1
|
Wang X, Zheng Y, Cai H, Kou W, Yang C, Li S, Zhu B, Wu J, Zhang N, Feng T, Li X, Xiao F, Yu Z. α-Synuclein species in plasma neuron-derived extracellular vesicles as biomarkers for iRBD. Ann Clin Transl Neurol 2024; 11:2891-2903. [PMID: 39291779 PMCID: PMC11572749 DOI: 10.1002/acn3.52200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/05/2024] [Accepted: 08/25/2024] [Indexed: 09/19/2024] Open
Abstract
OBJECTIVE Isolated REM sleep behavior disorder (iRBD) is considered as the strongest predictor of Parkinson's disease (PD). Reliable and accurate biomarkers for iRBD detection and the prediction of phenoconversion are in urgent need. This study aimed to investigate whether α-Synuclein (α-Syn) species in plasma neuron-derived extracellular vesicles (NDEVs) could differentiate between iRBD patients and healthy controls (HCs). METHODS Nanoscale flow cytometry was used to detect α-Syn-containing NDEVs in plasma. RESULTS A total of 54 iRBD patients and 53 HCs were recruited. The concentrations of total α-Syn, α-Syn aggregates, and phosphorylated α-Syn at Ser129 (pS129)-containing NDEVs in plasma of iRBD individuals were significantly higher than those in HCs (p < 0.0001 for all). In distinguishing between iRBD and HCs, the area under the receiver operating characteristic (ROC) curve (AUC) for an integrative model incorporating the levels of α-Syn, pS129, and α-Syn aggregate-containing NDEVs in plasma was 0.965. This model achieved a sensitivity of 94.3% and a specificity of 88.9%. In iRBD group, the concentrations of α-Syn aggregate-containing NDEVs exhibited a negative correlation with Sniffin' Sticks olfactory scores (r = -0.351, p = 0.039). Smokers with iRBD exhibited lower levels of α-Syn aggregates and pS129-containing NDEVs in plasma compared to nonsmokers (pα-Syn aggregates = 0.014; ppS129 = 0.003). INTERPRETATION The current study demonstrated that the levels of total α-Syn, α-Syn aggregates, and pS129-containing NDEVs in the plasma of individuals with iRBD were significantly higher compared to HCs. The levels of α-Syn species-containing NDEVs in plasma may serve as biomarkers for iRBD.
Collapse
Affiliation(s)
- Xuemei Wang
- Center for Movement Disorders, Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Yuanchu Zheng
- Center for Movement Disorders, Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Huihui Cai
- Center for Movement Disorders, Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Wenyi Kou
- Center for Movement Disorders, Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Chen Yang
- Center for Movement Disorders, Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Siming Li
- Center for Movement Disorders, Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Bingxu Zhu
- Center for Movement Disorders, Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Jiayi Wu
- Center for Movement Disorders, Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Ning Zhang
- Department of Neuropsychiatry and Behavioral Neurology and Clinical PsychologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Tao Feng
- Center for Movement Disorders, Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Xiaohong Li
- Department of NeurologyAffiliated Dalian Municipal Friendship Hospital of Dalian Medical UniversityDalianChina
| | - Fulong Xiao
- Division of Sleep MedicinePeking University People's HospitalBeijingChina
| | - Zhenwei Yu
- Department of PathophysiologyBeijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
| |
Collapse
|
2
|
Yang K, Lv Z, Zhao W, Lai G, Zheng C, Qi F, Zhao C, Hu K, Chen X, Fu F, Li J, Xie G, Wang H, Wu X, Zheng W. The potential of natural products to inhibit abnormal aggregation of α-Synuclein in the treatment of Parkinson's disease. Front Pharmacol 2024; 15:1468850. [PMID: 39508052 PMCID: PMC11537895 DOI: 10.3389/fphar.2024.1468850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
Parkinson's disease (PD), as a refractory neurological disorder with complex etiology, currently lacks effective therapeutic agents. Natural products (NPs), derived from plants, animals, or microbes, have shown promising effects in PD models through their antioxidative and anti-inflammatory properties, as well as the enhancement of mitochondrial homeostasis and autophagy. The misfolding and deposition of α-Synuclein (α-Syn), due to abnormal overproduction and impaired clearance, being central to the death of dopamine (DA) neurons. Thus, inhibiting α-Syn misfolding and aggregation has become a critical focus in PD discovery. This review highlights NPs that can reduce α-Syn aggregation by preventing its overproduction and misfolding, emphasizing their potential as novel drugs or adjunctive therapies for PD treatment, thereby providing further insights for clinical translation.
