1
|
Elias M, Gani S, Lerner Y, Yamin K, Tor C, Patel A, Matityahu A, Dessau M, Qvit N, Onn I. Developing a peptide to disrupt cohesin head domain interactions. iScience 2023; 26:107498. [PMID: 37664609 PMCID: PMC10470313 DOI: 10.1016/j.isci.2023.107498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 06/16/2023] [Accepted: 07/26/2023] [Indexed: 09/05/2023] Open
Abstract
Cohesin mediates the 3-D structure of chromatin and is involved in maintaining genome stability and function. The cohesin core comprises Smc1 and Smc3, elongated-shaped proteins that dimerize through globular domains at their edges, called head and hinge. ATP binding to the Smc heads induces their dimerization and the formation of two active sites, while ATP hydrolysis results in head disengagement. This ATPase cycle is essential for driving cohesin activity. We report on the development of the first cohesin-inhibiting peptide (CIP). The CIP binds Smc3 in vitro and inhibits the ATPase activity of the holocomplex. Treating yeast cells with the CIP prevents cohesin's tethering activity and, interestingly, leads to the accumulation of cohesin on chromatin. CIP3 also affects cohesin activity in human cells. Altogether, we demonstrate the power of peptides to inhibit cohesin in cells and discuss the potential application of CIPs as a therapeutic approach.
Collapse
Affiliation(s)
- Maria Elias
- Chromosome Instability and Dynamics Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Samar Gani
- Protein-Protein Interactions Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Yana Lerner
- Protein-Protein Interactions Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Katreen Yamin
- Chromosome Instability and Dynamics Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Chen Tor
- Chromosome Instability and Dynamics Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Adarsh Patel
- The Lab for Structural Biology of Infectious Diseases, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Avi Matityahu
- Chromosome Instability and Dynamics Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Moshe Dessau
- The Lab for Structural Biology of Infectious Diseases, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Nir Qvit
- Protein-Protein Interactions Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Itay Onn
- Chromosome Instability and Dynamics Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
2
|
Birch D, Sayers EJ, Christensen MV, Jones AT, Franzyk H, Nielsen HM. Stereoisomer-Dependent Membrane Association and Capacity for Insulin Delivery Facilitated by Penetratin. Pharmaceutics 2023; 15:1672. [PMID: 37376119 DOI: 10.3390/pharmaceutics15061672] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/08/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Cell-penetrating peptides (CPPs), such as penetratin, are often investigated as drug delivery vectors and incorporating d-amino acids, rather than the natural l-forms, to enhance proteolytic stability could improve their delivery efficiency. The present study aimed to compare membrane association, cellular uptake, and delivery capacity for all-l and all-d enantiomers of penetratin (PEN) by using different cell models and cargos. The enantiomers displayed widely different distribution patterns in the examined cell models, and in Caco-2 cells, quenchable membrane binding was evident for d-PEN in addition to vesicular intracellular localization for both enantiomers. The uptake of insulin in Caco-2 cells was equally mediated by the two enantiomers, and while l-PEN did not increase the transepithelial permeation of any of the investigated cargo peptides, d-PEN increased the transepithelial delivery of vancomycin five-fold and approximately four-fold for insulin at an extracellular apical pH of 6.5. Overall, while d-PEN was associated with the plasma membrane to a larger extent and was superior in mediating the transepithelial delivery of hydrophilic peptide cargoes compared to l-PEN across Caco-2 epithelium, no enhanced delivery of the hydrophobic cyclosporin was observed, and intracellular insulin uptake was induced to a similar degree by the two enantiomers.
Collapse
Affiliation(s)
- Ditlev Birch
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Edward J Sayers
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK
| | - Malene V Christensen
- Cancer and Infectious Diseases, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Arwyn T Jones
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK
| | - Henrik Franzyk
- Cancer and Infectious Diseases, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Hanne M Nielsen
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
3
|
Du W, Zhang L, Li X, Ling G, Zhang P. Nuclear targeting Subcellular-delivery nanosystems for precise cancer treatment. Int J Pharm 2022; 619:121735. [DOI: 10.1016/j.ijpharm.2022.121735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/27/2022] [Accepted: 04/06/2022] [Indexed: 12/20/2022]
|
4
|
Mitochondrial Targeting Probes, Drug Conjugates, and Gene Therapeutics. Methods Mol Biol 2021. [PMID: 34766305 DOI: 10.1007/978-1-0716-1752-6_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Mitochondria represent an important drug target for many phatology, including neurodegeneration, metabolic disease, heart failure, ischemia-reperfusion injury, and cancer. Mitochondrial dysfunctions are caused by mutation in mitochondrial DNA or in nuclear genes encoding mitochondrial proteins. Cell-penetrating peptides (CPPs) have been employed to overcome biological barriers, target this organelle, and therapeuticaly restore mitochondrial functions. Here, we describe recent methods used to deliver oligonucleotides targeting mitochondrial protein by using mitochondrial penetrating peptides. In particular, we highlight recent advances of formulated peptides/oligonucleotides nanocomplexes as a proof-of-principle for pharmaceutical form of peptide-based therapeutics.
