1
|
Rong D, Hu CP, Yang J, Guo Z, Liu W, Yu M. Consistent abnormal activity in the putamen by dopamine modulation in Parkinson's disease: A resting-state neuroimaging meta-analysis. Brain Res Bull 2024; 210:110933. [PMID: 38508469 DOI: 10.1016/j.brainresbull.2024.110933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/16/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
OBJECTIVE This study aimed to elucidate brain areas mediated by oral anti-parkinsonian medicine that consistently show abnormal resting-state activation in PD and to reveal their functional connectivity profiles using meta-analytic approaches. METHODS Searches of the PubMed, Web of Science databases identified 78 neuroimaging studies including PD OFF state (PD-OFF) versus (vs.) PD ON state (PD-ON) or PD-ON versus healthy controls (HCs) or PD-OFF versus HCs data. Coordinate-based meta-analysis and functional meta-analytic connectivity modeling (MACM) were performed using the activation likelihood estimation algorithm. RESULTS Brain activation in PD-OFF vs. PD-ON was significantly changed in the right putamen and left inferior parietal lobule (IPL). Contrast analysis indicated that PD-OFF vs. HCs had more consistent activation in the right paracentral lobule, right middle frontal gyrus, right thalamus, left superior parietal lobule and right putamen, whereas PD-ON vs. HCs elicited more consistent activation in the bilateral middle temporal gyrus, left occipital gyrus, right inferior frontal gyrus and right caudate. MACM revealed coactivation of the right putamen in the direct contrast of PD-OFF vs. PD-ON. Subtraction analysis of significant coactivation clusters for PD-OFF vs. PD-ON with the medium of HCs showed effects in the sensorimotor, top-down control, and visual networks. By overlapping the MACM maps of the two analytical strategies, we demonstrated that the coactivated brain region focused on the right putamen. CONCLUSIONS The convergence of local brain regions and co-activation neural networks are involved the putamen, suggesting its potential as a specific imaging biomarker to monitor treatment efficacy. SYSTEMATIC REVIEW REGISTRATION [https://www.crd.york.ac.uk/PROSPERO/], identifier [CRD CRD42022304150].
Collapse
Affiliation(s)
- Danyan Rong
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, No.264, Guangzhou Road, Gulou District, Nanjing, Jiangsu 210029, China
| | - Chuan-Peng Hu
- School of Psychology, Nanjing Normal University, No.122, Ninghai Road, Gulou District, Nanjing, Jiangsu 210024, China
| | - Jiaying Yang
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, No.138, Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Zhiying Guo
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, No.264, Guangzhou Road, Gulou District, Nanjing, Jiangsu 210029, China
| | - Weiguo Liu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, No.264, Guangzhou Road, Gulou District, Nanjing, Jiangsu 210029, China.
| | - Miao Yu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, No.264, Guangzhou Road, Gulou District, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
2
|
Liu W, Shen Y, Zhong Y, Sun Y, Yang J, Zhang W, Yan L, Liu W, Yu M. Levodopa improved different motor symptoms in patients with Parkinson's disease by reducing the functional connectivity of specific thalamic subregions. CNS Neurosci Ther 2024; 30:e14354. [PMID: 37452488 PMCID: PMC10848087 DOI: 10.1111/cns.14354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 05/15/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND The thalamus is an important relay station for the motor circuit of human. Levodopa can reverse the clinical manifestations by modulating the function of motor circuits, but its detailed mechanisms are still not fully understood. We aimed to explore (1) the mechanism by which levodopa modulates the functional connectivity (FC) in the subregions of the thalamus; (2) the relationship between the changed FC and the improvement of motor symptoms in Parkinson's disease (PD) patients. METHODS Resting-state functional MRI was used to scan 36 PD patients and 37 healthy controls. The FC between the subregions in the thalamus and the whole brain was measured and compared under different medication states of PD patients. The correlation between the improvement of motor symptoms and changes in FC in the thalamus subregions was examined. RESULTS The PD on state exhibited decreased FC between the right pre-motor thalamus and the right postcentral gyrus, as well as the right lateral pre-frontal thalamus and the right postcentral gyrus. These decreases were positively correlated with the improvement of resting tremor. The PD on state also exhibited decreased FC between the left lateral pre-frontal thalamus and right paracentral lobule, which was positively correlated with the improvement of bradykinesia. CONCLUSIONS This study demonstrates that levodopa treats PD by decreasing the FC between the thalamus subregions and pre/post-central cortex. Our results provide a basis for further exploration of the functional activity of thalamic subregions and offer new insights into the precision treatment in PD patients.
Collapse
Affiliation(s)
- Wan Liu
- Department of RehabilitationThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
- Department of NeurologyThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Yang Shen
- Department of NeurologyThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
- Department of NeurologyXiaogan Hospital Affiliated to Wuhan University of Science and Technology, The Central Hospital of XiaoganXiaoganChina
| | - Yuan Zhong
- School of PsychologyNanjing Normal UniversityNanjingChina
- Jiangsu Key Laboratory of Mental Health and Cognitive ScienceNanjing Normal UniversityNanjingChina
| | - Yu Sun
- International Laboratory for Children's Medical Imaging Research, School of Biological Sciences and Medical EngineeringSoutheast UniversityNanjingChina
- Director of Joint Research Centre for University of Birmingham and Southeast UniversitySoutheast UniversityNanjingChina
| | - Jiaying Yang
- Department of Public Health, School of Medicine and Holistic Integrative MedicineNanjing University of Chinese MedicineNanjingChina
| | - Wenbin Zhang
- Department of Functional NeurosurgeryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Lei Yan
- Department of NeurologyThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Weiguo Liu
- Department of NeurologyThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Miao Yu
- Department of NeurologyThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
3
|
Hensel L, Seger A, Farrher E, Bonkhoff AK, Shah NJ, Fink GR, Grefkes C, Sommerauer M, Doppler CEJ. Fronto-striatal dynamic connectivity is linked to dopaminergic motor response in Parkinson's disease. Parkinsonism Relat Disord 2023; 114:105777. [PMID: 37549587 DOI: 10.1016/j.parkreldis.2023.105777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/09/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023]
Abstract
INTRODUCTION Differences in dopaminergic motor response in Parkinson's disease (PD) patients can be related to PD subtypes, and previous fMRI studies associated dopaminergic motor response with corticostriatal functional connectivity. While traditional fMRI analyses have assessed the mean connectivity between regions of interest, an important aspect driving dopaminergic response might lie in the temporal dynamics in corticostriatal connections. METHODS This study aims to determine if altered resting-state dynamic functional network connectivity (DFC) is associated with dopaminergic motor response. To test this, static and DFC were assessed in 32 PD patients and 18 healthy controls (HC). Patients were grouped as low and high responders using a median split of their dopaminergic motor response. RESULTS Patients featuring a high dopaminergic motor response were observed to spend more time in a regionally integrated state compared to HC. Furthermore, DFC between the anterior midcingulate cortex/dorsal anterior cingulate cortex (aMCC/dACC) and putamen was lower in low responders during a more segregated state and correlated with dopaminergic motor response. CONCLUSION The findings of this study revealed that temporal dynamics of fronto-striatal connectivity are associated with clinically relevant information, which may be considered when assessing functional connectivity between regions involved in motor initiation.
