1
|
Dzialas V, Doering E, Eich H, Strafella AP, Vaillancourt DE, Simonyan K, van Eimeren T. Houston, We Have AI Problem! Quality Issues with Neuroimaging-Based Artificial Intelligence in Parkinson's Disease: A Systematic Review. Mov Disord 2024; 39:2130-2143. [PMID: 39235364 DOI: 10.1002/mds.30002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024] Open
Abstract
In recent years, many neuroimaging studies have applied artificial intelligence (AI) to facilitate existing challenges in Parkinson's disease (PD) diagnosis, prognosis, and intervention. The aim of this systematic review was to provide an overview of neuroimaging-based AI studies and to assess their methodological quality. A PubMed search yielded 810 studies, of which 244 that investigated the utility of neuroimaging-based AI for PD diagnosis, prognosis, or intervention were included. We systematically categorized studies by outcomes and rated them with respect to five minimal quality criteria (MQC) pertaining to data splitting, data leakage, model complexity, performance reporting, and indication of biological plausibility. We found that the majority of studies aimed to distinguish PD patients from healthy controls (54%) or atypical parkinsonian syndromes (25%), whereas prognostic or interventional studies were sparse. Only 20% of evaluated studies passed all five MQC, with data leakage, non-minimal model complexity, and reporting of biological plausibility as the primary factors for quality loss. Data leakage was associated with a significant inflation of accuracies. Very few studies employed external test sets (8%), where accuracy was significantly lower, and 19% of studies did not account for data imbalance. Adherence to MQC was low across all observed years and journal impact factors. This review outlines that AI has been applied to a wide variety of research questions pertaining to PD; however, the number of studies failing to pass the MQC is alarming. Therefore, we provide recommendations to enhance the interpretability, generalizability, and clinical utility of future AI applications using neuroimaging in PD. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Verena Dzialas
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
- Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Elena Doering
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Helena Eich
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Antonio P Strafella
- Edmond J. Safra Parkinson Disease Program, Neurology Division, Krembil Brain Institute, University Health Network, Toronto, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - David E Vaillancourt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Kristina Simonyan
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thilo van Eimeren
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
- Department of Neurology, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| |
Collapse
|
2
|
Yan H, Coughlin C, Smolin L, Wang J. Unraveling the Complexity of Parkinson's Disease: Insights into Pathogenesis and Precision Interventions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405309. [PMID: 39301889 PMCID: PMC11558075 DOI: 10.1002/advs.202405309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/17/2024] [Indexed: 09/22/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by dopaminergic neuron loss, leading to motor and non-motor symptoms. Early detection before symptom onset is crucial but challenging. This study presents a framework integrating circuit modeling, non-equilibrium dynamics, and optimization to understand PD pathogenesis and enable precision interventions. Neuronal firing patterns, particularly oscillatory activity, play a critical role in PD pathology. The basal ganglia network, specifically the subthalamic nucleus-external globus pallidus (STN-GPe) circuitry, exhibits abnormal activity associated with motor dysfunction. The framework leverages the non-equilibrium landscape and flux theory to identify key connections generating pathological activity, providing insights into disease progression and potential intervention points. The intricate STN-GPe interplay is highlighted, shedding light on compensatory mechanisms within this circuitry may initially counteract changes but later contribute to pathological alterations as disease progresses. The framework addresses the need for comprehensive evaluation methods to assess intervention outcomes. Cross-correlations between state variables provide superior early warning signals compared to traditional indicators relying on critical slowing down. By elucidating compensatory mechanisms and circuit dynamics, the framework contributes to improved management, early detection, risk assessment, and potential prevention/delay of PD development. This pioneering research paves the way for precision medicine in neurodegenerative disorders.
Collapse
Affiliation(s)
- Han Yan
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001P. R. China
| | - Cole Coughlin
- Perimeter Institute for Theoretical Physics31 Caroline Street North, WaterlooOntarioN2J 2Y5Canada
| | - Lee Smolin
- Perimeter Institute for Theoretical Physics31 Caroline Street North, WaterlooOntarioN2J 2Y5Canada
| | - Jin Wang
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001P. R. China
- Department of Chemistry and PhysicsState University of New York at Stony BrookStony BrookNY11790USA
| |
Collapse
|
3
|
Gasca-Salas C, Pineda-Pardo JA, Del Álamo M, Jiménez T, Trompeta C, Toltsis G, Garcia-Cañamaque L, Fernández-Rodríguez B, Matarazzo M, Plaza de Las Heras I, Natera-Villalba E, Martínez-Fernández R, Duque A, Ruiz de Aguiar S, Blesa J, Rachmilevich I, Obeso JA. Nigrostriatal blood-brain barrier opening in Parkinson's disease. J Neurol Neurosurg Psychiatry 2024; 95:1089-1092. [PMID: 38760152 DOI: 10.1136/jnnp-2023-332967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/22/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND The nigrostriatal system is especially vulnerable to neurodegeneration in Parkinson's disease (PD) and the blood-brain barrier (BBB) is a limiting factor for delivery of therapeutic agents to the brain. This pilot study aimed to demonstrate safety, feasibility and tissue penetration (by 18F-Choline-positron emission tomography (PET)) of MR-guided focused ultrasound (MRgFUS) simultaneous BBB opening (BBB-O) in the substantia nigra (SN) and putamen in PD. METHODS Three patients underwent MRgFUS for midbrain and putamen BBB-O. Patients were evaluated clinically and underwent brain MRI with gadolinium (baseline, 24 hours, 14 days and 3 months postprocedure). In two patients, BBB-O was repeated after 2-3 weeks, and 18F-Choline-PET was performed immediately after. RESULTS The right SN and putamen were simultaneously opened unilaterally in 3 patients once and the left SN in 1 patient in a different session. No severe clinical or neuroimaging adverse events developed in any patient. 18F-Choline-PET uptake was enhanced in the targeted SN and putamen regions. CONCLUSION BBB-O of the nigrostriatal system is a feasible and well-tolerated approach in patients with PD. 18F-Choline-PET uptake indicates penetration into the parenchyma after BBB-O, which suggests that the opening is functionally effective. This minimally invasive technique could facilitate delivery of putative neurorestorative molecules to brain regions vulnerable to neurodegeneration.
Collapse
Affiliation(s)
- Carmen Gasca-Salas
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - José A Pineda-Pardo
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Marta Del Álamo
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
| | - Tamara Jiménez
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
| | - Clara Trompeta
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
- PhD Program in Health Sciences, University of Alcala de Henares, Alcalá de Henares, Madrid. Spain 28054, Alcalá de Henares, Spain
| | | | - Lina Garcia-Cañamaque
- Nuclear Medicine Department. PET-MRI centre, Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
| | - Beatriz Fernández-Rodríguez
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
| | - Michele Matarazzo
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Isabel Plaza de Las Heras
- Nuclear Medicine Department. PET-MRI centre, Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
| | - Elena Natera-Villalba
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
| | - Raúl Martínez-Fernández
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Alicia Duque
- Neuroradiology Unit, Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
| | | | - Javier Blesa
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
- Facultad HM de Ciencias de la Salud de la Universidad Camilo José Cela, Madrid, Spain
| | | | - José A Obeso
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| |
Collapse
|
4
|
Piedade de Souza T, Santana de Araújo G, Magalhães L, Cavalcante GC, Ribeiro-Dos-Santos A, Sena-Dos-Santos C, Silva CS, Eufraseo GL, de Freitas Escudeiro A, Soares-Souza GB, Santos-Lobato BL, Ribeiro-Dos-Santos Â. Unveiling differential gene co-expression networks and its effects on levodopa-induced dyskinesia. iScience 2024; 27:110835. [PMID: 39297167 PMCID: PMC11409023 DOI: 10.1016/j.isci.2024.110835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/25/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024] Open
Abstract
Levodopa-induced dyskinesia (LID) refers to involuntary motor movements of chronic use of levodopa in Parkinson's disease (PD) that negatively impact the overall well-being of people with this disease. The molecular mechanisms involved in LID were investigated through whole-blood transcriptomic analysis for differential gene expression and identification of new co-expression and differential co-expression networks. We found six differentially expressed genes in patients with LID, and 13 in patients without LID. We also identified 12 co-expressed genes exclusive to LID, and six exclusive hub genes involved in 23 gene-gene interactions in patients with LID. Convergently, we identified novel genes associated with PD and LID that play roles in mitochondrial dysfunction, dysregulation of lipid metabolism, and neuroinflammation. We observed significant changes in disease progression, consistent with previous findings of maladaptive plastic changes in the basal ganglia leading to the development of LID, including a chronic pro-inflammatory state in the brain.
Collapse
Affiliation(s)
- Tatiane Piedade de Souza
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil
| | | | | | - Giovanna C Cavalcante
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil
| | - Arthur Ribeiro-Dos-Santos
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil
| | - Camille Sena-Dos-Santos
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil
| | - Caio Santos Silva
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil
| | - Gracivane Lopes Eufraseo
- Laboratório de Neurologia Experimental, Universidade Federal do Pará, Belém 66073-000, Pará, Brazil
| | | | - Giordano Bruno Soares-Souza
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil
- Instituto Tecnológico Vale, Belém 66055-090, Pará, Brazil
| | | | - Ândrea Ribeiro-Dos-Santos
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil
- Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará (UFPA), Belém 66073-005, Pará, Brazil
| |
Collapse
|
5
|
Ichikawa Y, Sato B, Hirano SI, Takefuji Y, Satoh F. Realizing brain therapy with "smart medicine": mechanism and case report of molecular hydrogen inhalation for Parkinson's disease. Med Gas Res 2024; 14:89-95. [PMID: 39073335 DOI: 10.4103/2045-9912.385949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/23/2023] [Indexed: 07/30/2024] Open
Abstract
The Michael J. Fox Foundation has been funding research on Parkinson's disease for 35 years, but has yet to find a cure. This is due to a problem with the philosophy behind the development of modern medical treatments. In this paper, we will introduce "smart medicine" with a substance that can solve all the problems of central nervous system drugs. The substance is the smallest diatomic molecule, the hydrogen molecule. Due to their size, hydrogen molecules can easily penetrate the cell membrane and enter the brain. In the midbrain of Parkinson's disease patients, hydroxyl radicals generated by the Fenton reaction cause a chain reaction of oxidation of dopamine, but hydrogen entering the midbrain can convert the hydroxyl radicals into water molecules and inhibit the oxidation of dopamine. In this paper, we focus on the etiology of neurological diseases, especially Parkinson's disease, and present a case in which hydrogen inhalation improves the symptoms of Parkinson's disease, such as body bending and hand tremor. And we confidently state that if Michael J. Fox encountered "smart medicine" that could be realized with molecular hydrogen, he would not be a "lucky man" but a "super-lucky man."
Collapse
Affiliation(s)
- Yusuke Ichikawa
- Research and Development Department, MiZ Company Limited, Kanagawa, Japan
- MiZ Inc., Newark, CA, USA
| | - Bunpei Sato
- Research and Development Department, MiZ Company Limited, Kanagawa, Japan
- MiZ Inc., Newark, CA, USA
| | - Shin-Ichi Hirano
- Research and Development Department, MiZ Company Limited, Kanagawa, Japan
| | - Yoshiyasu Takefuji
- Faculty of Data Science, Musashino University, Tokyo, Japan
- Keio University, Tokyo, Japan
| | - Fumitake Satoh
- Research and Development Department, MiZ Company Limited, Kanagawa, Japan
- MiZ Inc., Newark, CA, USA
| |
Collapse
|
6
|
Gwak J, Park J. Effect of acceptance and commitment therapy on fear of falling and physical activity in Parkinson's disease: a randomised controlled trial. BMJ Neurol Open 2024; 6:e000796. [PMID: 39224581 PMCID: PMC11367376 DOI: 10.1136/bmjno-2024-000796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/28/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction This study aimed to evaluate the efficacy of acceptance and commitment therapy (ACT) in reducing the fear of falling (FOF) and promoting physical activity in individuals diagnosed with Parkinson's disease (PD). Methods and analysis This is a prospective, multicentre, rater-blinded and randomised controlled trial. Patients with PD and a history of falls will be randomly assigned to either an 8-week ACT intervention group or a control group receiving standard care. The primary outcomes measured will include FOF assessment using the Falls Efficacy Scale-International and physical activity levels measured via wearable sensor devices. Secondary outcomes will encompass the assessment of motor function, balance and fall frequency using the Movement Disorder Society Unified Parkinson's Disease Rating Scale, Berg Balance Scale and Timed Up and Go test. Objective measures of balance and physical activity will be obtained through static posturography and wearable sensors over a 3-day period, both before and after the intervention. Data will be analysed using mixed-effects models to evaluate the impact of ACT on FOF and physical activity. Ethics and dissemination We hypothesised that ACT would lead to a significant reduction in FOF and an increase in physical activity levels compared with standard care. Additionally, this study will also examine the relationship between reduced FOF and improvements in balance and motor function. Our results will provide valuable evidence to support the effectiveness of ACT in reducing FOF and promoting physical activity among patients with PD, and if validated, ACT could be recommended as a beneficial intervention to enhance the quality of life and reduce fall-related morbidity in patients with PD.
Collapse
Affiliation(s)
- Jiyoung Gwak
- Department of Neurology, Haeundae Paik Hospital, Inje University, Busan, Korea (the Republic of)
| | - Jinse Park
- Department of Neurology, Haeundae Paik Hospital, Inje University, Busan, Korea (the Republic of)
| |
Collapse
|
7
|
Tanaka MT, Miki Y, Mori F, Kon T, Furukawa T, Shimoyama S, Tatara Y, Ozaki T, Bettencourt C, Warner TT, Wakabayashi K. Intranasal administration of trehalose reduces α-synuclein oligomers and accelerates α-synuclein aggregation. Brain Commun 2024; 6:fcae193. [PMID: 39165481 PMCID: PMC11334933 DOI: 10.1093/braincomms/fcae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/08/2024] [Accepted: 06/06/2024] [Indexed: 08/22/2024] Open
Abstract
Abnormal α-synuclein (αSyn), including an oligomeric form of αSyn, accumulates and causes neuronal dysfunction in the brains of patients with multiple system atrophy. Neuroprotective drugs that target abnormal αSyn aggregation have not been developed for the treatment of multiple system atrophy. In addition, treating diseases at an early stage is crucial to halting the progress of neuronal damage in neurodegeneration. In this study, using early-stage multiple system atrophy mouse model and in vitro kinetic analysis, we investigated how intranasal and oral administration of trehalose can improve multiple system atrophy pathology and clinical symptoms. The multiple system atrophy model showed memory impairment at least four weeks after αSyn induction. Behavioural and physiological analyses showed that intranasal and oral administration of trehalose reversed memory impairments to near-normal levels. Notably, trehalose treatment reduced the amount of toxic αSyn and increased the aggregated form of αSyn in the multiple system atrophy model brain. In vitro kinetic analysis confirmed that trehalose accelerated the aggregate formation of αSyn. Based on our findings, we propose a novel strategy whereby accelerated αSyn aggregate formation leads to reduced exposure to toxic αSyn oligomers, particularly during the early phase of disease progression.
