1
|
Toyli A, Hung GU, Zhao C, Sha Q, Chiu PY, Zhou W. Comparison of cerebral technetium-99m-ethyl cysteinate dimer perfusion in patients with dementia with Lewy bodies and Parkinson's disease dementia. Nucl Med Commun 2024:00006231-990000000-00382. [PMID: 39711303 DOI: 10.1097/mnm.0000000000001946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD) are closely related neurodegenerative conditions within the Lewy body spectrum. The relationship between DLB and PDD remains debated, with ongoing discussion about whether they are distinct diseases or different manifestations of the same disorder. This study aimed to identify differences in cerebral perfusion patterns between DLB and PDD patients. Single-photon emission computed tomography ethyl cysteinate dimer imaging was performed on each patient, and relative tracer uptake levels across 47 regions of interest and 240 subregions were analyzed. A two-sided Welch's t-test was employed to evaluate mean perfusion differences, with results further confirmed through a voxel-wise t-test mapping. The greatest difference in perfusion was in the visual cortices, with lower mean perfusion observed in PDD patients than those with DLB. However, no comparisons remained significant at the 0.05 significance level after adjusting for multiple comparisons with the Benjamini-Hochberg procedure.
Collapse
Affiliation(s)
- Aili Toyli
- Department of Mathematical Sciences, Michigan Technological University, Houghton, Michigan, USA
| | - Guang-Uei Hung
- Department of Nuclear Medicine, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Chen Zhao
- Department of Computer Science, Kennesaw State University, Marietta, Georgia, USA
| | - Qiuying Sha
- Department of Mathematical Sciences, Michigan Technological University, Houghton, Michigan, USA
| | - Pai-Yi Chiu
- Department of Neurology, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Weihua Zhou
- Department of Applied Computing, Michigan Technological University
- Center for Biocomputing and Digital Health, Institute of Computing and Cyber-systems, and Health Research Institute, Michigan Technological University, Houghton, Michigan, USA
| |
Collapse
|
2
|
Kulisevsky J, Litvan I, Weintraub D, Goldman JG, Tröster AI, Lewis SJG. A Call for Change: Updating the Operational Definition for Dementia in Parkinson's Disease. Mov Disord Clin Pract 2024. [PMID: 39688346 DOI: 10.1002/mdc3.14305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 09/23/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Affiliation(s)
- Jaime Kulisevsky
- Movement Disorders Unit at the Neurology Department of Sant Pau Hospital, Universitat Autònoma de Barcelona, and CIBERNED, Bellaterra, Spain
| | - Irene Litvan
- Parkinson and Other Movement Disorders Center, Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Daniel Weintraub
- Parkinson's Disease Research, Education and Clinical Center and Philadelphia Veterans Affairs Medical Center, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Alexander I Tröster
- Department of Clinical Neuropsychology and Center for Neuromodulation, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Simon J G Lewis
- Parkinson's Disease Research Clinic, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Slater NM, Melzer TR, Myall DJ, Anderson TJ, Dalrymple-Alford JC. Cholinergic Basal Forebrain Integrity and Cognition in Parkinson's Disease: A Reappraisal of Magnetic Resonance Imaging Evidence. Mov Disord 2024; 39:2155-2172. [PMID: 39360864 DOI: 10.1002/mds.30023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
Cognitive impairment is a well-recognized and debilitating symptom of Parkinson's disease (PD). Degradation in the cortical cholinergic system is thought to be a key contributor. Both postmortem and in vivo cholinergic positron emission tomography (PET) studies have provided valuable evidence of cholinergic system changes in PD, which are pronounced in PD dementia (PDD). A growing body of literature has employed magnetic resonance imaging (MRI), a noninvasive, more cost-effective alternative to PET, to examine cholinergic system structural changes in PD. This review provides a comprehensive discussion of the methodologies and findings of studies that have focused on the relationship between cholinergic basal forebrain (cBF) integrity, based on T1- and diffusion-weighted MRI, and cognitive function in PD. Nucleus basalis of Meynert (Ch4) volume has been consistently reduced in cognitively impaired PD samples and has shown potential utility as a prognostic indicator for future cognitive decline. However, the extent of structural changes in Ch4, especially in early stages of cognitive decline in PD, remains unclear. In addition, evidence for structural change in anterior cBF regions in PD has not been well established. This review underscores the importance of continued cross-sectional and longitudinal research to elucidate the role of cholinergic dysfunction in the cognitive manifestations of PD. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Nicola M Slater
