospital, Boston, MA; and Department of Communication Disorders (K.T.), Brigham Young University, Provo, UT
| | - Mark Hallett
- From the Department of Otolaryngology-Head and Neck Surgery (K.S.), Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, Department of Neurology (K.S., L.J.O., N.S.), Massachusetts General Hospital, Boston, MA; Division of Otolaryngology (J.B.-K.), University of Utah, Salt Lake City, UT; New York Center for Voice and Swallowing Disorders and Department of Neurology (A.B.), Icahn School of Medicine at Mount Sinai, New York, NY; Human Motor Control Section (M.H.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Otolaryngology-Head and Neck Surgery (J.H.), University of California San Francisco, San Francisco, CA; School of Rehabilitation and Health Sciences (T.J.K.), Massachusetts General Hospital Institute of Health Professions, Boston, MA; Department of Otolaryngology-Head and Neck Surgery (M.J.P.), Columbia University Irving Medical Center, New York, NY; Department of Neurosurgery (R.M.R.), Massachusetts General Hospital, Boston, MA; and Department of Communication Disorders (K.T.), Brigham Young University, Provo, UT
| | - John F Houde
- From the Department of Otolaryngology-Head and Neck Surgery (K.S.), Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, Department of Neurology (K.S., L.J.O., N.S.), Massachusetts General Hospital, Boston, MA; Division of Otolaryngology (J.B.-K.), University of Utah, Salt Lake City, UT; New York Center for Voice and Swallowing Disorders and Department of Neurology (A.B.), Icahn School of Medicine at Mount Sinai, New York, NY; Human Motor Control Section (M.H.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Otolaryngology-Head and Neck Surgery (J.H.), University of California San Francisco, San Francisco, CA; School of Rehabilitation and Health Sciences (T.J.K.), Massachusetts General Hospital Institute of Health Professions, Boston, MA; Department of Otolaryngology-Head and Neck Surgery (M.J.P.), Columbia University Irving Medical Center, New York, NY; Department of Neurosurgery (R.M.R.), Massachusetts General Hospital, Boston, MA; and Department of Communication Disorders (K.T.), Brigham Young University, Provo, UT
| | - Teresa Jacobson Kimberley
- From the Department of Otolaryngology-Head and Neck Surgery (K.S.), Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, Department of Neurology (K.S., L.J.O., N.S.), Massachusetts General Hospital, Boston, MA; Division of Otolaryngology (J.B.-K.), University of Utah, Salt Lake City, UT; New York Center for Voice and Swallowing Disorders and Department of Neurology (A.B.), Icahn School of Medicine at Mount Sinai, New York, NY; Human Motor Control Section (M.H.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Otolaryngology-Head and Neck Surgery (J.H.), University of California San Francisco, San Francisco, CA; School of Rehabilitation and Health Sciences (T.J.K.), Massachusetts General Hospital Institute of Health Professions, Boston, MA; Department of Otolaryngology-Head and Neck Surgery (M.J.P.), Columbia University Irving Medical Center, New York, NY; Department of Neurosurgery (R.M.R.), Massachusetts General Hospital, Boston, MA; and Department of Communication Disorders (K.T.), Brigham Young University, Provo, UT
| | - Laurie J Ozelius
- From the Department of Otolaryngology-Head and Neck Surgery (K.S.), Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, Department of Neurology (K.S., L.J.O., N.S.), Massachusetts General Hospital, Boston, MA; Division of Otolaryngology (J.B.-K.), University of Utah, Salt Lake City, UT; New York Center for Voice and Swallowing Disorders and Department of Neurology (A.B.), Icahn School of Medicine at Mount Sinai, New York, NY; Human Motor Control Section (M.H.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Otolaryngology-Head and Neck Surgery (J.H.), University of California San Francisco, San Francisco, CA; School of Rehabilitation and Health Sciences (T.J.K.), Massachusetts General Hospital Institute of Health Professions, Boston, MA; Department of Otolaryngology-Head and Neck Surgery (M.J.P.), Columbia University Irving Medical Center, New York, NY; Department of Neurosurgery (R.M.R.), Massachusetts General Hospital, Boston, MA; and Department of Communication Disorders (K.T.), Brigham Young University, Provo, UT
| | - Michael J Pitman
- From the Department of Otolaryngology-Head and Neck Surgery (K.S.), Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, Department of Neurology (K.S., L.J.O., N.S.), Massachusetts General Hospital, Boston, MA; Division of Otolaryngology (J.B.-K.), University of Utah, Salt Lake City, UT; New York Center for Voice and Swallowing Disorders and Department of Neurology (A.B.), Icahn School of Medicine at Mount Sinai, New York, NY; Human Motor Control Section (M.H.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Otolaryngology-Head and Neck Surgery (J.H.), University of California San Francisco, San Francisco, CA; School of Rehabilitation and Health Sciences (T.J.K.), Massachusetts General Hospital Institute of Health Professions, Boston, MA; Department of Otolaryngology-Head and Neck Surgery (M.J.P.), Columbia University Irving Medical Center, New York, NY; Department of Neurosurgery (R.M.R.), Massachusetts General Hospital, Boston, MA; and Department of Communication Disorders (K.T.), Brigham Young University, Provo, UT