Collapse
Affiliation(s)
- Makoto T Tanaka
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Yasuo Miki
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
| | - Fumiaki Mori
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Tomoya Kon
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Tomonori Furukawa
- Department of Neurophysiology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Shuji Shimoyama
- Department of Neurophysiology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Yota Tatara
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Taku Ozaki
- Department of Biological Science, Graduate School of Science and Engineering, Iwate University, Morioka 020-8551, Japan
| | - Conceição Bettencourt
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Thomas T Warner
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Koichi Wakabayashi
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| |
Collapse
|
8
|
Reddy A, Reddy RP, Roghani AK, Garcia RI, Khemka S, Pattoor V, Jacob M, Reddy PH, Sehar U. Artificial intelligence in Parkinson's disease: Early detection and diagnostic advancements. Ageing Res Rev 2024; 99:102410. [PMID: 38972602 DOI: 10.1016/j.arr.2024.102410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, globally affecting men and women at an exponentially growing rate, with currently no cure. Disease progression starts when dopaminergic neurons begin to die. In PD, the loss of neurotransmitter, dopamine is responsible for the overall communication of neural cells throughout the body. Clinical symptoms of PD are slowness of movement, involuntary muscular contractions, speech & writing changes, lessened automatic movement, and chronic tremors in the body. PD occurs in both familial and sporadic forms and modifiable and non-modifiable risk factors and socioeconomic conditions cause PD. Early detectable diagnostics and treatments have been developed in the last several decades. However, we still do not have precise early detectable biomarkers and therapeutic agents/drugs that prevent and/or delay the disease process. Recently, artificial intelligence (AI) science and machine learning tools have been promising in identifying early detectable markers with a greater rate of accuracy compared to past forms of treatment and diagnostic processes. Artificial intelligence refers to the intelligence exhibited by machines or software, distinct from the intelligence observed in humans that is based on neural networks in a form and can be used to diagnose the longevity and disease severity of disease. The term Machine Learning or Neural Networks is a blanket term used to identify an emerging technology that is created to work in the way of a "human brain" using many intertwined neurons to achieve the same level of raw intelligence as that of a brain. These processes have been used for neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease, to assess the severity of the patient's condition. In the current article, we discuss the prevalence and incidence of PD, and currently available diagnostic biomarkers and therapeutic strategies. We also highlighted currently available artificial intelligence science and machine learning tools and their applications to detect disease and develop therapeutic interventions.
Collapse
Affiliation(s)
- Aananya Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Lubbock High School, Lubbock, TX 79401, USA.
| | - Ruhananhad P Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Lubbock High School, Lubbock, TX 79401, USA.
| | - Aryan Kia Roghani
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Frenship High School, Lubbock, TX 79382, USA.
| | - Ricardo Isaiah Garcia
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Sachi Khemka
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Vasanthkumar Pattoor
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; University of South Florida, Tampa, FL 33620, USA.
| | - Michael Jacob
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department pf Speech, Language and Hearing Services, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
9
|
Di D, Zhang C, Sun S, Pei K, Gu R, Sun Y, Zhou S, Wang Y, Chen X, Jiang S, Wu H, Zhu B, Xu X. Mechanism of Yishen Chuchan decoction intervention of Parkinson's disease based on network pharmacology and experimental verification. Heliyon 2024; 10:e34823. [PMID: 39149067 PMCID: PMC11325061 DOI: 10.1016/j.heliyon.2024.e34823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024] Open
Abstract
The incidence of Parkinson's disease (PD) rises rapidly with the increase of age. With the advent of global aging, the number of patients with PD is rising along with the elderly population, especially in China. Previously, we found that Yishen chuchan decoction (YCD), prescribed based on clinical experience, has the potential of alleviating symptoms, delaying the progression, and controlling the development of PD. Nonetheless, the underlying mechanistic role is yet to be explored. Aim This research examined the possible therapeutic effects of YCD in alleviating PD via a systematic approach with network pharmacology and experimental validation, aiming at providing a new understanding of traditional Chinese medicine management regarding PD. Methods The chemical structure and properties of YCD were adopted from Traditional Chinese Medicine System Pharmacology Database (TCMSP), SwissADME, PubChem, and PubMed. The potential targets for YCD and PD were identified using Swiss Target Prediction, GeneCard, PubChem, and UniProt. The herbal-component-target network was created via the Cytoscape software. Moreover, by using the STRING database, the protein-protein interaction (PPI) network was screened. Gene function GO and KEGG pathway enrichment analyses were performed via the Metascape database. YCD-medicated Rat Serum from Sprague-Dawley (SD) Rats was prepared, and SH-SY5Y cells were preconditioned with rotenone to develop the PD model. To examine the impact of YCD on these cells and explore the mechanistic role of the p38 mitogen-activated protein kinase (MAPK) pathway, the cells were pretreated with either serum or a p38 MAPK pathway inhibitor. This study employed the Cell Counting Kit (CCK)-8 assay and Hoechst 33,342 staining to evaluate the viability and morphological changes induced by the YCD-medicated rat serum on rotenone-treated SH-SY5Y cells. Apoptosis was assessed by Flow cytometry. Immunofluorescence staining assessed the microtubule-associated protein 2 (MAP2) level. Enzyme-linked immunosorbent assay (ELISA) was employed to quantify the concentrations of inflammatory mediators interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α). Also, reactive oxygen species (ROS) and superoxide dismutase (SOD) levels were determined. Western Blotting measured the expression of total and phospho-p38 MAPK (p-p38). Results This study identified 65 active components in YCD, which were found to target 801 specific genes. By screening, 63 potential core targets were identified from a pool of 172 overlapping targets between PD and YCD. These targets were examined by GO and KEGG analyses revealing their substantial correlation to MAPK, PI3K-Akt signaling pathways, positively controlling protein phosphorylation, and pathways of neurodegenerative diseases. SH-SY5Y cells were treated with 2 μM rotenone for 48 h, which reduced cell viability to 50 %, and reduced MAP2 expression, increased the rate of apoptosis, oxidative stress, inflammation, and p-p38 expressions. YCD-medicated rat serum significantly improved the viability, reduced the apoptosis rate, and increased the MAP2 expression. YCD-medicated serum increased SOD, reduced ROS and suppressed IL-6, IL-1β and TNF-α levels, thus inhibiting oxidative stress and inflammation in rotenone-treated SH-SY5Y cells. Moreover, YCD-medicated serum substantially lowered the p-p38 expression induced by rotenone. SB203580, a specific inhibitor of p38 MAPK, could also inhibit the p-p38 expression, apoptosis, and restore morphological damage of cells, also improve inflammation and oxidative stress. Conclusion YCD enhanced cell viability and reduced apoptosis rate, inflammation, and oxidative stress in vitro. These beneficial effects could potentially involve the suppression of p38 pathway and suppressed the phosphorylation of p38 MAPK.
Collapse
Affiliation(s)
- Dong Di
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China
| | - Chencheng Zhang
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, Jiangsu, China
| | - Suping Sun
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China
| | - Ke Pei
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Renjun Gu
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Yan Sun
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China
| | - Shihan Zhou
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China
| | - Yanqing Wang
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China
| | - Xinyi Chen
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China
| | - Shan Jiang
- Nantong TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, Jiangsu, 226001, China
| | - Haoxin Wu
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China
| | - Boran Zhu
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China
| | - Xu Xu
- Nantong TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, Jiangsu, 226001, China
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| |
Collapse
|
10
|
Rahimi Darehbagh R, Seyedoshohadaei SA, Ramezani R, Rezaei N. Stem cell therapies for neurological disorders: current progress, challenges, and future perspectives. Eur J Med Res 2024; 29:386. [PMID: 39054501 PMCID: PMC11270957 DOI: 10.1186/s40001-024-01987-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
Stem cell-based therapies have emerged as a promising approach for treating various neurological disorders by harnessing the regenerative potential of stem cells to restore damaged neural tissue and circuitry. This comprehensive review provides an in-depth analysis of the current state of stem cell applications in primary neurological conditions, including Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), stroke, spinal cord injury (SCI), and other related disorders. The review begins with a detailed introduction to stem cell biology, discussing the types, sources, and mechanisms of action of stem cells in neurological therapies. It then critically examines the preclinical evidence from animal models and early human trials investigating the safety, feasibility, and efficacy of different stem cell types, such as embryonic stem cells (ESCs), mesenchymal stem cells (MSCs), neural stem cells (NSCs), and induced pluripotent stem cells (iPSCs). While ESCs have been studied extensively in preclinical models, clinical trials have primarily focused on adult stem cells such as MSCs and NSCs, as well as iPSCs and their derivatives. We critically assess the current state of research for each cell type, highlighting their potential applications and limitations in different neurological conditions. The review synthesizes key findings from recent, high-quality studies for each neurological condition, discussing cell manufacturing, delivery methods, and therapeutic outcomes. While the potential of stem cells to replace lost neurons and directly reconstruct neural circuits is highlighted, the review emphasizes the critical role of paracrine and immunomodulatory mechanisms in mediating the therapeutic effects of stem cells in most neurological disorders. The article also explores the challenges and limitations associated with translating stem cell therapies into clinical practice, including issues related to cell sourcing, scalability, safety, and regulatory considerations. Furthermore, it discusses future directions and opportunities for advancing stem cell-based treatments, such as gene editing, biomaterials, personalized iPSC-derived therapies, and novel delivery strategies. The review concludes by emphasizing the transformative potential of stem cell therapies in revolutionizing the treatment of neurological disorders while acknowledging the need for rigorous clinical trials, standardized protocols, and multidisciplinary collaboration to realize their full therapeutic promise.
Collapse
Affiliation(s)
- Ramyar Rahimi Darehbagh
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Nanoclub Elites Association, Tehran, Iran
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Universal Scientific Education and Research Network (USERN), Sanandaj, Kurdistan, Iran
| | | | - Rojin Ramezani
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Su C, Hou Y, Xu J, Xu Z, Zhou M, Ke A, Li H, Xu J, Brendel M, Maasch JRMA, Bai Z, Zhang H, Zhu Y, Cincotta MC, Shi X, Henchcliffe C, Leverenz JB, Cummings J, Okun MS, Bian J, Cheng F, Wang F. Identification of Parkinson's disease PACE subtypes and repurposing treatments through integrative analyses of multimodal data. NPJ Digit Med 2024; 7:184. [PMID: 38982243 PMCID: PMC11233682 DOI: 10.1038/s41746-024-01175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 06/21/2024] [Indexed: 07/11/2024] Open
Abstract
Parkinson's disease (PD) is a serious neurodegenerative disorder marked by significant clinical and progression heterogeneity. This study aimed at addressing heterogeneity of PD through integrative analysis of various data modalities. We analyzed clinical progression data (≥5 years) of individuals with de novo PD using machine learning and deep learning, to characterize individuals' phenotypic progression trajectories for PD subtyping. We discovered three pace subtypes of PD exhibiting distinct progression patterns: the Inching Pace subtype (PD-I) with mild baseline severity and mild progression speed; the Moderate Pace subtype (PD-M) with mild baseline severity but advancing at a moderate progression rate; and the Rapid Pace subtype (PD-R) with the most rapid symptom progression rate. We found cerebrospinal fluid P-tau/α-synuclein ratio and atrophy in certain brain regions as potential markers of these subtypes. Analyses of genetic and transcriptomic profiles with network-based approaches identified molecular modules associated with each subtype. For instance, the PD-R-specific module suggested STAT3, FYN, BECN1, APOA1, NEDD4, and GATA2 as potential driver genes of PD-R. It also suggested neuroinflammation, oxidative stress, metabolism, PI3K/AKT, and angiogenesis pathways as potential drivers for rapid PD progression (i.e., PD-R). Moreover, we identified repurposable drug candidates by targeting these subtype-specific molecular modules using network-based approach and cell line drug-gene signature data. We further estimated their treatment effects using two large-scale real-world patient databases; the real-world evidence we gained highlighted the potential of metformin in ameliorating PD progression. In conclusion, this work helps better understand clinical and pathophysiological complexity of PD progression and accelerate precision medicine.
