1
|
Li X, Yu L, Liu X, Shi T, Zhang Y, Xiao Y, Wang C, Song L, Li N, Liu X, Chen Y, Petersen RB, Cheng X, Xue W, Yu YV, Xu L, Zheng L, Chen H, Huang K. β-synuclein regulates the phase transitions and amyloid conversion of α-synuclein. Nat Commun 2024; 15:8748. [PMID: 39384788 PMCID: PMC11464764 DOI: 10.1038/s41467-024-53086-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024] Open
Abstract
Parkinson's disease (PD) and Dementia with Lewy Bodies (DLB) are neurodegenerative disorders characterized by the accumulation of α-synuclein aggregates. α-synuclein forms droplets via liquid-liquid phase separation (LLPS), followed by liquid-solid phase separation (LSPS) to form amyloids, how this process is physiologically-regulated remains unclear. β-synuclein colocalizes with α-synuclein in presynaptic terminals. Here, we report that β-synuclein partitions into α-synuclein condensates promotes the LLPS, and slows down LSPS of α-synuclein, while disease-associated β-synuclein mutations lose these capacities. Exogenous β-synuclein improves the movement defects and prolongs the lifespan of an α-synuclein-expressing NL5901 Caenorhabditis elegans strain, while disease-associated β-synuclein mutants aggravate the symptoms. Decapeptides targeted at the α-/β-synuclein interaction sites are rationally designed, which suppress the LSPS of α-synuclein, rescue the movement defects, and prolong the lifespan of C. elegans NL5901. Together, we unveil a Yin-Yang balance between α- and β-synuclein underlying the normal and disease states of PD and DLB with therapeutical potentials.
Collapse
Affiliation(s)
- Xi Li
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Linwei Yu
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Xikai Liu
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, China
| | - Tianyi Shi
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhang
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Yushuo Xiao
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Wang
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Liangliang Song
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Li
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Xinran Liu
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Yuchen Chen
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, MI, USA
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weikang Xue
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yanxun V Yu
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Li Xu
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hong Chen
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China.
| | - Kun Huang
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China.
- Tongji-Rong Cheng Biomedical Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Fitisemanu FM, Padilla-Benavides T. Emerging perspectives of copper-mediated transcriptional regulation in mammalian cell development. Metallomics 2024; 16:mfae046. [PMID: 39375833 PMCID: PMC11503025 DOI: 10.1093/mtomcs/mfae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Copper (Cu) is a vital micronutrient necessary for proper development and function of mammalian cells and tissues. Cu mediates the function of redox active enzymes that facilitate metabolic processes and signaling pathways. Cu levels are tightly regulated by a network of Cu-binding transporters, chaperones, and small molecule ligands. Extensive research has focused on the mammalian Cu homeostasis (cuprostasis) network and pathologies, which result from mutations and perturbations. There are roles for Cu-binding proteins as transcription factors (Cu-TFs) and regulators that mediate metal homeostasis through the activation or repression of genes associated with Cu handling. Emerging evidence suggests that Cu and some Cu-TFs may be involved in the regulation of targets related to development-expanding the biological roles of Cu-binding proteins. Cu and Cu-TFs are implicated in embryonic and tissue-specific development alongside the mediation of the cellular response to oxidative stress and hypoxia. Cu-TFs are also involved in the regulation of targets implicated in neurological disorders, providing new biomarkers and therapeutic targets for diseases such as Parkinson's disease, prion disease, and Friedreich's ataxia. This review provides a critical analysis of the current understanding of the role of Cu and cuproproteins in transcriptional regulation.
Collapse
|
3
|
Barba L, Abu-Rumeileh S, Barthel H, Massa F, Foschi M, Bellomo G, Gaetani L, Thal DR, Parnetti L, Otto M. Clinical and diagnostic implications of Alzheimer's disease copathology in Lewy body disease. Brain 2024; 147:3325-3343. [PMID: 38991041 DOI: 10.1093/brain/awae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/03/2024] [Accepted: 06/02/2024] [Indexed: 07/13/2024] Open
Abstract
Concomitant Alzheimer's disease (AD) pathology is a frequent event in the context of Lewy body disease (LBD), occurring in approximately half of all cases. Evidence shows that LBD patients with AD copathology show an accelerated disease course, a greater risk of cognitive decline and an overall poorer prognosis. However, LBD-AD cases may show heterogeneous motor and non-motor phenotypes with a higher risk of dementia and, consequently, be not rarely misdiagnosed. In this review, we summarize the current understanding of LBD-AD by discussing the synergistic effects of AD neuropathological changes and Lewy pathology and their clinical relevance. Furthermore, we provide an extensive overview of neuroimaging and fluid biomarkers under assessment for use in LBD-AD and their possible diagnostic and prognostic values. AD pathology can be predicted in vivo by means of CSF, MRI and PET markers, whereas the most promising technique to date for identifying Lewy pathology in different biological tissues is the α-synuclein seed amplification assay. Pathological imaging and CSF AD biomarkers are associated with a higher likelihood of cognitive decline in LBD but do not always mirror the neuropathological severity as in pure AD. Implementing the use of blood-based AD biomarkers might allow faster screening of LBD patients for AD copathology, thus improving the overall diagnostic sensitivity for LBD-AD. Finally, we discuss the literature on novel candidate biomarkers being exploited in LBD-AD to investigate other aspects of neurodegeneration, such as neuroaxonal injury, glial activation and synaptic dysfunction. The thorough characterization of AD copathology in LBD should be taken into account when considering differential diagnoses of dementia syndromes, to allow prognostic evaluation on an individual level, and to guide symptomatic and disease-modifying therapies.
Collapse
Affiliation(s)
- Lorenzo Barba
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle 06120, Germany
| | - Samir Abu-Rumeileh
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle 06120, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, University Hospital of Leipzig, Leipzig 04103, Germany
| | - Federico Massa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa 16132, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa 16132, Italy
| | - Matteo Foschi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila 67100, Italy
- Department of Neuroscience, Neurology Unit, S. Maria delle Croci Hospital of Ravenna, AUSL Romagna, Ravenna 48121, Italy
| | - Giovanni Bellomo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia 06129, Italy
| | - Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia 06129, Italy
| | - Dietmar R Thal
- Department of Imaging and Pathology, Laboratory for Neuropathology, Leuven Brain Institute, KU Leuven, Leuven 3001, Belgium
- Department of Pathology, UZ Leuven, Leuven 3000, Belgium
| | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia 06129, Italy
| | - Markus Otto
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle 06120, Germany
| |
Collapse
|
4
|
Gaetani L, Paolini Paoletti F, Mechelli A, Bellomo G, Parnetti L. Research advancement in fluid biomarkers for Parkinson's disease. Expert Rev Mol Diagn 2024:1-14. [PMID: 39262126 DOI: 10.1080/14737159.2024.2403073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/07/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
INTRODUCTION Diagnostic criteria for Parkinson's disease (PD) rely on clinical, mainly motor, features, implying that pre-motor phase cannot be accurately identified. To achieve a reliable early diagnosis, similar to what has been done for Alzheimer's disease (AD), a shift from clinical to biological identification of PD is being pursued. This shift has taken great advantage from the research on cerebrospinal fluid (CSF) biomarkers as they mirror the ongoing molecular pathogenic mechanisms taking place in PD, thus intercepting the disease timely with respect to clinical manifestations. AREAS COVERED CSF α-synuclein seed amplification assay (αS-SAA) has emerged as the most promising biomarker of α-synucleinopathy. CSF biomarkers reflecting AD-pathology and axonal damage (neurofilament light chain) and a novel marker of dopaminergic dysfunction (DOPA decarboxylase) add valuable diagnostic and prognostic information in the neurochemical characterization of PD. EXPERT OPINION A biological classification system of PD, encompassing pathophysiological and staging biomarkers, might ensure both early identification and prognostic characterization of the patients. This approach could allow for the best setting for disease-modifying treatments which are currently under investigation.
Collapse
Affiliation(s)
- Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Alessandro Mechelli
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giovanni Bellomo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
5
|
Baridjavadi Z, Mahmoudi M, Abdollahi N, Ebadpour N, Mollazadeh S, Haghmorad D, Esmaeili SA. The humoral immune landscape in Parkinson's disease: Unraveling antibody and B cell changes. Cell Biochem Funct 2024; 42:e4109. [PMID: 39189398 DOI: 10.1002/cbf.4109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by the accumulation of α-synuclein (α-syn) in the brain and progressive loss of dopaminergic neurons in the substantia nigra (SN) region of the brain. Although the role of neuroinflammation and cellular immunity in PD has been extensively studied, the involvement of humoral immunity mediated by antibodies and B cells has received less attention. This article provides a comprehensive review of the current understanding of humoral immunity in PD. Here, we discuss alterations in B cells in PD, including changes in their number and phenotype. Evidence mostly indicates a decrease in the quantity of B cells in PD, accompanied by a shift in the population from naïve to memory cells. Furthermore, the existence of autoantibodies that target several antigens in PD has been investigated (i.e., anti-α-syn autoantibodies, anti-glial-derived antigen antibodies, anti-Tau antibodies, antineuromelanin antibodies, and antibodies against the renin-angiotensin system). Several autoantibodies are generated in PD, which may either provide protection or have harmful effects on disease progression. Furthermore, we have reviewed studies focusing on the utilization of antibodies as a potential treatment for PD, both in animal and clinical trials. This review sheds light on the intricate interplay between antibodies and the pathological processes in PD, including complement system activation.
Collapse
Affiliation(s)
- Zahra Baridjavadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Abdollahi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Ebadpour
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Dariush Haghmorad
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
D V Nair L, Sivanesan SK, Kumar DS. Synucleins As Biomarkers of Severity in Autism Spectrum Disorder. Cureus 2024; 16:e69356. [PMID: 39398840 PMCID: PMC11471306 DOI: 10.7759/cureus.69356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Abstract
Introduction Autism spectrum disorder (ASD) is a lifelong disorder affecting children quite early in life, manifested as delays in communication and stereotypic behaviors. To date, it is diagnosed clinically using the Diagnostic and Statistical Manual-5 (DSM-V) criteria due to the lack of biomarkers that can specifically denote the disorder. The role of synucleins in this context has been considered due to the increasing evidence of neurodegeneration in many autistic children. Synucleins are a group of soluble neuronal proteins primarily expressed in the central nervous system. They are of three types: α-, β-, and ɣ-synuclein. α-synuclein is involved in vesicle trafficking and release of neurotransmitters. There is no uniformity in the scientific community regarding their levels of autism, with few studies showing increasing levels and others to the contrary. Hence, the present study was conceived to analyze the levels of α-synuclein and β-synuclein in autistic children and to correlate with the disease severity. Objectives The main objective of the study was to assess the levels of α- and β-synuclein in autistic children of 2-8 years of age and to identify the correlation between the severity of core symptoms of autism and α- and β-synuclein levels. It is intended to assess the possibility of using α- and β-synuclein/their ratio as a biomarker of the severity of autism. Materials and methods Plasma levels of α-synuclein and β-synuclein were measured in 160 ASD children and 40 healthy age and sex-matched children by ELISA. Their symptom severity was assessed with CARS-2 ST and the Indian Scale of Autism Assessment (ISAA). Values of α- and β-synuclein were analyzed for correlation with the severity rating of ASD. Cut-off values of α-synuclein and β-synuclein that discriminate the presence of autism and its severity were assessed using Jamovi 2.4.14 software. Results The results show that α-synuclein levels were significantly reduced (5.02 ± 0.586; range: 3.13-6.0 ng/ml) when compared with healthy controls (29.47 ± 18.62 ng/ml; range: 22.39- 36.56) with p < 0.001, and β-synuclein levels were elevated (1424 ng/ml ± 122; range: 1229-1616 ng/ml) when compared to control, though not significantly. Plasma levels of α-synuclein significantly correlate with disease severity with good diagnostic accuracy (86%), but β-synuclein levels did not correlate with severity. The fold changes of synucleins, especially the fold decrease in levels of α-synuclein, were discriminative for the diagnosis and severity with good sensitivity (93.6%), specificity (74.3%), positive predictive (92.6%), and negative predictive values (76.5%). The fold increase in β-synuclein did not have any significance in predicting the severity of autism. Conclusion The present study showed that α-synuclein and β-synuclein were associated with ASD and can be used to assess its severity. A fold decrease in α-synuclein was found to have good discriminating value in differentiating the severity of autism. It may be of use especially in mild and high-functioning autism, when clinically distinguishing them may be difficult.