Collapse
|
5
|
Zhao J, Ullah I, Gao B, Guo J, Ren XK, Xia S, Zhang W, Feng Y. Agmatine-grafted bioreducible poly(l-lysine) for gene delivery with low cytotoxicity and high efficiency. J Mater Chem B 2021; 8:2418-2430. [PMID: 32115589 DOI: 10.1039/c9tb02641j] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Bioreducible cationic polymers have gained considerable attention in gene delivery due to their low cytotoxicity and high efficiency. In the present work, we reported a cationic polymer, poly(disulfide-l-lysine)-g-agmatine (denoted as SSL-AG), and evaluated its ability to transfer pEGFP-ZNF580 plasmid (pZNF580) into human umbilical vein endothelial cells (HUVECs). This SSL-AG polymeric carrier efficiently condensed pZNF580 into positively charged particles (<200 nm) through electrostatic interaction. This carrier also exhibited excellent buffering capacity in the physiological environment, good pDNA protection against enzymatic degradation and rapid pDNA release in a highly reducing environment mainly because of the responsive cleavage of disulfide bonds in the polymer backbone. The hemolysis assay and in vitro cytotoxicity assay suggested that the SSL-AG carrier and corresponding gene complexes possessed both good hemocompatibility and great cell viability in HUVECs. The cellular uptake of the SSL-AG/Cy5-oligonucleotide group was 3.6 times that of the poly(l-lysine)/Cy5-oligonucleotide group, and its mean fluorescence intensity value was even higher than that of the PEI 25 kDa/Cy5-oligonucleotide group. Further, the intracellular trafficking results demonstrated that the SSL-AG/Cy5-oligonucleotide complexes exhibited a high nucleus co-localization rate (CLR) value (36.0 ± 2.8%, 3.4 times that of the poly (l-lysine)/Cy5-oligonucleotide group, 1.6 times that of the poly(disulfide-l-lysine)-g-butylenediamine/Cy5-oligonucleotide group) at 24 h, while the endo/lysosomal CLR value was relatively low. This suggested that SSL-AG successfully delivered plasmid into HUVECs with high cellular uptake, rapid endosomal escape and efficient nuclear accumulation owing to the structural advantages of the bioreducible and agmatine groups. In vitro transfection assay also verified the enhanced transfection efficiency in the SSL-AG/pZNF580 group. Furthermore, the results of CCK-8, cell migration and in vitro/vivo angiogenesis assays revealed that pZNF580 delivered by SSL-AG could effectively enhance the proliferation, migration and vascularization of HUVECs. In a word, the SSL-AG polymer has great potential as a safe and efficient gene carrier for gene therapy.
Collapse
Affiliation(s)
- Jing Zhao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China. and Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
| | - Ihsan Ullah
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China.
