1
|
Chunowski P, Madetko-Alster N, Alster P. Asymmetry in Atypical Parkinsonian Syndromes-A Review. J Clin Med 2024; 13:5798. [PMID: 39407856 PMCID: PMC11477316 DOI: 10.3390/jcm13195798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Atypical parkinsonian syndromes (APSs) are a group of neurodegenerative disorders that differ from idiopathic Parkinson's disease (IPD) in their clinical presentation, underlying pathology, and response to treatment. APSs include conditions such as multiple system atrophy (MSA), progressive supranuclear palsy (PSP), corticobasal syndrome (CBS), and dementia with Lewy bodies (DLB). These disorders are characterized by a combination of parkinsonian features and additional symptoms, such as autonomic dysfunction, supranuclear gaze palsy, and asymmetric motor symptoms. Many hypotheses attempt to explain the causes of neurodegeneration in APSs, including interactions between environmental toxins, tau or α-synuclein pathology, oxidative stress, microglial activation, and vascular factors. While extensive research has been conducted on APSs, there is a limited understanding of the symmetry in these diseases, particularly in MSA. Neuroimaging studies have revealed metabolic, structural, and functional abnormalities that contribute to the asymmetry in APSs. The asymmetry in CBS is possibly caused by a variable reduction in striatal D2 receptor binding, as demonstrated in single-photon emission computed tomography (SPECT) examinations, which may explain the disease's asymmetric manifestation and poor response to dopaminergic therapy. In PSP, clinical dysfunction correlates with white matter tract degeneration in the superior cerebellar peduncles and corpus callosum. MSA often involves atrophy in the pons, putamen, and cerebellum, with clinical symmetry potentially depending on the symmetry of the atrophy. The aim of this review is to present the study findings on potential symmetry as a tool for determining potential neuropsychological disturbances and properly diagnosing APSs to lessen the misdiagnosis rate. Methods: A comprehensive review of the academic literature was conducted using the medical literature available in PubMed. Appropriate studies were evaluated and examined based on patient characteristics and clinical and imaging examination outcomes in the context of potential asymmetry. Results: Among over 1000 patients whose data were collected, PSP-RS was symmetrical in approximately 84% ± 3% of cases, with S-CBD showing similar results. PSP-P was symmetrical in about 53-55% of cases, while PSP-CBS was symmetrical in fewer than half of the cases. MSA-C was symmetrical in around 40% of cases. It appears that MSA-P exhibits symmetry in about 15-35% of cases. CBS, according to the criteria, is a disease with an asymmetrical clinical presentation in 90-99% of cases. Similar results were obtained via imaging methods, but transcranial sonography produced different results. Conclusions: Determining neurodegeneration symmetry may help identify functional deficits and improve diagnostic accuracy. Patients with significant asymmetry in neurodegeneration may exhibit different neuropsychological symptoms based on their individual brain lateralization, impacting their cognitive functioning and quality of life.
Collapse
Affiliation(s)
- Patryk Chunowski
- Department of Neurology, Medical University of Warsaw, 03-242 Warsaw, Poland; (N.M.-A.); (P.A.)
| | | | | |
Collapse
|
2
|
Gandhi SE, Nodehi A, Lawton MA, Grosset KA, Marshall V, Ben‐Shlomo Y, Grosset DG. Dopa Responsiveness in Parkinson's Disease. Mov Disord Clin Pract 2024; 11:1113-1124. [PMID: 38898616 PMCID: PMC11452786 DOI: 10.1002/mdc3.14139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/26/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Dopaminergic responsiveness is a defining feature of Parkinson's disease (PD). However, there is limited information on how this evolves over time. OBJECTIVES To examine serial dopaminergic responses, if there are distinct patterns, and which factors predict these. METHODS We analyzed data from the Parkinson's Progression Markers Initiative on repeated dopaminergic challenge tests (≥24.5% defined as a definite response). Growth-mixture modeling evaluated for different response patterns and multinomial logistic regression tested for predictors of these clusters. RESULTS 1525 dopaminergic challenge tests were performed in 336 patients. At enrolment, mean age was 61.2 years (SD 9.6), 66.4% were male and disease duration was 0.5 years (SD 0.5). 1 to 2 years after diagnosis, 48.0% of tests showed a definite response, but this proportion increased with longer disease duration (51.1-74.3%). We identified 3 response groups: "Striking" (n = 29, 8.7%); "Excellent" (n = 110; 32.7%) and "Modest" (n = 197, 58.6%). Significant differences were as follows: striking responders commenced treatment earlier (P = 0.02), were less likely to be on dopamine agonist monotherapy (P = 0.01), and had better cognition (P < 0.01) and activities of daily living (P = 0.01). Excellent responders had higher challenge doses (P = 0.03) and were more likely to be on combination therapy (P < 0.01). CONCLUSION Three distinct patterns of the dopaminergic response were observed. As the proportion of PD cases with definite dopa responsiveness increased over time, the initial treatment response may be an unreliable diagnostic aid.
Collapse
Affiliation(s)
- Sacha E. Gandhi
- School of Neuroscience and Psychology, University of GlasgowGlasgowUnited Kingdom
| | - Anahita Nodehi
- Population Health Sciences, Bristol Medical School, University of BristolBristolUnited Kingdom
| | - Michael A. Lawton
- Population Health Sciences, Bristol Medical School, University of BristolBristolUnited Kingdom
| | - Katherine A. Grosset
- School of Neuroscience and Psychology, University of GlasgowGlasgowUnited Kingdom
| | | | - Yoav Ben‐Shlomo
- Population Health Sciences, Bristol Medical School, University of BristolBristolUnited Kingdom
| | - Donald G. Grosset
- School of Neuroscience and Psychology, University of GlasgowGlasgowUnited Kingdom
| |
Collapse
|
3
|
Daniels AJ, McDade E, Llibre-Guerra JJ, Xiong C, Perrin RJ, Ibanez L, Supnet-Bell C, Cruchaga C, Goate A, Renton AE, Benzinger TL, Gordon BA, Hassenstab J, Karch C, Popp B, Levey A, Morris J, Buckles V, Allegri RF, Chrem P, Berman SB, Chhatwal JP, Farlow MR, Fox NC, Day GS, Ikeuchi T, Jucker M, Lee JH, Levin J, Lopera F, Takada L, Sosa AL, Martins R, Mori H, Noble JM, Salloway S, Huey E, Rosa-Neto P, Sánchez-Valle R, Schofield PR, Roh JH, Bateman RJ. 15 Years of Longitudinal Genetic, Clinical, Cognitive, Imaging, and Biochemical Measures in DIAN. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.08.24311689. [PMID: 39148846 PMCID: PMC11326320 DOI: 10.1101/2024.08.08.24311689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
This manuscript describes and summarizes the Dominantly Inherited Alzheimer Network Observational Study (DIAN Obs), highlighting the wealth of longitudinal data, samples, and results from this human cohort study of brain aging and a rare monogenic form of Alzheimer's disease (AD). DIAN Obs is an international collaborative longitudinal study initiated in 2008 with support from the National Institute on Aging (NIA), designed to obtain comprehensive and uniform data on brain biology and function in individuals at risk for autosomal dominant AD (ADAD). ADAD gene mutations in the amyloid protein precursor (APP), presenilin 1 (PSEN1), or presenilin 2 (PSEN2) genes are deterministic causes of ADAD, with virtually full penetrance, and a predictable age at symptomatic onset. Data and specimens collected are derived from full clinical assessments, including neurologic and physical examinations, extensive cognitive batteries, structural and functional neuro-imaging, amyloid and tau pathological measures using positron emission tomography (PET), flurordeoxyglucose (FDG) PET, cerebrospinal fluid and blood collection (plasma, serum, and whole blood), extensive genetic and multi-omic analyses, and brain donation upon death. This comprehensive evaluation of the human nervous system is performed longitudinally in both mutation carriers and family non-carriers, providing one of the deepest and broadest evaluations of the human brain across decades and through AD progression. These extensive data sets and samples are available for researchers to address scientific questions on the human brain, aging, and AD.