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Tracy R Melzer
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Daniel J Myall
- New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Tim J Anderson
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
- Department of Neurology, Christchurch Hospital, Te Whatu Ora Waitaha Canterbury, Christchurch, New Zealand
| | - John C Dalrymple-Alford
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
| |
Collapse
|
4
|
Mantovani E, Martini A, Dinoto A, Zucchella C, Ferrari S, Mariotto S, Tinazzi M, Tamburin S. Biomarkers for cognitive impairment in alpha-synucleinopathies: an overview of systematic reviews and meta-analyses. NPJ Parkinsons Dis 2024; 10:211. [PMID: 39488513 PMCID: PMC11531557 DOI: 10.1038/s41531-024-00823-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 10/19/2024] [Indexed: 11/04/2024] Open
Abstract
Cognitive impairment (CI) is common in α-synucleinopathies, i.e., Parkinson's disease, Lewy bodies dementia, and multiple system atrophy. We summarize data from systematic reviews/meta-analyses on neuroimaging, neurophysiology, biofluid and genetic diagnostic/prognostic biomarkers of CI in α-synucleinopathies. Diagnostic biomarkers include atrophy/functional neuroimaging brain changes, abnormal cortical amyloid and tau deposition, and cerebrospinal fluid (CSF) Alzheimer's disease (AD) biomarkers, cortical rhythm slowing, reduced cortical cholinergic and glutamatergic and increased cortical GABAergic activity, delayed P300 latency, increased plasma homocysteine and cystatin C and decreased vitamin B12 and folate, increased CSF/serum albumin quotient, and serum neurofilament light chain. Prognostic biomarkers include brain regional atrophy, cortical rhythm slowing, CSF amyloid biomarkers, Val66Met polymorphism, and apolipoprotein-E ε2 and ε4 alleles. Some AD/amyloid/tau biomarkers may diagnose/predict CI in α-synucleinopathies, but single, validated diagnostic/prognostic biomarkers lack. Future studies should include large consortia, biobanks, multi-omics approach, artificial intelligence, and machine learning to better reflect the complexity of CI in α-synucleinopathies.
Collapse
Affiliation(s)
- Elisa Mantovani
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Alice Martini
- School of Psychology, Keele University, Newcastle, UK
- Addiction Department, Azienda Sanitaria Friuli Occidentale, Pordenone, Italy
| | - Alessandro Dinoto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Chiara Zucchella
- Section of Neurology, Department of Neurosciences, Verona University Hospital, Verona, Italy
| | - Sergio Ferrari
- Section of Neurology, Department of Neurosciences, Verona University Hospital, Verona, Italy
| | - Sara Mariotto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Michele Tinazzi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| |
Collapse
|
5
|
Mombelli S, Casoni F, D'Este G, Leitner C, Marelli S, Zucconi M, Liguori C, Ferini-Strambi L, Galbiati A. The paradoxical impact of periodic limb movements on isolated REM sleep behavior disorder patients. J Neurol 2024; 271:7272-7281. [PMID: 39347805 DOI: 10.1007/s00415-024-12708-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
Recently, the α-synuclein origin and connectome model described two types of Parkinson's disease: "brain-first" and "body-first" subtypes. We aimed to investigate the role of periodic limb movements during sleep (PLMS) in identifying these subtypes starting from a prodromal stage of α-synucleinopathies. 191 patients with isolated REM sleep behavior disorder (iRBD) underwent video-polysomnography (vPSG), questionnaires, clinical interview, and neuropsychological battery. Patients who presented PLMS index (PLMSi) > 15 were compared with patients presenting PLMSi ≤ 15 on clinical questionnaires, vPSG, and neuropsychological domains with age as a covariate. Correlations were performed between PLMSi and vPSG and neuropsychological domains in both groups of iRBD. 48.2% of patients presented PLMSi > 15. iRBD subgroup with PLMSi > 15 performed better than the iRBD subgroup with PLMSi ≤ 15 in the executive function domain. In patients with PLMSi > 15 negative correlations were observed between PLMSi and some neuropsychological domains (memory, language, and executive function). Moreover, this subgroup was older and their PLMSi was positively correlated with wake-after-sleep onset and inversely correlated with total sleep time and sleep efficiency, suggesting a detrimental effect of PLM on sleep also in this cohort. Patients with PLMSi > 15 are characterized by a more preserved cognitive status, despite a more disrupted sleep. PLMSi could be explored in longitudinal studies concerning the "brain-first" and "body-first" model.