Collapse
Affiliation(s)
- Lukas Hensel
- University of Cologne, University Hospital Cologne, Department of Neurology, 50937, Köln, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, 52425, Jülich, Germany.
| | - Aline Seger
- University of Cologne, University Hospital Cologne, Department of Neurology, 50937, Köln, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Ezequiel Farrher
- Institute of Neuroscience and Medicine 4 and Molecular Neuroscience and Neuroimaging (INM-4 / INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Anna K Bonkhoff
- J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - N Jon Shah
- Institute of Neuroscience and Medicine 4 and Molecular Neuroscience and Neuroimaging (INM-4 / INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany; JARA - BRAIN - Translational Medicine, 52056, Aachen, Germany; RWTH Aachen University, Department of Neurology, 52056, Aachen, Germany
| | - Gereon R Fink
- University of Cologne, University Hospital Cologne, Department of Neurology, 50937, Köln, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Christian Grefkes
- University Hospital Frankfurt, Goethe University, Department of Neurology, Frankfurt am Main, Germany
| | - Michael Sommerauer
- University of Cologne, University Hospital Cologne, Department of Neurology, 50937, Köln, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Christopher E J Doppler
- University of Cologne, University Hospital Cologne, Department of Neurology, 50937, Köln, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, 52425, Jülich, Germany.
| |
Collapse
|
4
|
Lai Y, He N, Wei H, Deng L, Zhou H, Li J, Kaiser M, Zhang C, Li D, Sun B. Value of functional connectivity in outcome prediction for pallidal stimulation in Parkinson disease. J Neurosurg 2023; 138:27-37. [PMID: 35523258 DOI: 10.3171/2022.3.jns212732] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/21/2022] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Functional connectivity shows the ability to predict the outcome of subthalamic nucleus deep brain stimulation (DBS) in Parkinson disease (PD). However, evidence supporting its value in predicting the outcome of globus pallidus internus (GPi) DBS remains scarce. In this study the authors investigated patient-specific functional connectivity related to GPi DBS outcome in PD and established connectivity models for outcome prediction. METHODS The authors reviewed the outcomes of 21 patients with PD who received bilateral GPi DBS and presurgical functional MRI at the Ruijin Hospital. The connectivity profiles within cortical areas identified as relevant to DBS outcome in the literature were calculated using the intersection of the volume of tissue activated (VTA) and the local structures as the seeds. Combined with the leave-one-out cross-validation strategy, models of the optimal connectivity profile were constructed to predict outcome. RESULTS Connectivity between the pallidal areas and primary motor area, supplementary motor area (SMA), and premotor cortex was identified through the literature as related to GPi DBS outcome. The similarity between the connectivity profile within the primary motor area, SMA, pre-SMA, and premotor cortex seeding from the VTA-GPi intersection from an out-of-sample patient and the constructed in-sample optimal connectivity profile predicts GPi DBS outcome (R = 0.58, p = 0.006). The predictions on average deviated by 13.1% ± 11.3% from actual improvements. On the contrary, connectivity profiles seeding from the GPi (R = -0.12, p = 0.603), the VTA (R = 0.23, p = 0.308), the VTA outside the GPi (R = 0.12, p = 0.617), or other local structures were found not to be predictive. CONCLUSIONS The results showed that patient-specific functional connectivity seeding from the VTA-GPi intersection could help in GPi DBS outcome prediction. Reproducibility remains to be determined across centers in larger cohorts stratified by PD motor subtype.
Collapse
Affiliation(s)
- Yijie Lai
- 1Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Naying He
- 2Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongjiang Wei
- 3Department of Biomedical Engineering, Institute for Medical Imaging Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Lifu Deng
- 4Center for Cognitive Neuroscience, Duke University, Durham, North Carolina
| | - Haiyan Zhou
- 5Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Li
- 6School of Information Science and Technology, Shanghai Technical University, Shanghai, China
| | - Marcus Kaiser
- 7School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom; and
| | - Chencheng Zhang
- 1Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- 8Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China
| | - Dianyou Li
- 1Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- 1Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Functional connectivity of the cortico-subcortical sensorimotor loop is modulated by the severity of nigrostriatal dopaminergic denervation in Parkinson’s Disease. NPJ Parkinsons Dis 2022; 8:122. [PMID: 36171211 PMCID: PMC9519637 DOI: 10.1038/s41531-022-00385-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
To assess if the severity of nigrostriatal innervation loss affects the functional connectivity (FC) of the sensorimotor cortico-striato-thalamic-cortical loop (CSTCL) in Parkinson’s Disease (PD), Resting-State functional MRI and 18F-DOPA PET data, simultaneously acquired on a hybrid PET/MRI scanner, were retrospectively analyzed in 39 PD and 16 essential tremor patients. Correlations between posterior Putamen DOPA Uptake (pPDU) and the FC of the main CSTCL hubs were assessed separately in the two groups, analyzing the differences between the two groups by a group-by-pPDU interaction analysis of the resulting clusters’ FC. Unlike in essential tremor, in PD patients pPDU correlated inversely with the FC of the thalamus with the sensorimotor cortices, and of the postcentral gyrus with the dorsal cerebellum, and directly with the FC of pre- and post-central gyri with both the superior and middle temporal gyri and the paracentral lobule, and of the caudate with the superior parietal cortex. The interaction analysis confirmed the significance of the difference between the two groups in these correlations. In PD patients, the post-central cortex FC, in the clusters correlating directly with pPDU, negatively correlated with both UPDRS motor examination score and Hoehn and Yahr stage, independent of the pPDU, suggesting that these FC changes contribute to motor impairment. In PD, nigrostriatal innervation loss correlates with a decrease in the FC within the sensorimotor network and between the sensorimotor network and the superior temporal cortices, possibly contributing to motor impairment, and with a strengthening of the thalamo-cortical FC, that may represent ineffective compensatory phenomena.
Collapse
|
6
|
Risk factors for motor complications in female patients with Parkinson's disease. Neurol Sci 2022; 43:4735-4743. [PMID: 35384562 DOI: 10.1007/s10072-022-05959-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/12/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To investigate the risk factors of motor complications in female patients with Parkinson's disease (PD) and the correlation between the occurrence of motor complications and sex hormone levels. METHODS According to the occurrence and types of motor complications, 103 female PD patients were divided into two groups: patients with or without the wearing-off phenomenon, patients with or without dyskinesia. Binary logistic regression analysis was performed respectively to screen for the risk factors of the wearing-off phenomenon and dyskinesia in female PD patients. RESULTS Among 103 female PD patients, 44 (42.72%) had motor complications. Patients with the wearing-off phenomenon and patients with dyskinesia had higher prolactin levels than patients without the wearing-off phenomenon and patients without dyskinesia, respectively. However, the difference was no longer significant when the two groups were corrected for multiple comparisons (P < 0.0028). Multivariate analysis found that younger age at onset and higher Hoehn-Yahr (H&Y) stage were identified as independent risk factors for the wearing-off phenomenon and younger age of onset was an independent risk factor for dyskinesia in female PD patients (P < 0.05). CONCLUSION Female PD patients have a higher incidence of motor complications. Younger age of onset and higher H&Y stage were the risk factors of the wearing-off phenomenon, and younger onset age was the risk factor of dyskinesia in female PD patients. There may be a certain correlation between the occurrence of motor complications and sex hormone levels in female PD patients, which requires further verification.
