1
|
Readman MR, Wang Y, Wan F, Fairman I, Linkenauger SA, Crawford TJ, Plack CJ. Speech-in-noise hearing impairment is associated with increased risk of Parkinson's: A UK biobank analysis. Parkinsonism Relat Disord 2024; 131:107219. [PMID: 39793323 DOI: 10.1016/j.parkreldis.2024.107219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/14/2024] [Accepted: 11/23/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND Hearing impairment is implicated as a risk factor for Parkinson's disease (Parkinson's) incidence, with evidence suggesting that clinically diagnosed hearing loss increases Parkinson's risk 1.5-1.6 fold over 2-5 years follow up. However, the evidence is not unanimous with additional studies observing that self-reported hearing capabilities do not significantly influence Parkinson's incidence. Thus, additional cohort analyses that draw on alternative auditory measures are required to further corroborate the link between Parkinson's and hearing impairment. OBJECTIVES To determine whether hearing impairment, estimated using a speech-in-noise test (the Digit Triplet Test, DTT), is a risk factor for Parkinson's incidence. METHODS This was a pre-registered prospective cohort study using data from the UK Biobank. Data pertaining to 159,395 individuals, who underwent DTT testing and were free from Parkinson's at the point of assessment, were analysed. A Cox Proportional Hazard model, controlling for age, sex and educational attainment was conducted. RESULTS During a median follow up of 14.24 years, 810 cases of probable Parkinson's were observed. The risk of incident Parkinson's increased with baseline hearing impairment [hazard ratio: 1.57 (95%CI: 1.018, 2.435; P = .041)], indicating 57 % increase in risk for every 10 dB increase in speech-reception threshold (SRT). However, when hearing impairment was categorised in accordance with UK Biobank SRT norms neither 'Insufficient' nor 'Poor' hearing significantly influenced Parkinson's risk compared to 'Normal' hearing. CONCLUSIONS The congruence of these findings with prior research further supports the existence of a relationship between hearing impairment and Parkinson's incidence.
Collapse
Affiliation(s)
- Megan Rose Readman
- Department of Psychology, Lancaster University, UK; Department of Department of Primary Care and Mental Health, The University of Liverpool, UK; NIHR ARC NWC, Liverpool, UK; Manchester Centre for Audiology and Deafness, The University of Manchester, UK.
| | - Yang Wang
- Department of Mathematics and Statistics, Lancaster University, UK
| | - Fang Wan
- Department of Mathematics and Statistics, Lancaster University, UK
| | - Ian Fairman
- Department of Psychology, Lancaster University, UK
| | | | | | - Christopher J Plack
- Department of Psychology, Lancaster University, UK; Manchester Centre for Audiology and Deafness, The University of Manchester, UK
| |
Collapse
|
2
|
Liu X, Zhang Y, Weng Y, Zhong M, Wang L, Gao Z, Hu H, Zhang Y, Huang B, Huang R. Levodopa therapy affects brain functional network dynamics in Parkinson's disease. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111169. [PMID: 39401562 DOI: 10.1016/j.pnpbp.2024.111169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Levodopa (L-dopa) therapy is the most effective pharmacological treatment for motor symptoms of Parkinson's disease (PD). However, its effect on brain functional network dynamics is still unclear. Here, we recruited 26 PD patients and 24 healthy controls, and acquired their resting-state functional MRI data before (PD-OFF) and after (PD-ON) receiving 400 mg L-dopa. Using the independent component analysis and the sliding-window approach, we estimated the dynamic functional connectivity (dFC) and examined the effect of L-dopa on the temporal properties of dFC states, the variability of dFC and functional network topological organization. We found that PD-ON showed decreased mean dwell time in sparsely connected State 2 than PD-OFF, the transformation of the dFC state is more frequent and the variability of dFC was decreased within the auditory network and sensorimotor network in PD-ON. Our findings provide new insights to understand the dynamic neural activity induced by L-dopa therapy in PD patients.
Collapse
Affiliation(s)
- Xiaojin Liu
- Center for Educational Science and Technology, Beijing Normal University, Zhuhai 519087, China; School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou 510631, China
| | - Yuze Zhang
- Department of Radiology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou 510080, China
| | - Yihe Weng
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou 510631, China
| | - Miao Zhong
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou 510631, China
| | - Lijuan Wang
- Department of Neurology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou 510080, China
| | - Zhenni Gao
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Huiqing Hu
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Wuhan 430079, China; Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan 430079, China; School of Psychology, Central China Normal University, Wuhan 430079, China
| | - Yuhu Zhang
- Department of Neurology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou 510080, China
| | - Biao Huang
- Department of Radiology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou 510080, China.
| | - Ruiwang Huang
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou 510631, China.
| |
Collapse
|
3
|
Xing F, Feng J, Lv L, Liu J, Chen X, Sun J, Hu P, Wang K. Altered connectivity between frontal cortex and supplementary motor area in various types of Parkinson's disease. Am J Transl Res 2024; 16:2423-2434. [PMID: 39006296 PMCID: PMC11236641 DOI: 10.62347/gtvb7800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/14/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Tremor-dominant (TD) and postural instability/gait difficulty (PIGD) are common subtypes of Parkinson's disease, each with distinct clinical manifestations and prognoses. The neural mechanisms underlying these subtypes remain unclear. This study aimed to investigate the altered connectivity of the frontal cortex and supplementary motor area (SMA) in different types of Parkinson's disease. METHODS Data of 173 participants, including 41 TD patients, 65 PIGD patients, and 67 healthy controls, were retrospectively analyzed. All subjects underwent resting-state functional magnetic resonance imaging (rs-fMRI) and clinical assessments. Differences in amplitude of low frequency fluctuation (ALFF), voxel-wise functional connectivity (FC), and functional network connectivity (FNC) among the three groups were compared, followed by partial correlation analysis. RESULTS Compared to healthy controls, the left dorsolateral superior frontal gyrus (DLSFG) ALFF was significantly increased in both PIGD and TD patients. The FC between the left DLSFG and the left SMA, as well as between the left paracentral lobule and the right DLSFG, was significantly decreased. Similarly, the FNC between the visual network and the auditory network was reduced. Compared to TD patients, PIGD patients showed a significantly higher ALFF in the left DLSFG and a notably reduced FC between the left DLSFG and left SMA. Additionally, the FC of the left DLSFG-SMA was inversely correlated with the PIGD score exclusively in PIGD patients. The FNC of the visual-auditory network was inversely associated with the tremor score only in TD patients. CONCLUSION Decreases in the left DLSFG-SMA connectivity may be a key feature of the PIGD subtype, while reduced VN-AUD connectivity may characterize the TD subtype.