Collapse
Grants
- R21 AG083003 NIA NIH HHS
- R01 AG082118 NIA NIH HHS
- R56 AG074001 NIA NIH HHS
- R01AG076448 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- RF1AG072449 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- MJFF-023081 Michael J. Fox Foundation for Parkinson's Research (Michael J. Fox Foundation)
- R01AG080991 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- P30 AG072959 NIA NIH HHS
- 3R01AG066707-01S1 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R21AG083003 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01AG066707 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R35 AG071476 NIA NIH HHS
- RF1 AG082211 NIA NIH HHS
- R56AG074001 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01AG082118 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R25 AG083721 NIA NIH HHS
- RF1AG082211 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- U01 NS093334 NINDS NIH HHS
- AG083721-01 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- RF1NS133812 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- P20GM109025 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- RF1 NS133812 NINDS NIH HHS
- R35AG71476 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- U01 AG073323 NIA NIH HHS
- R01 AG066707 NIA NIH HHS
- R01AG053798 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01AG076234 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01 AG076448 NIA NIH HHS
- R01 AG080991 NIA NIH HHS
- R01 AG076234 NIA NIH HHS
- U01NS093334 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- P20 GM109025 NIGMS NIH HHS
- P30AG072959 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- RF1 AG072449 NIA NIH HHS
- R01 AG053798 NIA NIH HHS
- 3R01AG066707-02S1 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- U01AG073323 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- ALZDISCOVERY-1051936 Alzheimer's Association
Collapse
Affiliation(s)
- Chang Su
- Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Institute of Artificial Intelligence for Digital Health, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Yu Hou
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Jielin Xu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Zhenxing Xu
- Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Institute of Artificial Intelligence for Digital Health, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Manqi Zhou
- Institute of Artificial Intelligence for Digital Health, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Alison Ke
- Institute of Artificial Intelligence for Digital Health, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Haoyang Li
- Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Institute of Artificial Intelligence for Digital Health, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jie Xu
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Matthew Brendel
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Jacqueline R M A Maasch
- Institute of Artificial Intelligence for Digital Health, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Computer Science, Cornell Tech, Cornell University, New York, NY, USA
| | - Zilong Bai
- Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Institute of Artificial Intelligence for Digital Health, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Haotan Zhang
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Yingying Zhu
- Department of Computer Science, University of Texas at Arlington, Arlington, TX, USA
| | - Molly C Cincotta
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Xinghua Shi
- Department of Computer and Information Sciences, Temple University, Philadelphia, PA, USA
| | - Claire Henchcliffe
- Department of Neurology, University of California Irvine, Irvine, CA, USA
| | - James B Leverenz
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Michael S Okun
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Jiang Bian
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Fei Wang
- Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Institute of Artificial Intelligence for Digital Health, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
12
|
Kim TH, Krichen M, Ojo S, Sampedro GA, Alamro MA. SS-DRPL: self-supervised deep representation pattern learning for voice-based Parkinson's disease detection. Front Comput Neurosci 2024; 18:1414462. [PMID: 38933392 PMCID: PMC11199684 DOI: 10.3389/fncom.2024.1414462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
Parkinson's disease (PD) is a globally significant health challenge, necessitating accurate and timely diagnostic methods to facilitate effective treatment and intervention. In recent years, self-supervised deep representation pattern learning (SS-DRPL) has emerged as a promising approach for extracting valuable representations from data, offering the potential to enhance the efficiency of voice-based PD detection. This research study focuses on investigating the utilization of SS-DRPL in conjunction with deep learning algorithms for voice-based PD classification. This study encompasses a comprehensive evaluation aimed at assessing the accuracy of various predictive models, particularly deep learning methods when combined with SS-DRPL. Two deep learning architectures, namely hybrid Long Short-Term Memory and Recurrent Neural Networks (LSTM-RNN) and Deep Neural Networks (DNN), are employed and compared in terms of their ability to detect voice-based PD cases accurately. Additionally, several traditional machine learning models are also included to establish a baseline for comparison. The findings of the study reveal that the incorporation of SS-DRPL leads to improved model performance across all experimental setups. Notably, the LSTM-RNN architecture augmented with SS-DRPL achieves the highest F1-score of 0.94, indicating its superior ability to detect PD cases using voice-based data effectively. This outcome underscores the efficacy of SS-DRPL in enabling deep learning models to learn intricate patterns and correlations within the data, thereby facilitating more accurate PD classification.
Collapse
Affiliation(s)
- Tae Hoon Kim
- School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, China
| | - Moez Krichen
- FCSIT, Al-Baha University, Al-Baha, Saudi Arabia
| | - Stephen Ojo
- Department of Electrical and Computer Engineering, College of Engineering, Anderson University, Anderson, SC, United States
| | - Gabriel Avelino Sampedro
- Faculty of Information and Communication Studies, University of the Philippines Open University, Los Baños, Philippines
- Gokongwei College of Engineering, De La Salle University, Manila, Philippines
| | - Meznah A. Alamro
- Department of Information Technology, College of Computer and Information Science, Princess Nourah Bint Abdul Rahman University, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Park MS, Park S, Kang JY, Jung IC, Yoo H. The efficacy and safety of MARS-PD: Meridian activation remedy system for Parkinson's disease-A single-center, assessor and statistician-blinded, parallel-group randomized, controlled trial protocol. PLoS One 2024; 19:e0303156. [PMID: 38709746 PMCID: PMC11073687 DOI: 10.1371/journal.pone.0303156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) patients face a substantial unmet need for disease-modifying interventions. Potential approaches such as exercise and acupuncture have been investigated to slow PD progression. To address this unmet need, we developed a novel therapeutic approach that integrates acupuncture and exercise: the Meridian Activation Remedy System for PD patients (MARS-PD). Building upon promising outcomes observed in our preliminary pilot study, where MARS-PD exhibited a large clinically important difference on the Movement Disorder Society Unified Parkinson's Disease Rating Scale Part III (MDS-UPDRS Part III), we embark on a randomized controlled trial with the primary objective of examining the efficacy, safety, and economic impact of MARS-PD. METHODS In this single-center, assessor and statistician-blinded, parallel-group randomized controlled trial, we aim to investigate the clinical efficacy of MARS-PD through 16 interventions administered over 8 weeks in 88 PD patients. Participants will be randomly assigned to the experimental (n = 44) or control (n = 44) groups. The experimental group will receive MARS-PD intervention alongside standard care, while the control group will solely receive standard care. The intervention period spans 8 weeks, followed by a 12-week post-intervention follow-up. The primary endpoint is the change in MDS-UPDRS Part III score from baseline to the conclusion of the 8-week intervention. Secondary outcomes encompass various assessments, including MDS-UPDRS, International Physical Activity Questionnaire Short Form, Parkinson Self Questionnaire, Parkinson's Disease Sleep Scale, Timed Up and Go test, GAITRite metrics, Functional Near-Infrared Spectroscopy measurements, smart band outcomes, gut microbiome analysis results, and iris connective tissue texture. DISCUSSION Previous studies by the authors have indicated MARS-PD's safety and benefits for PD patients. Building upon this foundation, our current study aims to provide a more comprehensive and detailed confirmation of the efficacy of MARS-PD. TRIAL REGISTRATION cris.nih.go.kr KCT0006646 -First posted on 7 October 2021; ClinicalTrials.gov NCT05621772 -First posted on 11 November 2022.
Collapse
Affiliation(s)
- Miso S. Park
- Clinical Trial Center, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, Republic of Korea
| | - SangSoo Park
- Clinical Trial Center, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, Republic of Korea
| | - Jie-Yoon Kang
- Department of Cardiology and Neurology of Korean Medicine, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| | - In Chul Jung
- Department of Oriental Neuropsychiatry, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| | - HoRyong Yoo
- Department of Cardiology and Neurology of Korean Medicine, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| |
Collapse
|
14
|
Choi I, Park S, Lee SH, Seo JW, Seol IC, Kim YS, Park MS, Yoo H. Effectiveness and Safety of Meridian Activation Remedy System for Alleviating Motor Symptoms in Parkinson's Disease: an Observational Study. J Acupunct Meridian Stud 2024; 17:55-68. [PMID: 38686429 DOI: 10.51507/j.jams.2024.17.2.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 12/19/2023] [Accepted: 03/24/2024] [Indexed: 05/02/2024] Open
Abstract
Background Parkinson's disease (PD) lacks disease-modifying drugs or sustainable interventions, creating an unmet treatment need. Investigating complementary and alternative medicines aims to improve PD patients' quality of life by alleviating symptoms and delaying the course of the disease. Objectives In this single-center, prospective, observational, single-arm study, we aimed to assess the effectiveness and safety of acupuncture combined with exercise therapy and the Meridian Activation Remedy System (MARS). Methods From March to October 2021, 13 PD patients with Hoehn and Yahr stages 1 to 3 were recruited. For 8 weeks, MARS intervention was carried out twice a week. T-statistics were used to evaluate functional near-infrared spectroscopy (fNIRS) and GAITRite outcomes. All of the remaining outcome variables were evaluated using the Wilcoxon signed-rank test. Results The MARS intervention significantly reduced PD patients' Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale (MDSUPDRS) Part III score (from 20.0 ± 11.8 to 8.8 ± 5.5, p = 0.003), 10-meter walk test speed (from 9.5 ± 1.8 to 8.7 ± 1.3 seconds, p = 0.040), and timed up and go time (from 9.8 ± 1.8 to 8.9 ± 1.4 seconds, p = 0.040). Moreover, the MDS-UPDRS Part II, fNIRS hemodynamics, 360-degree turn test, fall efficacy scale, and Parkinson's Disease Questionnaire 39 scores improved but not significantly. All participants completed the 8-week intervention without any adverse reactions. Conclusion An 8-week MARS intervention improved motor symptoms in PD patients. In particular, improvements in UPDRS Part III scores exhibited large clinically important differences. The findings are encouraging, and a randomized controlled trial will be conducted to determine the efficacy and cost-effectiveness of MARS intervention.
Collapse
Affiliation(s)
- InWoo Choi
- Department of Cardiology and Neurology of Korean Medicine, College of Korean Medicine, Daejeon University, Daejeon, Korea
| | - Sangsoo Park
- Clinical Trial Center, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, Korea
| | - Seung Hyun Lee
- Global Health Technology Research Center, Korea University, Seoul, Korea
| | - Jeong-Woo Seo
- Digital Health Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - In-Chan Seol
- Department of Cardiology and Neurology of Korean Medicine, College of Korean Medicine, Daejeon University, Daejeon, Korea
| | - Yoon-Sik Kim
- Department of Cardiology and Neurology of Korean Medicine, College of Korean Medicine, Daejeon University, Daejeon, Korea
| | - Miso S Park
- Clinical Trial Center, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, Korea
| | - Horyong Yoo
- Department of Cardiology and Neurology of Korean Medicine, College of Korean Medicine, Daejeon University, Daejeon, Korea
| |
Collapse
|
15
|
Janssen Daalen JM, Gerritsen A, Gerritse G, Gouman J, Meijerink H, Rietdijk LE, Darweesh SKL. How Lifetime Evolution of Parkinson's Disease Could Shape Clinical Trial Design: A Shared Patient-Clinician Viewpoint. Brain Sci 2024; 14:358. [PMID: 38672010 PMCID: PMC11048137 DOI: 10.3390/brainsci14040358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Parkinson's disease (PD) has a long, heterogeneous, pre-diagnostic phase, during which pathology insidiously accumulates. Increasing evidence suggests that environmental and lifestyle factors in early life contribute to disease risk and progression. Thanks to the extensive study of this pre-diagnostic phase, the first prevention trials of PD are being designed. However, the highly heterogenous evolution of the disease across the life course is not yet sufficiently taken into account. This could hamper clinical trial success in the advent of biological disease definitions. In an interdisciplinary patient-clinician study group, we discussed how an approach that incorporates the lifetime evolution of PD may benefit the design of disease-modifying trials by impacting population, target and outcome selection. We argue that the timepoint of exposure to risk and protective factors plays a critical role in PD subtypes, influencing population selection. In addition, recent developments in differential disease mechanisms, aided by biological disease definitions, could impact optimal treatment targets. Finally, multimodal biomarker panels using this lifetime approach will likely be most sensitive as progression markers for more personalized trials. We believe that the lifetime evolution of PD should be considered in the design of clinical trials, and that such initiatives could benefit from more patient-clinician partnerships.
Collapse
Affiliation(s)
- Jules M. Janssen Daalen
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Department of Neurology, Center of Expertise for Parkinson & Movement Disorders, 6525 GA Nijmegen, The Netherlands; (J.M.J.D.); (A.G.)
| | - Aranka Gerritsen
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Department of Neurology, Center of Expertise for Parkinson & Movement Disorders, 6525 GA Nijmegen, The Netherlands; (J.M.J.D.); (A.G.)
| | - Gijs Gerritse
- Dutch Parkinson’s Patient Association, P.O. Box 46, 3980 CA Bunnik, The Netherlands; (G.G.); (J.G.); (H.M.); (L.E.R.)
| | - Jan Gouman
- Dutch Parkinson’s Patient Association, P.O. Box 46, 3980 CA Bunnik, The Netherlands; (G.G.); (J.G.); (H.M.); (L.E.R.)
| | - Hannie Meijerink
- Dutch Parkinson’s Patient Association, P.O. Box 46, 3980 CA Bunnik, The Netherlands; (G.G.); (J.G.); (H.M.); (L.E.R.)
| | - Leny E. Rietdijk
- Dutch Parkinson’s Patient Association, P.O. Box 46, 3980 CA Bunnik, The Netherlands; (G.G.); (J.G.); (H.M.); (L.E.R.)
| | - Sirwan K. L. Darweesh
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Department of Neurology, Center of Expertise for Parkinson & Movement Disorders, 6525 GA Nijmegen, The Netherlands; (J.M.J.D.); (A.G.)
| |
Collapse
|
16
|
Guan X, Lancione M, Ayton S, Dusek P, Langkammer C, Zhang M. Neuroimaging of Parkinson's disease by quantitative susceptibility mapping. Neuroimage 2024; 289:120547. [PMID: 38373677 DOI: 10.1016/j.neuroimage.2024.120547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 02/02/2024] [Accepted: 02/17/2024] [Indexed: 02/21/2024] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease, and apart from a few rare genetic causes, its pathogenesis remains largely unclear. Recent scientific interest has been captured by the involvement of iron biochemistry and the disruption of iron homeostasis, particularly within the brain regions specifically affected in PD. The advent of Quantitative Susceptibility Mapping (QSM) has enabled non-invasive quantification of brain iron in vivo by MRI, which has contributed to the understanding of iron-associated pathogenesis and has the potential for the development of iron-based biomarkers in PD. This review elucidates the biochemical underpinnings of brain iron accumulation, details advancements in iron-sensitive MRI technologies, and discusses the role of QSM as a biomarker of iron deposition in PD. Despite considerable progress, several challenges impede its clinical application after a decade of QSM studies. The initiation of multi-site research is warranted for developing robust, interpretable, and disease-specific biomarkers for monitoring PD disease progression.
Collapse
Affiliation(s)
- Xiaojun Guan
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 31009, China
| | - Marta Lancione
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Scott Ayton
- Florey Institute, The University of Melbourne, Australia
| | - Petr Dusek
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia; Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Auenbruggerplatz 22, Prague 8036, Czechia
| | | | - Minming Zhang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 31009, China.
| |
Collapse
|
17
|
Jia F, Han J. COVID-19 related neurological manifestations in Parkinson's disease: has ferroptosis been a suspect? Cell Death Discov 2024; 10:146. [PMID: 38503730 PMCID: PMC10951317 DOI: 10.1038/s41420-024-01915-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/21/2024] Open
Abstract
A rising number of patient cases point to a probable link between SARS-CoV-2 infection and Parkinson's disease (PD), yet the mechanisms by which SARS-CoV-2 affects the brain and generates neuropsychiatric symptoms in COVID-19 patients remain unknown. Ferroptosis, a distinct iron-dependent non-apoptotic type of cell death characterized by lipid peroxidation and glutathione depletion, a key factor in neurological disorders. Ferroptosis may have a pathogenic role in COVID-19, according to recent findings, however its potential contributions to COVID-19-related PD have not yet been investigated. This review covers potential paths for SARS-CoV-2 infection of the brain. Among these putative processes, ferroptosis may contribute to the etiology of COVID-19-associated PD, potentially providing therapeutic methods.