Collapse
|
7
|
Boshkovski T, Cohen‐Adad J, Misic B, Arnulf I, Corvol J, Vidailhet M, Lehéricy S, Stikov N, Mancini M. The Myelin-Weighted Connectome in Parkinson's Disease. Mov Disord 2022; 37:724-733. [PMID: 34936123 PMCID: PMC9303520 DOI: 10.1002/mds.28891] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Even though Parkinson's disease (PD) is typically viewed as largely affecting gray matter, there is growing evidence that there are also structural changes in the white matter. Traditional connectomics methods that study PD may not be specific to underlying microstructural changes, such as myelin loss. OBJECTIVE The primary objective of this study is to investigate the PD-induced changes in myelin content in the connections emerging from the basal ganglia and the brainstem. For the weighting of the connectome, we used the longitudinal relaxation rate as a biologically grounded myelin-sensitive metric. METHODS We computed the myelin-weighted connectome in 35 healthy control subjects and 81 patients with PD. We used partial least squares to highlight the differences between patients with PD and healthy control subjects. Then, a ring analysis was performed on selected brainstem and subcortical regions to evaluate each node's potential role as an epicenter for disease propagation. Then, we used behavioral partial least squares to relate the myelin alterations with clinical scores. RESULTS Most connections (~80%) emerging from the basal ganglia showed a reduced myelin content. The connections emerging from potential epicentral nodes (substantia nigra, nucleus basalis of Meynert, amygdala, hippocampus, and midbrain) showed significant decrease in the longitudinal relaxation rate (P < 0.05). This effect was not seen for the medulla and the pons. CONCLUSIONS The myelin-weighted connectome was able to identify alteration of the myelin content in PD in basal ganglia connections. This could provide a different view on the importance of myelination in neurodegeneration and disease progression. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Julien Cohen‐Adad
- NeuroPoly Lab, Polytechnique MontréalMontréalQuebecCanada
- Mila – Quebec AI InstituteMontréalQuebecCanada
- Functional Neuroimaging Unit, Centre de Recherche de l'Institut Universitaire de Gériatrie de MontréalMontréalQuebecCanada
| | | | - Isabelle Arnulf
- Sorbonne Université, Paris Brain Institute – ICM, INSERM, CNRS, Assistance Publique Hôpitaux de Paris, Hôpital Pitié‐SalpêtrièreParisFrance
| | - Jean‐Christophe Corvol
- Sorbonne Université, Paris Brain Institute – ICM, INSERM, CNRS, Assistance Publique Hôpitaux de Paris, Hôpital Pitié‐SalpêtrièreParisFrance
| | - Marie Vidailhet
- Sorbonne Université, Paris Brain Institute – ICM, INSERM, CNRS, Assistance Publique Hôpitaux de Paris, Hôpital Pitié‐SalpêtrièreParisFrance
| | - Stéphane Lehéricy
- Sorbonne Université, Paris Brain Institute – ICM, INSERM, CNRS, Assistance Publique Hôpitaux de Paris, Hôpital Pitié‐SalpêtrièreParisFrance
| | - Nikola Stikov
- NeuroPoly Lab, Polytechnique MontréalMontréalQuebecCanada
- Montreal Heart InstituteMontréalQuebecCanada
| | - Matteo Mancini
- NeuroPoly Lab, Polytechnique MontréalMontréalQuebecCanada
- Department of NeuroscienceBrighton and Sussex Medical School, University of SussexBrightonUnited Kingdom
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff UniversityCardiffUnited Kingdom
| |
Collapse
|
8
|
Zhou C, Guo T, Bai X, Wu J, Gao T, Guan X, Liu X, Gu L, Huang P, Xuan M, Gu Q, Xu X, Zhang B, Zhang M. Locus coeruleus degeneration is associated with disorganized functional topology in Parkinson's disease. Neuroimage Clin 2022; 32:102873. [PMID: 34749290 PMCID: PMC8578042 DOI: 10.1016/j.nicl.2021.102873] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 09/07/2021] [Accepted: 10/30/2021] [Indexed: 10/26/2022]
Abstract
Degeneration of the locus coeruleus (LC) is recognized as a critical hallmark of Parkinson's disease (PD). Recent studies have reported that noradrenaline produced from the LC has critical effects on brain functional organization. However, it is unknown if LC degeneration in PD contributes to cognitive/motor manifestations through modulating brain functional organization. This study enrolled 94 PD patients and 68 healthy controls, and LC integrity was measured using the contrast-to-noise ratio of the LC (CNRLC) calculated from T1-weighted magnetic resonance imaging. We used graph-theory-based network analysis to characterize brain functional organization. The relationships among LC degeneration, network disruption, and cognitive/motor manifestations in PD were assessed. Whether network disruption was a mediator between LC degeneration and cognitive/motor impairments was assessed further. In addition, an independent PD subgroup (n = 35) having functional magnetic resonance scanning before and after levodopa administration was enrolled to evaluate whether LC degeneration-related network deficiencies were independent of dopamine deficiency. We demonstrated that PD patients have significant LC degeneration compared to healthy controls. CNRLC was positively correlated with Montreal Cognitive Assessment score and the nodal efficiency (NE) of several cognitive-related regions. Lower NE of the superior temporal gyrus was a mediator between LC degeneration and cognitive impairment in PD. However, levodopa treatment could not normalize the reduced NE of the superior temporal gyrus (mediator). In conclusion, we provided evidence for the relationship between LC degeneration and extensive network disruption in PD, and highlight the role of network disorganization in LC degeneration-related cognitive impairment.
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China.
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China.
| | - Xueqin Bai
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China.
| | - JingJing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China.
| | - Ting Gao
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China.
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China.
| | - Xiaocao Liu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China.
| | - Luyan Gu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China.
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China.
| | - Min Xuan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China.
| | - Quanquan Gu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China.
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China.
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China.
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China.
| |
Collapse
|
9
|
Yang B, Wang X, Mo J, Li Z, Gao D, Bai Y, Zou L, Zhang X, Zhao X, Wang Y, Liu C, Zhao B, Guo Z, Zhang C, Hu W, Zhang J, Zhang K. The amplitude of low-frequency fluctuation predicts levodopa treatment response in patients with Parkinson's disease. Parkinsonism Relat Disord 2021; 92:26-32. [PMID: 34666272 DOI: 10.1016/j.parkreldis.2021.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/21/2021] [Accepted: 10/05/2021] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Levodopa has become the main therapy for motor symptoms of Parkinson's disease (PD). This study aimed to test whether the amplitude of low-frequency fluctuation (ALFF) computed by fMRI could predict individual patient's response to levodopa treatment. METHODS We included 40 patients. Treatment efficacy was defined based on motor symptoms improvement from the state of medication off to medication on, as assessed by the Unified Parkinson's Disease Rating Scale score III. Two machine learning models were constructed to test the prediction ability of ALFF. First, the ensemble method was implemented to predict individual treatment responses. Second, the categorical boosting (CatBoost) classification was used to predict individual levodopa responses in patients classified as moderate and superior responders, according to the 50% threshold of improvement. The age, disease duration and treatment dose were controlled as covariates. RESULTS No significant difference in clinical data were observed between moderate and superior responders. Using the ensemble method, the regression model showed a significant correlation between the predicted and the observed motor symptoms improvement (r = 0.61, p < 0.01, mean absolute error = 0.11 ± 0.02), measured as a continuous variable. The use of the Catboost algorithm revealed that ALFF was able to differentiate between moderate and superior responders (area under the curve = 0.90). The mainly contributed regions for both models included the bilateral primary motor cortex, the occipital cortex, the cerebellum, and the basal ganglia. CONCLUSION Both continuous and binary ALFF values have the potential to serve as promising predictive markers of dopaminergic therapy response in patients with PD.