Collapse
Affiliation(s)
- Fengbo Xing
- Department of Neurology, The First Affiliated Hospital of Anhui Medical UniversityHefei 230000, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefei 230032, Anhui, China
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefei 230000, Anhui, China
| | - Jingjing Feng
- Department of Neurology, The First Affiliated Hospital of Anhui Medical UniversityHefei 230000, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefei 230032, Anhui, China
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefei 230000, Anhui, China
| | - Lingling Lv
- Department of Neurology, The First Affiliated Hospital of Anhui Medical UniversityHefei 230000, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefei 230032, Anhui, China
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefei 230000, Anhui, China
| | - Jiaqiu Liu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical UniversityHefei 230000, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefei 230032, Anhui, China
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefei 230000, Anhui, China
| | - Xin Chen
- Department of Neurology, The First Affiliated Hospital of Anhui Medical UniversityHefei 230000, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefei 230032, Anhui, China
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefei 230000, Anhui, China
| | - Jinmei Sun
- Department of Neurology, The First Affiliated Hospital of Anhui Medical UniversityHefei 230000, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefei 230032, Anhui, China
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefei 230000, Anhui, China
| | - Panpan Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical UniversityHefei 230000, Anhui, China
- School of Mental Health and Psychological Sciences, Anhui Medical UniversityHefei 230000, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefei 230032, Anhui, China
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefei 230000, Anhui, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science CenterHefei 230088, Anhui, China
- Anhui Institute of Translational MedicineHefei 230000, Anhui, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical UniversityHefei 230000, Anhui, China
- School of Mental Health and Psychological Sciences, Anhui Medical UniversityHefei 230000, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefei 230032, Anhui, China
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefei 230000, Anhui, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science CenterHefei 230088, Anhui, China
- Anhui Institute of Translational MedicineHefei 230000, Anhui, China
| |
Collapse
|
4
|
Linen SR, Chang NH, Hess EJ, Stanley GB, Waiblinger C. Sensory-Behavioral Deficits in Parkinson's Disease: Insights from a 6-OHDA Mouse Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597339. [PMID: 38895263 PMCID: PMC11185599 DOI: 10.1101/2024.06.05.597339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Parkinson's disease (PD) is characterized by the degeneration of dopaminergic neurons in the striatum, predominantly associated with motor symptoms. However, non-motor deficits, particularly sensory symptoms, often precede motor manifestations, offering a potential early diagnostic window. The impact of non-motor deficits on sensation behavior and the underlying mechanisms remains poorly understood. In this study, we examined changes in tactile sensation within a Parkinsonian state by employing a mouse model of PD induced by 6-hydroxydopamine (6-OHDA) to deplete striatal dopamine (DA). Leveraging the conserved mouse whisker system as a model for tactile-sensory stimulation, we conducted psychophysical experiments to assess sensory-driven behavioral performance during a tactile detection task in both the healthy and Parkinson-like states. Our findings reveal that DA depletion induces pronounced alterations in tactile sensation behavior, extending beyond expected motor impairments. We observed diverse behavioral deficits, spanning detection performance, task engagement, and reward accumulation, among lesioned individuals. While subjects with extreme DA depletion consistently showed severe sensory behavioral deficits, others with substantial DA depletion displayed minimal changes in sensory behavior performance. Moreover, some exhibited moderate degradation of behavioral performance, likely stemming from sensory signaling loss rather than motor impairment. The implementation of a sensory detection task is a promising approach to quantify the extent of impairments associated with DA depletion in the animal model. This facilitates the exploration of early non-motor deficits in PD, emphasizing the importance of incorporating sensory assessments in understanding the diverse spectrum of PD symptoms.
Collapse
Affiliation(s)
- Savannah R. Linen
- Program in Bioinformatics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nelson H. Chang
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Ellen J. Hess
- Departments of Pharmacology and Chemical Biology and Neurology, Emory University, Atlanta, GA USA
| | - Garrett B. Stanley
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Christian Waiblinger
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| |
Collapse
|
5
|
Yeo XY, Kwon S, Rinai KR, Lee S, Jung S, Park R. A Consolidated Understanding of the Contribution of Redox Dysregulation in the Development of Hearing Impairment. Antioxidants (Basel) 2024; 13:598. [PMID: 38790703 PMCID: PMC11118506 DOI: 10.3390/antiox13050598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The etiology of hearing impairment is multifactorial, with contributions from both genetic and environmental factors. Although genetic studies have yielded valuable insights into the development and function of the auditory system, the contribution of gene products and their interaction with alternate environmental factors for the maintenance and development of auditory function requires further elaboration. In this review, we provide an overview of the current knowledge on the role of redox dysregulation as the converging factor between genetic and environmental factor-dependent development of hearing loss, with a focus on understanding the interaction of oxidative stress with the physical components of the peripheral auditory system in auditory disfunction. The potential involvement of molecular factors linked to auditory function in driving redox imbalance is an important promoter of the development of hearing loss over time.
Collapse
Affiliation(s)
- Xin Yi Yeo
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Department of Medical Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
| | - Soohyun Kwon
- Department of Medical Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
- Department of BioNanotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Kimberley R. Rinai
- Department of Life Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
| | - Sungsu Lee
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital and Medical School, Gwangju 61469, Republic of Korea;
| | - Sangyong Jung
- Department of Medical Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
| | - Raekil Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science & Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
6
|
Yévenes-Briones H, Caballero FF, Struijk EA, Arias-Fernández L, Lana A, Rey-Martinez J, Rodríguez-Artalejo F, Lopez-Garcia E. Association Between Speech Reception Threshold in Noise and Multimorbidity: The UK Biobank Study. Otolaryngol Head Neck Surg 2024; 170:480-489. [PMID: 37622533 DOI: 10.1002/ohn.507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/17/2023] [Accepted: 08/06/2023] [Indexed: 08/26/2023]
Abstract
OBJECTIVE To investigate the association between hearing function, as approached with the functional auditory capacity, and multimorbidity. STUDY DESIGN Cross-sectional study. SETTING The UK Biobank was established from 2006 to 2010 in the United Kingdom. This cross-sectional analysis included 165,524 participants who provided baseline information on hearing function. METHODS Functional auditory capacity was measured with a digit triplet test. Three categories were defined according to the speech reception threshold in noise (SRTn): normal (SRTn < -5.5 dB signal-to-noise ratio [SNR]), insufficient (SRTn ≥ -5.5 to ≤ -3.5 dB SNR) and poor hearing function (SRTn > -3.5 dB SNR). To define multimorbidity, 9 chronic diseases were considered, including chronic obstructive pulmonary disease, dementia, Parkinson's disease, stroke, cancer, depression, osteoarthritis, coronary heart disease, and diabetes; multimorbidity was defined as the coexistence of 2 or more in the same individual. Analyses were conducted using logistic models adjusted for relevant confounders. RESULTS Among the study participants, 54.5% were women, and the mean (range) age was 56.7 (39-72) years. The prevalence of insufficient and poor hearing function and multimorbidity was 13% and 13.2%, respectively. In comparison with having a normal SRTn, the odds ratio (95% confidence interval) of multimorbidity associated with insufficient SRTn was 1.13 (1.08-1.18), and with poor SRTn was 1.25 (1.14-1.37). CONCLUSION Insufficient and poor hearing function was associated with multimorbidity. This association suggests common biological pathways for many of the considered morbidities.