| | - Robert Mark Richardson
- From the Department of Otolaryngology-Head and Neck Surgery (K.S.), Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, Department of Neurology (K.S., L.J.O., N.S.), Massachusetts General Hospital, Boston, MA; Division of Otolaryngology (J.B.-K.), University of Utah, Salt Lake City, UT; New York Center for Voice and Swallowing Disorders and Department of Neurology (A.B.), Icahn School of Medicine at Mount Sinai, New York, NY; Human Motor Control Section (M.H.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Otolaryngology-Head and Neck Surgery (J.H.), University of California San Francisco, San Francisco, CA; School of Rehabilitation and Health Sciences (T.J.K.), Massachusetts General Hospital Institute of Health Professions, Boston, MA; Department of Otolaryngology-Head and Neck Surgery (M.J.P.), Columbia University Irving Medical Center, New York, NY; Department of Neurosurgery (R.M.R.), Massachusetts General Hospital, Boston, MA; and Department of Communication Disorders (K.T.), Brigham Young University, Provo, UT
| | - Nutan Sharma
- From the Department of Otolaryngology-Head and Neck Surgery (K.S.), Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, Department of Neurology (K.S., L.J.O., N.S.), Massachusetts General Hospital, Boston, MA; Division of Otolaryngology (J.B.-K.), University of Utah, Salt Lake City, UT; New York Center for Voice and Swallowing Disorders and Department of Neurology (A.B.), Icahn School of Medicine at Mount Sinai, New York, NY; Human Motor Control Section (M.H.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Otolaryngology-Head and Neck Surgery (J.H.), University of California San Francisco, San Francisco, CA; School of Rehabilitation and Health Sciences (T.J.K.), Massachusetts General Hospital Institute of Health Professions, Boston, MA; Department of Otolaryngology-Head and Neck Surgery (M.J.P.), Columbia University Irving Medical Center, New York, NY; Department of Neurosurgery (R.M.R.), Massachusetts General Hospital, Boston, MA; and Department of Communication Disorders (K.T.), Brigham Young University, Provo, UT
| | - Kristine Tanner
- From the Department of Otolaryngology-Head and Neck Surgery (K.S.), Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, Department of Neurology (K.S., L.J.O., N.S.), Massachusetts General Hospital, Boston, MA; Division of Otolaryngology (J.B.-K.), University of Utah, Salt Lake City, UT; New York Center for Voice and Swallowing Disorders and Department of Neurology (A.B.), Icahn School of Medicine at Mount Sinai, New York, NY; Human Motor Control Section (M.H.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Otolaryngology-Head and Neck Surgery (J.H.), University of California San Francisco, San Francisco, CA; School of Rehabilitation and Health Sciences (T.J.K.), Massachusetts General Hospital Institute of Health Professions, Boston, MA; Department of Otolaryngology-Head and Neck Surgery (M.J.P.), Columbia University Irving Medical Center, New York, NY; Department of Neurosurgery (R.M.R.), Massachusetts General Hospital, Boston, MA; and Department of Communication Disorders (K.T.), Brigham Young University, Provo, UT
| | | |
Collapse
|
15
|
Anandan C, Jankovic J. Botulinum Toxin in Movement Disorders: An Update. Toxins (Basel) 2021; 13:42. [PMID: 33430071 PMCID: PMC7827923 DOI: 10.3390/toxins13010042] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
Since its initial approval in 1989 by the US Food and Drug Administration for the treatment of blepharospasm and other facial spasms, botulinum toxin (BoNT) has evolved into a therapeutic modality for a variety of neurological and non-neurological disorders. With respect to neurologic movement disorders, BoNT has been reported to be effective for the treatment of dystonia, bruxism, tremors, tics, myoclonus, restless legs syndrome, tardive dyskinesia, and a variety of symptoms associated with Parkinson's disease. More recently, research with BoNT has expanded beyond its use as a powerful muscle relaxant and a peripherally active drug to its potential central nervous system applications in the treatment of neurodegenerative disorders. Although BoNT is the most potent biologic toxin, when it is administered by knowledgeable and experienced clinicians, it is one of the safest therapeutic agents in clinical use. The primary aim of this article is to provide an update on recent advances in BoNT research with a focus on novel applications in the treatment of movement disorders. This comprehensive review of the literature provides a critical review of evidence-based clinical trials and highlights recent innovative pilot studies.