Collapse
Affiliation(s)
- Alisha J. Daniels
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Eric McDade
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | | | - Chengjie Xiong
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Richard J. Perrin
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Laura Ibanez
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | | | - Carlos Cruchaga
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Alison Goate
- Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Alan E. Renton
- Icahn School of Medicine at Mount Sinai, New York, NY USA
| | | | - Brian A. Gordon
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Jason Hassenstab
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Celeste Karch
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Brent Popp
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Allan Levey
- Goizueta Alzheimer’s Disease Research Center, Emory University, Atlanta, GA, USA
| | - John Morris
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Virginia Buckles
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | | | - Patricio Chrem
- Institute of Neurological Research FLENI, Buenos Aires, Argentina
| | | | - Jasmeer P. Chhatwal
- Massachusetts General and Brigham & Women’s Hospitals, Harvard Medical School, Boston MA, USA
| | | | - Nick C. Fox
- UK Dementia Research Institute at University College London, London, United Kingdom
- University College London, London, United Kingdom
| | | | - Takeshi Ikeuchi
- Brain Research Institute, Niigata University, Niigata, Japan
| | - Mathias Jucker
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- DZNE, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | | | - Johannes Levin
- DZNE, German Center for Neurodegenerative Diseases, Munich, Germany
- Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | - Ana Luisa Sosa
- Instituto Nacional de Neurologia y Neurocirugla Innn, Mexico City, Mexico
| | - Ralph Martins
- Edith Cowan University, Western Australia, Australia
| | | | - James M. Noble
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Department of Neurology, and GH Sergievsky Center, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Edward Huey
- Brown University, Butler Hospital, Providence, RI, USA
| | - Pedro Rosa-Neto
- Centre de Recherche de L’hopital Douglas and McGill University, Montreal, Quebec
| | - Raquel Sánchez-Valle
- Hospital Clínic de Barcelona. IDIBAPS. University of Barcelona, Barcelona, Spain
| | - Peter R. Schofield
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jee Hoon Roh
- Korea University, Korea University Anam Hospital, Seoul, South Korea
| | | | | |
Collapse
|
4
|
Di Luca DG, Perlmutter JS. Time for Clinical Dopamine Transporter Scans in Parkinsonism?: Not DAT Yet. Neurology 2024; 102:e209558. [PMID: 38759140 PMCID: PMC11175627 DOI: 10.1212/wnl.0000000000209558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/10/2024] [Indexed: 05/19/2024] Open
Affiliation(s)
- Daniel G Di Luca
- From the Department of Neurology, Washington University in St. Louis, MO
| | - Joel S Perlmutter
- From the Department of Neurology, Washington University in St. Louis, MO
| |
Collapse
|
5
|
Tran C, Shen K, Liu K, Ashok A, Ramirez-Zamora A, Chen J, Li Y, Fang R. Deep learning predicts prevalent and incident Parkinson's disease from UK Biobank fundus imaging. Sci Rep 2024; 14:3637. [PMID: 38351326 PMCID: PMC10864361 DOI: 10.1038/s41598-024-54251-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 02/10/2024] [Indexed: 02/16/2024] Open
Abstract
Parkinson's disease is the world's fastest-growing neurological disorder. Research to elucidate the mechanisms of Parkinson's disease and automate diagnostics would greatly improve the treatment of patients with Parkinson's disease. Current diagnostic methods are expensive and have limited availability. Considering the insidious and preclinical onset and progression of the disease, a desirable screening should be diagnostically accurate even before the onset of symptoms to allow medical interventions. We highlight retinal fundus imaging, often termed a window to the brain, as a diagnostic screening modality for Parkinson's disease. We conducted a systematic evaluation of conventional machine learning and deep learning techniques to classify Parkinson's disease from UK Biobank fundus imaging. Our results suggest Parkinson's disease individuals can be differentiated from age and gender-matched healthy subjects with 68% accuracy. This accuracy is maintained when predicting either prevalent or incident Parkinson's disease. Explainability and trustworthiness are enhanced by visual attribution maps of localized biomarkers and quantified metrics of model robustness to data perturbations.
Collapse
Affiliation(s)
- Charlie Tran
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Kai Shen
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Kang Liu
- Department of Physics, University of Florida, Gainesville, FL, 32661, USA
| | - Akshay Ashok
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL, 32611, USA
| | | | - Jinghua Chen
- Department of Ophthalmology, University of Florida, Gainesville, FL, 32661, USA
| | - Yulin Li
- Department of Biostatistics, University of Florida, Gainesville, FL, 32661, USA
| | - Ruogu Fang
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, 32611, USA.
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, 1275 Center Drive, PO Box 116131, Gainesville, FL, 32611-6131, USA.
- Center for Cognitive Aging and Memory, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
6
|
Prajjwal P, Flores Sanga HS, Acharya K, Tango T, John J, Rodriguez RS, Dheyaa Marsool Marsool M, Sulaimanov M, Ahmed A, Hussin OA. Parkinson's disease updates: Addressing the pathophysiology, risk factors, genetics, diagnosis, along with the medical and surgical treatment. Ann Med Surg (Lond) 2023; 85:4887-4902. [PMID: 37811009 PMCID: PMC10553032 DOI: 10.1097/ms9.0000000000001142] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/31/2023] [Indexed: 10/10/2023] Open
Abstract
After only Alzheimer's disease (AD), Parkinson's disease (PD) is the second most prevalent neurodegenerative disease. The incidence of this disease increases with age, especially for those above 70 years old. There are many risk factors that are well-established in the contribution to the development of PD, such as age, gender, ethnicity, rapid eye movement sleep disorder, high consumption of dairy products, traumatic brain injury, genetics, and pesticides/herbicides. Interestingly, smoking, consumption of caffeine, and physical activities are the protective factors of PD. A deficiency of dopamine in the substantia nigra of the brainstem is the main pathology. This, subsequently, alters the neurotransmitter, causing an imbalance between excitatory and inhibitory signals. In addition, genetics is also involved in the pathogenesis of the disease. As a result, patients exhibit characteristic motor symptoms such as tremors, stiffness, bradykinesia, and postural instability, along with non-motor symptoms, including dementia, urinary incontinence, sleeping disturbances, and orthostatic hypotension. PD may resemble other diseases; therefore, it is important to pay attention to the diagnosis criteria. Parkinson's disease dementia can share common features with AD; this can include behavioral as well as psychiatric symptoms, in addition to the pathology being protein aggregate accumulation in the brain. For PD management, the administration of pharmacological treatment depends on the motor symptoms experienced by the patients. Non-pharmacological treatment plays a role as adjuvant therapy, while surgical management is indicated in chronic cases. This paper aims to review the etiology, risk factors, protective factors, pathophysiology, signs and symptoms, associated conditions, and management of PD.