Collapse
Affiliation(s)
- Lal D V Nair
- Pediatrics, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Senthil Kumar Sivanesan
- Research and Development, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Devika S Kumar
- Research and Development, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
7
|
Tuominen RK, Renko JM. Biomarkers of Parkinson's disease in perspective of early diagnosis and translation of neurotrophic therapies. Basic Clin Pharmacol Toxicol 2024; 135:271-284. [PMID: 38973499 DOI: 10.1111/bcpt.14042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/15/2024] [Accepted: 05/28/2024] [Indexed: 07/09/2024]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by progressive loss of dopamine neurons and aberrant deposits of alpha-synuclein (α-syn) in the brain. The symptomatic treatment is started after the onset of motor manifestations in a late stage of the disease. Preclinical studies with neurotrophic factors (NTFs) show promising results of disease-modifying neuroprotective or even neurorestorative effects. Four NTFs have entered phase I-II clinical trials with inconclusive outcomes. This is not surprising because the preclinical evidence is from acute early-stage disease models, but the clinical trials included advanced PD patients. To conclude the value of NTF therapies, clinical studies should be performed in early-stage patients with prodromal symptoms, that is, before motor manifestations. In this review, we summarize currently available diagnostic and prognostic biomarkers that could help identify at-risk patients benefiting from NTF therapies. Focus is on biochemical and imaging biomarkers, but also other modalities are discussed. Neuroimaging is the most important diagnostic tool today, but α-syn imaging is not yet viable. Modern techniques allow measuring various forms of α-syn in cerebrospinal fluid, blood, saliva, and skin. Digital biomarkers and artificial intelligence offer new means for early diagnosis and longitudinal follow-up of degenerative brain diseases.
Collapse
Affiliation(s)
- Raimo K Tuominen
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Juho-Matti Renko
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Brazdis RM, Zoicas I, Kornhuber J, Mühle C. Brain Region-Specific Expression Levels of Synuclein Genes in an Acid Sphingomyelinase Knockout Mouse Model: Correlation with Depression-/Anxiety-Like Behavior and Locomotor Activity in the Absence of Genotypic Variation. Int J Mol Sci 2024; 25:8685. [PMID: 39201372 PMCID: PMC11354454 DOI: 10.3390/ijms25168685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 09/02/2024] Open
Abstract
Accumulating evidence suggests an involvement of sphingolipids, vital components of cell membranes and regulators of cellular processes, in the pathophysiology of both Parkinson's disease and major depressive disorder, indicating a potential common pathway in these neuropsychiatric conditions. Based on this interaction of sphingolipids and synuclein proteins, we explored the gene expression patterns of α-, β-, and γ-synuclein in a knockout mouse model deficient for acid sphingomyelinase (ASM), an enzyme catalyzing the hydrolysis of sphingomyelin to ceramide, and studied associations with behavioral parameters. Normalized Snca, Sncb, and Sncg gene expression was determined by quantitative PCR in twelve brain regions of sex-mixed homozygous (ASM-/-, n = 7) and heterozygous (ASM+/-, n = 7) ASM-deficient mice, along with wild-type controls (ASM+/+, n = 5). The expression of all three synuclein genes was brain region-specific but independent of ASM genotype, with β-synuclein showing overall higher levels and the least variation. Moreover, we discovered correlations of gene expression levels between brain regions and depression- and anxiety-like behavior and locomotor activity, such as a positive association between Snca mRNA levels and locomotion. Our results suggest that the analysis of synuclein genes could be valuable in identifying biomarkers and comprehending the common pathological mechanisms underlying various neuropsychiatric disorders.
Collapse
Affiliation(s)
| | | | | | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (R.-M.B.); (I.Z.); (J.K.)
| |
Collapse
|
9
|
Ghosh G, Neely BA, Bland AM, Whitmer ER, Field CL, Duignan PJ, Janech MG. Identification of Candidate Protein Biomarkers Associated with Domoic Acid Toxicosis in Cerebrospinal Fluid of California Sea Lions ( Zalophus californianus). J Proteome Res 2024; 23:2419-2430. [PMID: 38807289 PMCID: PMC11232103 DOI: 10.1021/acs.jproteome.4c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Since 1998, California sea lion (Zalophus californianus) stranding events associated with domoic acid toxicosis (DAT) have consistently increased. Outside of direct measurement of domoic acid in bodily fluids at the time of stranding, there are no practical nonlethal clinical tests for the diagnosis of DAT that can be utilized in a rehabilitation facility. Proteomics analysis was conducted to discover candidate protein markers of DAT using cerebrospinal fluid from stranded California sea lions with acute DAT (n = 8), chronic DAT (n = 19), or without DAT (n = 13). A total of 2005 protein families were identified experiment-wide. A total of 83 proteins were significantly different in abundance across the three groups (adj. p < 0.05). MDH1, PLD3, ADAM22, YWHAG, VGF, and CLSTN1 could discriminate California sea lions with or without DAT (AuROC > 0.75). IGKV2D-28, PTRPF, KNG1, F2, and SNCB were able to discriminate acute DAT from chronic DAT (AuROC > 0.75). Proteins involved in alpha synuclein deposition were over-represented as classifiers of DAT, and many of these proteins have been implicated in a variety of neurodegenerative diseases. These proteins should be considered potential markers for DAT in California sea lions and should be prioritized for future validation studies as biomarkers.
Collapse
Affiliation(s)
- Gautam Ghosh
- Department of Biology, Grice Marine Laboratory, College of Charleston, Charleston, South Carolina 29412, United States
| | - Benjamin A Neely
- National Institute of Standards and Technology (NIST) Charleston, Charleston, South Carolina 29412, United States
| | - Alison M Bland
- Department of Biology, Grice Marine Laboratory, College of Charleston, Charleston, South Carolina 29412, United States
- Hollings Marine Laboratory, College of Charleston, Charleston, South Carolina 29412, United States
| | - Emily R Whitmer
- The Marine Mammal Center, 2000 Bunker Road, Sausalito, California 94965, United States
| | - Cara L Field
- The Marine Mammal Center, 2000 Bunker Road, Sausalito, California 94965, United States
| | - Pádraig J Duignan
- The Marine Mammal Center, 2000 Bunker Road, Sausalito, California 94965, United States
| | - Michael G Janech
- Department of Biology, Grice Marine Laboratory, College of Charleston, Charleston, South Carolina 29412, United States
- Hollings Marine Laboratory, College of Charleston, Charleston, South Carolina 29412, United States
| |
Collapse
|
10
|
de Boni L, Wallis A, Hays Watson A, Ruiz-Riquelme A, Leyland LA, Bourinaris T, Hannaway N, Wüllner U, Peters O, Priller J, Falkenburger BH, Wiltfang J, Bähr M, Zerr I, Bürger K, Perneczky R, Teipel S, Löhle M, Hermann W, Schott BH, Brockmann K, Spottke A, Haustein K, Breuer P, Houlden H, Weil RS, Bartels T. Aggregation-resistant alpha-synuclein tetramers are reduced in the blood of Parkinson's patients. EMBO Mol Med 2024; 16:1657-1674. [PMID: 38839930 PMCID: PMC11250827 DOI: 10.1038/s44321-024-00083-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/02/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024] Open
Abstract
Synucleinopathies such as Parkinson's disease (PD) are defined by the accumulation and aggregation of the α-synuclein protein in neurons, glia and other tissues. We have previously shown that destabilization of α-synuclein tetramers is associated with familial PD due to SNCA mutations and demonstrated brain-region specific alterations of α-synuclein multimers in sporadic PD patients following the classical Braak spreading theory. In this study, we assessed relative levels of disordered and higher-ordered multimeric forms of cytosolic α-synuclein in blood from familial PD with G51D mutations and sporadic PD patients. We used an adapted in vitro-cross-linking protocol for human EDTA-whole blood. The relative levels of higher-ordered α-synuclein tetramers were diminished in blood from familial PD and sporadic PD patients compared to controls. Interestingly, the relative amount of α-synuclein tetramers was already decreased in asymptomatic G51D carriers, supporting the hypothesis that α-synuclein multimer destabilization precedes the development of clinical PD. Our data, therefore suggest that measuring α-synuclein tetramers in blood may have potential as a facile biomarker assay for early detection and quantitative tracking of PD progression.
Collapse
Affiliation(s)
- Laura de Boni
- UK Dementia Research Institute, University College London, London, W1T 7NF, UK
- Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147, Cologne, Germany
- Department of Neurology, University Hospital Bonn, 53127, Bonn, Germany
| | - Amber Wallis
- UK Dementia Research Institute, University College London, London, W1T 7NF, UK
| | - Aurelia Hays Watson
- UK Dementia Research Institute, University College London, London, W1T 7NF, UK
| | | | - Louise-Ann Leyland
- Dementia Research Center, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Thomas Bourinaris
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Naomi Hannaway
- Dementia Research Center, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Ullrich Wüllner
- German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany
- Departments of Neurology and Neurodegenerative Diseases, University Bonn, 53127, Bonn, Germany
| | - Oliver Peters
- Institute of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117, Berlin, Germany
- University of Edinburgh and UK DRI, Edinburgh, EH16 4SB, UK
- School of Medicine, Technical University of Munich, Department of Psychiatry and Psychotherapy, 81675, Munich, Germany
| | - Björn H Falkenburger
- German Center for Neurodegenerative Diseases (DZNE), 01307, Dresden, Germany
- Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307, Dresden, Germany
| | - Jens Wiltfang
- German Center for Neurodegenerative Diseases (DZNE), 37075, Goettingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Georg August University, 37075, Göttingen, Germany
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Mathias Bähr
- German Center for Neurodegenerative Diseases (DZNE), 37075, Goettingen, Germany
- Department of Neurology, University Medical Center, Georg August University, 37075, Göttingen, Germany
- Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Inga Zerr
- German Center for Neurodegenerative Diseases (DZNE), 37075, Goettingen, Germany
- Department of Neurology, University Medical Center, Georg August University, 37075, Göttingen, Germany
| | - Katharina Bürger
- German Center for Neurodegenerative Diseases (DZNE), 81377, Munich, Germany
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases (DZNE), 81377, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 81377, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy) Munich, 81377, Munich, Germany
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, W6 8RP, UK
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald, 17489, Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, 18147, Rostock, Germany
| | - Matthias Löhle
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald, 17489, Rostock, Germany
- Department of Neurology, University of Rostock, 18057, Rostock, Germany
| | - Wiebke Hermann
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald, 17489, Rostock, Germany
- Department of Neurology, University of Rostock, 18057, Rostock, Germany
| | - Björn-Hendrik Schott
- German Center for Neurodegenerative Diseases (DZNE), 37075, Goettingen, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Göttingen, Georg August University, 37075, Göttingen, Germany
| | - Kathrin Brockmann
- German Center for Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, University of Tübingen, 72076, Tübingen, Germany
| | - Annika Spottke
- Department of Neurology, University Hospital Bonn, 53127, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany
| | - Katrin Haustein
- Department of Neurology, University Hospital Bonn, 53127, Bonn, Germany
| | - Peter Breuer
- Department of Neurology, University Hospital Bonn, 53127, Bonn, Germany
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Rimona S Weil
- Dementia Research Center, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Tim Bartels
- UK Dementia Research Institute, University College London, London, W1T 7NF, UK.
| |
Collapse
|
11
|
Oosthoek M, Vermunt L, de Wilde A, Bongers B, Antwi-Berko D, Scheltens P, van Bokhoven P, Vijverberg EGB, Teunissen CE. Utilization of fluid-based biomarkers as endpoints in disease-modifying clinical trials for Alzheimer's disease: a systematic review. Alzheimers Res Ther 2024; 16:93. [PMID: 38678292 PMCID: PMC11055304 DOI: 10.1186/s13195-024-01456-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/12/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Clinical trials in Alzheimer's disease (AD) had high failure rates for several reasons, including the lack of biological endpoints. Fluid-based biomarkers may present a solution to measure biologically relevant endpoints. It is currently unclear to what extent fluid-based biomarkers are applied to support drug development. METHODS We systematically reviewed 272 trials (clinicaltrials.gov) with disease-modifying therapies starting between 01-01-2017 and 01-01-2024 and identified which CSF and/or blood-based biomarker endpoints were used per purpose and trial type. RESULTS We found that 44% (N = 121) of the trials employed fluid-based biomarker endpoints among which the CSF ATN biomarkers (Aβ (42/40), p/tTau) were used most frequently. In blood, inflammatory cytokines, NFL, and pTau were most frequently employed. Blood- and CSF-based biomarkers were used approximately equally. Target engagement biomarkers were used in 26% (N = 72) of the trials, mainly in drugs targeting inflammation and amyloid. Lack of target engagement markers is most prominent in synaptic plasticity/neuroprotection, neurotransmitter receptor, vasculature, epigenetic regulators, proteostasis and, gut-brain axis targeting drugs. Positive biomarker results did not always translate to cognitive effects, most commonly the small significant reductions in CSF tau isoforms that were seen following anti-Tau treatments. On the other hand, the positive anti-amyloid trials results on cognitive function were supported by clear effect in most fluid markers. CONCLUSIONS As the field moves towards primary prevention, we expect an increase in the use of fluid-based biomarkers to determine disease modification. Use of blood-based biomarkers will rapidly increase, but CSF markers remain important to determine brain-specific treatment effects. With improving techniques, new biomarkers can be found to diversify the possibilities in measuring treatment effects and target engagement. It remains important to interpret biomarker results in the context of the trial and be aware of the performance of the biomarker. Diversifying biomarkers could aid in the development of surrogacy biomarkers for different drug targets.