Collapse
Affiliation(s)
- Humberto Yévenes-Briones
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Francisco Félix Caballero
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Ellen A Struijk
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | | | - Alberto Lana
- Department of Medicine, Universidad de Oviedo/ISPA, Oviedo, Spain
| | - Jorge Rey-Martinez
- Neurotology Unit, ENT Department, Hospital Universitario Donostia, San Sebastián-Donostia, Spain
| | - Fernando Rodríguez-Artalejo
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- IMDEA-Food Institute, CEI UAM, Madrid, Spain
| | - Esther Lopez-Garcia
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- IMDEA-Food Institute, CEI UAM, Madrid, Spain
| |
Collapse
|
7
|
Falkenstein M. Recent Advances in Clinical Applications of P300 and MMN. NEUROMETHODS 2024:1-21. [DOI: 10.1007/978-1-0716-3545-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Leme MS, Sanches SGG, Carvallo RMM. Peripheral hearing in Parkinson's disease: a systematic review. Int J Audiol 2023; 62:805-813. [PMID: 35980314 DOI: 10.1080/14992027.2022.2109073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE To investigate the implications of Parkinson's disease (PD) in the peripheral auditory system, a systematic survey of the scientific literature was conducted. DESIGN Systematic review. STUDY SAMPLE An electronic search of the non-gray literature in the last decade was conducted using the digital databases MEDLINE® (PubMed interface), LILACS® (Virtual Health Library), Web of Science® (CAPES publications portal), and SciELO®. Studies addressing peripheral auditory function as part of the range of nonmotor PD symptoms were selected for analysis. RESULTS Pure tone audiometry data suggested that sensorineural hearing loss was more severe in the PD population than in the control groups. The effects of PD on cochlear function were evidenced by a decrease in the levels of otoacoustic emissions. CONCLUSIONS Sensorineural hearing loss and cochlear impairment are more severe in the PD population than in the control groups. Additional studies are recommended to further understand the characteristics of the peripheral auditory system in PD patients, which constitutes an emerging subject in the scientific literature.
Collapse
Affiliation(s)
- Mariana S Leme
- Department of Physiotherapy, Speech Therapy & Audiology and Occupational Therapy, Faculdade de Medicina da Universidade de São Paulo-FMUSP, São Paulo, Brazil
| | - Seisse G G Sanches
- Department of Physiotherapy, Speech Therapy & Audiology and Occupational Therapy, Faculdade de Medicina da Universidade de São Paulo-FMUSP, São Paulo, Brazil
| | - Renata M M Carvallo
- Department of Physiotherapy, Speech Therapy & Audiology and Occupational Therapy, Faculdade de Medicina da Universidade de São Paulo-FMUSP, São Paulo, Brazil
| |
Collapse
|
9
|
Readman MR, Wan F, Fairman I, Linkenauger SA, Crawford TJ, Plack CJ. Is Hearing Loss a Risk Factor for Idiopathic Parkinson's Disease? An English Longitudinal Study of Ageing Analysis. Brain Sci 2023; 13:1196. [PMID: 37626551 PMCID: PMC10452744 DOI: 10.3390/brainsci13081196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Observations that hearing loss is a substantial risk factor for dementia may be accounted for by a common pathology. Mitochondrial oxidative stress and alterations in α-synuclein pathology may be common pathology candidates. Crucially, these candidate pathologies are implicated in Parkinson's disease (PD). Consequently, hearing loss may be a risk factor for PD. Subsequently, this prospective cohort study of the English Longitudinal Study of Ageing examines whether hearing loss is a risk factor for PD longitudinally. Participants reporting self-reported hearing capabilities and no PD diagnosis prior to entry (n = 14,340) were used. A joint longitudinal and survival model showed that during a median follow up of 10 years (SD = 4.67 years) increased PD risk (p < 0.001), but not self-reported hearing capability (p = 0.402). Additionally, an exploratory binary logistic regression modelling the influence of hearing loss identified using a screening test (n = 4812) on incident PD indicated that neither moderate (p = 0.794), nor moderately severe/severe hearing loss (p = 0.5210), increased PD risk, compared with normal hearing. Whilst discrepancies with prior literature may suggest a neurological link between hearing loss and PD, further large-scale analyses using clinically derived hearing loss are needed.
Collapse
Affiliation(s)
- Megan Rose Readman
- Department of Psychology, Lancaster University, Lancaster LA1 4YW, UK
- Department of Primary Care and Mental Health, The University of Liverpool, Liverpool L69 3BX, UK
- NIHR ARC NWC, Liverpool L7 8XP, UK
| | - Fang Wan
- Department of Mathematics and Statistics, Lancaster University, Lancaster LA1 4YW, UK
| | - Ian Fairman
- Public Advisor, Associated with Lancaster University Psychology Department, Lancaster LA1 4YF, UK
| | | | | | - Christopher J. Plack
- Department of Psychology, Lancaster University, Lancaster LA1 4YW, UK
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
10
|
Tamilselvam YK, Jog MS, Patel RV. Robotics-Based Characterization of Sensorimotor Integration in Parkinson's Disease and the Effect of Medication. IEEE Trans Neural Syst Rehabil Eng 2023; 31:3201-3211. [PMID: 37506007 DOI: 10.1109/tnsre.2023.3299884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Integration of multi-modal sensory inputs and modulation of motor outputs based on perceptual estimates is called Sensorimotor Integration (SMI). Optimal functioning of SMI is essential for perceiving the environment, modulating the motor outputs, and learning or modifying motor skills to suit the demands of the environment. Growing evidence suggests that patients diagnosed with Parkinson's Disease (PD) may suffer from an impairment in SMI that contributes to perceptual deficits, leading to motor abnormalities. However, the exact nature of the SMI impairment is still unclear. This study uses a robot-assisted assessment tool to quantitatively characterize SMI impairments in PD patients and how they affect voluntary movements. A set of assessment tasks was developed using a robotic manipulandum equipped with a virtual-reality system. The sensory conditions of the virtual environment were varied to facilitate the assessment of SMI. A hundred PD patients (before and after medication) and forty-three control subjects completed the tasks under varying sensory conditions. The kinematic measures obtained from the robotic device were used to evaluate SMI. The findings reveal that across all sensory conditions, PD patients had 36% higher endpoint error, 38% higher direction error in reaching tasks, and 43% higher number of violations in tracing tasks than control subjects due to impairment in integrating sensory inputs. However, they still retained motor learning ability and the ability to modulate motor outputs. The medication worsened the SMI deficits as PD patients, after medication, performed worse than before medication when encountering dynamic sensory environments and exhibited impaired motor learning ability.