Collapse
Affiliation(s)
- Fengju Jia
- School of Nursing, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, China.
| | - Jing Han
- School of Nursing, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, China
| |
Collapse
|
18
|
Molina CD, Rivera A, Avidan AY. Educational Resources to Support Patients with Parasomnias. Sleep Med Clin 2024; 19:199-210. [PMID: 38368066 DOI: 10.1016/j.jsmc.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
This article serves to help reduce patient burden in searching for credible information about parasomnias-abnormal behaviors during sleep-including sleepwalking, night terrors, and rapid eye movement sleep behavior disorder. It exhibits a compiled list of accessible online resources about parasomnias as well as detailed descriptions about each resource. By increasing patient accessibility to clinically validated resources, patients are more empowered to take an active role in managing their conditions, collaborating with their health-care practitioners in clinical management, enrolling in registries, and joining newsletters sponsored by these resources.
Collapse
Affiliation(s)
- Courtney D Molina
- Department of Neurology, UCLA, David Geffen School of Medicine at UCLA, 710 Westwood Boulevard, RNRC, C153, Mail Code 176919, Los Angeles, CA 90095-1769, USA
| | - Adreanne Rivera
- UCLA Clinical Translational Science Institute, 10911 Weyburn Avenue 3rd Road Floor, Los Angeles, CA 90095, USA
| | - Alon Y Avidan
- Department of Neurology, UCLA, David Geffen School of Medicine at UCLA, 710 Westwood Boulevard, RNRC, C153, Mail Code 176919, Los Angeles, CA 90095-1769, USA.
| |
Collapse
|
19
|
Martínez Fernández R, Natera Villalba E, Rodriguez-Rojas R, Del Álamo M, Pineda-Pardo JA, Obeso I, Mata-Marín D, Guida P, Jimenez-Castellanos T, Pérez-Bueno D, Duque A, Máñez Miró JU, Gasca-Salas C, Matarazzo M, Obeso JA. Unilateral focused ultrasound subthalamotomy in early Parkinson's disease: a pilot study. J Neurol Neurosurg Psychiatry 2024; 95:206-213. [PMID: 37673642 DOI: 10.1136/jnnp-2023-331211] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Unilateral focused ultrasound subthalamotomy (FUS-STN) improves motor features of Parkinson's disease (PD) in moderately advanced patients. The less invasive nature of FUS makes its early application in PD feasible. We aim to assess the safety and efficacy of unilateral FUS-STN in patients with PD of less than 5 years from diagnosis (early PD). METHODS Prospective, open-label study. Eligible patients with early PD had highly asymmetrical cardinal features. The primary outcome was safety, defined as treatment-related adverse events at 6 months. Secondary outcomes included efficacy, assessed as motor improvement in the Movement Disorders Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS), motor fluctuations, non-motor symptoms, daily living activities, quality of life, medication and patients' impression of change. RESULTS Twelve patients with PD (median age 52.0 (IQR 49.8-55.3) years, median time from diagnosis 3.0 (2.1-3.9) years) underwent unilateral FUS-STN. Within 2 weeks after treatment, five patients developed dyskinesia on the treated side, all resolved after levodopa dose adjustment. One patient developed mild contralateral motor weakness which fully resolved in 4 weeks. One patient developed dystonic foot and another hand and foot dystonia. The latter impaired gait and became functionally disabling initially. Both cases were well controlled with botulinum toxin injections. The off-medication motor MDS-UPDRS score for the treated side improved at 12 months by 68.7% (from 14.5 to 4.0, p=0.002), and the total motor MDS-UPDRS improved by 49.0% (from 26.5 to 13.0, p=0.002). Eleven patients (92%) reported global improvement 12 months after treatment. CONCLUSION Unilateral FUS-STN may be safe and effective to treat motor manifestations in patients with early PD. A larger confirmatory trial is warranted. TRIAL REGISTRATION NUMBER NCT04692116.
Collapse
Affiliation(s)
- Raúl Martínez Fernández
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto Carlos III, CIBERNED, Madrid, Spain
| | - Elena Natera Villalba
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- PhD Medicine Program, Universidad Autonoma de Madrid, Madrid, Spain
| | - Rafael Rodriguez-Rojas
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto Carlos III, CIBERNED, Madrid, Spain
| | - Marta Del Álamo
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
| | - Jose A Pineda-Pardo
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto Carlos III, CIBERNED, Madrid, Spain
| | - Ignacio Obeso
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
| | - David Mata-Marín
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- PhD Neuroscience Program, Universidad Autonoma de Madrid, Madrid, Spain
| | - Pasqualina Guida
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- PhD Neuroscience Program, Universidad Autonoma de Madrid, Madrid, Spain
| | - Tamara Jimenez-Castellanos
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- PhD Epidemiology and Public Health Program, Universidad Autonoma de Madrid, Madrid, Spain
| | - Diana Pérez-Bueno
- Anesthesia Department, Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
| | - Alicia Duque
- Neuroradiology Department, Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
| | - Jorge U Máñez Miró
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- PhD Neuroscience Program, Universidad Autonoma de Madrid, Madrid, Spain
| | - Carmen Gasca-Salas
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto Carlos III, CIBERNED, Madrid, Spain
| | - Michele Matarazzo
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto Carlos III, CIBERNED, Madrid, Spain
| | - Jose A Obeso
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto Carlos III, CIBERNED, Madrid, Spain
| |
Collapse
|
20
|
Wolff AW, Bidner H, Remane Y, Zimmer J, Aarsland D, Rascol O, Wyse RK, Hapfelmeier A, Lingor P. Protocol for a randomized, placebo-controlled, double-blind phase IIa study of the safety, tolerability, and symptomatic efficacy of the ROCK-inhibitor Fasudil in patients with Parkinson's disease (ROCK-PD). Front Aging Neurosci 2024; 16:1308577. [PMID: 38419648 PMCID: PMC10899319 DOI: 10.3389/fnagi.2024.1308577] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Background The Rho-kinase (ROCK) inhibitor Fasudil has shown symptomatic and disease-modifying effects in Parkinson's disease (PD) models in vitro and in vivo. In Japan, Fasudil has been approved for the treatment of subarachnoid haemorrhage since 1995 and shows a favourable safety profile. Objectives/design To investigate the safety, tolerability, and symptomatic efficacy of ROCK-inhibitor Fasudil in comparison to placebo in a randomized, national, multicenter, double-blind phase IIa study in patients with PD. Methods/analysis We plan to include 75 patients with at least 'probable' PD (MDS criteria), Hoehn and Yahr stages 1-3, and age 30-80 years in 13 German study sites. Patients must be non-fluctuating and their response to PD medication must have been stable for 6 weeks. Patients will be randomly allocated to treatment with the oral investigational medicinal product (IMP) containing either Fasudil in two dosages, or placebo, for a total of 22 days. As primary analysis, non-inferiority of low/high dose of Fasudil on the combined endpoint consisting of occurrence of intolerance and/or treatment-related serious adverse events (SAEs) over 22 days will be assessed in a sequential order, starting with the lower dose. Secondary endpoints will include tolerability alone over 22 days and occurrence of treatment-related SAEs (SARs) over 22 and 50 days and will be compared on group level. Additional secondary endpoints include efficacy on motor and non-motor symptoms, measured on established scales, and will be assessed at several timepoints. Biomaterial will be collected to determine pharmacokinetics of Fasudil and its active metabolite, and to evaluate biomarkers of neurodegeneration. Ethics/registration/discussion After positive evaluation by the competent authority and the ethics committee, patient recruitment started in the 3rd quarter of 2023. ROCK-PD is registered with Eudra-CT (2021-003879-34) and clinicaltrials.gov (NCT05931575). Results of this trial can pave way for conducting extended-duration studies assessing both symptomatic efficacy and disease-modifying properties of Fasudil.
Collapse
Affiliation(s)
- Andreas W Wolff
- Department of Neurology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Helen Bidner
- Münchner Studienzentrum (MSZ), School of Medicine, Technical University of Munich, Munich, Germany
| | - Yvonne Remane
- Department of Clinical Pharmacy and Drug Safety Center, Leipzig University, Leipzig, Germany
| | - Janine Zimmer
- Department of Clinical Pharmacy and Drug Safety Center, Leipzig University, Leipzig, Germany
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Centre for Age-Related Research, Stavanger University Hospital, Stavanger, Norway
| | - Olivier Rascol
- Clinical Investigation Center CIC1436, Departments of Clinical Pharmacology and Neurosciences, University of Toulouse 3, University Hospital of Toulouse, INSERM, Toulouse, France
| | | | - Alexander Hapfelmeier
- Institute of AI and Informatics in Medicine, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of General Practice and Health Services Research, School of Medicine, Technical University of Munich, Munich, Germany
| | - Paul Lingor
- Department of Neurology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
21
|
Li G, Huang P, Cui S, He Y, Tan Y, Chen S. Effect of long-term Tai Chi training on Parkinson's disease: a 3.5-year follow-up cohort study. J Neurol Neurosurg Psychiatry 2024; 95:222-228. [PMID: 37875337 DOI: 10.1136/jnnp-2022-330967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 09/05/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND Tai Chi has shown beneficial effects on the motor and non-motor symptoms of Parkinson's disease (PD), but no study has reported the effect of long-term Tai Chi training. OBJECTIVE To examine whether long-term Tai Chi training can maintain improvement in patients with PD. METHODS Cohorts of patients with PD with Tai Chi training (n=143) and patients with PD without exercise as a control group (n=187) were built from January 2016. All subjects were assessed at baseline and in November 2019, October 2020 and June 2021. A logarithmic linear model was used to analyse rating scales for motor and non-motor symptoms. The need to increase antiparkinsonian therapies was presented as a Kaplan-Meier plot and as a box plot. The bootstrap method was used to resample for statistical estimation. RESULTS Tai Chi training reduced the annual changes in the deterioration of the Unified Parkinson's Disease Rating Scale and delayed the need for increasing antiparkinsonian therapies. The annual increase in the levodopa equivalent daily dosage was significantly lower in the Tai Chi group. Moreover, patients benefited from Tai Chi training in motor symptoms, non-motor symptoms and complications. CONCLUSION Tai Chi training has a long-term beneficial effect on PD, with an improvement in motor and non-motor symptoms and reduced complications. TRIAL REGISTRATION NUMBER NCT05447975.
Collapse
Affiliation(s)
- Gen Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Pei Huang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Shishuang Cui
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yachao He
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yuyan Tan
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, Shanghai, People's Republic of China
| |
Collapse
|
22
|
Yoo SW, Oh YS, Ryu DW, Ha S, Lyoo CH, Kim Y, Yoo JY, Kim JS. Cardiac sympathetic "morbidity" might reflect the neurobiology of early Parkinson's disease. J Neurol 2024; 271:944-954. [PMID: 37864716 DOI: 10.1007/s00415-023-12049-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND An appropriate extracranial biomarker that delineates endophenotypes of Parkinson's disease (PD) at an early stage and reflects the neurodegenerative process is lacking. An evaluation of myocardial sympathetic nerve terminals could be a good candidate. This study aimed to explore subtypes of PD patients that showed cardiac catecholaminergic vesicular defect and their characteristics. METHODS This study included 122 early drug-naïve PD patients who were followed for approximately 4-5 years. All patients were examined with 18F-N-(3-fluoropropyl)-2beta-carbon ethoxy-3beta-(4-iodophenyl) nortropane positron-emission tomography and 123I-meta-iodobenzylguanidine myocardial scintigraphy. Cardiac scans were reexamined two or three times. Patients were subgrouped into the sympathetic denervated group at the initial scan, those without evidence of denervated myocardium in the first and subsequent scans, and the converters whose myocardium was initially normal but became impaired in the subsequent scans. Cognition in 99 patients was initially assessed with neuropsychological tests. Any associations between cardiac denervation subtypes and presynaptic dopamine transporter densities were investigated. Cognitive status relevant to cardiac sympathetic denervation status was evaluated. RESULTS This study found that cross-sectional comparisons of presynaptic monoamine transporter availability with a predefined order of cardiac denervation groups revealed parallel degeneration. A quadratic correlation between cardiac catecholamine capacity and cognition was observed. This association was interpreted to reflect the early neurobiology of PD. CONCLUSION An observed cardiac catecholaminergic gradient was to mirror the central neurobiology of early PD.