Collapse
Affiliation(s)
| | - Herson S Flores Sanga
- Department of Telemedicine, Hospital Nacional Carlos Alberto Seguin Escobedo, Arequipa, Peru
| | - Kirtish Acharya
- Maharaja Krishna Chandra Gajapati Medical College and Hospital, Brahmapur, Odisha
| | - Tamara Tango
- Faculty of Medicine Universitas, Jakarta, Indonesia
| | - Jobby John
- Dr. Somervell Memorial CSI Medical College and Hospital, Neyyāttinkara, Kerala, India
| | | | | | | | - Aneeqa Ahmed
- Shadan Hospital and Institute of Medical Sciences, Hyderabad, Telangana
| | - Omniat A. Hussin
- Department of Medicine, Sudan Academy of Sciences, Khartoum, Sudan
| |
Collapse
|
7
|
Furgiuele A, Pereira FC, Martini S, Marino F, Cosentino M. Dopaminergic regulation of inflammation and immunity in Parkinson's disease: friend or foe? Clin Transl Immunology 2023; 12:e1469. [PMID: 37781343 PMCID: PMC10540835 DOI: 10.1002/cti2.1469] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/11/2022] [Accepted: 09/16/2023] [Indexed: 10/03/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease affecting 7-10 million people worldwide. Currently, there is no treatment available to prevent or delay PD progression, partially due to the limited understanding of the pathological events which lead to the death of dopaminergic neurons in the substantia nigra in the brain, which is known to be the cause of PD symptoms. The current available treatments aim at compensating dopamine (DA) deficiency in the brain using its precursor levodopa, dopaminergic agonists and some indirect dopaminergic agents. The immune system is emerging as a critical player in PD. Therefore, immune-based approaches have recently been proposed to be used as potential antiparkinsonian agents. It has been well-known that dopaminergic pathways play a significant role in regulating immune responses in the brain. Although dopaminergic agents are the primary antiparkinsonian treatments, their immune regulatory effect has yet to be fully understood. The present review summarises the current available evidence of the immune regulatory effects of DA and its mimics and discusses dopaminergic agents as antiparkinsonian drugs. Based on the current understanding of their involvement in the regulation of neuroinflammation in PD, we propose that targeting immune pathways involved in PD pathology could offer a better treatment outcome for PD patients.
Collapse
Affiliation(s)
- Alessia Furgiuele
- Center for Research in Medical PharmacologyUniversity of InsubriaVareseItaly
| | - Frederico C Pereira
- Faculty of Medicine, Institute of Pharmacology and Experimental TherapeuticsUniversity of CoimbraCoimbraPortugal
- Faculty of Medicine, Institute for Clinical and Biomedical Research (iCBR)University of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
- Clinical Academic Center of Coimbra (CACC)CoimbraPortugal
| | - Stefano Martini
- Center for Research in Medical PharmacologyUniversity of InsubriaVareseItaly
| | - Franca Marino
- Center for Research in Medical PharmacologyUniversity of InsubriaVareseItaly
| | - Marco Cosentino
- Center for Research in Medical PharmacologyUniversity of InsubriaVareseItaly
| |
Collapse
|
8
|
Hensel L, Seger A, Farrher E, Bonkhoff AK, Shah NJ, Fink GR, Grefkes C, Sommerauer M, Doppler CEJ. Fronto-striatal dynamic connectivity is linked to dopaminergic motor response in Parkinson's disease. Parkinsonism Relat Disord 2023; 114:105777. [PMID: 37549587 DOI: 10.1016/j.parkreldis.2023.105777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/09/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023]
Abstract
INTRODUCTION Differences in dopaminergic motor response in Parkinson's disease (PD) patients can be related to PD subtypes, and previous fMRI studies associated dopaminergic motor response with corticostriatal functional connectivity. While traditional fMRI analyses have assessed the mean connectivity between regions of interest, an important aspect driving dopaminergic response might lie in the temporal dynamics in corticostriatal connections. METHODS This study aims to determine if altered resting-state dynamic functional network connectivity (DFC) is associated with dopaminergic motor response. To test this, static and DFC were assessed in 32 PD patients and 18 healthy controls (HC). Patients were grouped as low and high responders using a median split of their dopaminergic motor response. RESULTS Patients featuring a high dopaminergic motor response were observed to spend more time in a regionally integrated state compared to HC. Furthermore, DFC between the anterior midcingulate cortex/dorsal anterior cingulate cortex (aMCC/dACC) and putamen was lower in low responders during a more segregated state and correlated with dopaminergic motor response. CONCLUSION The findings of this study revealed that temporal dynamics of fronto-striatal connectivity are associated with clinically relevant information, which may be considered when assessing functional connectivity between regions involved in motor initiation.
Collapse
Affiliation(s)
- Lukas Hensel
- University of Cologne, University Hospital Cologne, Department of Neurology, 50937, Köln, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, 52425, Jülich, Germany.
| | - Aline Seger
- University of Cologne, University Hospital Cologne, Department of Neurology, 50937, Köln, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Ezequiel Farrher
- Institute of Neuroscience and Medicine 4 and Molecular Neuroscience and Neuroimaging (INM-4 / INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Anna K Bonkhoff
- J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - N Jon Shah
- Institute of Neuroscience and Medicine 4 and Molecular Neuroscience and Neuroimaging (INM-4 / INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany; JARA - BRAIN - Translational Medicine, 52056, Aachen, Germany; RWTH Aachen University, Department of Neurology, 52056, Aachen, Germany
| | - Gereon R Fink
- University of Cologne, University Hospital Cologne, Department of Neurology, 50937, Köln, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Christian Grefkes
- University Hospital Frankfurt, Goethe University, Department of Neurology, Frankfurt am Main, Germany
| | - Michael Sommerauer
- University of Cologne, University Hospital Cologne, Department of Neurology, 50937, Köln, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Christopher E J Doppler
- University of Cologne, University Hospital Cologne, Department of Neurology, 50937, Köln, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, 52425, Jülich, Germany.
| |
Collapse
|
9
|
Dulski J, Koga S, Liberski PP, Sitek EJ, Butala AA, Sławek J, Dickson DW, Wszolek ZK. Perry Disease: Expanding the Genetic Basis. Mov Disord Clin Pract 2023; 10:1136-1142. [PMID: 37476320 PMCID: PMC10354621 DOI: 10.1002/mdc3.13764] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 07/22/2023] Open
Abstract
Background Perry disease (or Perry syndrome [PS]) is a hereditary neurodegenerative disorder inevitably leading to death within few years from onset. All previous cases with pathological confirmation were caused by mutations within the cytoskeleton-associated protein glycine-rich (CAP-Gly) domain of the DCTN1 gene. Objectives This paper presents the first clinicopathological report of PS due to a novel DCTN1 mutation outside the CAP-Gly domain. Methods Clinical and pathological features of the new variant carrier are compared with another recently deceased PS case with a well-known pathogenic DCTN1 mutation and other reported cases. Results and Conclusions We report a novel DCTN1 mutation outside the CAP-Gly domain that we demonstrated to be pathogenic based on clinical and autopsy findings.