Collapse
Affiliation(s)
- Bowen Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiajie Mo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zilin Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dongmei Gao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yutong Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Liangying Zou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Xin Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Xuemin Zhao
- Department of Neurophysiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yao Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chang Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Baotian Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhihao Guo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Wenhan Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China.
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China.
| |
Collapse
|
10
|
Iarkov A, Mendoza C, Echeverria V. Cholinergic Receptor Modulation as a Target for Preventing Dementia in Parkinson's Disease. Front Neurosci 2021; 15:665820. [PMID: 34616271 PMCID: PMC8488354 DOI: 10.3389/fnins.2021.665820] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative condition characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) in the midbrain resulting in progressive impairment in cognitive and motor abilities. The physiological and molecular mechanisms triggering dopaminergic neuronal loss are not entirely defined. PD occurrence is associated with various genetic and environmental factors causing inflammation and mitochondrial dysfunction in the brain, leading to oxidative stress, proteinopathy, and reduced viability of dopaminergic neurons. Oxidative stress affects the conformation and function of ions, proteins, and lipids, provoking mitochondrial DNA (mtDNA) mutation and dysfunction. The disruption of protein homeostasis induces the aggregation of alpha-synuclein (α-SYN) and parkin and a deficit in proteasome degradation. Also, oxidative stress affects dopamine release by activating ATP-sensitive potassium channels. The cholinergic system is essential in modulating the striatal cells regulating cognitive and motor functions. Several muscarinic acetylcholine receptors (mAChR) and nicotinic acetylcholine receptors (nAChRs) are expressed in the striatum. The nAChRs signaling reduces neuroinflammation and facilitates neuronal survival, neurotransmitter release, and synaptic plasticity. Since there is a deficit in the nAChRs in PD, inhibiting nAChRs loss in the striatum may help prevent dopaminergic neurons loss in the striatum and its pathological consequences. The nAChRs can also stimulate other brain cells supporting cognitive and motor functions. This review discusses the cholinergic system as a therapeutic target of cotinine to prevent cognitive symptoms and transition to dementia in PD.
Collapse
Affiliation(s)
- Alexandre Iarkov
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - Cristhian Mendoza
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - Valentina Echeverria
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile.,Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, United States
| |
Collapse
|
11
|
Wu C, Matias C, Foltynie T, Limousin P, Zrinzo L, Akram H. Dynamic Network Connectivity Reveals Markers of Response to Deep Brain Stimulation in Parkinson's Disease. Front Hum Neurosci 2021; 15:729677. [PMID: 34690721 PMCID: PMC8526554 DOI: 10.3389/fnhum.2021.729677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/19/2021] [Indexed: 01/10/2023] Open
Abstract
Background: Neuronal loss in Parkinson's Disease (PD) leads to widespread neural network dysfunction. While graph theory allows for analysis of whole brain networks, patterns of functional connectivity (FC) associated with motor response to deep brain stimulation of the subthalamic nucleus (STN-DBS) have yet to be explored. Objective/Hypothesis: To investigate the distributed network properties associated with STN-DBS in patients with advanced PD. Methods: Eighteen patients underwent 3-Tesla resting state functional MRI (rs-fMRI) prior to STN-DBS. Improvement in UPDRS-III scores following STN-DBS were assessed 1 year after implantation. Independent component analysis (ICA) was applied to extract spatially independent components (ICs) from the rs-fMRI. FC between ICs was calculated across the entire time series and for dynamic brain states. Graph theory analysis was performed to investigate whole brain network topography in static and dynamic states. Results: Dynamic analysis identified two unique brain states: a relative hypoconnected state and a relative hyperconnected state. Time spent in a state, dwell time, and number of transitions were not correlated with DBS response. There were no significant FC findings, but graph theory analysis demonstrated significant relationships with STN-DBS response only during the hypoconnected state - STN-DBS was negatively correlated with network assortativity. Conclusion: Given the widespread effects of dopamine depletion in PD, analysis of whole brain networks is critical to our understanding of the pathophysiology of this disease. Only by leveraging graph theoretical analysis of dynamic FC were we able to isolate a hypoconnected brain state that contained distinct network properties associated with the clinical effects of STN-DBS.
Collapse
Affiliation(s)
- Chengyuan Wu
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Caio Matias
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States
| | - Thomas Foltynie
- Unit of Functional Neurosurgery, UCL Institute of Neurology, London, United Kingdom
| | - Patricia Limousin
- Unit of Functional Neurosurgery, UCL Institute of Neurology, London, United Kingdom
| | - Ludvic Zrinzo
- Unit of Functional Neurosurgery, UCL Institute of Neurology, London, United Kingdom
- Victor Horsley Department of Neurosurgery, The National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Harith Akram
- Unit of Functional Neurosurgery, UCL Institute of Neurology, London, United Kingdom
- Victor Horsley Department of Neurosurgery, The National Hospital for Neurology and Neurosurgery, London, United Kingdom
| |
Collapse
|
12
|
Sheng W, Guo T, Zhou C, Wu J, Gao T, Pu J, Zhang B, Zhang M, Yang Y, Guan X, Xu X. Altered Cortical Cholinergic Network in Parkinson's Disease at Different Stage: A Resting-State fMRI Study. Front Aging Neurosci 2021; 13:723948. [PMID: 34566625 PMCID: PMC8461333 DOI: 10.3389/fnagi.2021.723948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/09/2021] [Indexed: 11/29/2022] Open
Abstract
The cholinergic system is critical in Parkinson’s disease (PD) pathology, which accounts for various clinical symptoms in PD patients. The substantia innominata (SI) provides the main source of cortical cholinergic innervation. Previous studies revealed cholinergic-related dysfunction in PD pathology at early stage. Since PD is a progressive disorder, alterations of cholinergic system function along with the PD progression have yet to be elucidated. Seventy-nine PD patients, including thirty-five early-stage PD patients (PD-E) and forty-four middle-to-late stage PD patients (PD-M), and sixty-four healthy controls (HC) underwent brain magnetic resonance imaging and clinical assessments. We employed seed-based resting-state functional connectivity analysis to explore the cholinergic-related functional alterations. Correlation analysis was used to investigate the relationship between altered functional connectivity and the severity of motor symptoms in PD patients. Results showed that both PD-E and PD-M groups exhibited decreased functional connectivity between left SI and left frontal inferior opercularis areas and increased functional connectivity between left SI and left cingulum middle area as well as right primary motor and sensory areas when comparing with HC. At advanced stages of PD, functional connectivity in the right primary motor and sensory areas was further increased. These altered functional connectivity were also significantly correlated with the Unified Parkinson’s Disease Rating Scale motor scores. In conclusion, this study illustrated that altered cholinergic function plays an important role in the motor disruptions in PD patients both in early stage as well as during the progression of the disease.