Collapse
Affiliation(s)
- Kaixia Yang
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Zhongyue Lv
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Wen Zhao
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Guogang Lai
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Cheng Zheng
- Neuroscience Medical Center, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Feiteng Qi
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Cui Zhao
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Kaikai Hu
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiao Chen
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Fan Fu
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jiayi Li
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Guomin Xie
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Haifeng Wang
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiping Wu
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Wu Zheng
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- Neuroscience Medical Center, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
3
|
Chang CH, Lim KL, Foo JN. Synaptic Vesicle Glycoprotein 2C: a role in Parkinson's disease. Front Cell Neurosci 2024; 18:1437144. [PMID: 39301216 PMCID: PMC11410587 DOI: 10.3389/fncel.2024.1437144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
Synaptic Vesicle Glycoprotein 2C (SV2C), characterized by its selective expression in discrete brain regions such as the midbrain, has recently emerged as a promising player in Parkinson's Disease (PD) - a debilitating neurodegenerative disorder affecting millions worldwide. This review aims to consolidate our current understanding of SV2C's function, its involvement in PD pathogenesis, and to evaluate its potential as a therapeutic target. Integrating previous findings of SV2C, from genetics to molecular studies, and drawing on insights from the largest East Asian genome-wide association study that highlights SV2C as a novel risk factor for PD, we explore the potential pathways through which SV2C may influence the disease. Our discussion extends to the implications of SV2C's role in synaptic vesicle trafficking, neurotransmitter release, and α-synuclein homeostasis, thereby laying the groundwork for future investigations that could pave the way for novel therapeutic strategies in combating PD.
Collapse
Affiliation(s)
- Chu Hua Chang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Interdisciplinary Graduate Programme (IGP-Neuroscience), Nanyang Technological University, Singapore, Singapore
| | - Kah Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
4
|
Deliz JR, Tanner CM, Gonzalez-Latapi P. Epidemiology of Parkinson's Disease: An Update. Curr Neurol Neurosci Rep 2024; 24:163-179. [PMID: 38642225 DOI: 10.1007/s11910-024-01339-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
PURPOSE OF REVIEW In recent decades, epidemiological understanding of Parkinson disease (PD) has evolved significantly. Major discoveries in genetics and large epidemiological investigations have provided a better understanding of the genetic, behavioral, and environmental factors that play a role in the pathogenesis and progression of PD. In this review, we provide an epidemiological update of PD with a particular focus on advances in the last five years of published literature. RECENT FINDINGS We include an overview of PD pathophysiology, followed by a detailed discussion of the known distribution of disease and varied determinants of disease. We describe investigations of risk factors for PD, and provide a critical summary of current knowledge, knowledge gaps, and both clinical and research implications. We emphasize the need to characterize the epidemiology of the disease in diverse populations. Despite increasing understanding of PD epidemiology, recent paradigm shifts in the conceptualization of PD as a biological entity will also impact epidemiological research moving forward and guide further work in this field.
Collapse
Affiliation(s)
- Juan R Deliz
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Caroline M Tanner
- Weill Institute for Neurosciences, Department of Neurology, University of California -San Francisco, San Francisco, CA, USA
| | - Paulina Gonzalez-Latapi
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
5
|
Jin X, Si X, Lei X, Liu H, Shao A, Li L. Disruption of Dopamine Homeostasis Associated with Alteration of Proteins in Synaptic Vesicles: A Putative Central Mechanism of Parkinson's Disease Pathogenesis. Aging Dis 2024; 15:1204-1226. [PMID: 37815908 PMCID: PMC11081171 DOI: 10.14336/ad.2023.0821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/21/2023] [Indexed: 10/12/2023] Open
Abstract
Vestigial dopaminergic cells in PD have selectivity for a sub-class of hypersensitive neurons with the nigrostriatal dopamine (DA) tract. DA is modulated in pre-synaptic nerve terminals to remain stable. To be specific, proteins at DA release sites that have a function of synthesizing and packing DA in cytoplasm, modulating release and reingestion, and changing excitability of neurons, display regional discrepancies that uncover relevancy of the observed sensitivity to neurodegenerative changes. Although the reasons of a majority of PD cases are still indistinct, heredity and environment are known to us to make significant influences. For decades, genetic analysis of PD patients with heredity in family have promoted our comprehension of pathogenesis to a great extent, which reveals correlative mechanisms including oxidative stress, abnormal protein homeostasis and mitochondrial dysfunction. In this review, we review the constitution of presynaptic vesicle related to DA homeostasis and describe the genetic and environmental evidence of presynaptic dysfunction that increase risky possibility of PD concerning intracellular vesicle transmission and their functional outcomes. We summarize alterations in synaptic vesicular proteins with great involvement in the reasons of some DA neurons highly vulnerable to neurodegenerative changes. We generalize different potential targets and therapeutic strategies for different pathogenic mechanisms, providing a reference for further studies of PD treatment in the future. But it remains to be further researched on this recently discovered and converging mechanism of vesicular dynamics and PD, which will provide a more profound comprehension and put up with new therapeutic tactics for PD patients.