Collapse
Affiliation(s)
- Sang-Won Yoo
- Department of Neurology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Yoon-Sang Oh
- Department of Neurology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Dong-Woo Ryu
- Department of Neurology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Seunggyun Ha
- Division of Nuclear Medicine, Department of Radiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chul Hyoung Lyoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yuna Kim
- Department of Neurology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Ji-Yeon Yoo
- Department of Neurology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Joong-Seok Kim
- Department of Neurology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
23
|
Janssen Daalen JM, Koopman WJH, Saris CGJ, Meinders MJ, Thijssen DHJ, Bloem BR. The Hypoxia Response Pathway: A Potential Intervention Target in Parkinson's Disease? Mov Disord 2024; 39:273-293. [PMID: 38140810 DOI: 10.1002/mds.29688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder for which only symptomatic treatments are available. Both preclinical and clinical studies suggest that moderate hypoxia induces evolutionarily conserved adaptive mechanisms that enhance neuronal viability and survival. Therefore, targeting the hypoxia response pathway might provide neuroprotection by ameliorating the deleterious effects of mitochondrial dysfunction and oxidative stress, which underlie neurodegeneration in PD. Here, we review experimental studies regarding the link between PD pathophysiology and neurophysiological adaptations to hypoxia. We highlight the mechanistic differences between the rescuing effects of chronic hypoxia in neurodegeneration and short-term moderate hypoxia to improve neuronal resilience, termed "hypoxic conditioning". Moreover, we interpret these preclinical observations regarding the pharmacological targeting of the hypoxia response pathway. Finally, we discuss controversies with respect to the differential effects of hypoxia response pathway activation across the PD spectrum, as well as intervention dosing in hypoxic conditioning and potential harmful effects of such interventions. We recommend that initial clinical studies in PD should focus on the safety, physiological responses, and mechanisms of hypoxic conditioning, as well as on repurposing of existing pharmacological compounds. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jules M Janssen Daalen
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Werner J H Koopman
- Department of Pediatrics, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Christiaan G J Saris
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marjan J Meinders
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
| | - Dick H J Thijssen
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| |
Collapse
|
24
|
Bourque M, Morissette M, Di Paolo T. Neuroactive steroids and Parkinson's disease: Review of human and animal studies. Neurosci Biobehav Rev 2024; 156:105479. [PMID: 38007170 DOI: 10.1016/j.neubiorev.2023.105479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/13/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
The greater prevalence and incidence of Parkinson's disease (PD) in men suggest a beneficial effect of sex hormones. Neuroactive steroids have neuroprotective activities thus offering interesting option for disease-modifying therapy for PD. Neuroactive steroids are also neuromodulators of neurotransmitter systems and may thus help to control PD symptoms and side effect of dopamine medication. Here, we review the effect on sex hormones (estrogen, androgen, progesterone and its metabolites) as well as androstenediol, pregnenolone and dehydroepiandrosterone) in human studies and in animal models of PD. The effect of neuroactive steroids is reviewed by considering sex and hormonal status to help identify specifically for women and men with PD what might be a preventive approach or a symptomatic treatment. PD is a complex disease and the pathogenesis likely involves multiple cellular processes. Thus it might be useful to target different cellular mechanisms that contribute to neuronal loss and neuroactive steroids provide therapeutics options as they have multiple mechanisms of action.
Collapse
Affiliation(s)
- Mélanie Bourque
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705, Boulevard Laurier, Québec G1V4G2, Canada
| | - Marc Morissette
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705, Boulevard Laurier, Québec G1V4G2, Canada
| | - Thérèse Di Paolo
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705, Boulevard Laurier, Québec G1V4G2, Canada; Faculté de pharmacie, Pavillon Ferdinand-Vandry, 1050, avenue de la Médecine, Université Laval, Québec G1V 0A6, Canada.
| |
Collapse
|
25
|
Goltz F, van der Heide A, Helmich RC. Alleviating Stress in Parkinson's Disease: Symptomatic Treatment, Disease Modification, or Both? JOURNAL OF PARKINSON'S DISEASE 2024; 14:S147-S158. [PMID: 38363618 PMCID: PMC11380242 DOI: 10.3233/jpd-230211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Psychological stress, a state of mental strain caused by mentally or physically threatening situations, plays a significant role in Parkinson's disease (PD). Motor symptoms worsen during acute stress and common non-motor symptoms in PD, such as anxiety and depression, are linked to chronic stress. Although evidence in humans is lacking, animal models of PD suggest that chronic stress can accelerate dopaminergic cell death. This suggests that stress-reducing interventions have not only symptomatic, but perhaps also disease-modifying effects. Our objective was to identify the most promising strategies for stress-reduction in PD and to analyze their potential value for disease-modification. An unstructured literature search was performed, primarily focusing on papers published between 2020-2023. Several large clinical trials have tested the efficacy of aerobic exercise and mindfulness-based interventions on PD symptoms. The evidence is promising, but not definitive yet: some exercise trials found a reduction in stress-related symptoms, whereas others did not or did not report it. In the majority of trials, biological measures of stress and of disease progression are missing. Furthermore, follow-up periods were generally too short to measure disease-modifying effects. Hence, mechanisms underlying the intervention effects remain largely unclear. These effects may consist of attenuating progressive neurodegeneration (measured with MRI-markers of substantia nigra integrity or cortical thickness), or a strengthening of compensatory cerebral mechanisms (measured with functional neuroimaging), or both. Lifestyle interventions are effective for alleviating stress-related symptoms in PD. They hold potential for exerting disease-modifying effects, but new evidence in humans is necessary to fulfill that promise.
Collapse
Affiliation(s)
- Franziska Goltz
- Neurology Department, Donders Institute for Brain, Cognition and Behaviour, Centre of Expertise for Parkinson and Movement Disorders, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Anouk van der Heide
- Neurology Department, Donders Institute for Brain, Cognition and Behaviour, Centre of Expertise for Parkinson and Movement Disorders, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Rick C Helmich
- Neurology Department, Donders Institute for Brain, Cognition and Behaviour, Centre of Expertise for Parkinson and Movement Disorders, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
26
|
Mahlknecht P, Poewe W. Pharmacotherapy for Disease Modification in Early Parkinson's Disease: How Early Should We Be? JOURNAL OF PARKINSON'S DISEASE 2024; 14:S407-S421. [PMID: 38427503 PMCID: PMC11492107 DOI: 10.3233/jpd-230354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 03/03/2024]
Abstract
Slowing or halting progression continues to be a major unmet medical need in Parkinson's disease (PD). Numerous trials over the past decades have tested a broad range of interventions without ultimate success. There are many potential reasons for this failure and much debate has focused on the need to test 'disease-modifying' candidate drugs in the earliest stages of disease. While generally accepted as a rational approach, it is also associated with significant challenges around the selection of trial populations as well as trial outcomes and durations. From a health care perspective, intervening even earlier and before at-risk subjects have gone on to develop overt clinical disease is at the heart of preventive medicine. Recent attempts to develop a framework for a biological definition of PD are aiming to enable 'preclinical' and subtype-specific diagnostic approaches. The present review addresses past efforts towards disease-modification, including drug targets and reasons for failure, as well as novel targets that are currently being explored in disease-modification trials in early established PD. The new biological definitions of PD may offer new opportunities to intervene even earlier. We critically discuss the potential and challenges around planning 'disease-prevention' trials in subjects with biologically defined 'preclinical' or prodromal PD.
Collapse
Affiliation(s)
- Philipp Mahlknecht
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Werner Poewe
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
27
|
Chandrababu K, Radhakrishnan V, Anjana AS, Rajan R, Sivan U, Krishnan S, Baby Chakrapani PS. Unravelling the Parkinson's puzzle, from medications and surgery to stem cells and genes: a comprehensive review of current and future management strategies. Exp Brain Res 2024; 242:1-23. [PMID: 38015243 DOI: 10.1007/s00221-023-06735-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/29/2023] [Indexed: 11/29/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder, prevalent in the elderly population. Neuropathological hallmarks of PD include loss of dopaminergic cells in the nigro-striatal pathway and deposition of alpha-synuclein protein in the neurons and synaptic terminals, which lead to a complex presentation of motor and non-motor symptoms. This review focuses on various aspects of PD, from clinical diagnosis to currently accepted treatment options, such as pharmacological management through dopamine replacement and surgical techniques such as deep brain stimulation (DBS). The review discusses in detail the potential of emerging stem cell-based therapies and gene therapies to be adopted as a cure, in contrast to the present symptomatic treatment in PD. The potential sources of stem cells for autologous and allogeneic stem cell therapy have been discussed, along with the progress evaluation of pre-clinical and clinical trials. Even though recent techniques hold great potential to improve the lives of PD patients, we present the importance of addressing the safety, efficacy, ethical, cost, and regulatory concerns before scaling them to clinical use.
Collapse
Affiliation(s)
- Krishnapriya Chandrababu
- Centre for Neuroscience, Department of Biotechnology, Cochin University for Science and Technology, Kochi, Kerala, 682 022, India
| | - Vineeth Radhakrishnan
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - A S Anjana
- Centre for Neuroscience, Department of Biotechnology, Cochin University for Science and Technology, Kochi, Kerala, 682 022, India
| | - Rahul Rajan
- Centre for Neuroscience, Department of Biotechnology, Cochin University for Science and Technology, Kochi, Kerala, 682 022, India
| | - Unnikrishnan Sivan
- Faculty of Fisheries Engineering, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Syam Krishnan
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - P S Baby Chakrapani
- Centre for Neuroscience, Department of Biotechnology, Cochin University for Science and Technology, Kochi, Kerala, 682 022, India.
- Centre for Excellence in Neurodegeneration and Brain Health (CENBH), Kochi, Kerala, India.
| |
Collapse
|
28
|
Bezard E, Gray D, Kozak R, Leoni M, Combs C, Duvvuri S. Rationale and Development of Tavapadon, a D1/D5-Selective Partial Dopamine Agonist for the Treatment of Parkinson's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:476-487. [PMID: 36999711 PMCID: PMC10909821 DOI: 10.2174/1871527322666230331121028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 04/01/2023]
Abstract
Currently, available therapeutics for the treatment of Parkinson's disease (PD) fail to provide sustained and predictable relief from motor symptoms without significant risk of adverse events (AEs). While dopaminergic agents, particularly levodopa, may initially provide strong motor control, this efficacy can vary with disease progression. Patients may suffer from motor fluctuations, including sudden and unpredictable drop-offs in efficacy. Dopamine agonists (DAs) are often prescribed during early-stage PD with the expectation they will delay the development of levodopa-associated complications, but currently available DAs are less effective than levodopa for the treatment of motor symptoms. Furthermore, both levodopa and DAs are associated with a significant risk of AEs, many of which can be linked to strong, repeated stimulation of D2/D3 dopamine receptors. Targeting D1/D5 dopamine receptors has been hypothesized to produce strong motor benefits with a reduced risk of D2/D3-related AEs, but the development of D1-selective agonists has been previously hindered by intolerable cardiovascular AEs and poor pharmacokinetic properties. There is therefore an unmet need in PD treatment for therapeutics that provide sustained and predictable efficacy, with strong relief from motor symptoms and reduced risk of AEs. Partial agonism at D1/D5 has shown promise for providing relief from motor symptoms, potentially without the AEs associated with D2/D3-selective DAs and full D1/D5-selective DAs. Tavapadon is a novel oral partial agonist that is highly selective at D1/D5 receptors and could meet these criteria. This review summarizes currently available evidence of tavapadon's therapeutic potential for the treatment of early through advanced PD.
Collapse
Affiliation(s)
- Erwan Bezard
- Université de Bordeaux, CNRS Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
- Motac Neuroscience, Manchester, United Kingdom
| | | | | | | | | | | |
Collapse
|
29
|
Boyton I, Valenzuela SM, Collins-Praino LE, Care A. Neuronanomedicine for Alzheimer's and Parkinson's disease: Current progress and a guide to improve clinical translation. Brain Behav Immun 2024; 115:631-651. [PMID: 37967664 DOI: 10.1016/j.bbi.2023.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 09/19/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023] Open
Abstract
Neuronanomedicine is an emerging multidisciplinary field that aims to create innovative nanotechnologies to treat major neurodegenerative disorders, such as Alzheimer's (AD) and Parkinson's disease (PD). A key component of neuronanomedicine are nanoparticles, which can improve drug properties and demonstrate enhanced safety and delivery across the blood-brain barrier, a major improvement on existing therapeutic approaches. In this review, we critically analyze the latest nanoparticle-based strategies to modify underlying disease pathology to slow or halt AD/PD progression. We find that a major roadblock for neuronanomedicine translation to date is a poor understanding of how nanoparticles interact with biological systems (i.e., bio-nano interactions), which is partly due to inconsistent reporting in published works. Accordingly, this review makes a set of specific recommendations to help guide researchers to harness the unique properties of nanoparticles and thus realise breakthrough treatments for AD/PD.
Collapse
Affiliation(s)
- India Boyton
- School of Life Sciences, University of Technology Sydney, Gadigal Country, NSW 2007, Australia
| | - Stella M Valenzuela
- School of Life Sciences, University of Technology Sydney, Gadigal Country, NSW 2007, Australia
| | | | - Andrew Care
- School of Life Sciences, University of Technology Sydney, Gadigal Country, NSW 2007, Australia.
| |
Collapse
|
30
|
Cao R, Chen C, Wen J, Zhao W, Zhang C, Sun L, Yuan L, Wu C, Shan L, Xi M, Sun H. Recent advances in targeting leucine-rich repeat kinase 2 as a potential strategy for the treatment of Parkinson's disease. Bioorg Chem 2023; 141:106906. [PMID: 37837728 DOI: 10.1016/j.bioorg.2023.106906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/24/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. Several single gene mutations involved in PD have been identified such as leucine-rich repeat kinase 2 (LRRK2), the most common cause of sporadic and familial PD. Its mutations have attracted much attention to therapeutically targeting this kinase. To date, many compounds including small chemical molecules with diverse scaffolds and RNA agents have been developed with significant amelioration in preclinical PD models. Currently, five candidates, DNL201, DNL151, WXWH0226, NEU-723 and BIIB094, have advanced to clinical trials for PD treatment. In this review, we describe the structure, pathogenic mutations and the mechanism of LRRK2, and summarize the development of LRRK2 inhibitors in preclinical and clinical studies, trying to provide an insight into targeting LRRK2 for PD intervention in future.
Collapse
Affiliation(s)
- Ruiwei Cao
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing 312000, China; Zhejiang Medicine Co. Ltd., Shaoxing 312500, China
| | - Caiping Chen
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing 312000, China; Zhejiang Medicine Co. Ltd., Shaoxing 312500, China
| | - Jing Wen
- Zhejiang Medicine Co. Ltd., Shaoxing 312500, China
| | - Weihe Zhao
- Zhejiang Medicine Co. Ltd., Shaoxing 312500, China
| | | | - Longhui Sun
- Zhejiang Medicine Co. Ltd., Shaoxing 312500, China
| | - Liyan Yuan
- Zhejiang Medicine Co. Ltd., Shaoxing 312500, China
| | - Chunlei Wu
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Lei Shan
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing 312000, China
| | - Meiyang Xi
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China.