Collapse
Affiliation(s)
- Jarosław Dulski
- Department of NeurologyMayo ClinicJacksonvilleFloridaUSA
- Division of Neurological and Psychiatric NursingFaculty of Health Sciences, Medical University of GdanskGdanskPoland
- Neurology DepartmentSt Adalbert Hospital, Copernicus PLGdanskPoland
| | - Shunsuke Koga
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | - Paweł P. Liberski
- Department of Molecular Pathology and NeuropathologyMedical University of LodzŁódźPoland
- Faculty of Health Science, The Mazovian State University in PłockPłockPoland
| | - Emilia J. Sitek
- Neurology DepartmentSt Adalbert Hospital, Copernicus PLGdanskPoland
- Laboratory of Clinical Neuropsychology, Neurolinguistics and Neuropsychotherapy, Division of Neurological and Psychiatric NursingFaculty of Health Sciences, Medical University of GdanskGdanskPoland
| | - Ankur A. Butala
- Neurology, Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jarosław Sławek
- Division of Neurological and Psychiatric NursingFaculty of Health Sciences, Medical University of GdanskGdanskPoland
- Neurology DepartmentSt Adalbert Hospital, Copernicus PLGdanskPoland
| | | | | |
Collapse
|
10
|
Sipilä JOT, Kytövuori L, Rauramaa T, Rauhamaa H, Kaasinen V, Majamaa K. A severe neurodegenerative disease with Lewy bodies and a mutation in the glucocerebrosidase gene. NPJ Parkinsons Dis 2023; 9:53. [PMID: 37019925 PMCID: PMC10076383 DOI: 10.1038/s41531-023-00501-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Several heterozygous variants of the glucocerebrosidase gene (GBA1) have been reported to increase the risk of Parkinson's disease (PD) and dementia with Lewy bodies (DLB). GBA1-associated PD has been reported to be more severe than idiopathic PD, and more deleterious variants are associated with more severe clinical phenotypes. We report a family with a heterozygous p.Pro454Leu variant in GBA1. The variant was associated with a severe and rapidly progressive neurodegenerative disease with Lewy bodies that were clinically and pathologically diverse. Pathogenicity prediction algorithms and evolutionary analyses suggested that p.Pro454Leu is deleterious.
Collapse
Affiliation(s)
- Jussi O T Sipilä
- Clinical Neurosciences, University of Turku, Turku, Finland.
- Department of Neurology, Siun Sote North Karelia Central Hospital, Joensuu, Finland.
| | - Laura Kytövuori
- Research Unit of Clinical Medicine and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Neurocenter, Neurology, Oulu University Hospital, Oulu, Finland
| | - Tuomas Rauramaa
- Unit of Pathology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Hugo Rauhamaa
- Research Unit of Clinical Medicine and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Neurocenter, Neurology, Oulu University Hospital, Oulu, Finland
| | - Valtteri Kaasinen
- Clinical Neurosciences, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| | - Kari Majamaa
- Research Unit of Clinical Medicine and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Neurocenter, Neurology, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
11
|
O'Shea SA, Shih LC. Global Epidemiology of Movement Disorders: Rare or Underdiagnosed? Semin Neurol 2023; 43:4-16. [PMID: 36893797 DOI: 10.1055/s-0043-1764140] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
In this manuscript, we review the epidemiology of movement disorders including Parkinson's disease (PD), atypical parkinsonism, essential tremor, dystonia, functional movement disorders, tic disorders, chorea, and ataxias. We emphasize age-, sex-, and geography-based incidence and prevalence, as well as notable trends including the rising incidence and prevalence of PD. Given the growing global interest in refining clinical diagnostic skills in recognizing movement disorders, we highlight some key epidemiological findings that may be of interest to clinicians and health systems tasked with diagnosing and managing the health of patients with movement disorders.
Collapse
Affiliation(s)
- Sarah A O'Shea
- Department of Neurology, Columbia University, Vagelos College of Physicians and Surgeons, New York City, New York
| | - Ludy C Shih
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts.,Department of Neurology, Boston Medical Center, Boston, Massachusetts
| |
Collapse
|
12
|
Alonso-Canovas A, Voeten J, Gifford L, Thomas O, Lees AJ, Bloem BR. The Early Treatment Phase in Parkinson's Disease: Not a Honeymoon for All, Not a Honeymoon at All? JOURNAL OF PARKINSON'S DISEASE 2023; 13:323-328. [PMID: 36847018 DOI: 10.3233/jpd-225064] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The discovery of levodopa in the late 60 s of twentieth century was a 'golden moment' for people with Parkinson's disease (PD). Unfortunately, clinical experience showed that some symptoms escaped from symptomatic control, and long-term complications developed. Back then, neurologists coined the term "honeymoon period" for the early phase of uncomplicated response to levodopa, and it continues to be used in scientific literature. However, medical terms are no longer restricted to professionals, and few people with PD relate to the notion of a "honeymoon". We examine the reasons why this term, once helpful, but inaccurate and inappropriate, should be abandoned.
Collapse
Affiliation(s)
- Araceli Alonso-Canovas
- Movement Disorders Unit, Neurology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain.,Professor of Neurology, Faculty of Medicine, Universidad de Alcalá, Spain
| | | | | | | | - Andrew J Lees
- The National Hospital for Neurology and Neurosurgery, London, UK
| | - Bastiaan R Bloem
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain and Cognition, Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Maiti B, Perlmutter JS. Imaging in Movement Disorders. Continuum (Minneap Minn) 2023; 29:194-218. [PMID: 36795878 DOI: 10.1212/con.0000000000001210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
OBJECTIVE This article reviews commonly used imaging modalities in movement disorders, particularly parkinsonism. The review includes the diagnostic utility, role in differential diagnosis, reflection of pathophysiology, and limitations of neuroimaging in the setting of movement disorders. It also introduces promising new imaging modalities and describes the current status of research. LATEST DEVELOPMENTS Iron-sensitive MRI sequences and neuromelanin-sensitive MRI can be used to directly assess the integrity of nigral dopaminergic neurons and thus may reflect disease pathology and progression throughout the full range of severity in Parkinson disease (PD). The striatal uptake of presynaptic radiotracers in their terminal axons as currently assessed using clinically approved positron emission tomography (PET) or single-photon emission computed tomography (SPECT) imaging correlates with nigral pathology and disease severity only in early PD. Cholinergic PET, using radiotracers that target the presynaptic vesicular acetylcholine transporter, constitutes a substantial advance and may provide crucial insights into the pathophysiology of clinical symptoms such as dementia, freezing, and falls. ESSENTIAL POINTS In the absence of valid, direct, objective biomarkers of intracellular misfolded α-synuclein, PD remains a clinical diagnosis. The clinical utility of PET- or SPECT-based striatal measures is currently limited given their lack of specificity and inability to reflect nigral pathology in moderate to severe PD. These scans may be more sensitive than clinical examination to detect nigrostriatal deficiency that occurs in multiple parkinsonian syndromes and may still be recommended for clinical use in the future to identify prodromal PD if and when disease-modifying treatments become available. Multimodal imaging to evaluate underlying nigral pathology and its functional consequences may hold the key to future advances.
Collapse
|
14
|
Lamotte G, Singer W. Synucleinopathies. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:175-202. [PMID: 37620069 DOI: 10.1016/b978-0-323-98817-9.00032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The α-synucleinopathies include pure autonomic failure, multiple system atrophy, dementia with Lewy bodies, and Parkinson disease. The past two decades have witnessed significant advances in the diagnostic strategies and symptomatic treatment of motor and nonmotor symptoms of the synucleinopathies. This chapter provides an in-depth review of the pathophysiology, pathology, genetic, epidemiology, and clinical and laboratory autonomic features that distinguish the different synucleinopathies with an emphasis on autonomic failure as a common feature. The treatment of the different synucleinopathies is discussed along with the proposal for multidisciplinary, individualized care models that optimally address the various symptoms. There is an urgent need for clinical scientific studies addressing patients at risk of developing synucleinopathies and the investigation of disease mechanisms, biomarkers, potential disease-modifying therapies, and further advancement of symptomatic treatments for motor and nonmotor symptoms.