Collapse
Affiliation(s)
- Samantha Mombelli
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé Et de Services Sociaux du Nord de L'Île-de-Montréal, Montréal, QC, Canada
- Department of Psychiatry and Addictology, Université de Montréal, Montréal, QC, Canada
| | - Francesca Casoni
- Department of Clinical Neurosciences, Neurology-Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giada D'Este
- Department of Clinical Neurosciences, Neurology-Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Caterina Leitner
- Department of Clinical Neurosciences, Neurology-Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Sara Marelli
- Department of Clinical Neurosciences, Neurology-Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Zucconi
- Department of Clinical Neurosciences, Neurology-Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudio Liguori
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome Tor Vergata, Rome, Italy
| | - Luigi Ferini-Strambi
- Department of Clinical Neurosciences, Neurology-Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea Galbiati
- Department of Clinical Neurosciences, Neurology-Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
6
|
Brumberg J, Blazhenets G, Bühler S, Fostitsch J, Rijntjes M, Ma Y, Eidelberg D, Weiller C, Jost WH, Frings L, Schröter N, Meyer PT. Cerebral Glucose Metabolism Is a Valuable Predictor of Survival in Patients with Lewy Body Diseases. Ann Neurol 2024; 96:539-550. [PMID: 38888141 DOI: 10.1002/ana.27005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/22/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024]
Abstract
OBJECTIVE Patients with Lewy body diseases have an increased risk of dementia, which is a significant predictor for survival. Posterior cortical hypometabolism on [18F]fluorodeoxyglucose positron emission tomography (PET) precedes the development of dementia by years. We therefore examined the prognostic value of cerebral glucose metabolism for survival. METHODS We enrolled patients diagnosed with Parkinson's disease (PD), Parkinson's disease with dementia, or dementia with Lewy bodies who underwent [18F]fluorodeoxyglucose PET. Regional cerebral metabolism of each patient was analyzed by determining the expression of the PD-related cognitive pattern (Z-score) and by visual PET rating. We analyzed the predictive value of PET for overall survival using Cox regression analyses (age- and sex-corrected) and calculated prognostic indices for the best model. RESULTS Glucose metabolism was a significant predictor of survival in 259 included patients (n = 118 events; hazard ratio: 1.4 [1.2-1.6] per Z-score; hazard ratio: 1.8 [1.5-2.2] per visual PET rating score; both p < 0.0001). Risk stratification with visual PET rating scores yielded a median survival of 4.8, 6.8, and 12.9 years for patients with severe, moderate, and mild posterior cortical hypometabolism (median survival not reached for normal cortical metabolism). Stratification into 5 groups based on the prognostic index revealed 10-year survival rates of 94.1%, 78.3%, 34.7%, 0.0%, and 0.0%. INTERPRETATION Regional cerebral glucose metabolism is a significant predictor of survival in Lewy body diseases and may allow an earlier survival prediction than the clinical milestone "dementia." Thus, [18F]fluorodeoxyglucose PET may improve the basis for therapy decisions, especially for invasive therapeutic procedures like deep brain stimulation in Parkinson's disease. ANN NEUROL 2024;96:539-550.
Collapse
Affiliation(s)
- Joachim Brumberg
- Department of Nuclear Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ganna Blazhenets
- Department of Nuclear Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sabrina Bühler
- Department of Nuclear Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Johannes Fostitsch
- Department of Nuclear Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michel Rijntjes
- Department of Neurology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yilong Ma
- Center for Neurosciences, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - David Eidelberg
- Center for Neurosciences, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Cornelius Weiller
- Department of Neurology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Lars Frings
- Department of Nuclear Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nils Schröter
- Department of Neurology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp T Meyer
- Department of Nuclear Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Phongpreecha T, Mathi K, Cholerton B, Fox EJ, Sigal N, Espinosa C, Reincke M, Chung P, Hwang LJ, Gajera CR, Berson E, Perna A, Xie F, Shu CH, Hazra D, Channappa D, Dunn JE, Kipp LB, Poston KL, Montine KS, Maecker HT, Aghaeepour N, Montine TJ. Single-cell peripheral immunoprofiling of lewy body and Parkinson's disease in a multi-site cohort. Mol Neurodegener 2024; 19:59. [PMID: 39090623 PMCID: PMC11295553 DOI: 10.1186/s13024-024-00748-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Multiple lines of evidence support peripheral organs in the initiation or progression of Lewy body disease (LBD), a spectrum of neurodegenerative diagnoses that include Parkinson's Disease (PD) without or with dementia (PDD) and dementia with Lewy bodies (DLB). However, the potential contribution of the peripheral immune response to LBD remains unclear. This