Collapse
Affiliation(s)
- Marlies Oosthoek
- Department of Laboratory Medicine, Neurochemistry Laboratory, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - Lisa Vermunt
- Department of Laboratory Medicine, Neurochemistry Laboratory, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Arno de Wilde
- EQT Life Sciences, Johannes Vermeersplein 9, 1071 DV, Amsterdam, The Netherlands
| | - Bram Bongers
- Department of Laboratory Medicine, Neurochemistry Laboratory, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Daniel Antwi-Berko
- Department of Laboratory Medicine, Neurochemistry Laboratory, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Philip Scheltens
- EQT Life Sciences, Johannes Vermeersplein 9, 1071 DV, Amsterdam, The Netherlands
- Alzheimer Center, Department of Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | | | - Everard G B Vijverberg
- Alzheimer Center, Department of Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Department of Laboratory Medicine, Neurochemistry Laboratory, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Kumar P, Goettemoeller AM, Espinosa-Garcia C, Tobin BR, Tfaily A, Nelson RS, Natu A, Dammer EB, Santiago JV, Malepati S, Cheng L, Xiao H, Duong DD, Seyfried NT, Wood LB, Rowan MJM, Rangaraju S. Native-state proteomics of Parvalbumin interneurons identifies unique molecular signatures and vulnerabilities to early Alzheimer's pathology. Nat Commun 2024; 15:2823. [PMID: 38561349 PMCID: PMC10985119 DOI: 10.1038/s41467-024-47028-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Dysfunction in fast-spiking parvalbumin interneurons (PV-INs) may represent an early pathophysiological perturbation in Alzheimer's Disease (AD). Defining early proteomic alterations in PV-INs can provide key biological and translationally-relevant insights. We used cell-type-specific in-vivo biotinylation of proteins (CIBOP) coupled with mass spectrometry to obtain native-state PV-IN proteomes. PV-IN proteomic signatures include high metabolic and translational activity, with over-representation of AD-risk and cognitive resilience-related proteins. In bulk proteomes, PV-IN proteins were associated with cognitive decline in humans, and with progressive neuropathology in humans and the 5xFAD mouse model of Aβ pathology. PV-IN CIBOP in early stages of Aβ pathology revealed signatures of increased mitochondria and metabolism, synaptic and cytoskeletal disruption and decreased mTOR signaling, not apparent in whole-brain proteomes. Furthermore, we demonstrated pre-synaptic defects in PV-to-excitatory neurotransmission, validating our proteomic findings. Overall, in this study we present native-state proteomes of PV-INs, revealing molecular insights into their unique roles in cognitive resiliency and AD pathogenesis.
Collapse
Affiliation(s)
- Prateek Kumar
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA
- 3 Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Annie M Goettemoeller
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA
- Neuroscience Graduate Program, Laney Graduate School, Emory University, Atlanta, USA
| | - Claudia Espinosa-Garcia
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- 3 Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Brendan R Tobin
- Georgia W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, and Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Ali Tfaily
- 3 Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Ruth S Nelson
- 3 Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Aditya Natu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Eric B Dammer
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA
- Department of Biochemistry, Emory University, Atlanta, GA, 30322, USA
| | - Juliet V Santiago
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA
- Neuroscience Graduate Program, Laney Graduate School, Emory University, Atlanta, USA
| | - Sneha Malepati
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Lihong Cheng
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA
| | - Hailian Xiao
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA
| | - Duc D Duong
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA
- Department of Biochemistry, Emory University, Atlanta, GA, 30322, USA
| | - Nicholas T Seyfried
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA
- Department of Biochemistry, Emory University, Atlanta, GA, 30322, USA
| | - Levi B Wood
- Georgia W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, and Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30322, USA
- School of Chemical and Biological Engineering, GeoInsrgia titute of Technology, Atlanta, GA, 30322, USA
| | - Matthew J M Rowan
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA.
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Srikant Rangaraju
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA.
- 3 Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
13
|
Xu X, Gu W, Shen X, Liu Y, Zhai S, Xu C, Cui G, Xiao L. An interactive web application to identify early Parkinsonian non-tremor-dominant subtypes. J Neurol 2024; 271:2010-2018. [PMID: 38175296 DOI: 10.1007/s00415-023-12156-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/26/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Parkinson's disease (PD) patients with tremor-dominant (TD) and non-tremor-dominant (NTD) subtypes exhibit heterogeneity. Rapid identification of different motor subtypes may help to develop personalized treatment plans. METHODS The data were acquired from the Parkinson's Disease Progression Marker Initiative (PPMI). Following the identification of predictors utilizing recursive feature elimination (RFE), seven classical machine learning (ML) models, including logistic regression, support vector machine, decision tree, random forest, extreme gradient boosting, etc., were trained to predict patients' motor subtypes, evaluating the performance of models through the area under the receiver operating characteristic curve (AUC) and validating by the follow-up data. RESULTS The feature subset engendered by RFE encompassed 20 features, comprising some clinical assessments and cerebrospinal fluid α-synuclein (CSF α-syn). ML models fitted in the RFE subset performed better in the test and validation sets. The best performing model was support vector machines with the polynomial kernel (P-SVM), achieving an AUC of 0.898. Five-fold repeated cross-validation showed the P-SVM model with CSF α-syn performed better than the model without CSF α-syn (P = 0.034). The Shapley additive explanation plot (SHAP) illustrated that how the levels of each feature affect the predicted probability as NTD subtypes. CONCLUSION An interactive web application was developed based on the P-SVM model constructed from feature subset by RFE. It can identify the current motor subtypes of PD patients, making it easier to understand the status of patients and develop personalized treatment plans.
Collapse
Affiliation(s)
- Xiaozhou Xu
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, China
| | - Wen Gu
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, China
| | - Xiaohui Shen
- School of Mathematical Sciences, Huaibei Normal University, Huaibei, 235000, Anhui Province, China
| | - Yumeng Liu
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, China
| | - Shilei Zhai
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, China
| | - Chuanying Xu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221000, Jiangsu Province, China.
| | - Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221000, Jiangsu Province, China.
| | - Lishun Xiao
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, China.
- Center for Medical Statistics and Data Analysis, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China.
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China.
| |
Collapse
|
14
|
Surguchov A, Surguchev AA. Association between Parkinson's Disease and Cancer: New Findings and Possible Mediators. Int J Mol Sci 2024; 25:3899. [PMID: 38612708 PMCID: PMC11011322 DOI: 10.3390/ijms25073899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Epidemiological evidence points to an inverse association between Parkinson's disease (PD) and almost all cancers except melanoma, for which this association is positive. The results of multiple studies have demonstrated that patients with PD are at reduced risk for the majority of neoplasms. Several potential biological explanations exist for the inverse relationship between cancer and PD. Recent results identified several PD-associated proteins and factors mediating cancer development and cancer-associated factors affecting PD. Accumulating data point to the role of genetic traits, members of the synuclein family, neurotrophic factors, the ubiquitin-proteasome system, circulating melatonin, and transcription factors as mediators. Here, we present recent data about shared pathogenetic factors and mediators that might be involved in the association between these two diseases. We discuss how these factors, individually or in combination, may be involved in pathology, serve as links between PD and cancer, and affect the prevalence of these disorders. Identification of these factors and investigation of their mechanisms of action would lead to the discovery of new targets for the treatment of both diseases.
Collapse
Affiliation(s)
- Andrei Surguchov
- Department of Neurology, Kansas University Medical Center, Kansas City, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Alexei A Surguchev
- Department of Surgery, Section of Otolaryngology, Yale School of Medicine, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
15
|
Parnetti L, Paoletti FP. Fluid Biomarkers for Trial Enrichment and Effect Monitoring in Disease-Modifying Treatments for Parkinson Disease. Neurology 2024; 102:e209194. [PMID: 38315967 DOI: 10.1212/wnl.0000000000209194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/12/2023] [Indexed: 02/07/2024] Open
Affiliation(s)
- Lucilla Parnetti
- From the Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery, University of Perugia, Italy
| | - Federico Paolini Paoletti
- From the Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery, University of Perugia, Italy
| |
Collapse
|
16
|
Massey RS, Appadurai RR, Prakash R. A Surface Imprinted Polymer EIS Sensor for Detecting Alpha-Synuclein, a Parkinson's Disease Biomarker. MICROMACHINES 2024; 15:273. [PMID: 38399001 PMCID: PMC10892569 DOI: 10.3390/mi15020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Parkinson's Disease (PD) is a debilitating neurodegenerative disease, causing loss of motor function and, in some instances, cognitive decline and dementia in those affected. The quality of life can be improved, and disease progression delayed through early interventions. However, current methods of confirming a PD diagnosis are extremely invasive. This prevents their use as a screening tool for the early onset stages of PD. We propose a surface imprinted polymer (SIP) electroimpedance spectroscopy (EIS) biosensor for detecting α-Synuclein (αSyn) and its aggregates, a biomarker that appears in saliva and blood during the early stages of PD as the blood-brain barrier degrades. The surface imprinted polymer stamp is fabricated by low-temperature melt stamping polycaprolactone (PCL) on interdigitated EIS electrodes. The result is a low-cost, small-footprint biosensor that is highly suitable for non-invasive monitoring of the disease biomarker. The sensors were tested with αSyn dilutions in deionized water and in constant ionic concentration matrix solutions with decreasing concentrations of αSyn to remove the background effects of concentration. The device response confirmed the specificity of these devices to the target protein of monomeric αSyn. The sensor limit of detection was measured to be 5 pg/L, and its linear detection range was 5 pg/L-5 µg/L. This covers the physiological range of αSyn in saliva and makes this a highly promising method of quantifying αSyn monomers for PD patients in the future. The SIP surface was regenerated, and the sensor was reused to demonstrate its capability for repeat sensing as a potential continuous monitoring tool for the disease biomarker.
Collapse
Affiliation(s)
| | | | - Ravi Prakash
- Department of Electronics Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada; (R.S.M.); (R.R.A.)
| |
Collapse
|
17
|
Zhang C, Zheng K, Li C, Zhang R, Zhu Y, Xia L, Ma Y, Wyss HM, Cheng X, He S. Single-Molecule Protein Analysis by Centrifugal Droplet Immuno-PCR with Magnetic Nanoparticles. Anal Chem 2024; 96:1872-1879. [PMID: 38225884 DOI: 10.1021/acs.analchem.3c03724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Detecting proteins in ultralow concentrations in complex media is important for many applications but often relies on complicated techniques. Herein, a single-molecule protein analyzer with the potential for high-throughput applications is reported. Gold-coated magnetic nanoparticles with DNA-labeled antibodies were used for target recognition and separation. The immunocomplex was loaded into microdroplets generated with centrifugation. Immuno-PCR amplification of the DNA enabled the quantification of proteins at the level of single molecules. As an example, ultrasensitive detection of α-synuclein, a biomarker for neurodegenerative diseases, is achieved. The limit of detection was determined to be ∼50 aM in buffer and ∼170 aM in serum. The method exhibited high specificity and could be used to analyze post-translational modifications such as protein phosphorylation. This study will inspire wider studies on single-molecule protein detection, especially in disease diagnostics, biomarker discovery, and drug development.
Collapse
Affiliation(s)
- Chuan Zhang
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China
| | - Kaixin Zheng
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China
| | - Chi Li
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China
- ZJU-TU/e Joint Research Institute of Design, Optoelectronic and Sensing, Hangzhou 310052, China
- Microsystems Research Section, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands
| | - Ranran Zhang
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China
| | - Yicheng Zhu
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China
| | - Linxiao Xia
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China
| | - Yicheng Ma
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China
| | - Hans M Wyss
- ZJU-TU/e Joint Research Institute of Design, Optoelectronic and Sensing, Hangzhou 310052, China
- Microsystems Research Section, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands
| | - Xiaoyu Cheng
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China
- Ningbo Research Institute, Ningbo 310050, China
- ZJU-TU/e Joint Research Institute of Design, Optoelectronic and Sensing, Hangzhou 310052, China
| | - Sailing He
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China
- Ningbo Research Institute, Ningbo 310050, China
- ZJU-TU/e Joint Research Institute of Design, Optoelectronic and Sensing, Hangzhou 310052, China
- Department of Electromagnetic Engineering, School of Electrical Engineering, Royal Institute of Technology, Stockholm S-100 44, Sweden
| |
Collapse
|
18
|
Gobom J, Brinkmalm A, Brinkmalm G, Blennow K, Zetterberg H. Alzheimer's Disease Biomarker Analysis Using Targeted Mass Spectrometry. Mol Cell Proteomics 2024; 23:100721. [PMID: 38246483 PMCID: PMC10926085 DOI: 10.1016/j.mcpro.2024.100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by several neuropathological changes, mainly extracellular amyloid aggregates (plaques), intraneuronal inclusions of phosphorylated tau (tangles), as well as neuronal and synaptic degeneration, accompanied by tissue reactions to these processes (astrocytosis and microglial activation) that precede neuronal network disturbances in the symptomatic phase of the disease. A number of biomarkers for these brain tissue changes have been developed, mainly using immunoassays. In this review, we discuss how targeted mass spectrometry (TMS) can be used to validate and further characterize classes of biomarkers reflecting different AD pathologies, such as tau- and amyloid-beta pathologies, synaptic dysfunction, lysosomal dysregulation, and axonal damage, and the prospect of using TMS to measure these proteins in clinical research and diagnosis. TMS advantages and disadvantages in relation to immunoassays are discussed, and complementary aspects of the technologies are discussed.