Collapse
|
11
|
Großmann W. Listening with an Ageing Brain - a Cognitive Challenge. Laryngorhinootologie 2023; 102:S12-S34. [PMID: 37130528 PMCID: PMC10184676 DOI: 10.1055/a-1973-3038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Hearing impairment has been recently identified as a major modifiable risk factor for cognitive decline in later life and has been becoming of increasing scientific interest. Sensory and cognitive decline are connected by complex bottom-up and top-down processes, a sharp distinction between sensation, perception, and cognition is impossible. This review provides a comprehensive overview on the effects of healthy and pathological aging on auditory as well as cognitive functioning on speech perception and comprehension, as well as specific auditory deficits in the 2 most common neurodegenerative diseases in old age: Alzheimer disease and Parkinson syndrome. Hypotheses linking hearing loss to cognitive decline are discussed, and current knowledge on the effect of hearing rehabilitation on cognitive functioning is presented. This article provides an overview of the complex relationship between hearing and cognition in old age.
Collapse
Affiliation(s)
- Wilma Großmann
- Universitätsmedizin Rostock, Klinik und Poliklinik für Hals-Nasen-Ohrenheilkunde,Kopf- und Halschirurgie "Otto Körner"
| |
Collapse
|
12
|
Xu N, Zhou Y, Patel A, Zhang N, Liu Y. Parkinson's Disease Diagnosis beyond Clinical Features: A Bio-marker using Topological Machine Learning of Resting-state Functional Magnetic Resonance Imaging. Neuroscience 2023; 509:43-50. [PMID: 36436700 DOI: 10.1016/j.neuroscience.2022.11.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022]
Abstract
Parkinson's disease (PD) is one of the leading causes of neurological disability, and its prevalence is expected to increase rapidly in the following few decades. PD diagnosis heavily depends on clinical features using the patient's symptoms. Therefore, an accurate, robust, and non-invasive bio-marker is of critical clinical importance for PD. This study proposes to develop a new bio-marker for PD diagnosis using resting-state functional Magnetic Resonance Imaging (rs-fMRI). Unlike most existing rs-fMRI data analytics using correlational analysis, a Topological Machine Learning approach is proposed to construct the bio-marker. The default functional network is identified first using rs-fMRI. Next, rs-fMRI's high dimensional spatial-temporal data structure is mapped on a Riemann Manifold using topological dimensional reduction. Following the topological dimensional reduction, machine learning is used for classification and sensitivity analysis. The proposed methodology is applied to three open fMRI databases for demonstration and validation. The PD diagnosis accuracy can reach 96.4% when the proposed methodology is used. Thus, rs-fMRI and topological machine learning provide a quantifiable and verifiable bio-marker for future PD early detection and treatment evaluation.
Collapse
Affiliation(s)
- Nan Xu
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Yuxiang Zhou
- Department of Radiology, Mayo Clinic, Scottsdale, AZ, USA.
| | - Ameet Patel
- Department of Radiology, Mayo Clinic, Scottsdale, AZ, USA
| | - Na Zhang
- Independent Researcher, Chandler, AZ, USA
| | - Yongming Liu
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
13
|
Yao CW, Szpindel A, Pelletier A, Postuma RB. Hearing impairment and development of parkinsonism and possible rapid eye movement sleep behaviour disorder: A CLSA prospective population-based study. Eur J Neurol 2023; 30:287-289. [PMID: 36103188 DOI: 10.1111/ene.15567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/08/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Chun W Yao
- Integrated Program in Neuroscience, McGill University, Montréal, Quebec, Canada.,Research Institute of the McGill University Health Centre, Montréal, Quebec, Canada.,Research Center of the Hôpital du Sacré-Coeur de Montréal, Montréal, Quebec, Canada
| | - Aliya Szpindel
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Amélie Pelletier
- Research Institute of the McGill University Health Centre, Montréal, Quebec, Canada.,Research Center of the Hôpital du Sacré-Coeur de Montréal, Montréal, Quebec, Canada
| | - Ronald B Postuma
- Research Center of the Hôpital du Sacré-Coeur de Montréal, Montréal, Quebec, Canada.,Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
14
|
Zhou Z, Zhou X, Xiang Y, Zhao Y, Pan H, Wu J, Xu Q, Chen Y, Sun Q, Wu X, Zhu J, Wu X, Li J, Yan X, Guo J, Tang B, Lei L, Liu Z. Subtyping of early-onset Parkinson's disease using cluster analysis: A large cohort study. Front Aging Neurosci 2022; 14:1040293. [PMID: 36437996 PMCID: PMC9692000 DOI: 10.3389/fnagi.2022.1040293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/27/2022] [Indexed: 08/15/2023] Open
Abstract
BACKGROUND Increasing evidence suggests that early-onset Parkinson's disease (EOPD) is heterogeneous in its clinical presentation and progression. Defining subtypes of EOPD is needed to better understand underlying mechanisms, predict disease course, and eventually design more efficient personalized management strategies. OBJECTIVE To identify clinical subtypes of EOPD, assess the clinical characteristics of each EOPD subtype, and compare the progression between EOPD subtypes. MATERIALS AND METHODS A total of 1,217 patients were enrolled from a large EOPD cohort of the Parkinson's Disease & Movement Disorders Multicenter Database and Collaborative Network in China (PD-MDCNC) between January 2017 and September 2021. A comprehensive spectrum of motor and non-motor features were assessed at baseline. Cluster analysis was performed using data on demographics, motor symptoms and signs, and other non-motor manifestations. In 454 out of total patients were reassessed after a mean follow-up time of 1.5 years to compare progression between different subtypes. RESULTS Three subtypes were defined: mild motor and non-motor dysfunction/slow progression, intermediate and severe motor and non-motor dysfunction/malignant. Compared to patients with mild subtype, patients with the severe subtype were more likely to have rapid eye movement sleep behavior disorder, wearing-off, and dyskinesia, after adjusting for age and disease duration at baseline, and showed a more rapid progression in Unified Parkinson's Disease Rating Scale (UPDRS) total score (P = 0.002), UPDRS part II (P = 0.014), and III (P = 0.001) scores, Hoehn and Yahr stage (P = 0.001), and Parkinson's disease questionnaire-39 item version score (P = 0.012) at prospective follow-up. CONCLUSION We identified three different clinical subtypes (mild, intermediate, and severe) using cluster analysis in a large EOPD cohort for the first time, which is important for tailoring therapy to individuals with EOPD.