Collapse
Affiliation(s)
- Wenshuang Sheng
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting Gao
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiali Pu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunjun Yang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Zhou C, Guo T, Wu J, Wang L, Bai X, Gao T, Guan X, Gu L, Huang P, Xuan M, Gu Q, Xu X, Zhang B, Cheng W, Feng J, Zhang M. Locus Coeruleus Degeneration Correlated with Levodopa Resistance in Parkinson's Disease: A Retrospective Analysis. JOURNAL OF PARKINSONS DISEASE 2021; 11:1631-1640. [PMID: 34366373 PMCID: PMC8609680 DOI: 10.3233/jpd-212720] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background: The widely divergent responsiveness of Parkinson’s disease (PD) patients to levodopa is an important clinical issue because of its relationship with quality of life and disease prognosis. Preliminary animal experiments have suggested that degeneration of the locus coeruleus (LC) attenuates the efficacy of levodopa treatment. Objective: To explore the relationship between LC degeneration and levodopa responsiveness in PD patients in vivo. Methods: Neuromelanin-sensitive magnetic resonance imaging (NM-MRI), a good indicator of LC and substantia nigra (SN) degeneration, and levodopa challenge tests were conducted in 57 PD patients. Responsiveness to levodopa was evaluated by the rates of change of the Unified Parkinson’s Disease Rating Scale Part III score and somatomotor network synchronization calculated from resting-state functional MRI before and after levodopa administration. Next, we assessed the relationship between the contrast-to-noise ratio of LC (CNRLC) and levodopa responsiveness. Multiple linear regression analysis was conducted to rule out the potential influence of SN degeneration on levodopa responsiveness. Results: A significant positive correlation was found between CNRLC and the motor improvement after levodopa administration (R = 0.421, p = 0.004). CNRLC also correlated with improvement in somatomotor network synchronization (R = –0.323, p = 0.029). Furthermore, the relationship between CNRLC and levodopa responsiveness was independent of SN degeneration. Conclusion: LC degeneration might be an essential factor for levodopa resistance. LC evaluation using NM-MRI might be an alternative tool for predicting levodopa responsiveness and for helping to stratify patients into clinical trials aimed at improving the efficacy of levodopa.
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - JingJing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linbo Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Xueqin Bai
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting Gao
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Luyan Gu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Xuan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Quanquan Gu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China.,Department of Computer Science, University of Warwick, Coventry, United Kingdom
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
14
|
Donzuso G, Sciacca G, Rascunà C, Cicero CE, Mostile G, Nicoletti A, Zappia M. Structural MRI substrate of long-duration response to levodopa in Parkinson's disease: an exploratory study. J Neurol 2021; 268:4258-4264. [PMID: 33864515 PMCID: PMC8505285 DOI: 10.1007/s00415-021-10550-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 11/24/2022]
Abstract
Objective The long-duration response (LDR) to L-dopa is a sustained benefit deriving from chronic administration of therapy to patients with Parkinson’s disease (PD). Almost all patients with early PD may develop the LDR to L-dopa, even if some patients could not at given dosages of the drug. Aim of this exploratory study is to investigate whether a neuroanatomical substrate may underlie the development of the of LDR using structural magnetic resonance imaging (MRI) and voxel-based morphometry (VBM) analysis. Methods Twenty-four drug-naïve PD patients were enrolled and underwent a baseline 3D T1-weighted structural brain MRI. Then, a treatment with 250/25 mg of L-dopa/carbidopa every 24 h was started and, after 2 weeks, LDR was evaluated by movement time recordings. Results After 2 weeks of continuative therapy, 15 patients (62.5%) showed a sustained LDR (LDR +), while nine patients (37.5%) did not develop a sustained LDR (LDR −). VBM analysis on MRI executed before treatment showed changes of gray matter in precentral and middle frontal gyri in patients subsequently developing a sustained LDR with respect to those patients who will not achieve LDR. Conclusions Parkinsonian patients who will develop a LDR to L-dopa may present, before starting treatment, peculiar structural conditions in cortical areas involved in motor control. Our exploratory study suggests that some cortical structural changes may predispose individual patients for developing the LDR to L-dopa. Supplementary Information The online version contains supplementary material available at 10.1007/s00415-021-10550-5.
Collapse
Affiliation(s)
- Giulia Donzuso
- Department of Medical, Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Giorgia Sciacca
- Department of Medical, Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Cristina Rascunà
- Department of Medical, Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Calogero E Cicero
- Department of Medical, Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Giovanni Mostile
- Department of Medical, Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Alessandra Nicoletti
- Department of Medical, Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Mario Zappia
- Department of Medical, Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via Santa Sofia 78, 95123, Catania, Italy.
| |
Collapse
|
15
|
Jiang L, Wang X, Li P, Feng Z, Shi X, Shao H. Efficacy of 11C-2β-carbomethoxy-3β-(4-fluorophenyl) tropane positron emission tomography combined with 18F-fluorodeoxyglucose positron emission tomography in the diagnosis of early Parkinson disease: A protocol for systematic review and meta analysis. Medicine (Baltimore) 2020; 99:e23395. [PMID: 33371068 PMCID: PMC7748366 DOI: 10.1097/md.0000000000023395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/16/2020] [Accepted: 10/29/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) has a high incidence in the elderly, and the late stage seriously affects the daily life of the patients. Most of the initial symptoms of PD are not obvious or atypical, which brings difficulties to the early diagnosis. Replacement therapy and neuroprotection after early diagnosis can significantly improve the prognosis and quality of life of patients. More and more evidence shows that 11C-2β-carbomethoxy-3β-(4-fluorophenyl) tropane positron emission tomography ( 11C-CFT PET) combined with 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) can effectively improve the accuracy of early diagnosis. However, there is no consistent conclusion at present. The purpose of this study is to evaluate the efficacy of 11C-CFT PET combined with 18F-FDG PET in the diagnosis of early PD. METHODS We will search 7 electronic databases (PubMed, EMBASE, Web of Science, Cochrane library, PsycINFO, AMED, Scopus), ongoing trials and grey literature to collect related randomized controlled trials and will use Review Manager Software 5.2 and STATA Software 16.0 for analysis and synthesis. RESULTS We will integrate the existing randomized controlled trials to evaluate the value of 11C-CFT PET combined with 18F-FDG PET in the diagnosis of early PD. CONCLUSION Our study may prove that 11C-CFT PET combined with 18F-FDG PET can effectively diagnose early PD. REGISTRATION NUMBER International Prospective Register of Systematic Reviews (PROSPERO): CRD42020203442.
Collapse
Affiliation(s)
| | | | | | | | | | - Hua Shao
- Department of Imaging, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
16
|
Abstract
During the past decade, functional MR imaging has rapidly moved from the research environment into clinical practice. Preoperative functional MR imaging is now standard clinical practice not only in major academic institutions, but also in community neurosurgical and neuroradiologic practices. The clinical use of functional MR imaging will only increase in the years to come. Application of functional MR imaging (including resting-state functional MR imaging) to the context of neuropsychiatric diseases is likely to continue to advance.