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
31
|
Arnaldi D, Mattioli P, Pardini M, Morbelli S, Capriglia E, Rubino A, Rustioni V, Terzaghi M, Casaglia E, Serra A, Figorilli M, Liguori C, Fernandes M, Placidi F, Baldelli L, Provini F, Ferini-Strambi L, Marelli S, Plazzi G, Antelmi E, Brunetti V, Bonanni E, Puligheddu M. Clinical and dopaminergic imaging characteristics of the FARPRESTO cohort of trial-ready idiopathic rapid eye movement sleep behavior patients. Eur J Neurol 2023; 30:3703-3710. [PMID: 37498611 DOI: 10.1111/ene.16001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/18/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
INTRODUCTION Idiopathic/isolated rapid eye movement (REM) sleep behavior disorder (iRBD) is considered the prodromal stage of alpha-synucleinopathies. Thus, iRBD patients are the ideal target for disease-modifying therapy. The risk FActoRs PREdictive of phenoconversion in iRBD Italian STudy (FARPRESTO) is an ongoing Italian database aimed at identifying risk factors of phenoconversion, and eventually to ease clinical trial enrollment of well-characterized subjects. METHODS Polysomnography-confirmed iRBD patients were retrospectively and prospectively enrolled. Baseline harmonized clinical and nigrostriatal functioning data were collected at baseline. Nigrostriatal functioning was evaluated by dopamine transporter-single-photon emission computed tomography (DaT-SPECT) and categorized with visual semi-quantification. Longitudinal data were evaluated to assess phenoconversion. Cox regressions were applied to calculate hazard ratios. RESULTS 365 patients were enrolled, and 289 patients with follow-up (age 67.7 ± 7.3 years, 237 males, mean follow-up 40 ± 37 months) were included in this study. At follow-up, 97 iRBD patients (33.6%) phenoconverted to an overt synucleinopathy. Older age, motor and cognitive impairment, constipation, urinary and sexual dysfunction, depression, and visual semi-quantification of nigrostriatal functioning predicted phenoconversion. The remaining 268 patients are in follow-up within the FARPRESTO project. CONCLUSIONS Clinical data (older age, motor and cognitive impairment, constipation, urinary and sexual dysfunction, depression) predicted phenoconversion in this multicenter, longitudinal, observational study. A standardized visual approach for semi-quantification of DaT-SPECT is proposed as a practical risk factor for phenoconversion in iRBD patients. Of note, non-converted and newly diagnosed iRBD patients, who represent a trial-ready cohort for upcoming disease-modification trials, are currently being enrolled and followed in the FARPRESTO study. New data are expected to allow better risk characterization.
Collapse
Affiliation(s)
- Dario Arnaldi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Clinical Neurology, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Pietro Mattioli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Clinical Neurology, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Clinical Neurology, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Silvia Morbelli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Elena Capriglia
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Annalisa Rubino
- Unit of Sleep Medicine and Epilepsy, Mondino Foundation IRCCS, Pavia, Italy
| | - Valter Rustioni
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Michele Terzaghi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Unit of Sleep Medicine and Epilepsy, Mondino Foundation IRCCS, Pavia, Italy
| | - Elisa Casaglia
- Department of Medical Science and Public Health, Sleep Disorder Research Center, University of Cagliari, Cagliari, Italy
| | - Alessandra Serra
- Nuclear Medicine Unit, Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Michela Figorilli
- Department of Medical Science and Public Health, Sleep Disorder Research Center, University of Cagliari, Cagliari, Italy
| | - Claudio Liguori
- Sleep Medicine Center, University Hospital of Rome Tor Vergata, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Mariana Fernandes
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Fabio Placidi
- Sleep Medicine Center, University Hospital of Rome Tor Vergata, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Luca Baldelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Federica Provini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Luigi Ferini-Strambi
- Sleep Disorders Center, Division of Neuroscience, Università Vita-Salute San Raffaele, Milan, Italy
| | - Sara Marelli
- Sleep Disorders Center, Division of Neuroscience, Università Vita-Salute San Raffaele, Milan, Italy
| | - Giuseppe Plazzi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Antelmi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Valerio Brunetti
- UOC di Neurologia - Dipartimento di Neuroscienze, Organi di Senso e Torace - Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Neurosciences, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Enrica Bonanni
- Sleep Disorder Center, Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Monica Puligheddu
- Department of Medical Science and Public Health, Sleep Disorder Research Center, University of Cagliari, Cagliari, Italy
| |
Collapse
|
32
|
Rashid-López R, Macías-García P, Sánchez-Fernández FL, Cano-Cano F, Sarrias-Arrabal E, Sanmartino F, Méndez-Bértolo C, Lozano-Soto E, Gutiérrez-Cortés R, González-Moraleda Á, Forero L, López-Sosa F, Zuazo A, Gómez-Molinero R, Gómez-Ramírez J, Paz-Expósito J, Rubio-Esteban G, Espinosa-Rosso R, Cruz-Gómez ÁJ, González-Rosa JJ. Neuroimaging and serum biomarkers of neurodegeneration and neuroplasticity in Parkinson's disease patients treated by intermittent theta-burst stimulation over the bilateral primary motor area: a randomized, double-blind, sham-controlled, crossover trial study. Front Aging Neurosci 2023; 15:1258315. [PMID: 37869372 PMCID: PMC10585115 DOI: 10.3389/fnagi.2023.1258315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023] Open
Abstract
Background and objectives Intermittent theta-burst stimulation (iTBS) is a patterned form of excitatory transcranial magnetic stimulation that has yielded encouraging results as an adjunctive therapeutic option to alleviate the emergence of clinical deficits in Parkinson's disease (PD) patients. Although it has been demonstrated that iTBS influences dopamine-dependent corticostriatal plasticity, little research has examined the neurobiological mechanisms underlying iTBS-induced clinical enhancement. Here, our primary goal is to verify whether iTBS bilaterally delivered over the primary motor cortex (M1) is effective as an add-on treatment at reducing scores for both motor functional impairment and nonmotor symptoms in PD. We hypothesize that these clinical improvements following bilateral M1-iTBS could be driven by endogenous dopamine release, which may rebalance cortical excitability and restore compensatory striatal volume changes, resulting in increased striato-cortico-cerebellar functional connectivity and positively impacting neuroglia and neuroplasticity. Methods A total of 24 PD patients will be assessed in a randomized, double-blind, sham-controlled crossover study involving the application of iTBS over the bilateral M1 (M1 iTBS). Patients on medication will be randomly assigned to receive real iTBS or control (sham) stimulation and will undergo 5 consecutive sessions (5 days) of iTBS over the bilateral M1 separated by a 3-month washout period. Motor evaluation will be performed at different follow-up visits along with a comprehensive neurocognitive assessment; evaluation of M1 excitability; combined structural magnetic resonance imaging (MRI), resting-state electroencephalography and functional MRI; and serum biomarker quantification of neuroaxonal damage, astrocytic reactivity, and neural plasticity prior to and after iTBS. Discussion The findings of this study will help to clarify the efficiency of M1 iTBS for the treatment of PD and further provide specific neurobiological insights into improvements in motor and nonmotor symptoms in these patients. This novel project aims to yield more detailed structural and functional brain evaluations than previous studies while using a noninvasive approach, with the potential to identify prognostic neuroprotective biomarkers and elucidate the structural and functional mechanisms of M1 iTBS-induced plasticity in the cortico-basal ganglia circuitry. Our approach may significantly optimize neuromodulation paradigms to ensure state-of-the-art and scalable rehabilitative treatment to alleviate motor and nonmotor symptoms of PD.
Collapse
Affiliation(s)
- Raúl Rashid-López
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
- Department of Neurology, Puerta del Mar University Hospital, Cadiz, Spain
| | - Paloma Macías-García
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
- Department of Psychology, University of Cadiz, Cádiz, Spain
| | - F. Luis Sánchez-Fernández
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
- Department of Psychology, University of Cadiz, Cádiz, Spain
| | - Fátima Cano-Cano
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
| | - Esteban Sarrias-Arrabal
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
- Department of Psychology, University of Cadiz, Cádiz, Spain
| | - Florencia Sanmartino
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
- Department of Psychology, University of Cadiz, Cádiz, Spain
| | - Constantino Méndez-Bértolo
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
- Department of Psychology, University of Cadiz, Cádiz, Spain
| | - Elena Lozano-Soto
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
- Department of Psychology, University of Cadiz, Cádiz, Spain
| | - Remedios Gutiérrez-Cortés
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
| | - Álvaro González-Moraleda
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
- Department of Psychology, University of Cadiz, Cádiz, Spain
| | - Lucía Forero
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
- Department of Neurology, Puerta del Mar University Hospital, Cadiz, Spain
| | - Fernando López-Sosa
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
- Department of Psychology, University of Cadiz, Cádiz, Spain
| | - Amaya Zuazo
- Department of Radiodiagnostic and Medical Imaging, Puerta del Mar University Hospital, Cadiz, Spain
| | | | - Jaime Gómez-Ramírez
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
| | - José Paz-Expósito
- Department of Radiodiagnostic and Medical Imaging, Puerta del Mar University Hospital, Cadiz, Spain
| | | | - Raúl Espinosa-Rosso
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
- Department of Neurology, Jerez de la Frontera University Hospital, Jerez de la Frontera, Spain
| | - Álvaro J. Cruz-Gómez
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
- Department of Psychology, University of Cadiz, Cádiz, Spain
| | - Javier J. González-Rosa
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
- Department of Psychology, University of Cadiz, Cádiz, Spain
| |
Collapse
|
33
|
Aquino C, Luo L, Agarwal P, Garg K, Rosenow JM, Corcos DM, Miocinovic S, Jimenez-Shahed J. Deep Brain Stimulation as an Exclusion Criterion in Parkinson's Disease Studies: Time to Rethink? Mov Disord 2023; 38:1602-1605. [PMID: 37533294 DOI: 10.1002/mds.29554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 08/04/2023] Open
Affiliation(s)
- Camila Aquino
- Department of Clinical Neurosciences and Department of Community Health Sciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Lan Luo
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Pinky Agarwal
- Department of Medicine, Booth Gardner Parkinson's Care Center, Kirkland, Washington, USA
| | - Khushi Garg
- Thomas Jefferson High School for Science and Technology, Alexandria, Virginia, USA
| | - Joshua M Rosenow
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Daniel M Corcos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Joohi Jimenez-Shahed
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| |
Collapse
|
34
|
Perez-Lloret S, Chevalier G, Bordet S, Barbar H, Capani F, Udovin L, Otero-Losada M. The Genetic Basis of Probable REM Sleep Behavior Disorder in Parkinson's Disease. Brain Sci 2023; 13:1146. [PMID: 37626502 PMCID: PMC10452689 DOI: 10.3390/brainsci13081146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Patients with Parkinson's Disease (PD) experience REM sleep behavior disorder (RBD) more frequently than healthy controls. RBD is associated with torpid disease evolution. To test the hypothesis that differential genetic signatures might contribute to the torpid disease evolution in PD patients with RBD we compared the rate of genetic mutations in PD patients with or without probable RBD. Patients with a clinical diagnosis of PD in the Parkinson's Progression Markers Initiative (PPMI) database entered the study. We excluded those with missing data, dementia, psychiatric conditions, or a diagnosis change over the first five years from the initial PD diagnosis. Probable RBD (pRBD) was confirmed by a REM Sleep Behavior Disorder Screening Questionnaire score > 5 points. Logistic regression and Machine Learning (ML) algorithms were used to relate Single Nucleotide Polymorphism (SNPs) in PD-related genes with pRBD. We included 330 PD patients fulfilling all inclusion and exclusion criteria. The final logistic multivariate model revealed that the following SNPs increased the risk of pRBD: GBA_N370S_rs76763715 (OR, 95% CI: 3.38, 1.45-7.93), SNCA_A53T_rs104893877 (8.21, 2.26-36.34), ANK2. CAMK2D_rs78738012 (2.12, 1.08-4.10), and ZNF184_rs9468199 (1.89, 1.08-3.33). Conversely, SNP COQ7. SYT17_rs11343 reduced pRBD risk (0.36, 0.15-0.78). The ML algorithms led to similar results. The predictive models were highly specific (95-99%) but lacked sensitivity (9-39%). We found a distinctive genetic signature for pRBD in PD. The high specificity and low sensitivity of the predictive models suggest that genetic mutations are necessary but not sufficient to develop pRBD in PD. Additional investigations are needed.
Collapse
Affiliation(s)
- Santiago Perez-Lloret
- Observatorio de Salud Pública, Vicerrectorado de Investigación e Innovación Académica, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (UCA-CONICET), Buenos Aires C1107AAZ, Argentina
- Centro de Investigaciones en Psicología y Psicopedagogía (CIPP), Facultad de Psicología y Psicopedagogía, Pontificia Universidad Católica Argentina (UCA), Buenos Aires C1107AFB, Argentina;
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires C1053ABH, Argentina
| | - Guenson Chevalier
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS.UAI-CONICET, Buenos Aires C1270AAH, Argentina; (G.C.); (H.B.); (F.C.); (L.U.); (M.O.-L.)
| | - Sofia Bordet
- Centro de Investigaciones en Psicología y Psicopedagogía (CIPP), Facultad de Psicología y Psicopedagogía, Pontificia Universidad Católica Argentina (UCA), Buenos Aires C1107AFB, Argentina;
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS.UAI-CONICET, Buenos Aires C1270AAH, Argentina; (G.C.); (H.B.); (F.C.); (L.U.); (M.O.-L.)
| | - Hanny Barbar
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS.UAI-CONICET, Buenos Aires C1270AAH, Argentina; (G.C.); (H.B.); (F.C.); (L.U.); (M.O.-L.)
| | - Francisco Capani
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS.UAI-CONICET, Buenos Aires C1270AAH, Argentina; (G.C.); (H.B.); (F.C.); (L.U.); (M.O.-L.)
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 7500912, Chile
| | - Lucas Udovin
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS.UAI-CONICET, Buenos Aires C1270AAH, Argentina; (G.C.); (H.B.); (F.C.); (L.U.); (M.O.-L.)
| | - Matilde Otero-Losada
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS.UAI-CONICET, Buenos Aires C1270AAH, Argentina; (G.C.); (H.B.); (F.C.); (L.U.); (M.O.-L.)
| |
Collapse
|
35
|
Zhao J, He Y, Duan Y, Ma Y, Dong H, Zhang X, Fang R, Zhang Y, Yu M, Huang F. HDAC6 Deficiency Has Moderate Effects on Behaviors and Parkinson's Disease Pathology in Mice. Int J Mol Sci 2023; 24:9975. [PMID: 37373121 DOI: 10.3390/ijms24129975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Histone deacetylase 6 (HDAC6) is involved in the regulation of protein aggregation and neuroinflammation, but its role in Parkinson's disease (PD) remains controversial. In this study, Hdac6-/- mice were generated by CRISPR-Cas9 technology for exploring the effect of HDAC6 on the pathological progression of PD. We found that male Hdac6-/- mice exhibit hyperactivity and certain anxiety. In the acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice, though motor injury was slightly alleviated by HDAC6 deficiency, dopamine (DA) depletion in the striatum, the decrease in the number of DA neurons in the substantia nigra (SN) and the reduction in DA neuronal terminals were not affected. In addition, activation of glial cells and the expression of α-synuclein, as well as the levels of apoptosis-related proteins in the nigrostriatal pathway, were not changed in MPTP-injected wild-type and Hdac6-/- mice. Therefore, HDAC6 deficiency leads to moderate alterations of behaviors and Parkinson's disease pathology in mice.