Collapse
Affiliation(s)
- Zhou Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxia Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yaqin Xiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuwen Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hongxu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Wu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yase Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiying Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xinyin Wu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jianping Zhu
- Hunan KeY Health Technology Co., Ltd., Changsha, China
| | - Xuehong Wu
- Hunan KeY Health Technology Co., Ltd., Changsha, China
| | - Jianhua Li
- Hunan Creator Information Technology Co., Ltd., Changsha, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Lifang Lei
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhenhua Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| |
Collapse
|
15
|
Zhou X, Liu Z, Zhou X, Xiang Y, Zhou Z, Zhao Y, Pan H, Xu Q, Chen Y, Sun Q, Wu X, Tan H, Li B, Yuan K, Xie Y, Liao W, Hu S, Zhu J, Wu X, Li J, Wang C, Lei L, Tang J, Liu Y, Wu H, Huang W, Wang T, Xue Z, Wang P, Zhang Z, Xu P, Chen L, Wang Q, Wang X, Cheng O, Shen Y, Liu W, Ye M, You Y, Li J, Yan X, Guo J, Tang B. The Chinese Parkinson's Disease Registry (CPDR): Study Design and Baseline Patient Characteristics. Mov Disord 2022; 37:1335-1345. [PMID: 35503029 DOI: 10.1002/mds.29037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is a lack of large multicenter Parkinson's disease (PD) cohort studies and limited data on the natural history of PD in China. OBJECTIVES The objective of this study was to launch the Chinese Parkinson's Disease Registry (CPDR) and to report its protocol, cross-sectional baseline data, and prospects for a comprehensive observational, longitudinal, multicenter study. METHODS The CPDR recruited PD patients from 19 clinical sites across China between January 2018 and December 2020. Clinical data were collected prospectively using at least 17 core assessment scales. Patients were followed up for clinical outcomes through face-to-face interviews biennially. RESULTS We launched the CPDR in China based on the Parkinson's Disease & Movement Disorders Multicenter Database and Collaborative Network (PD-MDCNC). A total of 3148 PD patients were enrolled comprising 1623 men (51.6%) and 1525 women (48.4%). The proportions of early-onset PD (EOPD, age at onset ≤50 years) and late-onset PD (LOPD) were 897 (28.5%) and 2251 (71.5%), respectively. Stratification by age at onset showed that EOPD manifested milder motor and nonmotor phenotypes and was related to increased probability of dyskinesia. Comparison across genders suggested a slightly older average age at PD onset, milder motor symptoms, and a higher rate of developing levodopa-induced dyskinesias in women. CONCLUSIONS The CPDR is one of the largest multicenter, observational, longitudinal, and natural history studies of PD in China. It offers an opportunity to expand the understanding of clinical features, genetic, imaging, and biological markers of PD progression. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Xiaoxia Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenhua Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Xiaoting Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yaqin Xiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhou Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuwen Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongxu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yase Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiying Sun
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xinyin Wu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Hongzhuan Tan
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Bin Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kai Yuan
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yali Xie
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuo Hu
- Department of Nuclear Medicine (PET Center), Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Jianping Zhu
- Hunan KeY Health Technology Co., Ltd, Changsha, Hunan, China
| | - Xuehong Wu
- Hunan KeY Health Technology Co., Ltd, Changsha, Hunan, China
| | - Jianhua Li
- Hunan Creator Information Technology Co., Ltd, Changsha, Hunan, China
| | - Chunyu Wang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lifang Lei
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiayu Tang
- Department of Neurology, Hunan Provincial Brain Hospital, Changsha, Hunan, China
| | - Yonghong Liu
- Health Management Center, Hunan Provincial Brain Hospital, Changsha, Hunan, China
| | - Heng Wu
- Department of Neurology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Wei Huang
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zheng Xue
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Puqing Wang
- Department of Neurology, Xiang Yang No. 1 People's Hospital Affiliated to Hubei University of Medicine, Xiangyang, Hubei, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ping Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Ling Chen
- Department of Neurology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Xuejing Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Oumei Cheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuefei Shen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Weiguo Liu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Min Ye
- Department of Neurology, Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yong You
- Department of Neurology, The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | | |
Collapse
|
16
|
Xu J, Chen Y, Wang H, Li Y, Li L, Ren J, Sun Y, Liu W. Altered Neural Network Connectivity Predicts Depression in de novo Parkinson’s Disease. Front Neurosci 2022; 16:828651. [PMID: 35310104 PMCID: PMC8931029 DOI: 10.3389/fnins.2022.828651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/28/2022] [Indexed: 11/15/2022] Open
Abstract
Background Depression, one of the most frequent non-motor symptoms in Parkinson’s disease (PD), was proposed to be related to neural network dysfunction in advanced PD patients. However, the underlying mechanisms in the early stage remain unclear. The study was aimed to explore the alterations of large-scale neural networks in de novo PD patients with depression. Methods We performed independent component analysis (ICA) on the data of resting-state functional magnetic resonance imaging from 21 de novo PD patients with depression (dPD), 34 de novo PD patients without depression (ndPD), and 43 healthy controls (HCs) to extract functional networks. Intranetwork and internetwork connectivity was calculated for comparison between groups, correlation analysis, and predicting the occurrence of depression in PD. Results We observed an ordered decrease of connectivity among groups within the ventral attention network (VAN) (dPD < ndPD < HCs), mainly located in the left middle temporal cortex. Besides, dPD patients exhibited hypoconnectivity between the auditory network (AUD) and default mode network (DMN) or VAN compared to ndPD patients or healthy controls. Correlation analysis revealed that depression severity was negatively correlated with connectivity value within VAN and positively correlated with the connectivity value of AUD-VAN in dPD patients, respectively. Further analysis showed that the area under the curve (AUC) for dPD prediction was 0.863 when combining the intranetwork connectivity in VAN and internetwork connectivity in AUD-DMN and AUD-VAN. Conclusion Our results demonstrated that early dPD may be associated with abnormality of attention bias and especially auditory attention processing. Altered neural network connectivity is expected to be a potential neuroimaging biomarker to predict depression in PD.