Collapse
Affiliation(s)
| | - Joseph Jankovic
- Parkinson’s Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA;
| |
Collapse
|
16
|
Khosravani S, Chen G, Ozelius LJ, Simonyan K. Neural endophenotypes and predictors of laryngeal dystonia penetrance and manifestation. Neurobiol Dis 2020; 148:105223. [PMID: 33316367 PMCID: PMC8284879 DOI: 10.1016/j.nbd.2020.105223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 11/29/2022] Open
Abstract
Focal dystonias are the most common forms of isolated dystonia; however, the etiopathophysiological signatures of disorder penetrance and clinical manifestation remain unclear. Using an imaging genetics approach, we investigated functional and structural representations of neural endophenotypes underlying the penetrance and manifestation of laryngeal dystonia in families, including 21 probands and 21 unaffected relatives, compared to 32 unrelated healthy controls. We further used a supervised machine-learning algorithm to predict the risk for dystonia development in susceptible individuals based on neural features of identified endophenotypes. We found that abnormalities in prefrontal-parietal cortex, thalamus, and caudate nucleus were commonly shared between patients and their unaffected relatives, representing an intermediate endophenotype of laryngeal dystonia. Machine learning classified 95.2% of unaffected relatives as patients rather than healthy controls, substantiating that these neural alterations represent the endophenotypic marker of dystonia penetrance, independent of its symptomatology. Additional abnormalities in premotor-parietal-temporal cortical regions, caudate nucleus, and cerebellum were present only in patients but not their unaffected relatives, likely representing a secondary endophenotype of dystonia manifestation. Based on alterations in the parietal cortex and caudate nucleus, the machine learning categorized 28.6% of unaffected relative as patients, indicating their increased lifetime risk for developing clinical manifestation of dystonia. The identified endophenotypic neural markers may be implemented for screening of at-risk individuals for dystonia development, selection of families for genetic studies of novel variants based on their risk for disease penetrance, or stratification of patients who would respond differently to a particular treatment in clinical trials.
Collapse
Affiliation(s)
- Sanaz Khosravani
- Department of Otolaryngology - Head & Neck Surgery, Massachusetts Eye and Ear, Boston, MA, USA; Department of Otolaryngology - Head & Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Gang Chen
- National Institute of Mental Health, National Institute of Health, Bethesda, MD, USA
| | - Laurie J Ozelius
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Kristina Simonyan
- Department of Otolaryngology - Head & Neck Surgery, Massachusetts Eye and Ear, Boston, MA, USA; Department of Otolaryngology - Head & Neck Surgery, Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
17
|
A microstructural neural network biomarker for dystonia diagnosis identified by a DystoniaNet deep learning platform. Proc Natl Acad Sci U S A 2020; 117:26398-26405. [PMID: 33004625 PMCID: PMC7586425 DOI: 10.1073/pnas.2009165117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This research identified a microstructural neural network biomarker for objective and accurate diagnosis of isolated dystonia based on the disorder pathophysiology using an advanced deep learning algorithm, DystoniaNet, and raw structural brain images of large cohorts of patients with isolated focal dystonia and healthy controls. DystoniaNet significantly outperformed shallow machine-learning pipelines and substantially exceeded the current agreement rates between clinicians, reaching an overall accuracy of 98.8% in diagnosing different forms of isolated focal dystonia. These results suggest that DystoniaNet could serve as an objective, robust, and generalizable algorithmic platform of dystonia diagnosis for enhanced clinical decision-making. Implementation of the identified biomarker for objective and accurate diagnosis of dystonia may be transformative for clinical management of this disorder. Isolated dystonia is a neurological disorder of heterogeneous pathophysiology, which causes involuntary muscle contractions leading to abnormal movements and postures. Its diagnosis is remarkably challenging due to the absence of a biomarker or gold standard diagnostic test. This leads to a low agreement between clinicians, with up to 50% of cases being misdiagnosed and diagnostic delays extending up to 10.1 y. We developed a deep learning algorithmic platform, DystoniaNet, to automatically identify and validate a microstructural neural network biomarker for dystonia diagnosis from raw structural brain MRIs of 612 subjects, including 392 patients with three different forms of isolated focal dystonia and 220 healthy controls. DystoniaNet identified clusters in corpus callosum, anterior and posterior thalamic radiations, inferior fronto-occipital fasciculus, and inferior temporal and superior orbital gyri as the biomarker components. These regions are known to contribute to abnormal interhemispheric information transfer, heteromodal sensorimotor processing, and executive control of motor commands in dystonia pathophysiology. The DystoniaNet-based biomarker showed an overall accuracy of 98.8% in diagnosing dystonia, with a referral of 3.5% of cases due to diagnostic uncertainty. The diagnostic decision by DystoniaNet was computed in 0.36 s per subject. DystoniaNet significantly outperformed shallow machine-learning algorithms in benchmark comparisons, showing nearly a 20% increase in its diagnostic performance. Importantly, the microstructural neural network biomarker and its DystoniaNet platform showed substantial improvement over the current 34% agreement on dystonia diagnosis between clinicians. The translational potential of this biomarker is in its highly accurate, interpretable, and generalizable performance for enhanced clinical decision-making.