Collapse
|
17
|
Shen Y, Hu J, Chen Y, Liu W, Li Y, Yan L, Xie C, Zhang W, Yu M, Liu W. Levodopa Changes Functional Connectivity Patterns in Subregions of the Primary Motor Cortex in Patients With Parkinson's Disease. Front Neurosci 2020; 14:647. [PMID: 32733186 PMCID: PMC7360730 DOI: 10.3389/fnins.2020.00647] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
Background The primary motor cortex (M1) is a critical node in Parkinson’s disease (PD)-related motor circuitry; however, the functional roles of its subregions are poorly understood. In this study, we investigated changes in the functional connectivity patterns of M1 subregions and their relationships to improved clinical symptoms following levodopa administration. Methods Thirty-six PD patients and 37 healthy controls (HCs) were enrolled. A formal levodopa challenge test was conducted in the PD group, and the Unified Parkinson’s Disease Rating Scale motor section (UPDRS-III) was assessed before (off state) and 1 h after administration of levodopa (on state). The PD group underwent resting-state functional magnetic resonance imaging in both off and on states, whereas the HC group was scanned once. We used the Human Brainnetome Atlas template to subdivide M1 into twelve regions of interest (ROIs). Functional connectivity (FC) was compared between PD on and off states [paired t-test, voxel-level p < 0.001, cluster-level p < 0.05, Gaussian random field (GRF) correction] and between patients and HC (two-sample t-test voxel-level p < 0.001, cluster-level p < 0.05). Correlations between ΔFC (differences in FC between PD off and on states) and clinical symptom improvements were examined. Results There was decreased FC between the right caudal dorsolateral area 6 and the anterior cingulate gyrus (ACC), the right upper limb region and the left medial dorsal thalamus (mdTHA), as well as increased FC between the left tongue and larynx region and the left medial frontal gyrus. ΔFC between the right caudal dorsolateral area 6 and ACC was positively correlated with improvements in UPDRS-III total scores as well as the rigidity (item 22) and bradykinesia (items 23–26 and 31) subscores. ΔFC between the right upper limb region and left thalamus was positively correlated with improvements in the left upper limb tremor (items 20c and 21b) and postural tremor (item 21b) subscores. Conclusions Our results reveal novel information regarding the underlying mechanisms in the motor circuits in the M1 and a promising way to explore the internal function of the M1 in PD patients. Notably, M1 is a potential therapeutic target in PD, and the exploration of its subregions provides a basis and a source of new insights for clinical intervention and precise drug treatment.
Collapse
Affiliation(s)
- Yang Shen
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Hu
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Chen
- Department of Laboratory Medicine, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wan Liu
- Department of Rehabilitation, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yuqian Li
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Yan
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chunming Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Wenbin Zhang
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Miao Yu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Weiguo Liu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Müller T, Harati A. Different response to instrumental tests in relation to cognitive demand after dopaminergic stimulation in previously treated patients with Parkinson's disease. J Neural Transm (Vienna) 2020; 127:265-272. [PMID: 32008089 DOI: 10.1007/s00702-020-02148-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/20/2020] [Indexed: 12/17/2022]
Abstract
Instrumental measurement of response assets and movement behaviour gained importance as addition to rating procedures to determine the efficacy of therapeutic interventions in patients with Parkinson's disease. Objectives were to determine the response to standardised 100 mg levodopa application with repeat performance of complex and simple instrumental tests in relation to scored motor behaviour in 53 previously treated patients. Levodopa improved rating scores of motor impairment, execution of complicated movement patterns and complex reaction time. Computed improvements in these instrumental test results correlated with each other. Execution of the simple reaction time paradigm and of plain movement sequences did not ameliorate after levodopa. The changes of these simple test results were not associated to each other. These different response patterns result from the higher cognitive demand of dopamine sensitive association areas of the prefrontal cortex and mesolimbic system for the complex test execution in contrast to the simple task performance.
Collapse
Affiliation(s)
- Thomas Müller
- Department of Neurology, St. Joseph Hospital Berlin-Weissensee, Gartenstr. 1, 13088, Berlin, Germany.
| | - Ali Harati
- Private Practice for Neurosurgery, MVZ PAN Institute GmbH within the Department of Neurosurgery, Pan Klinik Am Neumarkt, Zeppelinstr 1 Neumarkt-Galerie, 50667, Cologne, Germany
| |
Collapse
|
19
|
Network-Based Imaging and Connectomics. Stereotact Funct Neurosurg 2020. [DOI: 10.1007/978-3-030-34906-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Isaacs BR, Trutti AC, Pelzer E, Tittgemeyer M, Temel Y, Forstmann BU, Keuken MC. Cortico-basal white matter alterations occurring in Parkinson's disease. PLoS One 2019; 14:e0214343. [PMID: 31425517 PMCID: PMC6699705 DOI: 10.1371/journal.pone.0214343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/17/2019] [Indexed: 01/01/2023] Open
Abstract
Magnetic resonance imaging studies typically use standard anatomical atlases for identification and analyses of (patho-)physiological effects on specific brain areas; these atlases often fail to incorporate neuroanatomical alterations that may occur with both age and disease. The present study utilizes Parkinson's disease and age-specific anatomical atlases of the subthalamic nucleus for diffusion tractography, assessing tracts that run between the subthalamic nucleus and a-priori defined cortical areas known to be affected by Parkinson's disease. The results show that the strength of white matter fiber tracts appear to remain structurally unaffected by disease. Contrary to that, Fractional Anisotropy values were shown to decrease in Parkinson's disease patients for connections between the subthalamic nucleus and the pars opercularis of the inferior frontal gyrus, anterior cingulate cortex, the dorsolateral prefrontal cortex and the pre-supplementary motor, collectively involved in preparatory motor control, decision making and task monitoring. While the biological underpinnings of fractional anisotropy alterations remain elusive, they may nonetheless be used as an index of Parkinson's disease. Moreover, we find that failing to account for structural changes occurring in the subthalamic nucleus with age and disease reduce the accuracy and influence the results of tractography, highlighting the importance of using appropriate atlases for tractography.
Collapse
Affiliation(s)
- Bethany. R. Isaacs
- Integrative Model-based Cognitive Neuroscience research unit, University of Amsterdam, Amsterdam, the Netherlands
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Anne. C. Trutti
- Integrative Model-based Cognitive Neuroscience research unit, University of Amsterdam, Amsterdam, the Netherlands
- Cognitive Psychology, University of Leiden, Leiden, the Netherlands
| | - Esther Pelzer
- Translational Neurocircuitry, Max Planck Institute for Metabolism Research, Cologne, Germany
- Department of Neurology, University Clinics, Cologne, Germany
| | - Marc Tittgemeyer
- Translational Neurocircuitry, Max Planck Institute for Metabolism Research, Cologne, Germany
- Department of Neurology, University Clinics, Cologne, Germany
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Birte. U. Forstmann
- Integrative Model-based Cognitive Neuroscience research unit, University of Amsterdam, Amsterdam, the Netherlands
| | - Max. C. Keuken
- Integrative Model-based Cognitive Neuroscience research unit, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
21
|
Filippi M, Spinelli EG, Cividini C, Agosta F. Resting State Dynamic Functional Connectivity in Neurodegenerative Conditions: A Review of Magnetic Resonance Imaging Findings. Front Neurosci 2019; 13:657. [PMID: 31281241 PMCID: PMC6596427 DOI: 10.3389/fnins.2019.00657] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022] Open
Abstract
In the last few decades, brain functional connectivity (FC) has been extensively assessed using resting-state functional magnetic resonance imaging (RS-fMRI), which is able to identify temporally correlated brain regions known as RS functional networks. Fundamental insights into the pathophysiology of several neurodegenerative conditions have been provided by studies in this field. However, most of these studies are based on the assumption of temporal stationarity of RS functional networks, despite recent evidence suggests that the spatial patterns of RS networks may change periodically over the time of an fMRI scan acquisition. For this reason, dynamic functional connectivity (dFC) analysis has been recently implemented and proposed in order to consider the temporal fluctuations of FC. These approaches hold promise to provide fundamental information for the identification of pathophysiological and diagnostic markers in the vast field of neurodegenerative diseases. This review summarizes the main currently available approaches for dFC analysis and reports their recent applications for the assessment of the most common neurodegenerative conditions, including Alzheimer’s disease, Parkinson’s disease, dementia with Lewy bodies, and frontotemporal dementia. Critical state-of-the-art findings, limitations, and future perspectives regarding the analysis of dFC in these diseases are provided from both a clinical and a technical point of view.