Collapse
Affiliation(s)
- Guillaume Lamotte
- Department of Neurology, University of Utah, Salt Lake City, UT, United States
| | - Wolfgang Singer
- Department of Neurology, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
15
|
Martin WRW, Younce JR, Campbell MC, Racette BA, Norris SA, Ushe M, Criswell S, Davis AA, Alfradique-Dunham I, Maiti B, Cairns NJ, Perrin RJ, Kotzbauer PT, Perlmutter JS. Neocortical Lewy Body Pathology Parallels Parkinson's Dementia, but Not Always. Ann Neurol 2023; 93:184-195. [PMID: 36331161 PMCID: PMC10321306 DOI: 10.1002/ana.26542] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The objective of this study was to evaluate the relationship between Parkinson's disease (PD) with dementia and cortical proteinopathies in a large population of pathologically confirmed patients with PD. METHODS We reviewed clinical data from all patients with autopsy data seen in the Movement Disorders Center at Washington University, St. Louis, between 1996 and 2019. All patients with a diagnosis of PD based on neuropathology were included. We used logistic regression and multivariate analysis of covariance (MANCOVA) to investigate the relationship between neuropathology and dementia. RESULTS A total of 165 patients with PD met inclusion criteria. Among these, 128 had clinical dementia. Those with dementia had greater mean ages of motor onset and death but equivalent mean disease duration. The delay between motor symptom onset and dementia was 1 year or less in 14 individuals, meeting research diagnostic criteria for possible or probable dementia with Lewy bodies (DLB). Braak Lewy body stage was associated with diagnosis of dementia, whereas severities of Alzheimer's disease neuropathologic change (ADNC) and small vessel pathology did not. Pathology of individuals diagnosed with DLB did not differ significantly from that of other patients with PD with dementia. Six percent of individuals with PD and dementia did not have neocortical Lewy bodies; and 68% of the individuals with PD but without dementia did have neocortical Lewy bodies. INTERPRETATION Neocortical Lewy bodies almost always accompany dementia in PD; however, they also appear in most PD patients without dementia. In some cases, dementia may occur in patients with PD without neocortical Lewy bodies, ADNC, or small vessel disease. Thus, other factors not directly related to these classic neuropathologic features may contribute to PD dementia. ANN NEUROL 2023;93:184-195.
Collapse
Affiliation(s)
- W R Wayne Martin
- Department of Medicine (Neurology), University of Alberta, Edmonton, Canada
| | - John R Younce
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Meghan C Campbell
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
- Department of Radiology, Washington University in St. Louis, St. Louis, MO
| | - Brad A Racette
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Scott A Norris
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - Mwiza Ushe
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - Susan Criswell
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - Albert A Davis
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | | | - Baijayanta Maiti
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - Nigel J Cairns
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - Richard J Perrin
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO
| | - Paul T Kotzbauer
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - Joel S Perlmutter
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
- Department of Radiology, Washington University in St. Louis, St. Louis, MO
- Departments of Neuroscience, Physical Therapy and Occupational Therapy, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
16
|
Leahy CB, Robinson AC, Jabbari E, Morris HR, Lally I, Djoukhadar I, Roncaroli F, Kobylecki C. A case of Lewy body disease and anaplastic astrocytoma presenting with atypical parkinsonism. Neuropathology 2022; 42:540-547. [PMID: 35822248 PMCID: PMC10084019 DOI: 10.1111/neup.12848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/15/2022]
Abstract
We report on a patient with atypical parkinsonism due to coexistent Lewy body disease (LBD) and diffuse anaplastic astrocytoma. The patient presented with a mixed cerebellar and parkinsonian syndrome, incomplete levodopa response, and autonomic failure. The clinical diagnosis was multiple system atrophy (MSA). Supportive features of MSA according to the consensus diagnostic criteria included postural instability and early falls, early dysphagia, pyramidal signs, and orofacial dystonia. Multiple exclusion criteria for a diagnosis of idiopathic Parkinson's disease (iPD) were present. Neuropathological examination of the left hemisphere and the whole midbrain and brainstem revealed LBD, neocortical-type consistent with iPD, hippocampal sclerosis, and widespread neoplastic infiltration by an anaplastic astrocytoma without evidence of a space occupying lesion. There were no pathological features of MSA. The classification of atypical parkinsonism was difficult in this patient. The clinical features and disease course were confounded by the coexistent tumor, leading to atypical presentation and a diagnosis of MSA. We suggest that the initial features were due to Lewy body pathology, while progression and ataxia, pyramidal signs, and falls were accelerated by the occurrence of the astrocytoma. Our case reflects the challenges of an accurate diagnosis of atypical parkinsonism, the potential for confounding co-pathology and the need for autopsy examination to reach a definitive diagnosis.
Collapse
Affiliation(s)
- Christopher B Leahy
- Department of Neurology, Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| | - Andrew C Robinson
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biological SciencesUniversity of Manchester, Salford Royal HospitalSalfordUK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science CentreManchesterUK
| | - Edwin Jabbari
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyLondonUK
| | - Huw R Morris
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyLondonUK
| | - Imogen Lally
- Department of Cellular PathologyNorthern Care Alliance NHS Foundation TrustManchesterUK
| | - Ibrahim Djoukhadar
- Department of Neuroradiology, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Sciences CentreUniversity of ManchesterManchesterUK
| | - Federico Roncaroli
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biological SciencesUniversity of Manchester, Salford Royal HospitalSalfordUK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science CentreManchesterUK
| | - Christopher Kobylecki
- Department of Neurology, Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| |
Collapse
|
17
|
Levodopa responsiveness in Parkinson's disease: harnessing real-life experience with machine-learning analysis. J Neural Transm (Vienna) 2022; 129:1289-1297. [PMID: 36030311 DOI: 10.1007/s00702-022-02540-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/13/2022] [Indexed: 10/15/2022]
Abstract
Responsiveness to levodopa varies greatly among patients with Parkinson's disease (PD). The factors that affect it are ill defined. The aim of the study was to identify factors predictive of long-term response to levodopa. The medical records of 296 patients with PD (mean age of onset, 62.2 ± 9.7 years) were screened for demographics, previous treatments, and clinical phenotypes. All patients were assessed with the Unified PD Rating Scale (UPDRS)-III before and 3 months after levodopa initiation. Regression and machine-learning analyses were used to determine factors that are associated with levodopa responsiveness and might identify patients who will benefit from treatment. The UPDRS-III score improved by ≥ 30% (good response) in 128 patients (43%). On regression analysis, female gender, young age at onset, and early use of dopamine agonists predicted a good response. Time to initiation of levodopa treatment had no effect on responsiveness except in patients older than 72 years, who were less responsive. Machine-learning analysis validated these factors and added several others: symptoms of rigidity and bradykinesia, disease onset in the legs and on the left side, and fewer white vascular ischemic changes, comorbidities, and pre-non-motor symptoms. The main determinants of variations in levodopa responsiveness are gender, age, and clinical phenotype. Early use of dopamine agonists does not hamper levodopa responsiveness. In addition to validating the regression analysis results, machine-learning methods helped to determine the specific clinical phenotype of patients who may benefit from levodopa in terms of comorbidities and pre-motor and non-motor symptoms.