Collapse
|
18
|
Mantel T, Dresel C, Welte M, Meindl T, Jochim A, Zimmer C, Haslinger B. Altered sensory system activity and connectivity patterns in adductor spasmodic dysphonia. Sci Rep 2020; 10:10179. [PMID: 32576918 PMCID: PMC7311401 DOI: 10.1038/s41598-020-67295-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
Adductor-type spasmodic dysphonia (ADSD) manifests in effortful speech temporarily relievable by botulinum neurotoxin type A (BoNT-A). Previously, abnormal structure, phonation-related and resting-state sensorimotor abnormalities as well as peripheral tactile thresholds in ADSD were described. This study aimed at assessing abnormal central tactile processing patterns, their spatial relation with dysfunctional resting-state connectivity, and their BoNT-A responsiveness. Functional MRI in 14/12 ADSD patients before/under BoNT-A effect and 15 controls was performed (i) during automatized tactile stimulus application to face/hand, and (ii) at rest. Between-group differential stimulation-induced activation and resting-state connectivity (regional homogeneity, connectivity strength within selected sensory(motor) networks), as well as within-patient BoNT-A effects on these differences were investigated. Contralateral-to-stimulation overactivity in ADSD before BoNT-A involved primary and secondary somatosensory representations, along with abnormalities in higher-order parietal, insular, temporal or premotor cortices. Dysphonic impairment in ADSD positively associated with left-hemispheric temporal activity. Connectivity was increased within right premotor (sensorimotor network), left primary auditory cortex (auditory network), and regionally reduced at the temporoparietal junction. Activation/connectivity before/after BoNT-A within-patients did not significantly differ. Abnormal ADSD central somatosensory processing supports its significance as common pathophysiologic focal dystonia trait. Abnormal temporal cortex tactile processing and resting-state connectivity might hint at abnormal cross-modal sensory interactions.
Collapse
Affiliation(s)
- Tobias Mantel
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse, 22, Munich, Germany
| | - Christian Dresel
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse, 22, Munich, Germany.,Department of Neurology, Johannes Gutenberg University, Langenbeckstrasse, 1, Mainz, Germany
| | - Michael Welte
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse, 22, Munich, Germany
| | - Tobias Meindl
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse, 22, Munich, Germany
| | - Angela Jochim
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse, 22, Munich, Germany
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse, 22, Munich, Germany
| | - Bernhard Haslinger
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse, 22, Munich, Germany.
| |
Collapse
|
19
|
What Is New in Laryngeal Dystonia: Review of Novel Findings of Pathophysiology and Novel Treatment Options. CURRENT OTORHINOLARYNGOLOGY REPORTS 2020. [DOI: 10.1007/s40136-020-00301-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Hanekamp S, Simonyan K. The large-scale structural connectome of task-specific focal dystonia. Hum Brain Mapp 2020; 41:3253-3265. [PMID: 32311207 PMCID: PMC7375103 DOI: 10.1002/hbm.25012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/27/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022] Open
Abstract
The emerging view of dystonia is that of a large‐scale functional network disorder, in which the communication is disrupted between sensorimotor cortical areas, basal ganglia, thalamus, and cerebellum. The structural underpinnings of functional alterations in dystonia are, however, poorly understood. Notably, it is unclear whether structural changes form a larger‐scale dystonic network or rather remain focal to isolated brain regions, merely underlying their functional abnormalities. Using diffusion‐weighted imaging and graph theoretical analysis, we examined inter‐regional white matter connectivity of the whole‐brain structural network in two different forms of task‐specific focal dystonia, writer's cramp and laryngeal dystonia, compared to healthy individuals. We show that, in addition to profoundly altered functional network in focal dystonia, its structural connectome is characterized by large‐scale aberrations due to abnormal transfer of prefrontal and parietal nodes between neural communities and the reorganization of normal hub architecture, commonly involving the insula and superior frontal gyrus in patients compared to controls. Other prominent common changes involved the basal ganglia, parietal and cingulate cortical regions, whereas premotor and occipital abnormalities distinctly characterized the two forms of dystonia. We propose a revised pathophysiological model of focal dystonia as a disorder of both functional and structural connectomes, where dystonia form‐specific abnormalities underlie the divergent mechanisms in the development of distinct clinical symptomatology. These findings may guide the development of novel therapeutic strategies directed at targeted neuromodulation of pathophysiological brain regions for the restoration of their structural and functional connectivity.