Collapse
Affiliation(s)
- Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Edoardo G Spinelli
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camilla Cividini
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
22
|
Evangelisti S, Pittau F, Testa C, Rizzo G, Gramegna LL, Ferri L, Coito A, Cortelli P, Calandra-Buonaura G, Bisquoli F, Bianchini C, Manners DN, Talozzi L, Tonon C, Lodi R, Tinuper P. L-Dopa Modulation of Brain Connectivity in Parkinson's Disease Patients: A Pilot EEG-fMRI Study. Front Neurosci 2019; 13:611. [PMID: 31258465 PMCID: PMC6587436 DOI: 10.3389/fnins.2019.00611] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/28/2019] [Indexed: 01/08/2023] Open
Abstract
Studies of functional neurosurgery and electroencephalography in Parkinson's disease have demonstrated abnormally synchronous activity between basal ganglia and motor cortex. Functional neuroimaging studies investigated brain dysfunction during motor task or resting state and primarily have shown altered patterns of activation and connectivity for motor areas. L-dopa administration relatively normalized these functional alterations. The aim of this pilot study was to examine the effects of L-dopa administration on functional connectivity in early-stage PD, as revealed by simultaneous recording of functional magnetic resonance imaging (fMRI) and electroencephalographic (EEG) data. Six patients with diagnosis of probable PD underwent EEG-fMRI acquisitions (1.5 T MR scanner and 64-channel cap) before and immediately after the intake of L-dopa. Regions of interest in the primary motor and sensorimotor regions were used for resting state fMRI analysis. From the EEG data, weighted partial directed coherence was computed in the inverse space after the removal of gradient and cardioballistic artifacts. fMRI results showed that the intake of L-dopa increased functional connectivity within the sensorimotor network, and between motor areas and both attention and default mode networks. EEG connectivity among regions of the motor network did not change significantly, while regions of the default mode network showed a strong tendency to increase their outflow toward the rest of the brain. This pilot study provided a first insight into the potentiality of simultaneous EEG-fMRI acquisitions in PD patients, showing for both techniques the analogous direction of increased connectivity after L-dopa intake, mainly involving motor, dorsal attention and default mode networks.
Collapse
Affiliation(s)
- Stefania Evangelisti
- Functional MR Unit, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Francesca Pittau
- EEG and Epilepsy Unit, Geneva University Hospitals, Geneva, Switzerland
| | - Claudia Testa
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Giovanni Rizzo
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Laura Ludovica Gramegna
- Functional MR Unit, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Lorenzo Ferri
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Ana Coito
- Functional Brain Mapping Lab, Department of Fundamental Neurosciences, University of Geneva, Geneva, Switzerland
| | - Pietro Cortelli
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giovanna Calandra-Buonaura
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Fabio Bisquoli
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Claudio Bianchini
- Functional MR Unit, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - David Neil Manners
- Functional MR Unit, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Lia Talozzi
- Functional MR Unit, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Caterina Tonon
- Functional MR Unit, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Raffaele Lodi
- Functional MR Unit, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Paolo Tinuper
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
23
|
Nackaerts E, D'Cruz N, Dijkstra BW, Gilat M, Kramer T, Nieuwboer A. Towards understanding neural network signatures of motor skill learning in Parkinson's disease and healthy aging. Br J Radiol 2019; 92:20190071. [PMID: 30982328 DOI: 10.1259/bjr.20190071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In the past decade, neurorehabilitation has been shown to be an effective therapeutic supplement for patients with Parkinson's disease (PD). However, patients still experience severe problems with the consolidation of learned motor skills. Knowledge on the neural correlates underlying this process is thus essential to optimize rehabilitation for PD. This review investigates the existing studies on neural network connectivity changes in relation to motor learning in healthy aging and PD and critically evaluates the imaging methods used from a methodological point of view. The results indicate that despite neurodegeneration there is still potential to modify connectivity within and between motor and cognitive networks in response to motor training, although these alterations largely bypass the most affected regions in PD. However, so far training-related changes are inferred and possible relationships are not substantiated by brain-behavior correlations. Furthermore, the studies included suffer from many methodological drawbacks. This review also highlights the potential for using neural network measures as predictors for the response to rehabilitation, mainly based on work in young healthy adults. We speculate that future approaches, including graph theory and multimodal neuroimaging, may be more sensitive than brain activation patterns and model-based connectivity maps to capture the effects of motor learning. Overall, this review suggests that methodological developments in neuroimaging will eventually provide more detailed knowledge on how neural networks are modified by training, thereby paving the way for optimized neurorehabilitation for patients.
Collapse
Affiliation(s)
| | - Nicholas D'Cruz
- 1Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Bauke W Dijkstra
- 1Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Moran Gilat
- 1Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Thomas Kramer
- 1Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Alice Nieuwboer
- 1Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
24
|
Filippi M, Sarasso E, Agosta F. Resting-state Functional MRI in Parkinsonian Syndromes. Mov Disord Clin Pract 2019; 6:104-117. [PMID: 30838308 DOI: 10.1002/mdc3.12730] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/28/2018] [Accepted: 01/16/2019] [Indexed: 01/18/2023] Open
Abstract
Background Functional MRI (fMRI) has been widely used to study abnormal patterns of functional connectivity at rest in patients with movement disorders such as idiopathic Parkinson's disease (PD) and atypical parkinsonisms. Methods This manuscript provides an educational review of the current use of resting-state fMRI in the field of parkinsonian syndromes. Results Resting-state fMRI studies have improved the current knowledge about the mechanisms underlying motor and non-motor symptom development and progression in movement disorders. Even if its inclusion in clinical practice is still far away, resting-state fMRI has the potential to be a promising biomarker for early disease detection and prediction. It may also aid in differential diagnosis and monitoring brain responses to therapeutic agents and neurorehabilitation strategies in different movement disorders. Conclusions There is urgent need to identify and validate prodromal biomarkers in PD patients, to perform further studies assessing both overlapping and disease-specific fMRI abnormalities among parkinsonian syndromes, and to continue technical advances to fully realize the potential of fMRI as a tool to monitor the efficacy of chronic therapies.