study aims to characterize peripheral immune responses unique to participants with LBD at single-cell resolution to highlight potential biomarkers and increase mechanistic understanding of LBD pathogenesis in humans. METHODS In a case-control study, peripheral mononuclear cell (PBMC) samples from research participants were randomly sampled from multiple sites across the United States. The diagnosis groups comprise healthy controls (HC, n = 159), LBD (n = 110), Alzheimer's disease dementia (ADD, n = 97), other neurodegenerative disease controls (NDC, n = 19), and immune disease controls (IDC, n = 14). PBMCs were activated with three stimulants (LPS, IL-6, and IFNa) or remained at basal state, stained by 13 surface markers and 7 intracellular signal markers, and analyzed by flow cytometry, which generated 1,184 immune features after gating. RESULTS The model classified LBD from HC with an AUROC of 0.87 ± 0.06 and AUPRC of 0.80 ± 0.06. Without retraining, the same model was able to distinguish LBD from ADD, NDC, and IDC. Model predictions were driven by pPLCγ2, p38, and pSTAT5 signals from specific cell populations under specific activation. The immune responses characteristic for LBD were not associated with other common medical conditions related to the risk of LBD or dementia, such as sleep disorders, hypertension, or diabetes. CONCLUSIONS AND RELEVANCE Quantification of PBMC immune response from multisite research participants yielded a unique pattern for LBD compared to HC, multiple related neurodegenerative diseases, and autoimmune diseases thereby highlighting potential biomarkers and mechanisms of disease.
Collapse
Affiliation(s)
- Thanaphong Phongpreecha
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Kavita Mathi
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | | | - Eddie J Fox
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Natalia Sigal
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Camilo Espinosa
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Momsen Reincke
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Philip Chung
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Ling-Jen Hwang
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | | | - Eloise Berson
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Amalia Perna
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Feng Xie
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Chi-Hung Shu
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Debapriya Hazra
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Divya Channappa
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Jeffrey E Dunn
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Lucas B Kipp
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Kathleen L Poston
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | | | - Holden T Maecker
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Thomas J Montine
- Department of Pathology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
8
|
Bayram E, Reho P, Litvan I, Ding J, Gibbs JR, Dalgard CL, Traynor BJ, Scholz SW, Chia R. Genetic analysis of the X chromosome in people with Lewy body dementia nominates new risk loci. NPJ Parkinsons Dis 2024; 10:39. [PMID: 38378815 PMCID: PMC10879525 DOI: 10.1038/s41531-024-00649-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
Sex influences the prevalence and symptoms of Lewy body dementia (LBD). However, genome-wide association studies typically focus on autosomal variants and exclude sex-specific risk factors. We addressed this gap by performing an X chromosome-wide association study using whole-genome sequence data from 2591 LBD cases and 4391 controls. We identified a significant risk locus within intron 1 of MAP3K15 (rs141773145, odds ratio = 2.42, 95% confidence interval = 1.65-3.56, p-value = 7.0 × 10-6) in female LBD cases conditioned for APOE ε4 dosage. The locus includes an enhancer region that regulates MAP3K15 expression in ganglionic eminence cells derived from primary cultured neurospheres. Rare variant burden testing showed differential enrichment of missense mutations in TEX13A in female LBD cases, that did not reach significance (p-value = 1.34 × 10-4). These findings support the sex-specific effects of genetic factors and a potential role of Alzheimer's-related risk for females with LBD.
Collapse
Affiliation(s)
- Ece Bayram
- Department of Neurosciences, Parkinson and Other Movement Disorders Center, University of California San Diego, La Jolla, CA, USA
| | - Paolo Reho
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Irene Litvan
- Department of Neurosciences, Parkinson and Other Movement Disorders Center, University of California San Diego, La Jolla, CA, USA
| | - Jinhui Ding
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - J Raphael Gibbs
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Clifton L Dalgard
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Bryan J Traynor
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
- Neuromuscular Diseases Research Section, National Institute on Aging, Bethesda, MD, USA
- Therapeutics Development Laboratory, National Center for Advancing Translational Sciences, Rockville, MD, USA
| | - Sonja W Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Ruth Chia
- Neuromuscular Diseases Research Section, National Institute on Aging, Bethesda, MD, USA.