Collapse
Affiliation(s)
- Sandra Hanekamp
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Kristina Simonyan
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Daliri A, Heller Murray ES, Blood AJ, Burns J, Noordzij JP, Nieto-Castanon A, Tourville JA, Guenther FH. Auditory Feedback Control Mechanisms Do Not Contribute to Cortical Hyperactivity Within the Voice Production Network in Adductor Spasmodic Dysphonia. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2020; 63:421-432. [PMID: 32091959 PMCID: PMC7210444 DOI: 10.1044/2019_jslhr-19-00325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 11/05/2019] [Indexed: 05/21/2023]
Abstract
Purpose Adductor spasmodic dysphonia (ADSD), the most common form of spasmodic dysphonia, is a debilitating voice disorder characterized by hyperactivity and muscle spasms in the vocal folds during speech. Prior neuroimaging studies have noted excessive brain activity during speech in participants with ADSD compared to controls. Speech involves an auditory feedback control mechanism that generates motor commands aimed at eliminating disparities between desired and actual auditory signals. Thus, excessive neural activity in ADSD during speech may reflect, at least in part, increased engagement of the auditory feedback control mechanism as it attempts to correct vocal production errors detected through audition. Method To test this possibility, functional magnetic resonance imaging was used to identify differences between participants with ADSD (n = 12) and age-matched controls (n = 12) in (a) brain activity when producing speech under different auditory feedback conditions and (b) resting-state functional connectivity within the cortical network responsible for vocalization. Results As seen in prior studies, the ADSD group had significantly higher activity than the control group during speech with normal auditory feedback (compared to a silent baseline task) in three left-hemisphere cortical regions: ventral Rolandic (sensorimotor) cortex, anterior planum temporale, and posterior superior temporal gyrus/planum temporale. Importantly, this same pattern of hyperactivity was also found when auditory feedback control of speech was eliminated through masking noise. Furthermore, the ADSD group had significantly higher resting-state functional connectivity between sensorimotor and auditory cortical regions within the left hemisphere as well as between the left and right hemispheres. Conclusions Together, our results indicate that hyperactivation in the cortical speech network of individuals with ADSD does not result from hyperactive auditory feedback control mechanisms and rather is likely related to impairments in somatosensory feedback control and/or feedforward control mechanisms.
Collapse
Affiliation(s)
- Ayoub Daliri
- Department of Speech, Language, & Hearing Sciences, Boston University, MA
- College of Health Solutions, Arizona State University, Tempe
| | | | - Anne J. Blood
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston
| | - James Burns
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston
| | - J. Pieter Noordzij
- Otolaryngology, Head & Neck Surgery, Boston University School of Medicine, MA
| | | | - Jason A. Tourville
- Department of Speech, Language, & Hearing Sciences, Boston University, MA
| | - Frank H. Guenther
- Department of Speech, Language, & Hearing Sciences, Boston University, MA
| |
Collapse
|
22
|
Conte A, Defazio G, Mascia M, Belvisi D, Pantano P, Berardelli A. Advances in the pathophysiology of adult-onset focal dystonias: recent neurophysiological and neuroimaging evidence. F1000Res 2020; 9. [PMID: 32047617 PMCID: PMC6993830 DOI: 10.12688/f1000research.21029.2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2020] [Indexed: 12/28/2022] Open
Abstract
Focal dystonia is a movement disorder characterized by involuntary muscle contractions that determine abnormal postures. The traditional hypothesis that the pathophysiology of focal dystonia entails a single structural dysfunction (i.e. basal ganglia) has recently come under scrutiny. The proposed network disorder model implies that focal dystonias arise from aberrant communication between various brain areas. Based on findings from animal studies, the role of the cerebellum has attracted increased interest in the last few years. Moreover, it has been increasingly reported that focal dystonias also include nonmotor disturbances, including sensory processing abnormalities, which have begun to attract attention. Current evidence from neurophysiological and neuroimaging investigations suggests that cerebellar involvement in the network and mechanisms underlying sensory abnormalities may have a role in determining the clinical heterogeneity of focal dystonias.