Collapse
Affiliation(s)
- Jianxia Xu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yubing Chen
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Department of Neurology, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, China
| | - Yuqian Li
- Department of Neurology, Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Lanting Li
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jingru Ren
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Sun
- International Laboratory for Children’s Medical Imaging Research, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China
| | - Weiguo Liu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Weiguo Liu,
| |
Collapse
|
17
|
Jafari Z, Kolb BE, Mohajerani MH. Hearing Loss, Tinnitus, and Dizziness in COVID-19: A Systematic Review and Meta-Analysis. Can J Neurol Sci 2022; 49:184-195. [PMID: 33843530 PMCID: PMC8267343 DOI: 10.1017/cjn.2021.63] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Extensive studies indicate that severe acute respiratory syndrome coronavirus (SARS-CoV-2) involves human sensory systems. A lack of discussion, however, exists given the auditory-vestibular system involvement in CoV disease 2019 (COVID-19). The present systematic review and meta-analysis were performed to determine the event rate (ER) of hearing loss, tinnitus, and dizziness caused by SARS-CoV-2. METHODS Databases (PubMed, ScienceDirect, Wiley) and World Health Organization updates were searched using combined keywords: 'COVID-19,' 'SARS-CoV-2,' 'pandemic,' 'auditory dysfunction,' 'hearing loss,' 'tinnitus,' 'vestibular dysfunction,' 'dizziness,' 'vertigo,' and 'otologic symptoms.' RESULTS Twelve papers met the eligibility criteria and were included in the study. These papers were single group prospective, cross-sectional, or retrospective studies on otolaryngologic, neurologic, or general clinical symptoms of COVID-19 and had used subjective assessments for data collection (case histories/medical records). The results of the meta-analysis demonstrate that the ER of hearing loss (3.1%, CIs: 0.01-0.09), tinnitus (4.5%, CIs: 0.012-0.153), and dizziness (12.2%, CIs: 0.070-0.204) is statistically significant in patients with COVID-19 (Z ≤ -4.469, p ≤ 0.001). CONCLUSIONS COVID-19 can cause hearing loss, tinnitus, and dizziness. These findings, however, should be interpreted with caution given insufficient evidence and heterogeneity among studies. Well-designed studies and follow-up assessments on otologic symptoms of SARS-CoV-2 using standard objective tests are recommended.
Collapse
Affiliation(s)
- Zahra Jafari
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - Bryan E. Kolb
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - Majid H. Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada
| |
Collapse
|
18
|
Pieperhoff P, Südmeyer M, Dinkelbach L, Hartmann CJ, Ferrea S, Moldovan AS, Minnerop M, Diaz-Pier S, Schnitzler A, Amunts K. Regional changes of brain structure during progression of idiopathic Parkinson’s disease – a longitudinal study using deformation based morphometry. Cortex 2022; 151:188-210. [DOI: 10.1016/j.cortex.2022.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/04/2022] [Accepted: 03/12/2022] [Indexed: 12/14/2022]
|
19
|
De Groote E, Eqlimi E, Bockstael A, Botteldooren D, Santens P, De Letter M. Parkinson's disease affects the neural alpha oscillations associated with speech-in-noise processing. Eur J Neurosci 2021; 54:7355-7376. [PMID: 34617350 DOI: 10.1111/ejn.15477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/03/2021] [Accepted: 09/21/2021] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) has increasingly been associated with auditory dysfunction, including alterations regarding the control of auditory information processing. Although these alterations may interfere with the processing of speech in degraded listening conditions, behavioural studies have generally found preserved speech-in-noise recognition in PD. However, behavioural speech audiometry does not capture the neurophysiological mechanisms supporting speech-in-noise processing. Therefore, the aim of this study was to investigate the neural oscillatory mechanisms associated with speech-in-noise processing in PD. Twelve persons with PD and 12 age- and gender-matched healthy controls (HCs) were included in this study. Persons with PD were studied in the medication off condition. All subjects underwent an audiometric screening and performed a sentence-in-noise recognition task under simultaneous electroencephalography (EEG) recording. Behavioural speech recognition scores and self-reported ratings of effort, performance, and motivation were collected. Time-frequency analysis of EEG data revealed no significant difference between persons with PD and HCs regarding delta-theta (2-8 Hz) inter-trial phase coherence to noise and sentence onset. In contrast, significantly increased alpha (8-12 Hz) power was found in persons with PD compared with HCs during the sentence-in-noise recognition task. Behaviourally, persons with PD demonstrated significantly decreased speech recognition scores, whereas no significant differences were found regarding effort, performance, and motivation ratings. These results suggest that persons with PD allocate more cognitive resources to support speech-in-noise processing. The interpretation of this finding is discussed in the context of a top-down mediated compensation mechanism for inefficient filtering and degradation of auditory input in PD.
Collapse
Affiliation(s)
- Evelien De Groote
- Department of Rehabilitation Sciences, BrainComm Research Group, Ghent University, Ghent, Belgium
| | - Ehsan Eqlimi
- Department of Information Technology, WAVES Research Group, Ghent University, Ghent, Belgium
| | - Annelies Bockstael
- Department of Information Technology, WAVES Research Group, Ghent University, Ghent, Belgium
| | - Dick Botteldooren
- Department of Information Technology, WAVES Research Group, Ghent University, Ghent, Belgium
| | - Patrick Santens
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Miet De Letter
- Department of Rehabilitation Sciences, BrainComm Research Group, Ghent University, Ghent, Belgium
| |
Collapse
|
20
|
Paplou V, Schubert NMA, Pyott SJ. Age-Related Changes in the Cochlea and Vestibule: Shared Patterns and Processes. Front Neurosci 2021; 15:680856. [PMID: 34539328 PMCID: PMC8446668 DOI: 10.3389/fnins.2021.680856] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/20/2021] [Indexed: 12/16/2022] Open
Abstract
Both age-related hearing loss (ARHL) and age-related loss in vestibular function (ARVL) are prevalent conditions with deleterious consequences on the health and quality of life. Age-related changes in the inner ear are key contributors to both conditions. The auditory and vestibular systems rely on a shared sensory organ - the inner ear - and, like other sensory organs, the inner ear is susceptible to the effects of aging. Despite involvement of the same sensory structure, ARHL and ARVL are often considered separately. Insight essential for the development of improved diagnostics and treatments for both ARHL and ARVL can be gained by careful examination of their shared and unique pathophysiology in the auditory and vestibular end organs of the inner ear. To this end, this review begins by comparing the prevalence patterns of ARHL and ARVL. Next, the normal and age-related changes in the structure and function of the auditory and vestibular end organs are compared. Then, the contributions of various molecular mechanisms, notably inflammaging, oxidative stress, and genetic factors, are evaluated as possible common culprits that interrelate pathophysiology in the cochlea and vestibular end organs as part of ARHL and ARVL. A careful comparison of these changes reveals that the patterns of pathophysiology show similarities but also differences both between the cochlea and vestibular end organs and among the vestibular end organs. Future progress will depend on the development and application of new research strategies and the integrated investigation of ARHL and ARVL using both clinical and animal models.