Collapse
|
18
|
Camicioli R, Cookson MR. Pathology in the Parkinson's Progression Markers Initiative; a Finale but also a start. Parkinsonism Relat Disord 2022; 101:117-118. [DOI: 10.1016/j.parkreldis.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Dulski J, Cerquera-Cleves C, Milanowski L, Kwiatek-Majkusiak J, Koziorowski D, Ross OA, Pentela-Nowicka J, Sławek J, Wszolek ZK. L-Dopa response, choreic dyskinesia, and dystonia in Perry syndrome. Parkinsonism Relat Disord 2022; 100:19-23. [PMID: 35691177 DOI: 10.1016/j.parkreldis.2022.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION A marked response to L-Dopa and L-Dopa-induced dyskinesia (LID) make the diagnosis of Parkinson's disease (PD) highly likely. This paper evaluates response to L-Dopa in Perry syndrome (PS), parkinsonism with distinct molecular and neuropathologic characteristics. METHODS Six patients with PS with a mean follow-up of 5 years (0.5-12) were assessed by movement disorder specialists and video recorded in states off and on. Additionally, DATSCAN-SPECT was performed in 3 subjects. RESULTS Four patients displayed a marked and sustained response to L-Dopa and LID. Additionally, we observed a distinct pattern of off-state predominant craniocervical dystonia responsive to L-Dopa in 4 patients, truncal dystonia in one, and dystonic head tremor in another. DATSCAN-SPECT was abnormal in 3 patients. CONCLUSIONS Patients with PS may present PD-like parkinsonism with a marked and sustained response to L-Dopa and LID. The characteristic pattern of craniocervical dystonia may be a helpful clue to the diagnosis of PS.
Collapse
Affiliation(s)
- Jarosław Dulski
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA; Division of Neurological and Psychiatric Nursing, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland; Neurology Department, St Adalbert Hospital, Copernicus PL Ltd., Gdansk, Poland
| | - Catalina Cerquera-Cleves
- Neurology Unit, Pontificia Universidad Javeriana, San Ignacio Hospital, Bogotá, Colombia; Movement Disorders Clinic, Clínica Universitaria Colombia, Bogotá, Colombia
| | - Lukasz Milanowski
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Warsaw, Poland
| | | | - Dariusz Koziorowski
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Warsaw, Poland
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Jarosław Sławek
- Division of Neurological and Psychiatric Nursing, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland; Neurology Department, St Adalbert Hospital, Copernicus PL Ltd., Gdansk, Poland
| | | |
Collapse
|
20
|
Gopinath A, Mackie P, Hashimi B, Buchanan AM, Smith AR, Bouchard R, Shaw G, Badov M, Saadatpour L, Gittis A, Ramirez-Zamora A, Okun MS, Streit WJ, Hashemi P, Khoshbouei H. DAT and TH expression marks human Parkinson's disease in peripheral immune cells. NPJ Parkinsons Dis 2022; 8:72. [PMID: 35672374 PMCID: PMC9174333 DOI: 10.1038/s41531-022-00333-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/11/2022] [Indexed: 12/26/2022] Open
Abstract
Parkinson's disease (PD) is marked by a loss of dopamine neurons, decreased dopamine transporter (DAT) and tyrosine hydroxylase (TH) expression. However, this validation approach cannot be used for diagnostic, drug effectiveness or investigational purposes in human patients because midbrain tissue is accessible postmortem. PD pathology affects both the central nervous and peripheral immune systems. Therefore, we immunophenotyped blood samples of PD patients for the presence of myeloid derived suppressor cells (MDSCs) and discovered that DAT+/TH+ monocytic MDSCs, but not granulocytic MDSCs are increased, suggesting a targeted immune response to PD. Because in peripheral immune cells DAT activity underlies an immune suppressive mechanism, we investigated whether expression levels of DAT and TH in the peripheral immune cells marks PD. We found drug naïve PD patients exhibit differential DAT+/TH+ expression in peripheral blood mononuclear cells (PBMCs) compared to aged/sex matched healthy subjects. While total PBMCs are not different between the groups, the percentage of DAT+/TH+ PBMCs was significantly higher in drug naïve PD patients compared to healthy controls irrespective of age, gender, disease duration, disease severity or treatment type. Importantly, treatment for PD negatively modulates DAT+/TH+ expressing PBMCs. Neither total nor the percentage of DAT+/TH+ PBMCs were altered in the Alzheimer's disease cohort. The mechanistic underpinning of this discovery in human PD was revealed when these findings were recapitulated in animal models of PD. The reverse translational experimental strategy revealed that alterations in dopaminergic markers in peripheral immune cells are due to the disease associated changes in the CNS. Our study demonstrates that the dopaminergic machinery on peripheral immune cells displays an association with human PD, with exciting implications in facilitating diagnosis and investigation of human PD pathophysiology.
Collapse
Affiliation(s)
- Adithya Gopinath
- Department of Neuroscience, University of Florida, Gainesville, FL, USA.
| | - Phillip Mackie
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Basil Hashimi
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | | | - Aidan R Smith
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | | | - Gerry Shaw
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- EnCor Biotechnology, Inc, Gainesville, FL, USA
| | - Martin Badov
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Leila Saadatpour
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Aryn Gittis
- Carnegie Mellon University, Pittsburgh, PA, USA
| | - Adolfo Ramirez-Zamora
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, UF Health, Gainesville, FL, USA
| | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, UF Health, Gainesville, FL, USA
| | - Wolfgang J Streit
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Parastoo Hashemi
- University of South Carolina, Columbia, SC, USA
- Department of Bioengineering, Imperial College, London, UK
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
21
|
Beckers M, Bloem BR, Verbeek MM. Mechanisms of peripheral levodopa resistance in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:56. [PMID: 35546556 PMCID: PMC9095610 DOI: 10.1038/s41531-022-00321-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease (PD) is an increasingly common neurodegenerative condition. The disease has a significant negative impact on quality of life, but a personalized management approach can help reduce disability. Pharmacotherapy with levodopa remains the cornerstone of treatment, and a gratifying and sustained response to this treatment is a supportive criterion that argues in favor of an underlying diagnosis of PD. Yet, in daily practice, it is not uncommon to encounter patients who appear to have true PD, but who nevertheless seem to lose the responsiveness to levodopa (secondary non-responders). Some patients may even fail to respond altogether (primary non-responders). Here, we address how two mechanisms of “peripheral resistance” may underlie this failing response to levodopa in persons with PD. The first explanation relates to impaired bowel motility leading to secondary bacterial overgrowth, and more specifically, to the excessive bacterial production of the enzyme tyrosine decarboxylase (TDC). This enzyme may convert levodopa to dopamine in the gut, thereby hampering entry into the circulation and, subsequently, into the brain. The second explanation relates to the systemic induction of the enzyme aromatic l-amino acid decarboxylase (AADC), leading to premature conversion of levodopa into dopamine, again limiting the bioavailability within the brain. We discuss these two mechanisms and focus on the clinical implications, potential treatments and directions for future research.
Collapse
Affiliation(s)
- Milan Beckers
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands. .,Radboudumc Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands.
| | - Bastiaan R Bloem
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands
| | - Marcel M Verbeek
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands.,Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
22
|
Neilson LE, Hollen C, Hiller A, Wooliscroft L. Oligoclonal Bands in Multiple System Atrophy: Case Report and Proposed Mechanisms of Immunogenicity. Front Neurosci 2022; 16:852939. [PMID: 35295090 PMCID: PMC8919426 DOI: 10.3389/fnins.2022.852939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple System Atrophy (MSA) is a neurodegenerative disease with heterogeneous manifestations and is therefore difficult to diagnose definitively. Because of this, oftentimes an extensive workup for mimickers is undertaken. We herein report a case where the history and cerebrospinal fluid (CSF) findings of oligoclonal bands suggested an inflammatory disorder. Immunomodulatory therapy failed to ameliorate symptoms or alter the trajectory of continued physical decline, prompting re-visitation of the diagnosis. Oligoclonal bands, while generally viewed as specific to multiple sclerosis or other inflammatory conditions, may be seen in other disease processes. Therefore, this finding should not exclude consideration of neurodegenerative disease.