Collapse
Affiliation(s)
- Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute Vita-Salute San Raffaele University Milan Italy.,Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute Vita-Salute San Raffaele University Milan Italy
| | - Elisabetta Sarasso
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute Vita-Salute San Raffaele University Milan Italy.,Laboratory of Movement Analysis San Raffaele Scientific Institute Milan Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute Vita-Salute San Raffaele University Milan Italy
| |
Collapse
|
25
|
Ballarini T, Růžička F, Bezdicek O, Růžička E, Roth J, Villringer A, Vymazal J, Mueller K, Schroeter ML, Jech R. Unraveling connectivity changes due to dopaminergic therapy in chronically treated Parkinson's disease patients. Sci Rep 2018; 8:14328. [PMID: 30254336 PMCID: PMC6156510 DOI: 10.1038/s41598-018-31988-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/30/2018] [Indexed: 11/14/2022] Open
Abstract
The effects of dopaminergic therapy for Parkinson’s disease (PD) on the brain functional architecture are still unclear. We investigated this topic in 31 PD patients (disease duration: 11.2 ± (SD) 3.6 years) who underwent clinical and MRI assessments under chronic dopaminergic treatment (duration: 8.3 ± (SD) 4.4 years) and after its withdrawal. Thirty healthy controls were also included. Functional and morphological changes were studied, respectively, with eigenvector centrality mapping and seed-based connectivity, and voxel-based morphometry. Patients off medication, compared to controls, showed increased connectivity in cortical sensorimotor areas extending to the cerebello-thalamo-cortical pathway and parietal and frontal brain structures. Dopaminergic therapy normalized this increased connectivity. Notably, patients showed decreased interconnectedness in the medicated compared to the unmedicated condition, encompassing putamen, precuneus, supplementary motor and sensorimotor areas bilaterally. Similarly, lower connectivity was found comparing medicated patients to controls, overlapping with the within-group comparison in the putamen. Seed-based analyses revealed that dopaminergic therapy reduced connectivity in motor and default mode networks. Lower connectivity in the putamen correlated with longer disease duration, medication dose, and motor symptom improvement. Notably, atrophy and connectivity changes were topographically dissociated. After chronic treatment, dopaminergic therapy decreases connectivity of key motor and default mode network structures that are abnormally elevated in PD off condition.
Collapse
Affiliation(s)
- Tommaso Ballarini
- Max-Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Filip Růžička
- Department of Neurology, Charles University in Prague, First Faculty of Medicine, Prague, Czech Republic
| | - Ondrej Bezdicek
- Department of Neurology, Charles University in Prague, First Faculty of Medicine, Prague, Czech Republic
| | - Evžen Růžička
- Department of Neurology, Charles University in Prague, First Faculty of Medicine, Prague, Czech Republic
| | - Jan Roth
- Department of Neurology, Charles University in Prague, First Faculty of Medicine, Prague, Czech Republic
| | - Arno Villringer
- Max-Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Clinic for Cognitive Neurology, University Clinic, Leipzig, Germany
| | - Josef Vymazal
- Department of Radiology, Na Homolce Hospital, Prague, Czech Republic
| | - Karsten Mueller
- Max-Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Matthias L Schroeter
- Max-Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Clinic for Cognitive Neurology, University Clinic, Leipzig, Germany.,FTLD Consortium, Ulm, Germany
| | - Robert Jech
- Department of Neurology, Charles University in Prague, First Faculty of Medicine, Prague, Czech Republic.
| |
Collapse
|
26
|
Tang Y, Liu B, Yang Y, Wang CM, Meng L, Tang BS, Guo JF. Identifying mild-moderate Parkinson's disease using whole-brain functional connectivity. Clin Neurophysiol 2018; 129:2507-2516. [PMID: 30347309 DOI: 10.1016/j.clinph.2018.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 09/01/2018] [Accepted: 09/07/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVE Our study aims to extract significant disorder-associated patterns from whole brain functional connectivity to distinguish mild-moderate Parkinson's disease (PD) patients from controls. METHODS Resting-state fMRI data were measured from thirty-six PD individuals and thirty-five healthy controls. Multivariate pattern analysis was applied to investigate whole-brain functional connectivity patterns in individuals with 'mild-moderate' PD. Additionally, the relationship between the asymmetry of functional connectivity and the side of the initial symptoms was also analyzed. RESULTS In a leave-one-out cross-validation, we got the generalization rate of 80.28% for distinguishing PD patients from controls. The most discriminative functional connectivity was found in cortical networks that included the default mode, sensorimotor and attention networks. Compared to patients with the left side initially affected, an increased abnormal functional connectivity was found in patients in whom the right side was initially affected. CONCLUSIONS Our results indicated that discriminative functional connectivity is likely associated with disturbances of cortical networks involved in sensorimotor control and attention. The spatiotemporal patterns of motor asymmetry may be related to the lateralized dysfunction on the early stages of PD. SIGNIFICANCE This study identifies discriminative functional connectivity that is associated with disturbances of cortical networks. Our results demonstrated new evidence regarding the functional brain changes related to the unilateral motor symptoms of early PD.
Collapse
Affiliation(s)
- Yan Tang
- School of Information Science and Engineering, Central South University, Changsha, Hunan 410083, China; Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Bailin Liu
- School of Basic Medical Science Central South University, Changsha, Hunan 410083, China
| | - Yuan Yang
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Chang-Min Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Li Meng
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China; National Clinical Research Center for Geriatric Medicine, Changsha, 410008 Hunan, China; State Key Laboratory of Medical Genetics, Changsha, 410008 Hunan, China
| | - Ji-Feng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China; National Clinical Research Center for Geriatric Medicine, Changsha, 410008 Hunan, China; State Key Laboratory of Medical Genetics, Changsha, 410008 Hunan, China.
| |
Collapse
|
27
|
Filippi M, Elisabetta S, Piramide N, Agosta F. Functional MRI in Idiopathic Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 141:439-467. [PMID: 30314606 DOI: 10.1016/bs.irn.2018.08.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Functional MRI (fMRI) has been widely used to study abnormal patterns of brain connectivity at rest and activation during a variety of tasks in patients with idiopathic Parkinson's disease (PD). fMRI studies in PD have led to a better understanding of many aspects of the disease including both motor and non-motor symptoms. Although its translation into clinical practice is still at an early stage, fMRI measures hold promise for multiple clinical applications in PD, including the early detection, predicting future change in clinical status, and as a marker of alterations in brain physiology related to neurotherapeutic agents and neurorehabilitative strategies.
Collapse
Affiliation(s)
- Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy; Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.
| | - Sarasso Elisabetta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy; Laboratory of Movement Analysis, San Raffaele Scientific Institute, Milan, Italy
| | - Noemi Piramide
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
28
|
D5 dopamine receptors control glutamatergic AMPA transmission between the motor cortex and subthalamic nucleus. Sci Rep 2018; 8:8858. [PMID: 29891970 PMCID: PMC5995923 DOI: 10.1038/s41598-018-27195-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 05/25/2018] [Indexed: 12/23/2022] Open
Abstract
Corticofugal fibers target the subthalamic nucleus (STN), a component nucleus of the basal ganglia, in addition to the striatum, their main input. The cortico-subthalamic, or hyperdirect, pathway, is thought to supplement the cortico-striatal pathways in order to interrupt/change planned actions. To explore the previously unknown properties of the neurons that project to the STN, retrograde and anterograde tools were used to specifically identify them in the motor cortex and selectively stimulate their synapses in the STN. The cortico-subthalamic neurons exhibited very little sag and fired an initial doublet followed by non-adapting action potentials. In the STN, AMPA/kainate synaptic currents had a voltage-dependent conductance, indicative of GluA2-lacking receptors and were partly inhibited by Naspm. AMPA transmission displayed short-term depression, with the exception of a limited bandpass in the 5 to 15 Hz range. AMPA synaptic currents were negatively controlled by dopamine D5 receptors. The reduction in synaptic strength was due to postsynaptic D5 receptors, mediated by a PKA-dependent pathway, but did not involve a modified rectification index. Our data indicated that dopamine, through post-synaptic D5 receptors, limited the cortical drive onto STN neurons in the normal brain.
Collapse
|