Collapse
Affiliation(s)
- Johan Gobom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.
| | - Ann Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
19
|
Goddard TR, Brookes KJ, Sharma R, Moemeni A, Rajkumar AP. Dementia with Lewy Bodies: Genomics, Transcriptomics, and Its Future with Data Science. Cells 2024; 13:223. [PMID: 38334615 PMCID: PMC10854541 DOI: 10.3390/cells13030223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
Dementia with Lewy bodies (DLB) is a significant public health issue. It is the second most common neurodegenerative dementia and presents with severe neuropsychiatric symptoms. Genomic and transcriptomic analyses have provided some insight into disease pathology. Variants within SNCA, GBA, APOE, SNCB, and MAPT have been shown to be associated with DLB in repeated genomic studies. Transcriptomic analysis, conducted predominantly on candidate genes, has identified signatures of synuclein aggregation, protein degradation, amyloid deposition, neuroinflammation, mitochondrial dysfunction, and the upregulation of heat-shock proteins in DLB. Yet, the understanding of DLB molecular pathology is incomplete. This precipitates the current clinical position whereby there are no available disease-modifying treatments or blood-based diagnostic biomarkers. Data science methods have the potential to improve disease understanding, optimising therapeutic intervention and drug development, to reduce disease burden. Genomic prediction will facilitate the early identification of cases and the timely application of future disease-modifying treatments. Transcript-level analyses across the entire transcriptome and machine learning analysis of multi-omic data will uncover novel signatures that may provide clues to DLB pathology and improve drug development. This review will discuss the current genomic and transcriptomic understanding of DLB, highlight gaps in the literature, and describe data science methods that may advance the field.
Collapse
Affiliation(s)
- Thomas R. Goddard
- Mental Health and Clinical Neurosciences Academic Unit, Institute of Mental Health, School of Medicine, University of Nottingham, Nottingham NG7 2TU, UK
| | - Keeley J. Brookes
- Department of Biosciences, School of Science & Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Riddhi Sharma
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
- UK Health Security Agency, Radiation Effects Department, Radiation Protection Science Division, Harwell Science Campus, Didcot, Oxfordshire OX11 0RQ, UK
| | - Armaghan Moemeni
- School of Computer Science, University of Nottingham, Nottingham NG8 1BB, UK
| | - Anto P. Rajkumar
- Mental Health and Clinical Neurosciences Academic Unit, Institute of Mental Health, School of Medicine, University of Nottingham, Nottingham NG7 2TU, UK
| |
Collapse
|
20
|
Barba L, Vollmuth C, Abu-Rumeileh S, Halbgebauer S, Oeckl P, Steinacker P, Kollikowski AM, Schultz C, Wolf J, Pham M, Schuhmann MK, Heuschmann PU, Haeusler KG, Stoll G, Neugebauer H, Otto M. Serum β-synuclein, neurofilament light chain and glial fibrillary acidic protein as prognostic biomarkers in moderate-to-severe acute ischemic stroke. Sci Rep 2023; 13:20941. [PMID: 38017278 PMCID: PMC10684607 DOI: 10.1038/s41598-023-47765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023] Open
Abstract
We aimed to assess the prognostic value of serum β-synuclein (β-syn), neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) in patients with moderate-to-severe acute ischemic stroke. We measured β-syn, GFAP and NfL in serum samples collected one day after admission in 30 adult patients with moderate-to-severe ischemic stroke due to middle cerebral artery (MCA) occlusion. We tested the associations between biomarker levels and clinical and radiological scores (National Institute of Health Stroke Scale scores, NIHSS, and Alberta Stroke Program Early CT Score, ASPECTS), as well as measures of functional outcome (modified Rankin Scale, mRS). Serum biomarkers were significantly associated with ASPECTS values (β-syn p = 0.0011, GFAP p = 0.0002) but not with NIHSS scores at admission. Patients who received mechanical thrombectomy and intravenous thrombolysis showed lower β-syn (p = 0.029) und NfL concentrations (p = 0.0024) compared to patients who received only mechanical thrombectomy. According to median biomarker levels, patients with high β-syn, NfL or GFAP levels showed, after therapy, lower clinical improvement (i.e., lower 24-h NIHSS change), higher NIHSS scores during hospitalization and higher mRS scores at 3-month follow-up. Elevated serum concentrations of β-syn (p = 0.016), NfL (p = 0.020) or GFAP (p = 0.010) were significantly associated with 3-month mRS of 3-6 vs. 0-2 even after accounting for age, sex and renal function. In patients with moderate-to-severe acute ischemic stroke, serum β-syn, NfL and GFAP levels associated with clinical and radiological scores at different timepoints and were able to predict short- and middle-term clinical outcomes.
Collapse
Affiliation(s)
- Lorenzo Barba
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Ernst-Grube Strasse 40, 06120, Halle (Saale), Germany
| | | | - Samir Abu-Rumeileh
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Ernst-Grube Strasse 40, 06120, Halle (Saale), Germany
| | | | - Patrick Oeckl
- Department of Neurology, University of Ulm, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE E.V.), Ulm, Germany
| | - Petra Steinacker
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Ernst-Grube Strasse 40, 06120, Halle (Saale), Germany
| | | | - Cara Schultz
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Judith Wolf
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Mirko Pham
- Department of Neuroradiology, University of Würzburg, Würzburg, Germany
| | | | - Peter U Heuschmann
- Institute for Clinical Epidemiology and Biometry, University of Würzburg, Würzburg, Germany
| | | | - Guido Stoll
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | | | - Markus Otto
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Ernst-Grube Strasse 40, 06120, Halle (Saale), Germany.
| |
Collapse
|
21
|
Koníčková D, Menšíková K, Klíčová K, Chudáčková M, Kaiserová M, Přikrylová H, Otruba P, Nevrlý M, Hluštík P, Hényková E, Kaleta M, Friedecký D, Matěj R, Strnad M, Novák O, Plíhalová L, Rosales R, Colosimo C, Kaňovský P. Cerebrospinal fluid and blood serum biomarkers in neurodegenerative proteinopathies: A prospective, open, cross-correlation study. J Neurochem 2023; 167:168-182. [PMID: 37680022 DOI: 10.1111/jnc.15944] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/27/2023] [Accepted: 08/02/2023] [Indexed: 09/09/2023]
Abstract
Neurodegenerative diseases are a broad heterogeneous group affecting the nervous system. They are characterized, from a pathophysiological perspective, by the selective involvement of a subpopulation of nerve cells with a consequent clinical picture of a disease. Clinical diagnoses of neurodegenerative diseases are quite challenging and often not completely accurate because of their marked heterogeneity and frequently overlapping clinical pictures. Efforts are being made to define sufficiently specific and sensitive markers for individual neurodegenerative diseases or groups of diseases in order to increase the accuracy and speed of clinical diagnosis. Thus said, this present research aimed to identify biomarkers in the cerebrospinal fluid (CSF) and serum (α-synuclein [α-syn], tau protein [t-tau], phosphorylated tau protein [p-tau], β-amyloid [Aβ], clusterin, chromogranin A [chromogrA], cystatin C [cyst C], neurofilament heavy chains [NFH], phosphorylated form of neurofilament heavy chains [pNF-H], and ratio of tau protein/amyloid beta [Ind tau/Aβ]) that could help in the differential diagnosis and differentiation of the defined groups of α-synucleinopathies and four-repeat (4R-) tauopathies characterized by tau protein isoforms with four microtubule-binding domains. In this study, we analyzed a cohort of 229 patients divided into four groups: (1) Parkinson's disease (PD) + dementia with Lewy bodies (DLB) (n = 82), (2) multiple system atrophy (MSA) (n = 25), (3) progressive supranuclear palsy (PSP) + corticobasal syndrome (CBS) (n = 30), and (4) healthy controls (HC) (n = 92). We also focused on analyzing the biomarkers in relation to each other with the intention of determining whether they are useful in distinguishing among individual proteinopathies. Our results indicate that the proposed set of biomarkers, when evaluated in CSF, is likely to be useful for the differential diagnosis of MSA versus 4RT. However, these biomarkers do not seem to provide any useful diagnostic information when assessed in blood serum.
Collapse
Affiliation(s)
- Dorota Koníčková
- Department of Neurology, University Hospital Olomouc, Olomouc, Czech Republic
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Kateřina Menšíková
- Department of Neurology, University Hospital Olomouc, Olomouc, Czech Republic
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Kateřina Klíčová
- Department of Neurology, University Hospital Olomouc, Olomouc, Czech Republic
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Monika Chudáčková
- Department of Neurology, University Hospital Olomouc, Olomouc, Czech Republic
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Michaela Kaiserová
- Department of Neurology, University Hospital Olomouc, Olomouc, Czech Republic
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Hana Přikrylová
- Department of Neurology, University Hospital Olomouc, Olomouc, Czech Republic
- Neurology Outpatient Clinic "St. Moritz", Olomouc, Czech Republic
| | - Pavel Otruba
- Department of Neurology, University Hospital Olomouc, Olomouc, Czech Republic
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Martin Nevrlý
- Department of Neurology, University Hospital Olomouc, Olomouc, Czech Republic
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Petr Hluštík
- Department of Neurology, University Hospital Olomouc, Olomouc, Czech Republic
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Eva Hényková
- Department of Neurology, University Hospital Olomouc, Olomouc, Czech Republic
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, Palacky University, Olomouc, Czech Republic
| | - Michal Kaleta
- Department of Neurology, University Hospital Olomouc, Olomouc, Czech Republic
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, Palacky University, Olomouc, Czech Republic
| | - David Friedecký
- Laboratory of Inherited Metabolic Disorders, Faculty of Medicine and Dentistry, Palacky University, University Hospital Olomouc, Olomouc, Czech Republic
| | - Radoslav Matěj
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University, Thomayer University Hospital, Prague, Czech Republic
| | - Miroslav Strnad
- Department of Neurology, University Hospital Olomouc, Olomouc, Czech Republic
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, Palacky University, Olomouc, Czech Republic
| | - Lucie Plíhalová
- Department of Chemical Biology, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Raymond Rosales
- Department of Neurology and Psychiatry, Neuroscience Institute, University of Santo Tomas Hospital, Manila, Philippines
| | - Carlo Colosimo
- Department of Neurology, Santa Maria University Hospital, Terni, Italy
| | - Petr Kaňovský
- Department of Neurology, University Hospital Olomouc, Olomouc, Czech Republic
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
22
|
Costa J, Hayes C, Lisacek F. Protein glycosylation and glycoinformatics for novel biomarker discovery in neurodegenerative diseases. Ageing Res Rev 2023; 89:101991. [PMID: 37348818 DOI: 10.1016/j.arr.2023.101991] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/25/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023]
Abstract
Glycosylation is a common post-translational modification of brain proteins including cell surface adhesion molecules, synaptic proteins, receptors and channels, as well as intracellular proteins, with implications in brain development and functions. Using advanced state-of-the-art glycomics and glycoproteomics technologies in conjunction with glycoinformatics resources, characteristic glycosylation profiles in brain tissues are increasingly reported in the literature and growing evidence shows deregulation of glycosylation in central nervous system disorders, including aging associated neurodegenerative diseases. Glycan signatures characteristic of brain tissue are also frequently described in cerebrospinal fluid due to its enrichment in brain-derived molecules. A detailed structural analysis of brain and cerebrospinal fluid glycans collected in publications in healthy and neurodegenerative conditions was undertaken and data was compiled to create a browsable dedicated set in the GlyConnect database of glycoproteins (https://glyconnect.expasy.org/brain). The shared molecular composition of cerebrospinal fluid with brain enhances the likelihood of novel glycobiomarker discovery for neurodegeneration, which may aid in unveiling disease mechanisms, therefore, providing with novel therapeutic targets as well as diagnostic and progression monitoring tools.