Collapse
Affiliation(s)
- Xuanxiang Jin
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Xiaoli Si
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Xiaoguang Lei
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, the First School of Clinical Medicine, Kunming Medical University, Kunming, China.
| | - Huifang Liu
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong.
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Disease, Hangzhou, China.
| | - Lingfei Li
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
6
|
Bucher ML, Dunn AR, Bradner JM, Stout Egerton K, Burkett JP, Johnson MA, Miller GW. Synaptic vesicle glycoprotein 2C enhances vesicular storage of dopamine and counters dopaminergic toxicity. Eur J Neurosci 2024; 59:2483-2501. [PMID: 38532289 PMCID: PMC11647951 DOI: 10.1111/ejn.16311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 03/28/2024]
Abstract
Dopaminergic neurons of the substantia nigra exist in a persistent state of vulnerability resulting from high baseline oxidative stress, high-energy demand, and broad unmyelinated axonal arborisations. Impairments in the storage of dopamine compound this stress because of cytosolic reactions that transform the vital neurotransmitter into an endogenous neurotoxicant, and this toxicity is thought to contribute to the dopamine neuron degeneration that occurs Parkinson's disease. We have previously identified synaptic vesicle glycoprotein 2C (SV2C) as a modifier of vesicular dopamine function, demonstrating that genetic ablation of SV2C in mice results in decreased dopamine content and evoked dopamine release in the striatum. Here, we adapted a previously published in vitro assay utilising false fluorescent neurotransmitter 206 (FFN206) to visualise how SV2C regulates vesicular dopamine dynamics and determined that SV2C promotes the uptake and retention of FFN206 within vesicles. In addition, we present data indicating that SV2C enhances the retention of dopamine in the vesicular compartment with radiolabelled dopamine in vesicles isolated from immortalised cells and from mouse brain. Further, we demonstrate that SV2C enhances the ability of vesicles to store the neurotoxicant 1-methyl-4-phenylpyridinium (MPP+) and that genetic ablation of SV2C results in enhanced 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced vulnerability in mice. Together, these findings suggest that SV2C functions to enhance vesicular storage of dopamine and neurotoxicants and helps maintain the integrity of dopaminergic neurons.
Collapse
Affiliation(s)
- Meghan L Bucher
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Amy R Dunn
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Joshua M Bradner
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Kristen Stout Egerton
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - James P Burkett
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Michelle A Johnson
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York NY 10031, USA
| |
Collapse
|
7
|
Soares ÉN, Costa ACDS, Ferrolho GDJ, Ureshino RP, Getachew B, Costa SL, da Silva VDA, Tizabi Y. Nicotinic Acetylcholine Receptors in Glial Cells as Molecular Target for Parkinson's Disease. Cells 2024; 13:474. [PMID: 38534318 PMCID: PMC10969434 DOI: 10.3390/cells13060474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by resting tremor, bradykinesia, rigidity, and postural instability that also includes non-motor symptoms such as mood dysregulation. Dopamine (DA) is the primary neurotransmitter involved in this disease, but cholinergic imbalance has also been implicated. Current intervention in PD is focused on replenishing central DA, which provides remarkable temporary symptomatic relief but does not address neuronal loss and the progression of the disease. It has been well established that neuronal nicotinic cholinergic receptors (nAChRs) can regulate DA release and that nicotine itself may have neuroprotective effects. Recent studies identified nAChRs in nonneuronal cell types, including glial cells, where they may regulate inflammatory responses. Given the crucial role of neuroinflammation in dopaminergic degeneration and the involvement of microglia and astrocytes in this response, glial nAChRs may provide a novel therapeutic target in the prevention and/or treatment of PD. In this review, following a brief discussion of PD, we focus on the role of glial cells and, specifically, their nAChRs in PD pathology and/or treatment.