Collapse
Affiliation(s)
- Vasiliki Paplou
- Department of Otorhinolaryngology and Head/Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Nick M A Schubert
- Department of Otorhinolaryngology and Head/Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Research School of Behavioural and Cognitive Neurosciences, Graduate School of Medical Sciences, University of Groningen, Groningen, Netherlands
| | - Sonja J Pyott
- Department of Otorhinolaryngology and Head/Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Research School of Behavioural and Cognitive Neurosciences, Graduate School of Medical Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
21
|
Li S, Cheng C, Lu L, Ma X, Zhang X, Li A, Chen J, Qian X, Gao X. Hearing Loss in Neurological Disorders. Front Cell Dev Biol 2021; 9:716300. [PMID: 34458270 PMCID: PMC8385440 DOI: 10.3389/fcell.2021.716300] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022] Open
Abstract
Sensorineural hearing loss (SNHL) affects approximately 466 million people worldwide, which is projected to reach 900 million by 2050. Its histological characteristics are lesions in cochlear hair cells, supporting cells, and auditory nerve endings. Neurological disorders cover a wide range of diseases affecting the nervous system, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), autism spectrum disorder (ASD), etc. Many studies have revealed that neurological disorders manifest with hearing loss, in addition to typical nervous symptoms. The prevalence, manifestations, and neuropathological mechanisms underlying vary among different diseases. In this review, we discuss the relevant literature, from clinical trials to research mice models, to provide an overview of auditory dysfunctions in the most common neurological disorders, particularly those associated with hearing loss, and to explain their underlying pathological and molecular mechanisms.
Collapse
Affiliation(s)
- Siyu Li
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Cheng Cheng
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Ling Lu
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Xiaofeng Ma
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
| | - Xiaoli Zhang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Ao Li
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Jie Chen
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Xiaoyun Qian
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| |
Collapse
|
22
|
Jafari Z, Kolb BE, Mohajerani MH. Age-related hearing loss and cognitive decline: MRI and cellular evidence. Ann N Y Acad Sci 2021; 1500:17-33. [PMID: 34114212 DOI: 10.1111/nyas.14617] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 12/16/2022]
Abstract
Extensive evidence supports the association between age-related hearing loss (ARHL) and cognitive decline. It is, however, unknown whether a causal relationship exists between these two, or whether they both result from shared mechanisms. This paper intends to study this relationship through a comprehensive review of MRI findings as well as evidence of cellular alterations. Our review of structural MRI studies demonstrates that ARHL is independently linked to accelerated atrophy of total and regional brain volumes and reduced white matter integrity. Resting-state and task-based fMRI studies on ARHL also show changes in spontaneous neural activity and brain functional connectivity; and alterations in brain areas supporting auditory, language, cognitive, and affective processing independent of age, respectively. Although MRI findings support a causal relationship between ARHL and cognitive decline, the contribution of potential shared mechanisms should also be considered. In this regard, the review of cellular evidence indicates their role as possible common mechanisms underlying both age-related changes in hearing and cognition. Considering existing evidence, no single hypothesis can explain the link between ARHL and cognitive decline, and the contribution of both causal (i.e., the sensory hypothesis) and shared (i.e., the common cause hypothesis) mechanisms is expected.
Collapse
Affiliation(s)
- Zahra Jafari
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Bryan E Kolb
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
23
|
De Groote E, Bockstael A, Botteldooren D, Santens P, De Letter M. The Effect of Parkinson's Disease on Otoacoustic Emissions and Efferent Suppression of Transient Evoked Otoacoustic Emissions. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:1354-1368. [PMID: 33769843 DOI: 10.1044/2020_jslhr-20-00594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Purpose Several studies have demonstrated increased auditory thresholds in patients with Parkinson's disease (PD) based on subjective tonal audiometry. However, the pathophysiological mechanisms underlying auditory dysfunction in PD remain elusive. The primary aim of this study was to investigate cochlear and olivocochlear function in PD using objective measurements and to assess the effect of dopaminergic medication on auditory function. Method Eighteen patients with PD and 18 gender- and age-matched healthy controls (HCs) were included. Patients with PD participated in medication on and off conditions. Linear mixed models were used to determine the effect of PD on tonal audiometry, transient evoked and distortion product otoacoustic emissions (OAEs), and efferent suppression (ES). Results Tonal audiometry revealed normal auditory thresholds in patients with PD for their age across all frequencies. OAE signal amplitudes demonstrated a significant interaction effect between group (PD vs. HC) and frequency, indicating decreased OAEs at low frequencies and increased OAEs at high frequencies in patients with PD. No significant differences were found between patients with PD and HCs regarding ES. In addition, no significant effect of medication status was found on auditory measurements in patients with PD. Conclusions Altered OAEs support the hypothesis of cochlear alterations in PD. No evidence was found for the involvement of the medial olivocochlear system. Altogether, OAEs may provide an objective early indicator of auditory alterations in PD and should complement subjective tonal audiometry when assessing and monitoring auditory function in PD.
Collapse
Affiliation(s)
| | - Annelies Bockstael
- Acoustics Research Group, Department of Information Technology, Ghent University, Belgium
| | - Dick Botteldooren
- Acoustics Research Group, Department of Information Technology, Ghent University, Belgium
| | | | - Miet De Letter
- Department of Rehabilitation Sciences, Ghent University, Belgium
| |
Collapse
|
24
|
Johnson JCS, Marshall CR, Weil RS, Bamiou DE, Hardy CJD, Warren JD. Hearing and dementia: from ears to brain. Brain 2021; 144:391-401. [PMID: 33351095 PMCID: PMC7940169 DOI: 10.1093/brain/awaa429] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/02/2020] [Accepted: 10/17/2020] [Indexed: 12/19/2022] Open
Abstract
The association between hearing impairment and dementia has emerged as a major public health challenge, with significant opportunities for earlier diagnosis, treatment and prevention. However, the nature of this association has not been defined. We hear with our brains, particularly within the complex soundscapes of everyday life: neurodegenerative pathologies target the auditory brain, and are therefore predicted to damage hearing function early and profoundly. Here we present evidence for this proposition, based on structural and functional features of auditory brain organization that confer vulnerability to neurodegeneration, the extensive, reciprocal interplay between 'peripheral' and 'central' hearing dysfunction, and recently characterized auditory signatures of canonical neurodegenerative dementias (Alzheimer's disease, Lewy body disease and frontotemporal dementia). Moving beyond any simple dichotomy of ear and brain, we argue for a reappraisal of the role of auditory cognitive dysfunction and the critical coupling of brain to peripheral organs of hearing in the dementias. We call for a clinical assessment of real-world hearing in these diseases that moves beyond pure tone perception to the development of novel auditory 'cognitive stress tests' and proximity markers for the early diagnosis of dementia and management strategies that harness retained auditory plasticity.