Collapse
Affiliation(s)
- Lee E Neilson
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, United States.,Department of Neurology, Oregon Health and Sciences University, Portland, OR, United States
| | - Christopher Hollen
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, United States.,Department of Neurology, Oregon Health and Sciences University, Portland, OR, United States
| | - Amie Hiller
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, United States.,Department of Neurology, Oregon Health and Sciences University, Portland, OR, United States
| | - Lindsey Wooliscroft
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, United States.,Department of Neurology, Oregon Health and Sciences University, Portland, OR, United States
| |
Collapse
|
23
|
Chan DKY, Braidy N, Chen RF, Xu YH, Bentley S, Lubomski M, Davis RL, Chen J, Sue CM, Mellick GD. Strong Predictive Algorithm of Pathogenesis-Based Biomarkers Improves Parkinson's Disease Diagnosis. Mol Neurobiol 2022; 59:1476-1485. [PMID: 34993845 DOI: 10.1007/s12035-021-02604-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/15/2021] [Indexed: 10/19/2022]
Abstract
Easily accessible and accurate biomarkers can aid Parkinson's disease diagnosis. We investigated whether combining plasma levels of α-synuclein, anti-α-synuclein, and/or their ratios to amyloid beta-40 correlated with clinical diagnosis. The inclusion of amyloid beta-40 (Aβ40) is novel. Plasma levels of biomarkers were quantified with ELISA. Using receiver operating characteristic (ROC) curve analysis, levels of α-synuclein, anti-α-synuclein, and their ratios with Aβ40 were analyzed in an initial training set of cases and controls. Promising biomarkers were then used to build a diagnostic algorithm. Verification of the results of biomarkers and the algorithm was performed in an independent set. The training set consisted of 50 cases (age 65.2±9.3, range 44-83, female:male=21:29) with 50 age- and gender-matched controls (67.1±10.0, range 45-96 years; female:male=21:29). ROC curve analysis yielded the following area under the curve results: anti-α-synuclein=0.835, α-synuclein=0.738, anti-α-synuclein/Aβ40=0.737, and α-synuclein/Aβ40=0.663. A 2-step diagnostic algorithm was built: either α-synuclein or anti-α-synuclein was ≥2 times the means of controls (step-1), resulting in 74% sensitivity; and adding α-synuclein/Aβ40 or anti-α-synuclein/Aβ40 (step-2) yielded better sensitivity (82%) while using step-2 alone yielded good specificity in controls (98%). The results were verified in an independent sample of 46 cases and 126 controls, with sensitivity reaching 91.3% and specificity 90.5%. The algorithm was equally sensitive in Parkinson's disease of ≤5-year duration with 92.6% correctly identified in the training set and 90% in the verification set. With two independent samples totaling 272 subjects, our study showed that combination of biomarkers of α-synuclein, anti-α-synuclein, and their ratios to Aβ40 showed promising sensitivity and specificity.
Collapse
Affiliation(s)
- Daniel Kam Yin Chan
- University of New South Wales, Kensington, Australia. .,Western Sydney University, Sydney, Australia. .,Bankstown-Lidcombe Hospital, Eldridge Rd, Bankstown, NSW, 2200, Australia.
| | - Nady Braidy
- University of New South Wales, Kensington, Australia
| | - Ren Fen Chen
- Central Sydney Immunology Laboratory, NSW Health Pathology at Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Ying Hua Xu
- University of New South Wales, Kensington, Australia.,Bankstown-Lidcombe Hospital, Eldridge Rd, Bankstown, NSW, 2200, Australia
| | | | - Michal Lubomski
- Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
| | - Ryan L Davis
- Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
| | - Jack Chen
- University of New South Wales, Kensington, Australia
| | - Carolyn M Sue
- Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
| | | |
Collapse
|
24
|
Chmiela T, Węgrzynek J, Kasprzyk A, Waksmundzki D, Wilczek D, Gorzkowska A. If Not Insulin Resistance so What? - Comparison of Fasting Glycemia in Idiopathic Parkinson's Disease and Atypical Parkinsonism. Diabetes Metab Syndr Obes 2022; 15:1451-1460. [PMID: 35586204 PMCID: PMC9109887 DOI: 10.2147/dmso.s359856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/29/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a synucleinopathy, which presents dysautonomia, as its common non-motor symptom. Some research suggests the existing interplay between the autonomic nervous system dysfunction and glucose metabolism dysregulation in PD. OBJECTIVE To determine the prevalence of metabolic disorders with particular emphasis on glucose metabolism in patients with PD and atypical parkinsonism (AP). PATIENTS AND METHODS A retrospective study was performed by analyzing 461 clinical data of consecutive patients diagnosed with PD, multiple system atrophy (MSA) and progressive supranuclear palsy (PSP) hospitalized from 2019 to 2021 in the authors' institution. The study group included 350 patients (303 PD, 14 MSA, 33 PSP), aged 65.8 ± 9.7 years (42% were female). Laboratory results (fasting glycemia, lipid parameters, TSH, homocysteine and vitamin D3 levels) were collected. The patient's clinical condition was assessed in III part of Unified Parkinson's Disease Rating Scale (UPDRS p. III), Hoehn-Yahr scale, Mini Mental State Examination (MMSE) and Beck Depression Inventory (BDI). RESULTS Impaired fasting glycemia (IGF) was more prevalent in PD than in the PSP (43.43% vs 18.18%; p = 0.043). Similarly, PD presented a higher level of fasting glycemia (102.4 ± 16.7 mg/dl vs 92.2 ± 16.1mg/dl; p = 0.042). According to lipid parameters, patients with PD showed lower LDL cholesterol (92.3 ± 44.3mg/dl vs 119 ± 61.0mg/dl; p = 0.016) and lower BMI compared to patients with PSP (26.1 ± 4.0kg/m2 vs 29.3 ± 4.4 kg/m2; p = 0.024), but there were no statistically significant differences in triglycerides (TG) and HDL cholesterol levels. Males with PD presented greater frequency of IFG (35.05% vs 50.6%; p = 0.042), higher fasting glycemia (99.1 ± 14.3mg/dl vs 103.7 ± 14.7mg/dl; p = 0.006), lower total cholesterol, HDL cholesterol, and BMI compared to women with PD. CONCLUSION Our investigation supports an association between synucleinopathies and glucose metabolism dysregulation.