Collapse
Affiliation(s)
- Júlia Costa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal.
| | - Catherine Hayes
- Proteome Informatics Group, Swiss Institute of Bioinformatics, CH-1227 Geneva, Switzerland
| | - Frédérique Lisacek
- Proteome Informatics Group, Swiss Institute of Bioinformatics, CH-1227 Geneva, Switzerland; Computer Science Department, University of Geneva, CH-1227 Geneva, Switzerland; Section of Biology, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
23
|
Cheshire WP, Koga S, Tipton PW, Sekiya H, Ross OA, Uitti RJ, Josephs KA, Dickson DW. Cancer in pathologically confirmed multiple system atrophy. Clin Auton Res 2023; 33:451-458. [PMID: 37178348 PMCID: PMC10529111 DOI: 10.1007/s10286-023-00946-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Abstract
PURPOSE The aim of this study was to assess whether cancer occurs with increased frequency in multiple system atrophy (MSA). The pathological hallmark of MSA is glial cytoplasmic inclusions containing aggregated α-synuclein, and the related protein γ-synuclein correlates with invasive cancer. We investigated whether these two disorders are associated clinically. METHODS Medical records of 320 patients with pathologically confirmed MSA seen between 1998 and 2022 were reviewed. After excluding those with insufficient medical histories, the remaining 269 and an equal number of controls matched for age and sex were queried for personal and family histories of cancer recorded on standardized questionnaires and in clinical histories. Additionally, age-adjusted rates of breast cancer were compared with US population incidence data. RESULTS Of 269 cases in each group, 37 with MSA versus 45 of controls had a personal history of cancer. Reported cases of cancer in parents were 97 versus 104 and in siblings 31 versus 44 for MSA and controls, respectively. Of 134 female cases in each group, 14 MSA versus 10 controls had a personal history of breast cancer. The age-adjusted rate of breast cancer in MSA was 0.83%, as compared with 0.67% in controls and 2.0% in the US population. All comparisons were nonsignificant. CONCLUSION The evidence from this retrospective cohort found no significant clinical association of MSA with breast cancer or other cancers. These results do not exclude the possibility that knowledge about synuclein pathology at the molecular level in cancer may lead to future discoveries and potential therapeutic targets for MSA.
Collapse
Affiliation(s)
- William P Cheshire
- Division of Autonomic Disorders, Department of Neurology, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL, 32224, USA.
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Philip W Tipton
- Division of Movement Disorders, Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Hiroaki Sekiya
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Ryan J Uitti
- Division of Movement Disorders, Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Keith A Josephs
- Division of Movement Disorders, Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
24
|
Barba L, Abu-Rumeileh S, Halbgebauer S, Bellomo G, Paolini Paoletti F, Gaetani L, Oeckl P, Steinacker P, Massa F, Parnetti L, Otto M. CSF Synaptic Biomarkers in AT(N)-Based Subgroups of Lewy Body Disease. Neurology 2023; 101:e50-e62. [PMID: 37188538 PMCID: PMC10351307 DOI: 10.1212/wnl.0000000000207371] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/17/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Patients with Lewy body disease (LBD) often show a co-occurring Alzheimer disease (AD) pathology. CSF biomarkers allow the detection in vivo of AD-related pathologic hallmarks included in the amyloid-tau-neurodegeneration (AT(N)) classification system. Here, we aimed to investigate whether CSF biomarkers of synaptic and neuroaxonal damage are correlated with the presence of AD copathology in LBD and can be useful to differentiate patients with LBD with different AT(N) profiles. METHODS We retrospectively measured CSF levels of AD core biomarkers (Aβ42/40 ratio, phosphorylated tau protein, and total tau protein) and of synaptic (β-synuclein, α-synuclein, synaptosomal-associated protein 25 [SNAP-25], and neurogranin) and neuroaxonal proteins (neurofilament light chain [NfL]) in 28 cognitively unimpaired participants with nondegenerative neurologic conditions and 161 participants with a diagnosis of either LBD or AD (at both mild cognitive impairment, AD-MCI, and dementia stages, AD-dem). We compared CSF biomarker levels in clinical and AT(N)-based subgroups. RESULTS CSF β-synuclein, α-synuclein, SNAP-25, neurogranin, and NfL levels did not differ between LBD (n = 101, age 67.2 ± 7.8 years, 27.7% females) and controls (age 64.8 ± 8.6 years, 39.3% females) and were increased in AD (AD-MCI: n = 30, AD-dem: n = 30, age 72.3 ± 6.0 years, 63.3% females) compared with both groups (p < 0.001 for all comparisons). In LBD, we found increased levels of synaptic and neuroaxonal degeneration biomarkers in patients with A+T+ (LBD/A+T+) than with A-T- profiles (LBD/A-T-) (p < 0.01 for all), and β-synuclein showed the highest discriminative accuracy between the 2 groups (area under the curve 0.938, 95% CI 0.884-0.991). CSF β-synuclein (p = 0.0021), α-synuclein (p = 0.0099), and SNAP-25 concentrations (p = 0.013) were also higher in LBD/A+T+ than in LBD/A+T- cases, which had synaptic biomarker levels within the normal range. CSF α-synuclein was significantly decreased only in patients with LBD with T- profiles compared with controls (p = 0.0448). Moreover, LBD/A+T+ and AD cases did not differ in any biomarker level. DISCUSSION LBD/A+T+ and AD cases showed significantly increased CSF levels of synaptic and neuroaxonal biomarkers compared with LBD/A-T- and control subjects. Patients with LBD and AT(N)-based AD copathology showed, thus, a distinct signature of synaptic dysfunction from other LBD cases. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that CSF levels of β-synuclein, α-synuclein, SNAP-25, neurogranin, and NfL are higher in patients with AD than in patients with LBD.
Collapse
Affiliation(s)
- Lorenzo Barba
- From the Department of Neurology (L.B., S.A.-R., P.S., M.O.), Martin-Luther-University of Halle-Wittenberg, Germany; Section of Neurology (L.B., G.B., F.P.P., L.G., L.P.), Department of Medicine and Surgery, University of Perugia, Italy; Department of Neurology (S.H., P.O., M.O.), Ulm University, Germany; German Center for Neurodegenerative Disorders Ulm (DZNE e.V.) (P.O.); and Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (F.M.), University of Genoa, Italy.
| | - Samir Abu-Rumeileh
- From the Department of Neurology (L.B., S.A.-R., P.S., M.O.), Martin-Luther-University of Halle-Wittenberg, Germany; Section of Neurology (L.B., G.B., F.P.P., L.G., L.P.), Department of Medicine and Surgery, University of Perugia, Italy; Department of Neurology (S.H., P.O., M.O.), Ulm University, Germany; German Center for Neurodegenerative Disorders Ulm (DZNE e.V.) (P.O.); and Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (F.M.), University of Genoa, Italy
| | - Steffen Halbgebauer
- From the Department of Neurology (L.B., S.A.-R., P.S., M.O.), Martin-Luther-University of Halle-Wittenberg, Germany; Section of Neurology (L.B., G.B., F.P.P., L.G., L.P.), Department of Medicine and Surgery, University of Perugia, Italy; Department of Neurology (S.H., P.O., M.O.), Ulm University, Germany; German Center for Neurodegenerative Disorders Ulm (DZNE e.V.) (P.O.); and Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (F.M.), University of Genoa, Italy
| | - Giovanni Bellomo
- From the Department of Neurology (L.B., S.A.-R., P.S., M.O.), Martin-Luther-University of Halle-Wittenberg, Germany; Section of Neurology (L.B., G.B., F.P.P., L.G., L.P.), Department of Medicine and Surgery, University of Perugia, Italy; Department of Neurology (S.H., P.O., M.O.), Ulm University, Germany; German Center for Neurodegenerative Disorders Ulm (DZNE e.V.) (P.O.); and Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (F.M.), University of Genoa, Italy
| | - Federico Paolini Paoletti
- From the Department of Neurology (L.B., S.A.-R., P.S., M.O.), Martin-Luther-University of Halle-Wittenberg, Germany; Section of Neurology (L.B., G.B., F.P.P., L.G., L.P.), Department of Medicine and Surgery, University of Perugia, Italy; Department of Neurology (S.H., P.O., M.O.), Ulm University, Germany; German Center for Neurodegenerative Disorders Ulm (DZNE e.V.) (P.O.); and Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (F.M.), University of Genoa, Italy
| | - Lorenzo Gaetani
- From the Department of Neurology (L.B., S.A.-R., P.S., M.O.), Martin-Luther-University of Halle-Wittenberg, Germany; Section of Neurology (L.B., G.B., F.P.P., L.G., L.P.), Department of Medicine and Surgery, University of Perugia, Italy; Department of Neurology (S.H., P.O., M.O.), Ulm University, Germany; German Center for Neurodegenerative Disorders Ulm (DZNE e.V.) (P.O.); and Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (F.M.), University of Genoa, Italy
| | - Patrick Oeckl
- From the Department of Neurology (L.B., S.A.-R., P.S., M.O.), Martin-Luther-University of Halle-Wittenberg, Germany; Section of Neurology (L.B., G.B., F.P.P., L.G., L.P.), Department of Medicine and Surgery, University of Perugia, Italy; Department of Neurology (S.H., P.O., M.O.), Ulm University, Germany; German Center for Neurodegenerative Disorders Ulm (DZNE e.V.) (P.O.); and Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (F.M.), University of Genoa, Italy
| | - Petra Steinacker
- From the Department of Neurology (L.B., S.A.-R., P.S., M.O.), Martin-Luther-University of Halle-Wittenberg, Germany; Section of Neurology (L.B., G.B., F.P.P., L.G., L.P.), Department of Medicine and Surgery, University of Perugia, Italy; Department of Neurology (S.H., P.O., M.O.), Ulm University, Germany; German Center for Neurodegenerative Disorders Ulm (DZNE e.V.) (P.O.); and Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (F.M.), University of Genoa, Italy
| | - Federico Massa
- From the Department of Neurology (L.B., S.A.-R., P.S., M.O.), Martin-Luther-University of Halle-Wittenberg, Germany; Section of Neurology (L.B., G.B., F.P.P., L.G., L.P.), Department of Medicine and Surgery, University of Perugia, Italy; Department of Neurology (S.H., P.O., M.O.), Ulm University, Germany; German Center for Neurodegenerative Disorders Ulm (DZNE e.V.) (P.O.); and Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (F.M.), University of Genoa, Italy
| | - Lucilla Parnetti
- From the Department of Neurology (L.B., S.A.-R., P.S., M.O.), Martin-Luther-University of Halle-Wittenberg, Germany; Section of Neurology (L.B., G.B., F.P.P., L.G., L.P.), Department of Medicine and Surgery, University of Perugia, Italy; Department of Neurology (S.H., P.O., M.O.), Ulm University, Germany; German Center for Neurodegenerative Disorders Ulm (DZNE e.V.) (P.O.); and Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (F.M.), University of Genoa, Italy
| | - Markus Otto
- From the Department of Neurology (L.B., S.A.-R., P.S., M.O.), Martin-Luther-University of Halle-Wittenberg, Germany; Section of Neurology (L.B., G.B., F.P.P., L.G., L.P.), Department of Medicine and Surgery, University of Perugia, Italy; Department of Neurology (S.H., P.O., M.O.), Ulm University, Germany; German Center for Neurodegenerative Disorders Ulm (DZNE e.V.) (P.O.); and Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (F.M.), University of Genoa, Italy.
| |
Collapse
|
25
|
Gaetani L, Chiasserini D, Paolini Paoletti F, Bellomo G, Parnetti L. Required improvements for cerebrospinal fluid-based biomarker tests of Alzheimer's disease. Expert Rev Mol Diagn 2023; 23:1195-1207. [PMID: 37902844 DOI: 10.1080/14737159.2023.2276918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/25/2023] [Indexed: 11/01/2023]
Abstract
INTRODUCTION Cerebrospinal fluid (CSF) biomarkers represent a well-established tool for diagnosing Alzheimer's disease (AD), independently from the clinical stage, by reflecting the presence of brain amyloidosis (A+) and tauopathy (T+). In front of this important achievement, so far, (i) CSF AD biomarkers have not yet been adopted for routine clinical use in all Centers dedicated to AD, mainly due to inter-lab variation and lack of internationally accepted cutoff values; (ii) we do need to add other biomarkers more suitable to correlate with the clinical stage and disease monitoring; (iii) we also need to detect the co-presence of other 'non-AD' pathologies. AREAS COVERED Efforts to establish standardized cutoff values based on large-scale multi-center studies are discussed. The influence of aging and comorbidities on CSF biomarker levels is also analyzed, and possible solutions are presented, i.e. complementing the A/T/(N) system with markers of axonal damage and synaptic derangement. EXPERT OPINION The first, mandatory need is to reach common cutoff values and defined (automated) methodologies for CSF AD biomarkers. To properly select subjects deserving CSF analysis, blood tests might represent the first-line approach. In those subjects undergoing CSF analysis, multiple biomarkers, able to give a comprehensive and personalized pathophysiological/prognostic information, should be included.