Collapse
Affiliation(s)
- Érica Novaes Soares
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Ana Carla dos Santos Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Gabriel de Jesus Ferrolho
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
- Laboratory of Neurosciences, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Rodrigo Portes Ureshino
- Department of Biological Sciences, Universidade Federal de São Paulo, Diadema 09961-400, SP, Brazil
- Laboratory of Molecular and Translational Endocrinology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, SP, Brazil
| | - Bruk Getachew
- Department of Pharmacology, College of Medicine, Howard University, 520 W Street NW, Washington, DC 20059, USA
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Victor Diogenes Amaral da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
- Laboratory of Neurosciences, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Yousef Tizabi
- Department of Pharmacology, College of Medicine, Howard University, 520 W Street NW, Washington, DC 20059, USA
| |
Collapse
|
8
|
Geng X, Zou Y, Huang T, Li S, Pang A, Yu H. Electroacupuncture Improves Neuronal Damage and Mitochondrial Dysfunction Through the TRPC1 and SIRT1/AMPK Signaling Pathways to Alleviate Parkinson's Disease in Mice. J Mol Neurosci 2024; 74:5. [PMID: 38189854 DOI: 10.1007/s12031-023-02186-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease that mainly manifests as cognitive decline and motor dysfunction, the treatment of which is still a major challenge in the clinical field. Acupuncture therapy has been shown in many studies to enhance the body's own immunity and disease resistance. This study mainly discusses the specific mechanism underlying electroacupuncture intervention in improving PD. Male C57BL/6 mice were intraperitoneally injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to induce a mouse PD model, and the chorea trembling control area of the head of PD mice was treated by electroacupuncture. Western blotting was used to detect the expression of related proteins in mouse pathological samples; TUNEL measured neuronal apoptosis levels; Nissl staining observed neuronal damage; immunofluorescence and immunohistochemistry were used to detect the expression of Iba-1, TH, and α-syn in substantia nigra denser (SN). The expression levels of oxidative stress factors and inflammatory factors were measured by kits. Flow cytometry measured mitochondrial membrane potential and Ca2+ levels. MPTP intraperitoneal injection induced an increase in inflammatory factors in PD mice and promoted the oxidative stress response, and the inflammatory response was alleviated after electroacupuncture treatment. Electroacupuncture intervention effectively alters the decrease in oxidative stress levels and alleviates neuronal damage in PD mice. Electroacupuncture improves mitochondrial dysfunction induced by MPTP in PD mice by activating the SIRT1/AMPK signaling pathway. We also confirmed that knocking down TRPC1 can inhibit the SIRT1/AMPK signaling pathway, weaken the Ca2+ content in mouse neuronal tissue, and promote cell apoptosis. Electroacupuncture improves neuronal damage and alleviates PD in mice through the TRPC1 and SIRT1/AMPK signaling pathways. In addition, electroacupuncture therapy can improve MPTP-induced mitochondrial dysfunction in PD mice and alleviate the PD process.
Collapse
Affiliation(s)
- Xin Geng
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, 650032, Yunnan, China
| | - Yanghong Zou
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, 650032, Yunnan, China
| | - Tao Huang
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, 650032, Yunnan, China
| | - Shipeng Li
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, 650032, Yunnan, China
| | - Ailan Pang
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, 650032, Yunnan, China
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Hualin Yu
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China.
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, 650032, Yunnan, China.
| |
Collapse
|
9
|
Nithianandam V, Bukhari H, Leventhal MJ, Battaglia RA, Dong X, Fraenkel E, Feany MB. Integrative analysis reveals a conserved role for the amyloid precursor protein in proteostasis during aging. Nat Commun 2023; 14:7034. [PMID: 37923712 PMCID: PMC10624868 DOI: 10.1038/s41467-023-42822-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023] Open
Abstract
Aβ peptides derived from the amyloid precursor protein (APP) have been strongly implicated in the pathogenesis of Alzheimer's disease. However, the normal function of APP and the importance of that role in neurodegenerative disease is less clear. We recover the Drosophila ortholog of APP, Appl, in an unbiased forward genetic screen for neurodegeneration mutants. We perform comprehensive single cell transcriptional and proteomic studies of Appl mutant flies to investigate Appl function in the aging brain. We find an unexpected role for Appl in control of multiple cellular pathways, including translation, mitochondrial function, nucleic acid and lipid metabolism, cellular signaling and proteostasis. We mechanistically define a role for Appl in regulating autophagy through TGFβ signaling and document the broader relevance of our findings using mouse genetic, human iPSC and in vivo tauopathy models. Our results demonstrate a conserved role for APP in controlling age-dependent proteostasis with plausible relevance to Alzheimer's disease.