Collapse
Affiliation(s)
- Antonella Conte
- Department of Human Neurosciences, Sapienza, University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli (IS), Italy
| | - Giovanni Defazio
- Department of Medical Sciences and Public Health, Neurology Unit, University of Cagliari and AOU Cagliari, Monserrato, Cagliari, Italy
| | - Marcello Mascia
- Department of Medical Sciences and Public Health, Neurology Unit, University of Cagliari and AOU Cagliari, Monserrato, Cagliari, Italy
| | | | - Patrizia Pantano
- Department of Human Neurosciences, Sapienza, University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli (IS), Italy
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza, University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli (IS), Italy
| |
Collapse
|
23
|
Caverzasi E, Battistella G, Chu SA, Rosen H, Zanto TP, Karydas A, Shwe W, Coppola G, Geschwind DH, Rademakers R, Miller BL, Gorno-Tempini ML, Lee SE. Gyrification abnormalities in presymptomatic c9orf72 expansion carriers. J Neurol Neurosurg Psychiatry 2019; 90:1005-1010. [PMID: 31079065 PMCID: PMC6820159 DOI: 10.1136/jnnp-2018-320265] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/04/2019] [Accepted: 04/03/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate in-vivo cortical gyrification patterns measured by the local gyrification index (lGI) in presymptomatic c9orf72 expansion carriers compared with healthy controls, and investigate relationships between lGI and cortical thickness, an established morphometric measure of neurodegeneration. METHODS We assessed cortical gyrification and thickness patterns in a cohort of 15 presymptomatic c9orf72 expansion carriers (age 43.7 ± 10.2 years, 9 females) compared with 67 (age 42.4 ± 12.4 years, 36 females) age and sex matched healthy controls using the dedicated Freesurfer pipeline. RESULTS Compared with controls, presymptomatic carriers showed significantly lower lGI in left frontal and right parieto-occipital regions. Interestingly, those areas with abnormal gyrification in presymptomatic carriers showed no concomitant cortical thickness abnormality. Overall, for both presymptomatic carriers and healthy controls, gyrification and cortical thickness measures were not correlated, suggesting that gyrification captures a feature distinct from cortical thickness. CONCLUSIONS Presymptomatic c9orf72 expansion carriers show regions of abnormally low gyrification as early as their 30s, decades before expected symptom onset. Cortical gyrification represents a novel grey matter metric distinctive from grey matter thickness or volume and detects differences in presymptomatic carriers at an early age.
Collapse
Affiliation(s)
- Eduardo Caverzasi
- Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Giovanni Battistella
- Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Stephanie A Chu
- Neurology, Memory and Aging Center University of California, San Francisco, San Francisco, California, USA
| | - Howie Rosen
- Neurology, Memory and Aging Center University of California, San Francisco, San Francisco, California, USA
| | - Theodore P Zanto
- Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Anna Karydas
- Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Wendy Shwe
- Neurology, Memory and Aging Center University of California, San Francisco, San Francisco, California, USA
| | | | - Daniel H Geschwind
- Psychiatry and Neurology, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, California, USA
| | - Rosa Rademakers
- Neuroscience, Mayo Clinic College of Medicine, Jacksonville, Florida, USA
| | - Bruce L Miller
- Neurology, Memory and Aging Center University of California, San Francisco, San Francisco, California, USA
- University of California, San Francisco, San Francisco, California, USA
| | - Maria Luisa Gorno-Tempini
- Neurology, Memory and Aging Center University of California, San Francisco, San Francisco, California, USA
| | - Suzee E Lee
- Neurology, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
24
|
Bianchi S, Fuertinger S, Huddleston H, Frucht SJ, Simonyan K. Functional and structural neural bases of task specificity in isolated focal dystonia. Mov Disord 2019; 34:555-563. [PMID: 30840778 DOI: 10.1002/mds.27649] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/31/2018] [Accepted: 01/28/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Task-specific focal dystonias selectively affect movements during the production of highly learned and complex motor behaviors. Manifestation of some task-specific focal dystonias, such as musician's dystonia, has been associated with excessive practice and overuse, whereas the etiology of others remains largely unknown. OBJECTIVES In this study, we aimed to examine the neural correlates of task-specific dystonias in order to determine their disorder-specific pathophysiological traits. METHODS Using multimodal neuroimaging analyses of resting-state functional connectivity, voxel-based morphometry