Collapse
Affiliation(s)
- Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Davide Chiasserini
- Section of Physiology and Biochemistry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Giovanni Bellomo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
26
|
Tian Y, Li X, Wang X, Su W, Li S, Wang W, Zhang Y, Li C, Chen M. CEST 2022-three-dimensional amide proton transfer (APT) imaging can identify the changes of cerebral cortex in Parkinson's disease. Magn Reson Imaging 2023:S0730-725X(23)00099-1. [PMID: 37356600 DOI: 10.1016/j.mri.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023]
Abstract
PURPOSE Amide proton transfer (APT) imaging has shown its diagnostic and predictive superiority in PD in our previous studies using 2D APT imaging based on deep nuclei. We hypothesized that the pathophysiological abnormality of PD will change the APT-related parameters in the cerebral cortex, and the signal changes can contribute to accurate diagnosis of Parkinson's disease. METHODS 34 patients with sporadic Parkinson's disease (IPD) and 29 age- and sex-matched normal controls (NC) were enrolled in this prospective study. 3D-APT imaging and 3D-T1WI was performed in our participants. A volume-based morphometry algorithm was used and get automated cortical segmentations. Quantitative parameter maps of APT-related metrics were calculated by using SPM and MATLAB. The unpaired Student's t-test or Mann-Whitney U test was used for comparison of these values between IPD and NC groups. The associations between APT-related metrics and clinical assessments were investigated by Spearman correlation analysis. The receiver-operating characteristic (ROC) analysis was used to assess the diagnostic performances. The binary logistic regression model was used to combine the imaging parameters. RESULTS There wasn't any correlations between cortical APT-related signals and clinical assessment, including the H&Y scale, the disease duration, the UPDRS III scores and the MMSE scores. The MTRasym, CESTRnr and MTRRex had significantly higher values (p <0.001, corrected by Bonferroni methods) in the IPD group than NC groups in the region of bilateral and total temporal grey matter. The single parameters achieved the best diagnostic performance among all APT-related metrics was MTRRex on the right temporal grey matter, with an area under the ROC curve (AUC) of 0.865. The combined parameters achieved the highest diagnostic performance (AUC: 0.932). CONCLUSIONS 3D-APT imaging could identify the changes of the cerebral cortex in Parkinson's disease. The cortical changes of APT-related parameters could potentially serve as imaging biomarkers to aid in the non-invasive diagnosis of PD.
Collapse
Affiliation(s)
- Yaotian Tian
- Department of Radiology, National Center of Gerontology, Beijing Hospital, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730 Beijing, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, 100730 Beijing, China
| | - Xinyang Li
- Department of Radiology, National Center of Gerontology, Beijing Hospital, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730 Beijing, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, 100730 Beijing, China
| | - Xiaonan Wang
- Department of Radiology, National Center of Gerontology, Beijing Hospital, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730 Beijing, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, 100730 Beijing, China
| | - Wen Su
- Department of Neurology, National Center of Gerontology, Beijing Hospital, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730 Beijing, China
| | - Shuhua Li
- Department of Neurology, National Center of Gerontology, Beijing Hospital, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730 Beijing, China
| | - Wenqi Wang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Chunmei Li
- Department of Radiology, National Center of Gerontology, Beijing Hospital, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730 Beijing, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, 100730 Beijing, China.
| | - Min Chen
- Department of Radiology, National Center of Gerontology, Beijing Hospital, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730 Beijing, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, 100730 Beijing, China.
| |
Collapse
|
27
|
Zanotti LC, Malizia F, Cesatti Laluce N, Avila A, Mamberto M, Anselmino LE, Menacho-Márquez M. Synuclein Proteins in Cancer Development and Progression. Biomolecules 2023; 13:980. [PMID: 37371560 PMCID: PMC10296229 DOI: 10.3390/biom13060980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Synucleins are a family of small, soluble proteins mainly expressed in neural tissue and in certain tumors. Since their discovery, tens of thousands of scientific reports have been published about this family of proteins as they are associated with severe human diseases. Although the physiological function of these proteins is still elusive, their relationship with neurodegeneration and cancer has been clearly described over the years. In this review, we summarize data connecting synucleins and cancer, going from the structural description of these molecules to their involvement in tumor-related processes, and discuss the putative use of these proteins as cancer molecular biomarkers.
Collapse
Affiliation(s)
- Lucía C. Zanotti
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR), Facultad de Ciencias Médicas (UNR), Rosario 3100, Argentina
- Instituto de Inmunología Clínica y Experimental, CONICET, Rosario 3100, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas (UNR), Suipacha 660, Rosario 2000, Argentina
- Centro de Investigación del Cáncer de Rosario, Red de Investigación del Cáncer de Rosario (RICaR), 37007 Salamanca, Spain
| | - Florencia Malizia
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR), Facultad de Ciencias Médicas (UNR), Rosario 3100, Argentina
- Instituto de Inmunología Clínica y Experimental, CONICET, Rosario 3100, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas (UNR), Suipacha 660, Rosario 2000, Argentina
- Centro de Investigación del Cáncer de Rosario, Red de Investigación del Cáncer de Rosario (RICaR), 37007 Salamanca, Spain
| | - Nahuel Cesatti Laluce
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR), Facultad de Ciencias Médicas (UNR), Rosario 3100, Argentina
- Instituto de Inmunología Clínica y Experimental, CONICET, Rosario 3100, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas (UNR), Suipacha 660, Rosario 2000, Argentina
- Centro de Investigación del Cáncer de Rosario, Red de Investigación del Cáncer de Rosario (RICaR), 37007 Salamanca, Spain
| | - Aylén Avila
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas (UNR), Suipacha 660, Rosario 2000, Argentina
- Centro de Investigación del Cáncer de Rosario, Red de Investigación del Cáncer de Rosario (RICaR), 37007 Salamanca, Spain
| | - Macarena Mamberto
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR), Facultad de Ciencias Médicas (UNR), Rosario 3100, Argentina
- Instituto de Inmunología Clínica y Experimental, CONICET, Rosario 3100, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas (UNR), Suipacha 660, Rosario 2000, Argentina
- Centro de Investigación del Cáncer de Rosario, Red de Investigación del Cáncer de Rosario (RICaR), 37007 Salamanca, Spain
| | - Luciano E. Anselmino
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR), Facultad de Ciencias Médicas (UNR), Rosario 3100, Argentina
- Instituto de Inmunología Clínica y Experimental, CONICET, Rosario 3100, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas (UNR), Suipacha 660, Rosario 2000, Argentina
- Centro de Investigación del Cáncer de Rosario, Red de Investigación del Cáncer de Rosario (RICaR), 37007 Salamanca, Spain
| | - Mauricio Menacho-Márquez
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR), Facultad de Ciencias Médicas (UNR), Rosario 3100, Argentina
- Instituto de Inmunología Clínica y Experimental, CONICET, Rosario 3100, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas (UNR), Suipacha 660, Rosario 2000, Argentina
- Centro de Investigación del Cáncer de Rosario, Red de Investigación del Cáncer de Rosario (RICaR), 37007 Salamanca, Spain
| |
Collapse
|
28
|
Niu H, Bu H, Zhao J, Zhu Y. Metal-Organic Frameworks-Based Nanoplatforms for the Theranostic Applications of Neurological Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206575. [PMID: 36908079 DOI: 10.1002/smll.202206575] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/19/2023] [Indexed: 06/08/2023]
Abstract
Neurological diseases are the foremost cause of disability and the second leading cause of death worldwide. Owing to the special microenvironment of neural tissues and biological characteristics of neural cells, a considerable number of neurological disorders are currently incurable. In the past few years, the development of nanoplatforms based on metal-organic frameworks (MOFs) has broadened opportunities for offering sensitive diagnosis/monitoring and effective therapy of neurology-related diseases. In this article, the obstacles for neurotherapeutics, including delayed diagnosis and misdiagnosis, the existence of blood brain barrier (BBB), off-target treatment, irrepressible inflammatory storm/oxidative stress, and irreversible nerve cell death are summarized. Correspondingly, MOFs-based diagnostic/monitoring strategies such as neuroimaging and biosensors (electrochemistry, fluorometry, colorimetry, electrochemiluminescence, etc.) and MOFs-based therapeutic strategies including higher BBB permeability, targeting specific lesion sites, attenuation of neuroinflammation/oxidative stress as well as regeneration of nerve cells, are extensively highlighted for the management of neurological diseases. Finally, the challenges of the present research from perspective of clinical translation are discussed, hoping to facilitate interdisciplinary studies at the intersections between MOFs-based nanoplatforms and neurotheranostics.
Collapse
Affiliation(s)
- Huicong Niu
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, 200032, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Hui Bu
- The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, P. R. China
| | - Jing Zhao
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Yufang Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
29
|
Kumar P, Goettemoeller AM, Espinosa-Garcia C, Tobin BR, Tfaily A, Nelson RS, Natu A, Dammer EB, Santiago JV, Malepati S, Cheng L, Xiao H, Duong D, Seyfried NT, Wood LB, Rowan MJ, Rangaraju S. Native-state proteomics of Parvalbumin interneurons identifies novel molecular signatures and metabolic vulnerabilities to early Alzheimer's disease pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541038. [PMID: 37292756 PMCID: PMC10245729 DOI: 10.1101/2023.05.17.541038] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
One of the earliest pathophysiological perturbations in Alzheimer's Disease (AD) may arise from dysfunction of fast-spiking parvalbumin (PV) interneurons (PV-INs). Defining early protein-level (proteomic) alterations in PV-INs can provide key biological and translationally relevant insights. Here, we use cell-type-specific in vivo biotinylation of proteins (CIBOP) coupled with mass spectrometry to obtain native-state proteomes of PV interneurons. PV-INs exhibited proteomic signatures of high metabolic, mitochondrial, and translational activity, with over-representation of causally linked AD genetic risk factors. Analyses of bulk brain proteomes indicated strong correlations between PV-IN proteins with cognitive decline in humans, and with progressive neuropathology in humans and mouse models of Aβ pathology. Furthermore, PV-IN-specific proteomes revealed unique signatures of increased mitochondrial and metabolic proteins, but decreased synaptic and mTOR signaling proteins in response to early Aβ pathology. PV-specific changes were not apparent in whole-brain proteomes. These findings showcase the first native state PV-IN proteomes in mammalian brain, revealing a molecular basis for their unique vulnerabilities in AD.
Collapse
|
30
|
Chahine LM, Beach TG, Adler CH, Hepker M, Kanthasamy A, Appel S, Pritzkow S, Pinho M, Mosovsky S, Serrano GE, Coffey C, Brumm MC, Oliveira LMA, Eberling J, Mollenhauer B. Central and peripheral α-synuclein in Parkinson disease detected by seed amplification assay. Ann Clin Transl Neurol 2023; 10:696-705. [PMID: 36972727 PMCID: PMC10187727 DOI: 10.1002/acn3.51753] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/29/2023] [Accepted: 02/10/2023] [Indexed: 03/29/2023] Open
Abstract
OBJECTIVES Detection of α-synuclein aggregates by seed amplification is a promising Parkinson disease biomarker assay. Understanding intraindividual relationships of α-synuclein measures could inform optimal biomarker development. The objectives were to test accuracy of α-synuclein seed amplification assay in central (cerebrospinal fluid) and peripheral (submandibular gland) sources, compare to total α-synuclein measures, and investigate within-subject relationships. METHODS The Systemic Synuclein Sampling Study aimed to characterize α-synuclein in multiple tissues and biofluids within Parkinson disease subjects (n = 59) and compared to healthy controls (n = 21). Motor and non-motor measures and dopamine transporter scans were obtained. Four measures of α-synuclein were compared: seed amplification assay in cerebrospinal fluid and formalin-fixed paraffin-embedded submandibular gland, total α-synuclein quantified in biofluids using enzyme-linked immunoassay, and aggregated α-synuclein in submandibular gland detected by immunohistochemistry. Accuracy of seed amplification assay for Parkinson disease diagnosis was examined and within-subject α-synuclein measures were compared. RESULTS Sensitivity and specificity of α-synuclein seed amplification assay for Parkinson disease diagnosis was 92.6% and 90.5% in cerebrospinal fluid, and 73.2% and 78.6% in submandibular gland, respectively. 25/38 (65.8%) Parkinson disease participants were positive for both cerebrospinal fluid and submandibular gland seed amplification assay. Comparing accuracy for Parkinson disease diagnosis of different α-synuclein measures, cerebrospinal fluid seed amplification assay was the highest (Youden Index = 83.1%). 98.3% of all Parkinson disease cases had ≥1 measure of α-synuclein positive. INTERPRETATION α-synuclein seed amplification assay (cerebrospinal fluid>submandibular gland) had higher sensitivity and specificity compared to total α-synuclein measures, and within-subject relationships of central and peripheral α-synuclein measures emerged.