| |
Collapse
|
9
|
Bayram E, Coughlin DG, Rajmohan R, Litvan I. Sex differences for clinical correlates of substantia nigra neuron loss in people with Lewy body pathology. Biol Sex Differ 2024; 15:8. [PMID: 38243325 PMCID: PMC10797801 DOI: 10.1186/s13293-024-00583-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Lewy body dementia (LBD) phenotype is associated with the presence and degree of Lewy body, Alzheimer's pathologies, and substantia nigra neuron loss. Nigral neuron loss is associated with parkinsonism in LBD, and females with LBD are less likely than males to have parkinsonism. As sex differences were reported for clinical correlates of Lewy body and Alzheimer's pathologies, we aimed to investigate whether there are also sex differences for correlates of nigral neuron loss. METHODS Data were obtained from the National Alzheimer's Coordinating Center for females (n = 159) and males (n = 263) with brainstem, limbic, and neocortical Lewy body pathology. Sex differences for the nigral neuron loss' association with Lewy body pathology staging and core clinical LBD features (cognitive fluctuations, visual hallucinations, rapid eye movement sleep behavior disorder, parkinsonism) during follow-up were analyzed with generalized linear models adjusting for age and Alzheimer's pathology staging. Whether any of the core clinical features at the time of dementia onset can predict underlying nigral neuron loss for females and males were also analyzed with generalized linear models. RESULTS Compared to males, females died older and had higher levels of Braak tau staging, but had similar levels of Lewy body pathology staging and nigral neuron loss. Females were less likely than males to have a clinical Lewy body disease diagnosis during follow-up. More advanced Lewy body pathology staging was associated with more nigral neuron loss, more so for males than females. More nigral neuron loss was associated with parkinsonism and clinical LBD diagnosis during follow-up, more so for males than females. Across the subgroup with dementia (40 females, 58 males), core LBD features at first visit with dementia were not associated with nigral neuron loss. CONCLUSIONS Nigral neuron loss' association with Lewy body pathology staging and core LBD features can differ by sex. Compared to males, females with Lewy body pathology have a higher risk of underdiagnosis. There is a need to elucidate the mechanisms underlying sex differences for pathology and clinicopathological correlations to advance diagnostic and therapeutic efforts in LBD.
Collapse
Affiliation(s)
- Ece Bayram
- Department of Neurosciences, Parkinson and other Movement Disorders Center, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093-0886, USA.
| | - David G Coughlin
- Department of Neurosciences, Parkinson and other Movement Disorders Center, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093-0886, USA
| | - Ravi Rajmohan
- Department of Neurology, University of California Irvine, 1001 Health Sciences Road, Irvine, CA, 92697-3950, USA
| | - Irene Litvan
- Department of Neurosciences, Parkinson and other Movement Disorders Center, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093-0886, USA
| |
Collapse
|
10
|
Dorsey ER, De Miranda BR, Horsager J, Borghammer P. The Body, the Brain, the Environment, and Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:363-381. [PMID: 38607765 DOI: 10.3233/jpd-240019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
The brain- and body-first models of Lewy body disorders predict that aggregated alpha-synuclein pathology usually begins in either the olfactory system or the enteric nervous system. In both scenarios the pathology seems to arise in structures that are closely connected to the outside world. Environmental toxicants, including certain pesticides, industrial chemicals, and air pollution are therefore plausible trigger mechanisms for Parkinson's disease and dementia with Lewy bodies. Here, we propose that toxicants inhaled through the nose can lead to pathological changes in alpha-synuclein in the olfactory system that subsequently spread and give rise to a brain-first subtype of Lewy body disease. Similarly, ingested toxicants can pass through the gut and cause alpha-synuclein pathology that then extends via parasympathetic and sympathetic pathways to ultimately produce a body-first subtype. The resulting spread can be tracked by the development of symptoms, clinical assessments, in vivo imaging, and ultimately pathological examination. The integration of environmental exposures into the brain-first and body-first models generates testable hypotheses, including on the prevalence of the clinical conditions, their future incidence, imaging patterns, and pathological signatures. The proposed link, though, has limitations and leaves many questions unanswered, such as the role of the skin, the influence of the microbiome, and the effects of ongoing exposures. Despite these limitations, the interaction of exogenous factors with the nose and the gut may explain many of the mysteries of Parkinson's disease and open the door toward the ultimate goal -prevention.