Collapse
Affiliation(s)
- Jiayin Zhao
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yongtao He
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yufei Duan
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yuanyuan Ma
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Hongtian Dong
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Xiaoshuang Zhang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Rong Fang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yunhe Zhang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Mei Yu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Fang Huang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| |
Collapse
|
36
|
Ma C, Feng Y, Li X, Sun L, He Z, Gan J, He M, Zhang X, Chen X. Potential Therapeutic Effects of Policosanol from Insect Wax on Caenorhabditis elegans Models of Parkinson's Disease. J Neuroimmune Pharmacol 2023; 18:127-144. [PMID: 36637699 DOI: 10.1007/s11481-022-10057-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 11/17/2022] [Indexed: 01/14/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide. The standard treatments for PD focus on symptom relief rather than attempting to address the underlying degenerative processes completely. This study aimed to evaluate the potential therapeutic effects of policosanol derived from insect wax (PIW) by investigating improvements in disease symptoms represented in Caenorhabditis elegans models of PD. For our assessments, we used the following three models: NL5901, which is a transgenic model for α-synuclein aggregation; wild-type N2 induced with 6-hydroxydopamine (6-OHDA); and 6-OHDA-induced BZ555 as a model for loss of dopaminergic neurons (DNs). Specifically, we examined the effects of PIW treatment on α-synuclein aggregation, the loss of DNs, lipid abundance, and the lifespan of treated organisms. Further, we examined treatment-related changes in the levels of reactive oxygen species (ROS), malondialdehyde (MDA), adenosine triphosphate (ATP), glutathione S-transferase (GST), and superoxide dismutase (SOD), as well as the mRNA production profiles of relevant genes. A 10 µg/mL dose of PIW reduced the aggregation of α-synuclein in NL5901 and suppressed the loss of DNs in 6-OHDA-induced BZ555. Overall, PIW treatment decreased ROS and MDA levels, restored lipid abundance, and prolonged the lifespans of worms in all the three models, which may be associated with changes in the expression profiles of genes related to cell survival and oxidative stress response pathways. Our findings show that PIW alleviated the symptoms of PD in these models, possibly by regulating the stress responses initiated by injuries such as α-synuclein aggregation or 6-OHDA treatment.
Collapse
Affiliation(s)
- Chenjing Ma
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Panlong District, Kunming, 650224, Yunnan Province, China
| | - Ying Feng
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Panlong District, Kunming, 650224, Yunnan Province, China
| | - Xian Li
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Panlong District, Kunming, 650224, Yunnan Province, China
| | - Long Sun
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Panlong District, Kunming, 650224, Yunnan Province, China
| | - Zhao He
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Panlong District, Kunming, 650224, Yunnan Province, China
| | - Jin Gan
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Panlong District, Kunming, 650224, Yunnan Province, China
| | - Minjie He
- Health Management Center, The First Affiliated Hospital of Kunming Medical University, Kunming, 650000, Yunnan Province, China
| | - Xin Zhang
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Panlong District, Kunming, 650224, Yunnan Province, China.
| | - Xiaoming Chen
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Panlong District, Kunming, 650224, Yunnan Province, China
| |
Collapse
|
37
|
Park J, Oh JY, Park HJ. Potential role of acupuncture in the treatment of Parkinson's disease: A narrative review. Integr Med Res 2023; 12:100954. [PMID: 37275921 PMCID: PMC10238843 DOI: 10.1016/j.imr.2023.100954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 06/07/2023] Open
Abstract
Background The prevalence of Parkinson's disease (PD) has grown rapidly compared to that of other neurological disorders. Acupuncture has been used to address the complex symptoms of PD. Recently, similarities in the mechanisms of action between acupuncture and neuromodulation have received considerable attention. This review aims to summarize the evidence regarding these similarities to suggest potential role of acupuncture in the treatment of PD. Methods The literature from two electronic databases, PubMed and Google Scholar, was searched using the search terms 'Acupuncture', 'Parkinson's disease', 'Vagus nerve stimulation', and 'Brain functional connectivity'. We then explored the evidence for the effectiveness of acupuncture in PD and evaluated the evidence for similarities in the mechanisms of action between acupuncture and neuromodulation. Results Data suggests that acupuncture treatment is effective for PD symptoms by modulating inflammation and brain functional connectivity (BFC). These acupuncture effects have been shown to be similar to neuromodulation in controlling inflammation and BFC. Based on the shared mechanisms of action, potential acupuncture mechanisms that may ameliorate a wide range of PD symptoms include but are not limited to (1) vagal activation of the anti-inflammatory pathway and (2) BFC enhancement. Conclusion The development of acupuncture strategies based on shared mechanisms with neuromodulation will provide new treatment options for patients with PD as personalized neuromodulating therapies. Further studies are needed to gather scientific evidence for optimizing parameters in PD patients.
Collapse
Affiliation(s)
- Jaeyoung Park
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ju-Young Oh
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, Republic of Korea
| | - Hi-Joon Park
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
38
|
Espay AJ, McFarthing K. Alpha-synuclein and the Parkinson's disease drug pipeline. Parkinsonism Relat Disord 2023:105432. [PMID: 37244791 DOI: 10.1016/j.parkreldis.2023.105432] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/29/2023]
Abstract
The process of protein aggregation involves the transformation of soluble peptides into insoluble cross-beta amyloids. In Parkinson's disease (PD), soluble monomeric α-synuclein transforms into the amyloid state known as Lewy pathology. Monomeric (functional) α-synuclein depletes as the fraction of Lewy pathology increases. We examined the allocation of disease-modifying projects in the PD therapeutic pipeline classified based on whether they aimed to reduce directly or indirectly the insoluble or increase the soluble α-synuclein. A project was defined as a drug development program that may include more than one registered clinical trial, according to the Parkinson's Hope List, a database of therapies under development for PD. Of 67 projects, 46 aimed to reduce α-synuclein, 15 (22.4%) directly and 31 (46.3%) indirectly, amounting to 68.7% of all disease-modifying projects. No projects explicitly aimed to increase soluble α-synuclein levels. Altogether, α-synuclein is the target of more than two-thirds of the disease-modifying pipeline, with treatments aimed at reducing or preventing an increase in its insoluble fraction. As no treatments aim to restore soluble α-synuclein levels within a normal range, we propose rebalancing the therapeutic PD pipeline.
Collapse
Affiliation(s)
- Alberto J Espay
- Department of Neurology, James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, University of Cincinnati, Cincinnati, OH, USA.
| | | |
Collapse
|
39
|
Nakmode DD, Day CM, Song Y, Garg S. The Management of Parkinson's Disease: An Overview of the Current Advancements in Drug Delivery Systems. Pharmaceutics 2023; 15:pharmaceutics15051503. [PMID: 37242745 DOI: 10.3390/pharmaceutics15051503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Parkinson's disease (PD) has significantly affected a large proportion of the elderly population worldwide. According to the World Health Organization, approximately 8.5 million people worldwide are living with PD. In the United States, an estimated one million people are living with PD, with approximately 60,000 new cases diagnosed every year. Conventional therapies available for Parkinson's disease are associated with limitations such as the wearing-off effect, on-off period, episodes of motor freezing, and dyskinesia. In this review, a comprehensive overview of the latest advances in DDSs used to reduce the limitations of current therapies will be presented, and both their promising features and drawbacks will be discussed. We are also particularly interested in the technical properties, mechanism, and release patterns of incorporated drugs, as well as nanoscale delivery strategies to overcome the blood-brain barrier.
Collapse
Affiliation(s)
- Deepa D Nakmode
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA 5000, Australia
| | - Candace M Day
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA 5000, Australia
| | - Yunmei Song
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA 5000, Australia
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA 5000, Australia
| |
Collapse
|
40
|
Soman K, Nelson CA, Cerono G, Goldman SM, Baranzini SE, Brown EG. Early detection of Parkinson's disease through enriching the electronic health record using a biomedical knowledge graph. Front Med (Lausanne) 2023; 10:1081087. [PMID: 37250641 PMCID: PMC10217780 DOI: 10.3389/fmed.2023.1081087] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Early diagnosis of Parkinson's disease (PD) is important to identify treatments to slow neurodegeneration. People who develop PD often have symptoms before the disease manifests and may be coded as diagnoses in the electronic health record (EHR). Methods To predict PD diagnosis, we embedded EHR data of patients onto a biomedical knowledge graph called Scalable Precision medicine Open Knowledge Engine (SPOKE) and created patient embedding vectors. We trained and validated a classifier using these vectors from 3,004 PD patients, restricting records to 1, 3, and 5 years before diagnosis, and 457,197 non-PD group. Results The classifier predicted PD diagnosis with moderate accuracy (AUC = 0.77 ± 0.06, 0.74 ± 0.05, 0.72 ± 0.05 at 1, 3, and 5 years) and performed better than other benchmark methods. Nodes in the SPOKE graph, among cases, revealed novel associations, while SPOKE patient vectors revealed the basis for individual risk classification. Discussion The proposed method was able to explain the clinical predictions using the knowledge graph, thereby making the predictions clinically interpretable. Through enriching EHR data with biomedical associations, SPOKE may be a cost-efficient and personalized way to predict PD diagnosis years before its occurrence.
Collapse
Affiliation(s)
- Karthik Soman
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Charlotte A. Nelson
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Gabriel Cerono
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Samuel M. Goldman
- Division of Occupational and Environmental Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Sergio E. Baranzini
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Ethan G. Brown
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
41
|
Wu C, Wu H, Zhou C, Guan X, Guo T, Cao Z, Wu J, Liu X, Chen J, Wen J, Qin J, Tan S, Duanmu X, Zhang B, Huang P, Xu X, Zhang M. Normalization effect of dopamine replacement therapy on brain functional connectome in Parkinson's disease. Hum Brain Mapp 2023; 44:3845-3858. [PMID: 37126590 DOI: 10.1002/hbm.26316] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023] Open
Abstract
Dopamine replacement therapy (DRT) represents the standard treatment for Parkinson's disease (PD), however, instant and long-term medication influence on patients' brain function have not been delineated. Here, a total of 97 drug-naïve patients, 43 patients under long-term DRT, and 94 normal control (NC) were, retrospectively, enrolled. Resting-state functional magnetic resonance imaging data and motor symptom assessments were conducted before and after levodopa challenge test. Whole-brain functional connectivity (FC) matrices were constructed. Network-based statistics were performed to assess FC difference between drug-naïve patients and NC, and these significant FCs were defined as disease-related connectomes, which were used for further statistical analyses. Patients showed better motor performances after both long-term DRT and levodopa challenge test. Two disease-related connectomes were observed with distinct patterns. The FC of the increased connectome, which mainly consisted of the motor, visual, subcortical, and cerebellum networks, was higher in drug-naïve patients than that in NC and was normalized after long-term DRT (p-value <.050). The decreased connectome was mainly composed of the motor, medial frontal, and salience networks and showed significantly lower FC in all patients than NC (p-value <.050). The global FC of both increased and decreased connectome was significantly enhanced after levodopa challenge test (q-value <0.050, false discovery rate-corrected). The global FC of increased connectome in ON-state was negatively associated with levodopa equivalency dose (r = -.496, q-value = 0.007). Higher global FC of the decreased connectome was related to better motor performances (r = -.310, q-value = 0.022). Our findings provided insights into brain functional alterations under dopaminergic medication and its benefit on motor symptoms.
Collapse
Affiliation(s)
- Chenqing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haoting Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengye Cao
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaocao Liu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingwen Chen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaqi Wen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianmei Qin
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sijia Tan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojie Duanmu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
42
|
Li K, Wang M, Huang ZH, Wang M, Sun WY, Kurihara H, Huang RT, Wang R, Huang F, Liang L, Li YF, Duan WJ, He RR. ALOX5 inhibition protects against dopaminergic neurons undergoing ferroptosis. Pharmacol Res 2023:106779. [PMID: 37121496 DOI: 10.1016/j.phrs.2023.106779] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/06/2023] [Accepted: 04/21/2023] [Indexed: 05/02/2023]
Abstract
Oxidative disruption of dopaminergic neurons is regarded as a crucial pathogenesis in Parkinson's disease (PD), eventually causing neurodegenerative progression. (-)-Clausenamide (Clau) is an alkaloid isolated from plant Clausena lansium (Lour.), which is well-known as a scavenger of lipid peroxide products and exhibiting neuroprotective activities both in vivo and in vitro, yet with the in-depth molecular mechanism unrevealed. In this study, we evaluated the protective effects and mechanisms of Clau on dopaminergic neuron. Our results showed that Clau directly interacted with the Ser663 of ALOX5, the PKCα-phosphorylation site, and thus prevented the nuclear translocation of ALOX5, which was essential for catalyzing the production of toxic lipids 5-HETE. LC-MS/MS-based phospholipidomics analysis demonstrated that the oxidized membrane lipids were involved in triggering ferroptotic death in dopaminergic neurons. Furthermore, the inhibition of ALOX5 was found to significantly improving behavioral defects in PD mouse model, which was confirmed associated with the effects of attenuating the accumulation of lipid peroxides and neuronal damages. Collectively, our findings provide an attractive strategy for PD therapy by targeting ALOX5 and preventing ferroptosis in dopaminergic neurons.
Collapse
Affiliation(s)
- Kun Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| | - Meng Wang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| | - Zi-Han Huang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| | - Min Wang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| | - Wan-Yang Sun
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| | - Hiroshi Kurihara
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| | - Rui-Ting Huang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Rong Wang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Feng Huang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Lei Liang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research.
| | - Yi-Fang Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research.
| | - Wen-Jun Duan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research.