Collapse
Affiliation(s)
- Lana M. Chahine
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | | - Charles H. Adler
- Department of NeurologyMayo Clinic College of MedicineScottsdaleArizonaUSA
| | | | - Anumantha Kanthasamy
- Center for Brain Science and Neurodegenerative Diseases, Department of Physiology and PharmacologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Scott Appel
- Biostatistics Analysis CenterUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Sandra Pritzkow
- Department of NeurologyUniversity of Texas, McGovern Medical SchoolHoustonTexasUSA
| | - Michelle Pinho
- Department of NeurologyUniversity of Texas, McGovern Medical SchoolHoustonTexasUSA
| | - Sherri Mosovsky
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | | - Christopher Coffey
- Banner Sun Health Research InstituteSun CityArizonaUSA
- Department of BiostatisticsUniversity of Iowa College of Public HealthIowa CityIowaUSA
| | - Michael C. Brumm
- Department of BiostatisticsUniversity of Iowa College of Public HealthIowa CityIowaUSA
| | - Luis M. A. Oliveira
- Banner Sun Health Research InstituteSun CityArizonaUSA
- The Michael J. Fox Foundation for Parkinson's ResearchNew YorkNew YorkUSA
| | - Jamie Eberling
- Banner Sun Health Research InstituteSun CityArizonaUSA
- The Michael J. Fox Foundation for Parkinson's ResearchNew YorkNew YorkUSA
| | - Brit Mollenhauer
- Center of Parkinsonism and Movement Disorders, Department of NeurologyParacelsus‐Elena Klinik Kassel and University Medical Center GöttingenGöttingenGermany
| |
Collapse
|
31
|
Paolini Paoletti F, Gaetani L, Bellomo G, Chipi E, Salvadori N, Montanucci C, Mancini A, Filidei M, Nigro P, Simoni S, Tambasco N, Di Filippo M, Parnetti L. CSF neurochemical profile and cognitive changes in Parkinson's disease with mild cognitive impairment. NPJ Parkinsons Dis 2023; 9:68. [PMID: 37095141 PMCID: PMC10126070 DOI: 10.1038/s41531-023-00509-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/05/2023] [Indexed: 04/26/2023] Open
Abstract
Pathophysiological substrate(s) and progression of Parkinson's disease (PD) with mild cognitive impairment (PD-MCI) are still matter of debate. Baseline cerebrospinal fluid (CSF) neurochemical profile and cognitive changes after 2 years were investigated in a retrospective series of PD-MCI (n = 48), cognitively normal PD (PD-CN, n = 40), prodromal Alzheimer's disease (MCI-AD, n = 25) and cognitively healthy individuals with other neurological diseases (OND, n = 44). CSF biomarkers reflecting amyloidosis (Aβ42/40 ratio, sAPPα, sAPPβ), tauopathy (p-tau), neurodegeneration (t-tau, NfL, p-NfH), synaptic damage (α-syn, neurogranin) and glial activation (sTREM2, YKL-40) were measured. The great majority (88%) of PD-MCI patients was A-/T-/N-. Among all biomarkers considered, only NfL/p-NfH ratio was significantly higher in PD-MCI vs. PD-CN (p = 0.02). After 2 years, one-third of PD-MCI patients worsened; such worsening was associated with higher baseline levels of NfL, p-tau, and sTREM2. PD-MCI is a heterogeneous entity requiring further investigations on larger, longitudinal cohorts with neuropathological verification.
Collapse
Affiliation(s)
- Federico Paolini Paoletti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Laboratory of Clinical Neurochemistry, Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Laboratory of Clinical Neurochemistry, Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giovanni Bellomo
- Laboratory of Clinical Neurochemistry, Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Elena Chipi
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Nicola Salvadori
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Chiara Montanucci
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Andrea Mancini
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Marta Filidei
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Pasquale Nigro
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Simone Simoni
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Nicola Tambasco
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
- Laboratory of Clinical Neurochemistry, Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
| |
Collapse
|
32
|
So RWL, Watts JC. α-Synuclein Conformational Strains as Drivers of Phenotypic Heterogeneity in Neurodegenerative Diseases. J Mol Biol 2023:168011. [PMID: 36792008 DOI: 10.1016/j.jmb.2023.168011] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/19/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
The synucleinopathies, which include Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy, are a class of human neurodegenerative disorders unified by the presence of α-synuclein aggregates in the brain. Considerable clinical and pathological heterogeneity exists within and among the individual synucleinopathies. A potential explanation for this variability is the existence of distinct conformational strains of α-synuclein aggregates that cause different disease manifestations. Like prion strains, α-synuclein strains can be delineated based on their structural architecture, with structural differences among α-synuclein aggregates leading to unique biochemical attributes and neuropathological properties in humans and animal models. Bolstered by recent high-resolution structural data from patient brain-derived material, it has now been firmly established that there are conformational differences among α-synuclein aggregates from different human synucleinopathies. Moreover, recombinant α-synuclein can be polymerized into several structurally distinct aggregates that exhibit unique pathological properties. In this review, we outline the evidence supporting the existence of α-synuclein strains and highlight how they can act as drivers of phenotypic heterogeneity in the human synucleinopathies.
Collapse
Affiliation(s)
- Raphaella W L So
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada. https://twitter.com/xsakuraphie
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada. https://twitter.com/JoelWattsLab
| |
Collapse
|
33
|
Myers AJ, Brahimi A, Jenkins IJ, Koob AO. The Synucleins and the Astrocyte. BIOLOGY 2023; 12:biology12020155. [PMID: 36829434 PMCID: PMC9952504 DOI: 10.3390/biology12020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Synucleins consist of three proteins exclusively expressed in vertebrates. α-Synuclein (αS) has been identified as the main proteinaceous aggregate in Lewy bodies, a pathological hallmark of many neurodegenerative diseases. Less is understood about β-synuclein (βS) and γ-synuclein (γS), although it is known βS can interact with αS in vivo to inhibit aggregation. Likewise, both γS and βS can inhibit αS's propensity to aggregate in vitro. In the central nervous system, βS and αS, and to a lesser extent γS, are highly expressed in the neural presynaptic terminal, although they are not strictly located there, and emerging data have shown a more complex expression profile. Synapse loss and astrocyte atrophy are early aspects of degenerative diseases of the brain and correlate with disease progression. Synucleins appear to be involved in synaptic transmission, and astrocytes coordinate and organize synaptic function, with excess αS degraded by astrocytes and microglia adjacent to the synapse. βS and γS have also been observed in the astrocyte and may provide beneficial roles. The astrocytic responsibility for degradation of αS as well as emerging evidence on possible astrocytic functions of βS and γS, warrant closer inspection on astrocyte-synuclein interactions at the synapse.
Collapse
Affiliation(s)
- Abigail J. Myers
- Neuroscience Program, Health Science Research Facility, University of Vermont, 149 Beaumont Ave., Burlington, VT 05405, USA
| | - Ayat Brahimi
- Biology Department, University of Hartford, 200 Bloomfield Ave., West Hartford, CT 06117, USA
| | - Imani J. Jenkins
- Biology Department, University of Hartford, 200 Bloomfield Ave., West Hartford, CT 06117, USA
| | - Andrew O. Koob
- Biology Department, University of Hartford, 200 Bloomfield Ave., West Hartford, CT 06117, USA
- Correspondence: ; Tel.: +1-860-768-5780
| |
Collapse
|
34
|
Barba L, Abu Rumeileh S, Bellomo G, Paolini Paoletti F, Halbgebauer S, Oeckl P, Steinacker P, Massa F, Gaetani L, Parnetti L, Otto M. Cerebrospinal fluid β-synuclein as a synaptic biomarker for preclinical Alzheimer's disease. J Neurol Neurosurg Psychiatry 2023; 94:83-86. [PMID: 35944974 DOI: 10.1136/jnnp-2022-329124] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 07/12/2022] [Indexed: 02/02/2023]
Abstract
INTRODUCTION β-synuclein (β-syn) is a presynaptic protein, whose cerebrospinal fluid (CSF) levels are increased in patients with Alzheimer's diseases (AD) showing mild cognitive impairment (MCI) and dementia (dem). Here, we aimed to investigate CSF β-syn in subjects at different AD stages, including preclinical AD (pre-AD), and to compare its behaviour with another synaptic biomarker, α-synuclein (α-syn), and two biomarkers of neuro-axonal damage, namely neurofilament light chain protein (NfL) and total tau protein (t-tau). METHODS We measured β-syn, α-syn, t-tau and NfL in CSF of 75 patients with AD (pre-AD n=17, MCI-AD n=28, dem-AD n=30) and 35 controls (subjective memory complaints, SMC-Ctrl n=13, non-degenerative neurological disorders, Dis-Ctrl n=22). RESULTS CSF β-syn, α-syn, t-tau were significantly elevated in pre-AD patients compared with controls (p<0.0001, p=0.02 and p=0.0001, respectively), while NfL only increased in dem-AD (p=0.001). Pre-AD cases showed lower t-tau concentrations than MCI-AD (p=0.04) and dem-AD (p=0.01). CSF β-syn had the best diagnostic performance for the discrimination of pre-AD subjects from all controls (area under the curve, AUC=0.97) and from SMC-Ctrl subjects (AUC=0.99). DISCUSSION CSF β-syn increases in the whole AD continuum since the preclinical stage and represents a promising biomarker of synaptic damage in AD.
Collapse
Affiliation(s)
- Lorenzo Barba
- Department of Neurology, University Hospital Halle, Halle (Saale), Germany.,Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Samir Abu Rumeileh
- Department of Neurology, University Hospital Halle, Halle (Saale), Germany
| | - Giovanni Bellomo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | | | - Patrick Oeckl
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Petra Steinacker
- Department of Neurology, University Hospital Halle, Halle (Saale), Germany
| | - Federico Massa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Markus Otto
- Department of Neurology, University Hospital Halle, Halle (Saale), Germany .,Department of Neurology, University of Ulm, Ulm, Germany
| |
Collapse
|
35
|
Gómez de San José N, Goossens J, Al Shweiki MR, Halbgebauer S, Oeckl P, Steinacker P, Danzer KM, Graf H, Schönfeldt-Lecuona C, Belbin O, Lleó A, Vanmechelen E, Otto M. Glutamate receptor 4 as a fluid biomarker for the diagnosis of psychiatric disorders. J Psychiatr Res 2022; 156:390-397. [PMID: 36323141 DOI: 10.1016/j.jpsychires.2022.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/02/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Psychiatric disorders are widely underreported diseases, especially in their early stages. So far, there is no fluid biomarker to confirm the diagnosis of these disorders. Proteomics data suggest the synaptic protein glutamate receptor 4 (GluR4), part of the AMPA receptor, as a potential diagnostic biomarker of major depressive disorder (MDD). A novel sandwich ELISA was established and analytically validated to detect GluR4 in cerebrospinal fluid (CSF) samples. A total of 85 subjects diagnosed with MDD (n = 36), bipolar disorder (BD, n = 12), schizophrenia (SCZ, n = 12) and neurological controls (CON, n = 25) were analysed. The data exhibited a significant correlation (r = 0.74; CI:0.62 to 0.82; p < 0.0001) with the antibody-free multiple reaction monitoring (MRM) mass spectrometry (MS) data. CSF GluR4 levels were lower in MDD (p < 0.002) and BD (p = 0.012) than in CON. Moreover, subjects with SCZ described a trend towards lower levels than CON (p = 0.13). The novel GluR4 ELISA may favour the clinical application of this protein as a potential diagnostic biomarker of psychiatric disorders and may facilitate the understanding of the pathophysiological mechanisms behind these disorders.
Collapse
Affiliation(s)
| | | | | | - Steffen Halbgebauer
- Department of Neurology, University of Ulm, 89075, Ulm, Germany; German Center for Neurodegenerative Diseases (DZNE E.V.), Ulm, Germany.
| | - Patrick Oeckl
- Department of Neurology, University of Ulm, 89075, Ulm, Germany; German Center for Neurodegenerative Diseases (DZNE E.V.), Ulm, Germany.
| | - Petra Steinacker
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| | - Karin M Danzer
- Department of Neurology, University of Ulm, 89075, Ulm, Germany; German Center for Neurodegenerative Diseases (DZNE E.V.), Ulm, Germany.
| | - Heiko Graf
- Department of Psychiatry and Psychotherapy III, University of Ulm, 89075, Ulm, Germany.
| | | | - Olivia Belbin
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Sant Antoni Maria Claret, 167, 08025, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.
| | - Alberto Lleó
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Sant Antoni Maria Claret, 167, 08025, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.
| | | | - Markus Otto
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| |
Collapse
|
36
|
Goloborshcheva VV, Kucheryanu VG, Voronina NA, Teterina EV, Ustyugov AA, Morozov SG. Synuclein Proteins in MPTP-Induced Death of Substantia Nigra Pars Compacta Dopaminergic Neurons. Biomedicines 2022; 10:biomedicines10092278. [PMID: 36140378 PMCID: PMC9496024 DOI: 10.3390/biomedicines10092278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
Parkinson’s disease (PD) is one of the key neurodegenerative disorders caused by a dopamine deficiency in the striatum due to the death of dopaminergic (DA) neurons of the substantia nigra pars compacta. The initially discovered A53T mutation in the alpha-synuclein gene was linked to the formation of cytotoxic aggregates: Lewy bodies in the DA neurons of PD patients. Further research has contributed to the discovery of beta- and gamma-synucleins, which presumably compensate for the functional loss of either member of the synuclein family. Here, we review research from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity models and various synuclein-knockout animals. We conclude that the differences in the sensitivity of the synuclein-knockout animals compared with the MPTP neurotoxin are due to the ontogenetic selection of early neurons followed by a compensatory effect of beta-synuclein, which optimizes dopamine capture in the synapses. Triple-knockout synuclein studies have confirmed the higher sensitivity of DA neurons to the toxic effects of MPTP. Nonetheless, beta-synuclein could modulate the alpha-synuclein function, preventing its aggregation and loss of function. Overall, the use of knockout animals has helped to solve the riddle of synuclein functions, and these proteins could be promising molecular targets for the development of therapies that are aimed at optimizing the synaptic function of dopaminergic neurons.