Collapse
Affiliation(s)
- E Ray Dorsey
- Department of Neurology and Center for Health and Technology, University of Rochester Medical Center, Rochester, NY, USA
| | - Briana R De Miranda
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jacob Horsager
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
11
|
Kopil CM, Asis A, Campbell C, Chowdhury S, Dexter DT, Fargo KN, Lee KK, Matthews H, Taylor A, Xiao Y, Stephenson D. A Coalition to Advance Treatments for Parkinson's Disease, Dementia with Lewy Bodies, and Related Disorders. JOURNAL OF PARKINSON'S DISEASE 2024; 14:1105-1114. [PMID: 39121136 PMCID: PMC11380265 DOI: 10.3233/jpd-230257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Parkinson's disease (PD) and dementia with Lewy bodies (DLB) share underlying neuropathology. Despite overlapping biology, therapeutic development has been approached separately for these clinical syndromes and there remains no treatment to slow, stop or prevent progression of clinical symptoms and development disability for people living with PD or DLB. Recent advances in biomarker tools, however, have paved new paths for biologic definition and staging of PD and DLB under a shared research framework. Patient-centered research funding organizations see the opportunity for a novel biological staging system for PD and DLB to accelerate and increase success of therapeutic development for the patient communities they serve. Amid growing momentum in the field to develop biological definitions for these neurodegenerative diseases, 7 international nonprofit organizations focused on PD and DLB came together to drive multistakeholder discussion and input on a biological staging system for research. The impact of these convenings to date can be seen in changes incorporated into a proposed biological staging system and growing alignment within the field to rapidly apply new scientific knowledge and biomarker tools to inform clinical trial design. In working together, likeminded nonprofit partners who were initially catalyzed by the significant potential for a biological staging system also realized the power of a shared voice in calling the field to action and have since worked together to establish a coalition to advance precompetitive progress and reduce hurdles to developing better treatments for PD, DLB and biologically related disorders.
Collapse
Affiliation(s)
- Catherine M Kopil
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | | | - Clyde Campbell
- Shake It Up Australia Foundation, Spit Junction, NSW, Australia
| | - Sohini Chowdhury
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | | | | | | | | | | | - Yuge Xiao
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Diane Stephenson
- Critical Path for Parkinson's Consortium, Critical Path Institute, Tucson, AZ, USA
| |
Collapse
|
12
|
Borghammer P, Okkels N, Weintraub D. Parkinson's Disease and Dementia with Lewy Bodies: One and the Same. JOURNAL OF PARKINSON'S DISEASE 2024; 14:383-397. [PMID: 38640172 DOI: 10.3233/jpd-240002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
The question whether Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB) are expressions of the same underlying disease has been vigorously debated for decades. The recently proposed biological definitions of Lewy body disease, which do not assign any particular importance to the dopamine system over other degenerating neurotransmitter systems, has once more brought the discussion about different types of Lewy body disease to the forefront. Here, we briefly compare PDD and DLB in terms of their symptoms, imaging findings, and neuropathology, ultimately finding them to be indistinguishable. We then present a conceptual framework to demonstrate how one can view different clinical syndromes as manifestations of a shared underlying Lewy body disease. Early Parkinson's disease, isolated RBD, pure autonomic failure and other autonomic symptoms, and perhaps even psychiatric symptoms, represent diverse manifestations of the initial clinical stages of Lewy body disease. They are characterized by heterogeneous and comparatively limited neuronal dysfunction and damage. In contrast, Lewy body dementia, an encompassing term for both PDD and DLB, represents a more uniform and advanced stage of the disease. Patients in this category display extensive and severe Lewy pathology, frequently accompanied by co-existing pathologies, as well as multi-system neuronal dysfunction and degeneration. Thus, we propose that Lewy body disease should be viewed as a single encompassing disease entity. Phenotypic variance is caused by the presence of individual risk factors, disease mechanisms, and co-pathologies. Distinct subtypes of Lewy body disease can therefore be defined by subtype-specific disease mechanisms or biomarkers.
Collapse
Affiliation(s)
- Per Borghammer
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Okkels
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Daniel Weintraub
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
13
|
Siderowf A, Concha-Marambio L, Marek K, Soto C. α-synuclein seed amplification in Parkinson's disease - Authors' reply. Lancet Neurol 2023; 22:985-986. [PMID: 37863605 DOI: 10.1016/s1474-4422(23)00371-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/22/2023]
Affiliation(s)
- Andrew Siderowf
- Department of Neurology, Penn Perelman School of Medicine, Philadelphia, PA 19107, USA.
| | | | - Kenneth Marek
- Institute for Neurodegenerative Disorders, New Haven, CT, USA
| | - Claudio Soto
- Department of Neurology, University of Texas McGovern Medical School at Houston, TX, USA
| |
Collapse
|