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China.
| |
Collapse
|
43
|
Tassone A, Meringolo M, Ponterio G, Bonsi P, Schirinzi T, Martella G. Mitochondrial Bioenergy in Neurodegenerative Disease: Huntington and Parkinson. Int J Mol Sci 2023; 24:ijms24087221. [PMID: 37108382 PMCID: PMC10138549 DOI: 10.3390/ijms24087221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Strong evidence suggests a correlation between degeneration and mitochondrial deficiency. Typical cases of degeneration can be observed in physiological phenomena (i.e., ageing) as well as in neurological neurodegenerative diseases and cancer. All these pathologies have the dyshomeostasis of mitochondrial bioenergy as a common denominator. Neurodegenerative diseases show bioenergetic imbalances in their pathogenesis or progression. Huntington's chorea and Parkinson's disease are both neurodegenerative diseases, but while Huntington's disease is genetic and progressive with early manifestation and severe penetrance, Parkinson's disease is a pathology with multifactorial aspects. Indeed, there are different types of Parkinson/Parkinsonism. Many forms are early-onset diseases linked to gene mutations, while others could be idiopathic, appear in young adults, or be post-injury senescence conditions. Although Huntington's is defined as a hyperkinetic disorder, Parkinson's is a hypokinetic disorder. However, they both share a lot of similarities, such as neuronal excitability, the loss of striatal function, psychiatric comorbidity, etc. In this review, we will describe the start and development of both diseases in relation to mitochondrial dysfunction. These dysfunctions act on energy metabolism and reduce the vitality of neurons in many different brain areas.
Collapse
Affiliation(s)
- Annalisa Tassone
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Maria Meringolo
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| | - Giulia Ponterio
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Tommaso Schirinzi
- Unit of Neurology, Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| |
Collapse
|
44
|
Jutzeler CR, Bourguignon L, Tong B, Ronca E, Bailey E, Harel NY, Geisler F, Ferguson AR, Kwon BK, Cragg JJ, Grassner L, Kramer JLK. Pharmacological management of acute spinal cord injury: a longitudinal multi-cohort observational study. Sci Rep 2023; 13:5434. [PMID: 37012257 PMCID: PMC10070428 DOI: 10.1038/s41598-023-31773-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 03/16/2023] [Indexed: 04/05/2023] Open
Abstract
Multiple types and classes of medications are administered in the acute management of traumatic spinal cord injury. Prior clinical studies and evidence from animal models suggest that several of these medications could modify (i.e., enhance or impede) neurological recovery. We aimed to systematically determine the types of medications commonly administered, alone or in combination, in the transition from acute to subacute spinal cord injury. For that purpose, type, class, dosage, timing, and reason for administration were extracted from two large spinal cord injury datasets. Descriptive statistics were used to describe the medications administered within the first 60 days after spinal cord injury. Across 2040 individuals with spinal cord injury, 775 unique medications were administered within the two months after injury. On average, patients enrolled in a clinical trial were administered 9.9 ± 4.9 (range 0-34), 14.3 ± 6.3 (range 1-40), 18.6 ± 8.2 (range 0-58), and 21.5 ± 9.7 (range 0-59) medications within the first 7, 14, 30, and 60 days post-injury, respectively. Those enrolled in an observational study were administered on average 1.7 ± 1.7 (range 0-11), 3.7 ± 3.7 (range 0-24), 8.5 ± 6.3 (range 0-42), and 13.5 ± 8.3 (range 0-52) medications within the first 7, 14, 30, and 60 days post-injury, respectively. Polypharmacy was commonplace (up to 43 medications per day per patient). Approximately 10% of medications were administered acutely as prophylaxis (e.g., against the development of pain or infections). To our knowledge, this was the first time acute pharmacological practices have been comprehensively examined after spinal cord injury. Our study revealed a high degree of polypharmacy in the acute stages of spinal cord injury, raising the potential to impact neurological recovery. All results can be interactively explored on the RXSCI web site ( https://jutzelec.shinyapps.io/RxSCI/ ) and GitHub repository ( https://github.com/jutzca/Acute-Pharmacological-Treatment-in-SCI/ ).
Collapse
Affiliation(s)
- Catherine R Jutzeler
- Department of Health Sciences and Technology, ETH Zurich, Lengghalde 2, 8008, Zurich, Switzerland.
| | - Lucie Bourguignon
- Department of Health Sciences and Technology, ETH Zurich, Lengghalde 2, 8008, Zurich, Switzerland
| | - Bobo Tong
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | - Elias Ronca
- Swiss Paraplegic Research, Nottwil, Switzerland
| | - Eric Bailey
- James J Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Noam Y Harel
- James J Peters Veterans Affairs Medical Center, Bronx, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fred Geisler
- University of Saskatchewan, Saskatoon, SK, Canada
| | - Adam R Ferguson
- Brain and Spinal Injury Center, Weill Institute for Neurosciences, University of California San Francisco (UCSF), San Francisco, CA, USA
- San Francisco Veteran's Affairs Health Care System, San Francisco, CA, USA
| | - Brian K Kwon
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | - Jacquelyn J Cragg
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Lukas Grassner
- Department of Neurosurgery, Medical University Innsbruck, Innsbruck, Austria
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - John L K Kramer
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
- Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Hugill Centre for Anesthesia, University of British Columbia, Vancouver, Canada
| |
Collapse
|
45
|
Cellular and Molecular Mechanisms Underly the Combined Treatment of Fasudil and Bone Marrow Derived-Neuronal Stem Cells in a Parkinson's Disease Mouse Model. Mol Neurobiol 2023; 60:1826-1835. [PMID: 36580198 DOI: 10.1007/s12035-022-03173-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/04/2022] [Indexed: 12/30/2022]
Abstract
Bone marrow-derived neural stem cells (BM-NSCs) have shed light on novel therapeutic approaches for PD with the potential to halt or even reverse disease progression. Various strategies have been developed to promote therapeutic efficacy via optimizing implanted cells and the microenvironment of transplantation in the central nervous system (CNS). This current study further proved that the combination of fasudil, a Rho-kinase inhibitor, and BM-NSCs exhibited a synergetic effect on restoring neuron loss in the MPTP-PD mice model. It simultaneously unveiled cellular mechanisms underlying synergistic neuron-protection effects of fasudil and BM-NSCs, which included promoting the proliferation, and migration of endogenous NSCs, and contributing to microglia shift into the M2 phenotype. Corresponding molecular mechanisms were observed, including the inhibition of inflammatory responses, the elevation of neurotrophic factors, and the induction of WNT/β-catenin and PI3K/Akt/mTOR signaling pathways. Our study provides evidence for the co-intervention of BM-NSCs and fasudil as a promising therapeutic method with enhanced efficacy in treating neurodegenerative diseases.
Collapse
|
46
|
Genetics of Neurogenic Orthostatic Hypotension in Parkinson’s Disease, Results from a Cross-Sectional In Silico Study. Brain Sci 2023; 13:brainsci13030506. [PMID: 36979316 PMCID: PMC10046202 DOI: 10.3390/brainsci13030506] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
The genetic basis of Neurogenic Orthostatic Hypotension (NOH) in Parkinson’s disease (PD) has been inadequately explored. In a cross-sectional study, we examined the association between NOH and PD-related single-nucleotide polymorphisms (SNPs) and mapped their effects on gene expression and metabolic and signaling pathways. Patients with PD, free from pathological conditions associated with OH, and not taking OH-associated medications were included. NOH was defined as per international guidelines. Logistic regression was used to relate SNPs to NOH. Linkage-disequilibrium analysis, expression quantitative trait loci, and enrichment analysis were used to assess the effects on gene expression and metabolic/signaling pathways. We included 304 PD patients in the study, 35 of whom had NOH (11.5%). NOH was more frequent in patients with SNPs in SNCA, TMEM175, FAM47E-STBD1, CCDC62, SCN3A, MIR4696, SH3GL2, and LZTS3/DDRGK1 and less frequent in those with SNPs in ITGA8, IP6K2, SIPA1L2, NDUFAF2. These SNPs affected gene expression associated with the significant hierarchical central structures of the autonomic nervous system. They influenced several metabolic/signaling pathways, most notably IP3/Ca++ signaling, the PKA-CREB pathway, and the metabolism of fatty acids. These findings provide new insights into the pathophysiology of NOH in PD and may provide targets for future therapies.
Collapse
|
47
|
Neuroprotective effect of the calcium channel blocker nilvadipine on retinal ganglion cell death in a mouse ocular hypertension model. Heliyon 2023; 9:e13812. [PMID: 36879972 PMCID: PMC9984798 DOI: 10.1016/j.heliyon.2023.e13812] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/05/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
We investigated whether nilvadipine has a neuroprotective effect on retinal ganglion cells (RGCs) in a mouse model of ocular hypertension (OH) that expresses cyan fluorescein protein (CFP) in RGCs. OH was induced in the right eyes of Thy1-CFP transgenic mice using a laser. Nilvadipine or vehicle treatment began simultaneously with OH modeling and was administered intraperitoneally once daily for 8 weeks. Intraocular pressure (IOP) in both the laser- and non-treated eyes was measured weekly with the microneedle method, and calculations were performed to estimate the pressure insult in each eye. Using a retinal whole mount, the number of RGCs was counted at week 9. Laser-treated eyes showed a significant increase in IOP (p < 0.01), and the pressure insult did not differ between the drug-treated groups. Over time, laser treatment produced a significant decrease in the number of RGCs in the vehicle-treated groups, but this effect was attenuated by nilvadipine treatment. The pressure insult and RGC survival rate were significantly negatively correlated in the vehicle-treated group (y = -0.078 x + 107.8, r = 0.76, p < 0.001), but not in the nilvadipine-treated group (y = -0.015 x + 99.9, r = 0.43, p = 0.128). Nilvadipine was a potent neuroprotective agent for RGCs in our mouse model of OH and may have potential for protection against glaucoma. This model is useful as a screening tool for drugs with retinal protective effects.
Collapse
|
48
|
Abstract
Abnormalities in gut microbiota have been suggested to be involved in the pathophysiology and progression of Parkinson's disease (PD). Gastrointestinal nonmotor symptoms often precede the onset of motor features in PD, suggesting a role for gut dysbiosis in neuroinflammation and α-synuclein (α-syn) aggregation. In the first part of this chapter, we analyze critical features of healthy gut microbiota and factors (environmental and genetic) that modify its composition. In the second part, we focus on the mechanisms underlying the gut dysbiosis and how it alters anatomically and functionally the mucosal barrier, triggering neuroinflammation and subsequently α-syn aggregation. In the third part, we describe the most common alterations in the gut microbiota of PD patients, dividing the gastrointestinal system in higher and lower tract to examine the association between microbiota abnormalities and clinical features. In the final section, we report on current and future therapeutic approaches to gut dysbiosis aiming to either reduce the risk for PD, modify the disease course, or improve the pharmacokinetic profile of dopaminergic therapies. We also suggest that further studies will be needed to clarify the role of the microbiome in PD subtyping and of pharmacological and nonpharmacological interventions in modifying specific microbiota profiles in individualizing disease-modifying treatments in PD.
Collapse
Affiliation(s)
- Salvatore Bonvegna
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Milan, Italy
| | - Roberto Cilia
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Milan, Italy.
| |
Collapse
|
49
|
Duque KR, Vizcarra JA, Hill EJ, Espay AJ. Disease-modifying vs symptomatic treatments: Splitting over lumping. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:187-209. [PMID: 36803811 DOI: 10.1016/b978-0-323-85555-6.00020-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Clinical trials of putative disease-modifying therapies in neurodegeneration have obeyed the century-old principle of convergence, or lumping, whereby any feature of a clinicopathologic disease entity is considered relevant to most of those affected. While this convergent approach has resulted in important successes in trials of symptomatic therapies, largely aimed at correcting common neurotransmitter deficiencies (e.g., cholinergic deficiency in Alzheimer's disease or dopaminergic deficiency in Parkinson's disease), it has been consistently futile in trials of neuroprotective or disease-modifying interventions. As individuals affected by the same neurodegenerative disorder do not share the same biological drivers, splitting such disease into small molecular/biological subtypes, to match people to therapies most likely to benefit them, is vital in the pursuit of disease modification. We here discuss three paths toward the splitting needed for future successes in precision medicine: (1) encourage the development of aging cohorts agnostic to phenotype in order to enact a biology-to-phenotype direction of biomarker development and validate divergence biomarkers (present in some, absent in most); (2) demand bioassay-based recruitment of subjects into disease-modifying trials of putative neuroprotective interventions in order to match the right therapies to the right recipients; and (3) evaluate promising epidemiologic leads of presumed pathogenetic potential using Mendelian randomization studies before designing the corresponding clinical trials. The reconfiguration of disease-modifying efforts for patients with neurodegenerative disorders will require a paradigm shift from lumping to splitting and from proteinopathy to proteinopenia.
Collapse
Affiliation(s)
- Kevin R Duque
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Joaquin A Vizcarra
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Emily J Hill
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Alberto J Espay
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States.
| |
Collapse
|
50
|
Abstract
The clinicopathologic model that defines neurodegenerative disorders has remained unchanged for over a century. According to it, clinical manifestations are defined and explained by a given pathology, that is, by the burden and distribution of selected proteins aggregated into insoluble amyloids. There are two logical consequences from this model: (1) a measurement of the disease-defining pathology represents a biomarker of that disease in everyone affected, and (2) the targeted elimination of that pathology should end that disease. But success in disease modification guided by this model has remained elusive. New technologies to probe living biology have been used to validate rather than question the clinicopathologic model, despite three important observations: (1) a disease-defining pathology in isolation (without other pathologies) is an exceptional autopsy finding; (2) many genetic and molecular pathways converge on the same pathology; (3) the presence of pathology without neurological disease is more common than expected by chance. We here discuss the rationale for abandoning the clinicopathologic model, review the competing biological model of neurodegeneration, and propose developmental pathways for biomarker development and disease-modifying efforts. Further, in justifying future disease-modifying trials testing putative neuroprotective molecules, a key inclusion criterion must be the deployment of a bioassay of the mechanism corrected by the therapy of interest. No improvements in trial design or execution can overcome the fundamental deficit created by testing experimental therapies in clinically defined recipients unselected for their biologically suitability. Biological subtyping is the key developmental milestone needed to launch precision medicine for patients living with neurodegenerative disorders.
Collapse
Affiliation(s)
- Alberto J Espay
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States.
| |
Collapse
|