and tract-based spatial statistics, we examined functional and structural abnormalities that are both common to and distinct between four different forms of task-specific focal dystonias. RESULTS Compared to the normal state, all task-specific focal dystonias were characterized by abnormal recruitment of parietal and premotor cortices that are necessary for both modality-specific and heteromodal control of the sensorimotor network. Contrasting the laryngeal and hand forms of focal dystonia revealed distinct patterns of sensorimotor integration and planning, again involving parietal cortex in addition to inferior frontal gyrus and anterior insula. On the other hand, musician's dystonia compared to nonmusician's dystonia was shaped by alterations in primary and secondary sensorimotor cortices together with middle frontal gyrus, pointing to impairments of sensorimotor guidance and executive control. CONCLUSION Collectively, this study outlines a specialized footprint of functional and structural alterations in different forms of task-specific focal dystonia, all of which also share a common pathophysiological framework involving premotor-parietal aberrations. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Serena Bianchi
- Department of Neurology, Mount Sinai School of Medicine, New York, New York, USA
| | - Stefan Fuertinger
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main, Germany
| | - Hailey Huddleston
- Department of Neurology, Mount Sinai School of Medicine, New York, New York, USA
| | - Steven J Frucht
- Department of Neurology, New York University, New York, New York, USA
| | - Kristina Simonyan
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.,Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Guiry S, Worthley A, Simonyan K. A separation of innate and learned vocal behaviors defines the symptomatology of spasmodic dysphonia. Laryngoscope 2018; 129:1627-1633. [PMID: 30582159 DOI: 10.1002/lary.27617] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/17/2018] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Spasmodic dysphonia (SD) is a neurological disorder characterized by involuntary spasms in the laryngeal muscles. It is thought to selectively affect speaking; other vocal behaviors remain intact. However, the patients' own perspective on their symptoms is largely missing, leading to partial understanding of the full spectrum of voice alterations in SD. METHODS A cohort of 178 SD patients rated their symptoms on the visual analog scale based on the level of effort required for speaking, singing, shouting, whispering, crying, laughing, and yawning. Statistical differences between the effort for speaking and the effort for other vocal behaviors were assessed using nonparametric Wilcoxon rank-sum tests within the overall SD cohort as well as within different subgroups of SD. RESULTS Speech production was found to be the most impaired behavior, ranking as the most effortful type of voice production in all SD patients. In addition, singing required nearly similar effort as speaking, ranking as the second most altered vocal behavior. Shouting showed a range of variability in its alterations, being especially difficult to produce for patients with adductor form, co-occurring voice tremor, late onset of disorder, and familial history of dystonia. Other vocal behaviors, such as crying, laughing, whispering, and yawning, were within the normal ranges across all SD patients. CONCLUSION Our findings widen the symptomatology of SD, which has predominantly been focused on selective speech impairments. We suggest that a separation of SD symptoms is rooted in selective aberrations of the neural circuitry controlling learned but not innate vocal behaviors. LEVEL OF EVIDENCE 4 Laryngoscope, 129:1627-1633, 2019.
Collapse
Affiliation(s)
- Samantha Guiry
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, U.S.A.,Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, U.S.A
| | - Alexis Worthley
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, U.S.A.,Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, U.S.A
| | - Kristina Simonyan
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, U.S.A.,Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, U.S.A.,Harvard Medical School, Boston, Massachusetts, U.S.A
| |
Collapse
|
26
|
Abstract
Dystonia is a neurological disorder characterized by involuntary, repetitive movements. Although the precise mechanisms of dystonia development remain unknown, the diversity of its clinical phenotypes is thought to be associated with multifactorial pathophysiology, which is linked not only to alterations of brain organization, but also environmental stressors and gene mutations. This chapter will present an overview of the pathophysiology of isolated dystonia through the lens of applications of major neuroimaging methodologies, with links to genetics and environmental factors that play a prominent role in symptom manifestation.