Collapse
Affiliation(s)
- Vanitha Nithianandam
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Hassan Bukhari
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Matthew J Leventhal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- MIT Ph.D. Program in Computational and Systems Biology, Cambridge, MA, USA
| | - Rachel A Battaglia
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Xianjun Dong
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Genomics and Bioinformatics Hub, Brigham and Women's Hospital, Boston, MA, USA
| | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mel B Feany
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
10
|
Tan Z, Lin Y, Zhou M, Guo W, Qiu J, Ding L, Wu Z, Xu P, Chen X. Correlation of SV2C rs1423099 single nucleotide polymorphism with sporadic Parkinson's disease in Han population in Southern China. Neurosci Lett 2023; 813:137426. [PMID: 37544580 DOI: 10.1016/j.neulet.2023.137426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/18/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND The synaptic vesicle glycoprotein 2 (SV2) has been implicated in synaptic function throughout the brain. Accumulating evidence investigated that SV2C contributed to dopamine release and the disrupted expression of SV2C was considered to be a unique feature of PD that may facilitate dopaminergic neuron dysfunction. OBJECTIVE This study aimed to examine the relationship between the SV2C rs1423099 single nucleotide polymorphism and sporadic Parkinson's disease (PD) in the Chinese Han population. MATERIALS AND METHODS This study enrolled 351 patients with sporadic PD and 240 normal controls in Chinese Han population. Peripheral blood DNA was extracted by DNA extraction kits and the rs1423099 genotype was analyzed by Agena MassARRAY DNA mass spectrometry. The differences in genotype and allele distribution frequencies between PD patients and control groups were compared using chi-squared tests or Fisher's exact tests. RESULTS No statistical difference was revealed in age and sex distribution between the cases and control groups, and the distribution of genotype and allele frequencies was consistent with the Hardy-Weinberg equilibrium test. In SV2C rs1423099 dominant model, the frequency of the CC/CT genotype was significantly higher in the PD group compared to the control group (OR = 4.065,95% CI: 2.801-10.870, p = 0.002). Nevertheless, in the recessive model, CC or CT/TT genotypes have no statistical difference in the two groups (p = 0.09). Additionally, in allelic analysis, the C allele was investigated to increase the risk of PD (OR = 1.346, 95% CI: 1.036-1.745, p = 0.026); Furthermore, subgroup analysis suggested that those carrying the C allele in the male subgroup were at a higher risk to afflicted with PD (OR = 1.637, 95% CI: 1.147-2.336, p = 0.006). CONCLUSION SV2C rs1423099 single nucleotide polymorphism was associated with sporadic Parkinson's disease in the Chinese Han population, particularly in males.
Collapse
Affiliation(s)
- Zixin Tan
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Yuwan Lin
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Miaomiao Zhou
- Department of Neurology, Shanghai General Hospital, Shanghai 200940, China
| | - Wenyuan Guo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Jiewen Qiu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Liuyan Ding
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Zhuohua Wu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.
| | - Xiang Chen
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.
| |
Collapse
|
11
|
Bucher ML, Dunn AR, Bradner JM, Egerton KS, Burkett JP, Johnson MA, Miller GW. Synaptic vesicle glycoprotein 2C enhances vesicular storage of dopamine and counters dopaminergic toxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546143. [PMID: 37425736 PMCID: PMC10326994 DOI: 10.1101/2023.06.26.546143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Dopaminergic neurons of the substantia nigra exist in a persistent state of vulnerability resulting from high baseline oxidative stress, high energy demand, and broad unmyelinated axonal arborizations. Impairments in the storage of dopamine compound this stress due to cytosolic reactions that transform the vital neurotransmitter into an endogenous neurotoxicant, and this toxicity is thought to contribute to the dopamine neuron degeneration that occurs Parkinson's disease. We have previously identified synaptic vesicle glycoprotein 2C (SV2C) as a modifier of vesicular dopamine function, demonstrating that genetic ablation of SV2C in mice results in decreased dopamine content and evoked dopamine release in the striatum. Here, we adapted a previously published in vitro assay utilizing false fluorescent neurotransmitter 206 (FFN206) to visualize how SV2C regulates vesicular dopamine dynamics and determined that SV2C promotes the uptake and retention of FFN206 within vesicles. In addition, we present data indicating that SV2C enhances the retention of dopamine in the vesicular compartment with radiolabeled dopamine in vesicles isolated from immortalized cells and from mouse brain. Further, we demonstrate that SV2C enhances the ability of vesicles to store the neurotoxicant 1-methyl-4-phenylpyridinium (MPP+) and that genetic ablation of SV2C results in enhanced 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced vulnerability in mice. Together, these findings suggest that SV2C functions to enhance vesicular storage of dopamine and neurotoxicants, and helps maintain the integrity of dopaminergic neurons.
Collapse
Affiliation(s)
- Meghan L Bucher
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Amy R Dunn
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Joshua M Bradner
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Kristen Stout Egerton
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - James P Burkett
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Michelle A Johnson
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10031, USA
| |
Collapse
|