Collapse
Affiliation(s)
- Valeria V. Goloborshcheva
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
- Correspondence: ; Tel.: +7-(909)-644-92-31
| | | | | | - Ekaterina V. Teterina
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia
| | - Aleksey A. Ustyugov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia
| | - Sergei G. Morozov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
| |
Collapse
|
37
|
Synucleinopathy in Amyotrophic Lateral Sclerosis: A Potential Avenue for Antisense Therapeutics? Int J Mol Sci 2022; 23:ijms23169364. [PMID: 36012622 PMCID: PMC9409035 DOI: 10.3390/ijms23169364] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 01/02/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor neuron disease classified as both a neurodegenerative and neuromuscular disorder. With a complex aetiology and no current cure for ALS, broadening the understanding of disease pathology and therapeutic avenues is required to progress with patient care. Alpha-synuclein (αSyn) is a hallmark for disease in neurodegenerative disorders, such as Parkinson's disease, Lewy body dementia, and multiple system atrophy. A growing body of evidence now suggests that αSyn may also play a pathological role in ALS, with αSyn-positive Lewy bodies co-aggregating alongside known ALS pathogenic proteins, such as SOD1 and TDP-43. This review endeavours to capture the scope of literature regarding the aetiology and development of ALS and its commonalities with "synucleinopathy disorders". We will discuss the involvement of αSyn in ALS and motor neuron disease pathology, and the current theories and strategies for therapeutics in ALS treatment, as well as those targeting αSyn for synucleinopathies, with a core focus on small molecule RNA technologies.
Collapse
|
38
|
Increased Expression of Alpha-, Beta-, and Gamma-Synucleins in Brainstem Regions of a Non-Human Primate Model of Parkinson’s Disease. Int J Mol Sci 2022; 23:ijms23158586. [PMID: 35955716 PMCID: PMC9369189 DOI: 10.3390/ijms23158586] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/02/2022] Open
Abstract
Parkinson’s disease (PD) is characterized by cell loss in the substantia nigra and the presence of alpha-synuclein (α-syn)-containing neuronal Lewy bodies. While α-syn has received major interest in the pathogenesis of PD, the function of beta- and gamma-synucleins (β-syn and γ-syn, respectively) is not really known. Yet, these proteins are members of the same family and also concentrated in neuronal terminals. The current preclinical study investigated the expression levels of α-, β-, and γ-synucleins in brainstem regions involved in PD physiopathology. We analyzed synuclein expression in the substantia nigra, raphe nuclei, pedunculopontine nucleus, and locus coeruleus from control and parkinsonian (by MPTP) macaques. MPTP-intoxicated monkeys developed a more or less severe parkinsonian score and were sacrificed after a variable post-MPTP period ranging from 1 to 20 months. The expression of the three synucleins was increased in the substantia nigra after MPTP, and this increase correlates positively, although not very strongly, with cell loss and motor score and not with the time elapsed after intoxication. In the dorsal raphe nucleus, the expression of the three synucleins was also increased, but only α- and γ-Syn are linked to the motor score and associated cell loss. Finally, although no change in synuclein expression was demonstrated in the locus coeruleus after MPTP, we found increased expression levels of γ-Syn, which are only correlated with cell loss in the pedunculopontine nucleus. Altogether, our data suggest that these proteins may play a key role in brainstem regions and mesencephalic tegmentum. Given the involvement of these brain regions in non-motor symptoms of PD, these data also strengthen the relevance of the MPTP macaque model of PD, which exhibits pathological changes beyond nigral DA cell loss and α-synucleinopathy.
Collapse
|
39
|
Bellomo G, Giulia De Luca CM, Paoletti FP, Gaetani L, Moda F, Parnetti L. Alpha synuclein seed amplification assays for diagnosing synucleinopathies: the way forward. Neurology 2022; 99:195-205. [DOI: 10.1212/wnl.0000000000200878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/10/2022] [Indexed: 11/15/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease and the most common synucleinopathy, as alpha-synuclein (α-syn), a prion-like protein, plays an important pathophysiological role in its onset and progression. Although neuropathological changes begin many years before the onset of motor manifestations, diagnosis still relies on the identification of the motor symptoms, which hinders to formulate an early diagnosis. Since α-syn misfolding and aggregation precede clinical manifestations, the possibility to identify these phenomena in PD patients would allow us to recognize the disease at the earliest, premotor phases, as a consequence of the transition from a clinical to a molecular diagnosis.Seed amplification assays (SAAs) are a group of techniques that currently support the diagnosis of prion subacute encephalopathies, namely Creutzfeldt Jakob disease. These techniques enable the detection of minimal amounts of prions in cerebrospinal fluid (CSF) and other matrices of affected patients. Recently, SAAs have been successfully applied to detect misfolded α-syn in CSF, olfactory mucosa, submandibular gland biopsies, skin and saliva, of patients with PD and other synucleinopathies. In these categories, they can differentiate PD and dementia with Lewy bodies (DLB) from control subjects, even in the prodromal stages of the disease. In terms of differential diagnosis, SAAs satisfactorily differentiated PD, DLB, and multiple system atrophy (MSA) from non-synucleinopathy parkinsonisms. The kinetic analysis of the SAA fluorescence profiles allowed the identification of synucleinopathy-dependent α-syn fibrils conformations, commonly referred to as strains, which have demonstrated diagnostic potential in differentiating among synucleinopathies, especially between Lewy body diseases (PD, DLB) and MSA. In front of these highly promising data, which make the α-syn seeding activity detected by SAAs as the most promising diagnostic biomarker for synucleinopathies, there are still preanalytical and analytical issues, mostly related to the assay standardization, which need to be solved. In this review, we discuss the key findings supporting the clinical application of α-syn SAAs to identify PD and other synucleinopathies, the unmet needs, and future perspectives.
Collapse
|
40
|
Foska A, Tsantzali I, Sideri E, Stefanou MI, Bakola E, Kitsos DK, Zompola C, Bonakis A, Giannopoulos S, Voumvourakis KI, Tsivgoulis G, Paraskevas GP. Classical Cerebrospinal Fluid Biomarkers in Dementia with Lewy Bodies. Medicina (B Aires) 2022; 58:medicina58050612. [PMID: 35630029 PMCID: PMC9144333 DOI: 10.3390/medicina58050612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
The use and interpretation of diagnostic cerebrospinal fluid (CSF) biomarkers for neurodegenerative disorders, such as Dementia with Lewy bodies (DLB), represent a clinical challenge. According to the literature, the composition of CSF in DLB patients varies. Some patients present with reduced levels of amyloid, others with full Alzheimer Disease CSF profile (both reduced amyloid and increased phospho-tau) and some with a normal profile. Some patients may present with abnormal levels of a-synuclein. Continuous efforts will be required to establish useful CSF biomarkers for the early diagnosis of DLB. Given the heterogeneity of methods and results between studies, further validation is fundamental before conclusions can be drawn.
Collapse
|
41
|
Bianchini M, Giambelluca M, Scavuzzo MC, Di Franco G, Guadagni S, Palmeri M, Furbetta N, Gianardi D, Costa A, Gentiluomo M, Gaeta R, Pollina LE, Falcone A, Vivaldi C, Di Candio G, Biagioni F, Busceti CL, Soldani P, Puglisi-Allegra S, Morelli L, Fornai F. In Pancreatic Adenocarcinoma Alpha-Synuclein Increases and Marks Peri-Neural Infiltration. Int J Mol Sci 2022; 23:3775. [PMID: 35409135 PMCID: PMC8999122 DOI: 10.3390/ijms23073775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/05/2023] Open
Abstract
α-Synuclein (α-syn) is a protein involved in neuronal degeneration. However, the family of synucleins has recently been demonstrated to be involved in the mechanisms of oncogenesis by selectively accelerating cellular processes leading to cancer. Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human cancers, with a specifically high neurotropism. The molecular bases of this biological behavior are currently poorly understood. Here, α-synuclein was analyzed concerning the protein expression in PDAC and the potential association with PDAC neurotropism. Tumor (PDAC) and extra-tumor (extra-PDAC) samples from 20 patients affected by PDAC following pancreatic resections were collected at the General Surgery Unit, University of Pisa. All patients were affected by moderately or poorly differentiated PDAC. The amount of α-syn was compared between tumor and extra-tumor specimen (sampled from non-affected neighboring pancreatic areas) by using in situ immuno-staining with peroxidase anti-α-syn immunohistochemistry, α-syn detection by using Western blotting, and electron microscopy by using α-syn-conjugated immuno-gold particles. All the methods consistently indicate that each PDAC sample possesses a higher amount of α-syn compared with extra-PDAC tissue. Moreover, the expression of α-syn was much higher in those PDAC samples from tumors with perineural infiltration compared with tumors without perineural infiltration.
Collapse
Affiliation(s)
- Matteo Bianchini
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy; (M.B.); (G.D.F.); (S.G.); (M.P.); (N.F.); (D.G.); (G.D.C.)
| | - Maria Giambelluca
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy; (M.G.); (M.C.S.); (P.S.)
| | - Maria Concetta Scavuzzo
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy; (M.G.); (M.C.S.); (P.S.)
| | - Gregorio Di Franco
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy; (M.B.); (G.D.F.); (S.G.); (M.P.); (N.F.); (D.G.); (G.D.C.)
| | - Simone Guadagni
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy; (M.B.); (G.D.F.); (S.G.); (M.P.); (N.F.); (D.G.); (G.D.C.)
| | - Matteo Palmeri
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy; (M.B.); (G.D.F.); (S.G.); (M.P.); (N.F.); (D.G.); (G.D.C.)
| | - Niccolò Furbetta
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy; (M.B.); (G.D.F.); (S.G.); (M.P.); (N.F.); (D.G.); (G.D.C.)
| | - Desirée Gianardi
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy; (M.B.); (G.D.F.); (S.G.); (M.P.); (N.F.); (D.G.); (G.D.C.)
| | - Aurelio Costa
- General Surgery Unit, ASL Toscana Nord Ovest Pontedera Hospital, 56025 Pontedera, Italy;
| | | | - Raffaele Gaeta
- Division of Surgical Pathology, Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, 56124 Pisa, Italy; (R.G.); (L.E.P.)
| | - Luca Emanuele Pollina
- Division of Surgical Pathology, Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, 56124 Pisa, Italy; (R.G.); (L.E.P.)
| | - Alfredo Falcone
- Division of Medical Oncology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy; (A.F.); (C.V.)
| | - Caterina Vivaldi
- Division of Medical Oncology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy; (A.F.); (C.V.)
| | - Giulio Di Candio
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy; (M.B.); (G.D.F.); (S.G.); (M.P.); (N.F.); (D.G.); (G.D.C.)
| | - Francesca Biagioni
- IRCCS Neuromed-Istituto Neurologico Mediterraneo, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (S.P.-A.)
| | - Carla Letizia Busceti
- IRCCS Neuromed-Istituto Neurologico Mediterraneo, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (S.P.-A.)
| | - Paola Soldani
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy; (M.G.); (M.C.S.); (P.S.)
| | - Stefano Puglisi-Allegra
- IRCCS Neuromed-Istituto Neurologico Mediterraneo, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (S.P.-A.)
| | - Luca Morelli
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy; (M.B.); (G.D.F.); (S.G.); (M.P.); (N.F.); (D.G.); (G.D.C.)
- EndoCAS (Center for Computer Assisted Surgery), University of Pisa, 56124 Pisa, Italy
| | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy; (M.G.); (M.C.S.); (P.S.)
- IRCCS Neuromed-Istituto Neurologico Mediterraneo, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (S.P.-A.)
| |
Collapse
|