Collapse
|
27
|
Abstract
Within the field of movement disorders, the conceptual understanding of dystonia has continued to evolve. Clinical advances have included improvements in recognition of certain features of dystonia, such as tremor, and understanding of phenotypic spectrums in the genetic dystonias and dystonia terminology and classification. Progress has also been made in the understanding of underlying biological processes which characterize dystonia from discoveries using approaches such as neurophysiology, functional imaging, genetics, and animal models. Important advances include the role of the cerebellum in dystonia, the concept of dystonia as an aberrant brain network disorder, additional evidence supporting the concept of dystonia endophenotypes, and new insights into psychogenic dystonia. These discoveries have begun to shape treatment approaches as, in parallel, important new treatment modalities, including magnetic resonance imaging-guided focused ultrasound, have emerged and existing interventions such as deep brain stimulation have been further refined. In this review, these topics are explored and discussed.
Collapse
Affiliation(s)
- Stephen Tisch
- Faculty of Medicine, University of New South Wales, Sydney, Australia.,Department of Neurology, St Vincent's Hospital, Sydney, Australia
| |
Collapse
|
28
|
Battistella G, Kumar V, Simonyan K. Connectivity profiles of the insular network for speech control in healthy individuals and patients with spasmodic dysphonia. Brain Struct Funct 2018. [PMID: 29520481 DOI: 10.1007/s00429-018-1644-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The importance of insula in speech control is acknowledged but poorly understood, partly due to a variety of clinical symptoms resulting from insults to this structure. To clarify its structural organization within the speech network in healthy subjects, we used probabilistic diffusion tractography to examine insular connectivity with three cortical regions responsible for sound processing [Brodmann area (BA) 22], motor preparation (BA 44) and motor execution (laryngeal/orofacial primary motor cortex, BA 4). To assess insular reorganization in a speech disorder, we examined its structural connectivity in patients with spasmodic dysphonia (SD), a neurological condition that selectively affects speech production. We demonstrated structural segregation of insula into three non-overlapping regions, which receive distinct connections from BA 44 (anterior insula), BA 4 (mid-insula) and BA 22 (dorsal and posterior insula). There were no significant differences either in the number of streamlines connecting each insular subdivision to the cortical target or hemispheric lateralization of insular clusters and their projections between healthy subjects and SD patients. However, spatial distribution of the insular subdivisions connected to BA 4 and BA 44 was distinctly organized in healthy controls and SD patients, extending ventro-posteriorly in the former group and anterio-dorsally in the latter group. Our findings point to structural segregation of the insular sub-regions, which may be associated with the different aspects of sensorimotor and cognitive control of speech production. We suggest that distinct insular involvement may lead to different clinical manifestations when one or the other insular region and/or its connections undergo spatial reorganization.
Collapse
Affiliation(s)
- Giovanni Battistella
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Veena Kumar
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristina Simonyan
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Suite 421, Boston, MA, 02114, USA.
| |
Collapse
|
29
|
Connectome-Wide Phenotypical and Genotypical Associations in Focal Dystonia. J Neurosci 2017; 37:7438-7449. [PMID: 28674168 DOI: 10.1523/jneurosci.0384-17.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/31/2017] [Accepted: 06/07/2017] [Indexed: 11/21/2022] Open
Abstract
Isolated focal dystonia is a debilitating movement disorder of unknown pathophysiology. Early studies in focal dystonias have pointed to segregated changes in brain activity and connectivity. Only recently has the notion that dystonia pathophysiology may lie in abnormalities of large-scale brain networks appeared in the literature. Here, we outline a novel concept of functional connectome-wide alterations that are linked to dystonia phenotype and genotype. Using a neural community detection strategy and graph theoretical analysis of functional MRI data in human patients with the laryngeal form of dystonia (LD) and healthy controls (both males and females), we identified an abnormally widespread hub formation in LD, which particularly affected the primary sensorimotor and parietal cortices and thalamus. Left thalamic regions formed a delineated functional community that highlighted differences in network topology between LD patients with and without family history of dystonia. Conversely, marked differences in the topological organization of parietal regions were found between phenotypically different forms of LD. The interface between sporadic genotype and adductor phenotype of LD yielded four functional communities that were primarily governed by intramodular hub regions. Conversely, the interface between familial genotype and abductor phenotype was associated with numerous long-range hub nodes and an abnormal integration of left thalamus and basal ganglia. Our findings provide the first comprehensive atlas of functional topology across different phenotypes and genotypes of focal dystonia. As such, this study constitutes an important step toward defining dystonia as a large-scale network disorder, understanding its causative pathophysiology, and identifying disorder-specific markers.SIGNIFICANCE STATEMENT The architecture of the functional connectome in focal dystonia was analyzed in a large population of patients with laryngeal dystonia. Breaking with the empirical concept of dystonia as a basal ganglia disorder, we discovered large-scale alterations of neural communities that are significantly influenced by the disorder's clinical phenotype and genotype.
Collapse
|