Collapse
Affiliation(s)
- Tomasz Chmiela
- Department of Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- Correspondence: Tomasz Chmiela, Department of Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland, Tel +48 32 789 46 01, Fax +48 32 789 45 55, Email
| | - Julia Węgrzynek
- Students’ Scientific Association, Department of Neurorehabilitation, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Amadeusz Kasprzyk
- Students’ Scientific Association, Department of Neurorehabilitation, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Damian Waksmundzki
- Students’ Scientific Association, Department of Neurorehabilitation, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Dawid Wilczek
- Students’ Scientific Association, Department of Neurorehabilitation, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agnieszka Gorzkowska
- Department of Neurorehabilitation, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
25
|
Doan J, Sheikh I, Elmer L, Rashid M. Video Representation of Dopamine-Responsive Multiple System Atrophy Cerebellar Type. AMERICAN JOURNAL OF CASE REPORTS 2021; 22:e933995. [PMID: 34776506 PMCID: PMC8607029 DOI: 10.12659/ajcr.933995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Patient: Male, 61-year-old
Final Diagnosis: Multiple system atrophy cerebellar type
Symptoms: Ataxia • cogwheeling rigidity • polyneuropathy • weakness
Medication: Carbidopa-levodopa
Clinical Procedure: —
Specialty: Neurology
Collapse
Affiliation(s)
- Jonathan Doan
- Department of Neurology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Irfan Sheikh
- Department of Clinical Neurophysiology (CNP)/Epilepsy, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Lawrence Elmer
- Department of Neurology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Mehmood Rashid
- Department of Neurology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
26
|
Rossi M, Perez-Lloret S, Merello M. How much time is needed in clinical practice to reach a diagnosis of clinically established Parkinson's disease? Parkinsonism Relat Disord 2021; 92:53-58. [PMID: 34695656 DOI: 10.1016/j.parkreldis.2021.10.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/08/2021] [Accepted: 10/16/2021] [Indexed: 12/26/2022]
Abstract
INTRODUCTION The implementation of accepted clinical diagnostic criteria has improved the accuracy of a clinical diagnosis of Parkinson's disease (PD). Time frames of 3-10 years have been empirically proposed to reach a diagnosis of clinically established PD. METHODS We explored the time to a Final Clinical Diagnosis (FCD) and the factors that predict faster diagnoses in patients presenting with parkinsonism and/or tremor between 2009 and 2015 at our tertiary center. All patients underwent a standardized workout process to reach a FCD, which included an acute levodopa challenge (LDC) after the first visit. RESULTS Among the 326 patients included, 215 (66%) received a FCD within the first six months after the LDC. A FCD was reached in 95% and 100% of patients in 33 and 108 months, respectively. PD was the FCD in 196 patients (60.1%). The FCD was reached faster in patients with a positive response to levodopa and when the FCD was PD. CONCLUSION The time needed to reach a final diagnosis in the clinical setting was 2.75 years in 95% of patients presenting initially with parkinsonism and/or tremor. Patients with positive responses to levodopa at the LDC, benefited from shorter delays until the FCD.
Collapse
Affiliation(s)
- Malco Rossi
- Movement Disorders Section, Neuroscience Department, Fleni, Buenos Aires, Argentina; National Research Council (CONICET), Buenos Aires, Argentina.
| | - Santiago Perez-Lloret
- National Research Council (CONICET), Buenos Aires, Argentina; Faculty of Medicine, Pontifical Catholic University of Argentina, Buenos Aires, Argentina; Universidad Abierta Interamericana, Centro de Altos Estudios en Ciencias Humanas y de la Salud (UAI-CAECIHS), Buenos Aires, Argentina; Department of Physiology, Faculty of Medicine, University of Buenos Aires, Argentina
| | - Marcelo Merello
- Movement Disorders Section, Neuroscience Department, Fleni, Buenos Aires, Argentina; National Research Council (CONICET), Buenos Aires, Argentina; Faculty of Medicine, Pontifical Catholic University of Argentina, Buenos Aires, Argentina
| |
Collapse
|
27
|
Lei Q, Wu T, Wu J, Hu X, Guan Y, Wang Y, Yan J, Shi G. Roles of α‑synuclein in gastrointestinal microbiome dysbiosis‑related Parkinson's disease progression (Review). Mol Med Rep 2021; 24:734. [PMID: 34414447 PMCID: PMC8404091 DOI: 10.3892/mmr.2021.12374] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease amongst the middle-aged and elderly populations. Several studies have confirmed that the microbiota-gut-brain axis (MGBA) serves a key role in the pathogenesis of PD. Changes to the gastrointestinal microbiome (GM) cause misfolding and abnormal aggregation of α-synuclein (α-syn) in the intestine. Abnormal α-syn is not eliminated via physiological mechanisms and is transported into the central nervous system (CNS) via the vagus nerve. The abnormal levels of α-syn aggregate in the substantia nigra pars compacta, not only leading to the formation of eosinophilic Lewis Bodies in the cytoplasm and mitochondrial dysfunction in dopaminergic (DA) neurons, but also leading to the stimulation of an inflammatory response in the microglia. These pathological changes result in an increase in oxidative stress (OS), which triggers nerve cell apoptosis, a characteristic of PD. This increase in OS further oxidizes and intensifies abnormal aggregation of α-syn, eventually forming a positive feedback loop. The present review discusses the abnormal accumulation of α-syn in the intestine caused by the GM changes and the increased levels of α-syn transport to the CNS via the MGBA, resulting in the loss of DA neurons and an increase in the inflammatory response of microglial cells in the brain of patients with PD. In addition, relevant clinical therapeutic strategies for improving the GM and reducing α-syn accumulation to relieve the symptoms and progression of PD are described.
Collapse
Affiliation(s)
- Qingchun Lei
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Tingting Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Jin Wu
- Department of Neurosurgery, Puer People's Hospital, Pu'er, Yunnan 665000, P.R. China
| | - Xiaogang Hu
- Department of Neurosurgery, Puer People's Hospital, Pu'er, Yunnan 665000, P.R. China
| | - Yingxia Guan
- Department of Vasculocardiology, The Affiliated Hospital of Yunnan University, Kunming, Yunnan 650021, P.R. China
| | - Ying Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Jinyuan Yan
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Guolin Shi
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| |
Collapse
|
28
|
Lenka A, Lamotte G, Goldstein DS. Cardiac 18F-Dopamine PET Distinguishes PD with Orthostatic Hypotension from Parkinsonian MSA. Mov Disord Clin Pract 2021; 8:582-586. [PMID: 33981791 PMCID: PMC8088110 DOI: 10.1002/mdc3.13190] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/15/2021] [Accepted: 02/28/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Parkinson's disease with orthostatic hypotension (PD + OH) can be difficult to distinguish clinically from the parkinsonian form of multiple system atrophy (MSA-P). Previous studies examined cardiac sympathetic neuroimaging to differentiate PD from MSA but without focusing specifically on PD + OH versus MSA-P, which often is the relevant differential diagnostic issue. OBJECTIVE To investigate the utility of cardiac sympathetic neuroimaging by 18F-dopamine positron emission tomographic (PET) scanning for separating PD + OH from MSA-P. METHODS Cardiac 18F-dopamine PET data were analyzed from 50 PD + OH and 68 MSA-P patients evaluated at the NIH Clinical Center from 1990 to 2020. Noradrenergic deficiency was defined by interventricular septal 18F-dopamine-derived radioactivity <6000 nCi-kg/cc-mCi in the 5' frame with mid-point 8' after initiation of 3' tracer injection. RESULTS 18F-Dopamine PET separated the PD + OH from the MSA-P group with a sensitivity of 92% and specificity of 96%. CONCLUSION Cardiac 18F-dopamine PET scanning efficiently distinguishes PD + OH from MSA-P.
Collapse
Affiliation(s)
- Abhishek Lenka
- Department of NeurologyMedstar Georgetown University HospitalWashington, DCUSA
- Autonomic Medicine Section, National Institute of Neurological Disorders and Stroke (NINDS)National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Guillaume Lamotte
- Autonomic Medicine Section, National Institute of Neurological Disorders and Stroke (NINDS)National Institutes of Health (NIH)BethesdaMarylandUSA
- Department of NeurologyMayo ClinicRochesterMinnesotaUSA
| | - David S. Goldstein
- Autonomic Medicine Section, National Institute of Neurological Disorders and Stroke (NINDS)National Institutes of Health (NIH)BethesdaMarylandUSA
| |
Collapse
|