Collapse
Affiliation(s)
- Jeremy C S Johnson
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Charles R Marshall
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK
| | - Rimona S Weil
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- Movement Disorders Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Doris-Eva Bamiou
- UCL Ear Institute and UCL/UCLH Biomedical Research Centre, National Institute for Health Research, University College London, London, UK
| | - Chris J D Hardy
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Jason D Warren
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
25
|
De Keyser K, De Letter M, Santens P, Talsma D, Botteldooren D, Bockstael A. Neurophysiological investigation of auditory intensity dependence in patients with Parkinson's disease. J Neural Transm (Vienna) 2021; 128:345-356. [PMID: 33515333 DOI: 10.1007/s00702-021-02305-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/12/2021] [Indexed: 02/07/2023]
Abstract
There is accumulating evidence for auditory dysfunctions in patients with Parkinson's disease (PD). Moreover, a possible relationship has been suggested between altered auditory intensity processing and the hypophonic speech characteristics in PD. Nonetheless, further insight into the neurophysiological correlates of auditory intensity processing in patients with PD is needed primarily. In the present study, high-density EEG recordings were used to investigate intensity dependence of auditory evoked potentials (IDAEPs) in 14 patients with PD and 14 age- and gender-matched healthy control participants (HCs). Patients with PD were evaluated in both the on- and off-medication states. HCs were also evaluated twice. Significantly increased IDAEP of the N1/P2 was demonstrated in patients with PD evaluated in the on-medication state compared to HCs. Distinctive results were found for the N1 and P2 component. Regarding the N1 component, no differences in latency or amplitude were shown between patients with PD and HCs regardless of the medication state. In contrast, increased P2 amplitude was demonstrated in patients with PD evaluated in the on-medication state compared to the off-medication state and HCs. In addition to a dopaminergic deficiency, deficits in serotonergic neurotransmission in PD were shown based on increased IDAEP. Due to specific alterations of the N1-P2 complex, the current results suggest deficiencies in early-attentive inhibitory processing of auditory input in PD. This interpretation is consistent with the involvement of the basal ganglia and the role of dopaminergic and serotonergic neurotransmission in auditory gating.
Collapse
Affiliation(s)
- Kim De Keyser
- Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Miet De Letter
- Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| | - Patrick Santens
- Department of Neurology, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Durk Talsma
- Department of Experimental Psychology, Ghent University, Henri Dunantlaan 2, 9000, Ghent, Belgium
| | - Dick Botteldooren
- Department of Information Technology (INTEC), Acoustics Research Group, Ghent University, Technologiepark-Zwijnaarde 15, 9052, Ghent, Belgium
| | - Annelies Bockstael
- Department of Information Technology (INTEC), Acoustics Research Group, Ghent University, Technologiepark-Zwijnaarde 15, 9052, Ghent, Belgium
| |
Collapse
|
26
|
Gökay NY, Gündüz B, Söke F, Karamert R. Evaluation of Efferent Auditory System and Hearing Quality in Parkinson's Disease: Is the Difficulty in Speech Understanding in Complex Listening Conditions Related to Neural Degeneration or Aging? JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:263-271. [PMID: 33375830 DOI: 10.1044/2020_jslhr-20-00337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Purpose The effects of neurological diseases on the auditory system have been a notable issue for investigators because the auditory pathway is closely associated with neural systems. The purposes of this study are to evaluate the efferent auditory system function and hearing quality in Parkinson's disease (PD) and to compare the findings with age-matched individuals without PD to present a perspective on aging. Method The study included 35 individuals with PD (mean age of 48.50 ± 8.00 years) and 35 normal-hearing peers (mean age of 49 ± 10 years). The following tests were administered for all participants: the first section of the Speech, Spatial and Qualities of Hearing Scale; pure-tone audiometry, speech audiometry, tympanometry, and acoustic reflexes; and distortion product otoacoustic emissions (DPOAEs) and contralateral suppression of DPOAEs. SPSS Version 25 was used for statistical analyses, and values of p < .05 were considered statistically significant. Results There were no statistically significant differences in the pure-tone audiometry thresholds and DPOAE responses between the individuals with PD and their normal-hearing peers (p = .732). However, statistically significant differences were found between the groups in suppression levels of DPOAEs and hearing quality (p < .05). In addition, a statistically significant and positive correlation was found between the amount of suppression at some frequencies and the Speech, Spatial and Qualities of Hearing Scale scores. Conclusions This study indicates that medial olivocochlear efferent system function and the hearing quality of individuals with PD were affected adversely due to the results of PD pathophysiology on the hearing system. For optimal intervention and follow-up, tasks related to hearing quality in daily life can also be added to therapies for PD.
Collapse
Affiliation(s)
| | - Bülent Gündüz
- Gazi University Faculty of Health Sciences, Department of Audiology, Ankara, Turkey
| | - Fatih Söke
- Gülhane Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Sağlık Bilimleri University, Ankara, Turkey
| | - Recep Karamert
- Gazi University Faculty of Medicine, Department of Otorhinolaryngology, Ankara, Turkey
| |
Collapse
|
27
|
Jafari Z, Kolb BE, Mohajerani MH. Reply to a Letter by Dr. Stefani and Colleagues on: "Auditory Dysfunction in Parkinson's Disease". Mov Disord 2020; 35:1284-1285. [PMID: 32691907 DOI: 10.1002/mds.28133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Affiliation(s)
- Zahra Jafari
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada.,Department of Basic Sciences in Rehabilitation, School of Rehabilitation Sciences, Iran University of Medical Science, Tehran, Iran
| | - Bryan E Kolb
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
28
|
Cerroni R, Pierantozzi M, Moleti A, Stefani A, Sisto R, Mercuri NB, Liguori C, Garasto E, Viziano A. Laterality of Auditory Dysfunction in Parkinson's Disease. Mov Disord 2020; 35:1283-1284. [DOI: 10.1002/mds.28131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 11/06/2022] Open
Affiliation(s)
- Rocco Cerroni
- Parkinson Centre, Department of System MedicineUniversity of Rome “Tor Vergata” Rome Italy
| | - Mariangela Pierantozzi
- Parkinson Centre, Department of System MedicineUniversity of Rome “Tor Vergata” Rome Italy
| | - Arturo Moleti
- Department of PhysicsUniversity of Rome ‘Tor Vergata’ Rome Italy
| | - Alessandro Stefani
- Parkinson Centre, Department of System MedicineUniversity of Rome “Tor Vergata” Rome Italy
| | - Renata Sisto
- INAIL Research, Department of Occupational and Environmental MedicineEpidemiology and Hygiene, Monteporzio Catone Rome Italy
| | - Nicola B. Mercuri
- Parkinson Centre, Department of System MedicineUniversity of Rome “Tor Vergata” Rome Italy
| | - Claudio Liguori
- Parkinson Centre, Department of System MedicineUniversity of Rome “Tor Vergata” Rome Italy
| | - Elena Garasto
- Parkinson Centre, Department of System MedicineUniversity of Rome “Tor Vergata” Rome Italy
| | - Andrea Viziano
- Department of PhysicsUniversity of Rome ‘Tor Vergata’ Rome Italy
- Department of Clinical Sciences and Translational MedicineUniversity of Rome “Tor Vergata” Rome Italy
| |
Collapse
|