| | - Bin Gao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China. and Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
| | - Jintang Guo
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China. and Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
| | - Xiang-Kui Ren
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China. and Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People's Armed Police Force, Chenglin Road 220, Tianjin 300162, China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology, Logistics University of People's Armed Police Force, Chenglin Road 220, Tianjin 300162, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China. and Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
6
|
Perinelli M, Guerrini R, Albanese V, Marchetti N, Bellotti D, Gentili S, Tegoni M, Remelli M. Cu(II) coordination to His-containing linear peptides and related branched ones: Equalities and diversities. J Inorg Biochem 2020; 205:110980. [PMID: 31931375 DOI: 10.1016/j.jinorgbio.2019.110980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/13/2019] [Accepted: 12/24/2019] [Indexed: 01/20/2023]
Abstract
The two branched peptides (AAHAWG)4-PWT2 and (HAWG)4-PWT2 where synthesized by mounting linear peptides on a cyclam-based scaffold (PWT2), provided with four maleimide chains, through a thio-Michael reaction. The purpose of this study was primarily to verify if the two branched ligands had a Cu(II) coordination behavior reproducing that of the single-chain peptides, namely AAHAWG-NH2, which bears an Amino Terminal Cu(II)- and Ni(II)-Binding (ATCUN) Motif, and HAWG-NH2, which presents a His residue as the N-terminal amino acid, in a wide pH range. The study of Cu(II) binding was performed by potentiometric, spectroscopic (UV-vis absorption, CD, fluorescence) and ESI-MS techniques. ATCUN-type ligands ((AAHAWG)4-PWT2 and AAHAWG-NH2) were confirmed to bind one Cu(II) per peptide fragment at both pH 7.4 and pH 9.0, with a [NH2, 2N-, NIm] coordination mode. On the other hand, the ligand HAWG-NH2 forms a [CuL2]2+ species at neutral pH, while, at pH 9, the formation of 1:2 Cu(II):ligand adducts is prevented by amidic nitrogen deprotonation and coordination, to give rise solely to 1:1 species. Conversely, Cu(II) binding to (HAWG)4-PWT2 resulted in the formation of 1:2 copper:peptide chain also at pH 9: hence, through the latter branched peptide we obtained, at alkaline pH, the stabilization of a specific Cu(II) coordination mode which results unachievable using the corresponding single-chain peptide. This behavior could be explained in terms of high local peptide concentration on the basis of the speciation of the Cu(II)/single-chain peptide systems.
Collapse
Affiliation(s)
- Monica Perinelli
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Remo Guerrini
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Valentina Albanese
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Nicola Marchetti
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Denise Bellotti
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Silvia Gentili
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Matteo Tegoni
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy.
| | - Maurizio Remelli
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, via Luigi Borsari 46, 44121 Ferrara, Italy.
| |
Collapse
|
7
|
Yang Y, Xia M, Zhang S, Zhang X. Cell-penetrating peptide-modified quantum dots as a ratiometric nanobiosensor for the simultaneous sensing and imaging of lysosomes and extracellular pH. Chem Commun (Camb) 2020; 56:145-148. [DOI: 10.1039/c9cc07596h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A ratiometric QD-peptide nanobiosensor is developed for the simultaneous sensing and imaging of lysosomes and extracellular pH.
Collapse
Affiliation(s)
- Yan Yang
- Department of Chemistry
- Tsinghua University
- Beijing
- China
| | - Mengchan Xia
- Department of Chemistry
- Tsinghua University
- Beijing
- China
| | - Sichun Zhang
- Department of Chemistry
- Tsinghua University
- Beijing
- China
| | - Xinrong Zhang
- Department of Chemistry
- Tsinghua University
- Beijing
- China
| |
Collapse
|
8
|
Szyrwiel Ł, Shimura M, Setner B, Szewczuk Z, Malec K, Malinka W, Brasun J, Pap JS. SOD-Like Activity of Copper(II) Containing Metallopeptides Branched By 2,3-Diaminopropionic Acid: What the N-Termini Elevate, the C-Terminus Ruins. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-018-9717-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Brock DJ, Kondow-McConaghy HM, Hager EC, Pellois JP. Endosomal Escape and Cytosolic Penetration of Macromolecules Mediated by Synthetic Delivery Agents. Bioconjug Chem 2018; 30:293-304. [PMID: 30462487 DOI: 10.1021/acs.bioconjchem.8b00799] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell delivery reagents often exploit the endocytic pathway as a route of cell entry. Once endocytosed, these reagents must overcome endosomal entrapment to ensure the release of their macromolecular cargo into the cytosol of cells. In this review, we describe several examples of prototypical synthetic reagents that are capable of endosomal escape and examine their mechanisms of action, their efficiencies, and their effects on cells. Although these delivery systems are chemically distinct, some commonalities in how they interact with cellular membranes can be inferred. This, in turn, sheds some light on the process of endosomal escape, and may help guide the development and optimization of next-generation delivery tools.
Collapse
|
10
|
Abstract
This review summarizes over a decade of investigations into how membrane-binding proteins from the HIV-1 virus interact with lipid membrane mimics various HIV and host T-cell membranes. The goal of the work was to characterize at the molecular level both the elastic and structural changes that occur due to HIV protein/membrane interactions, which could lead to new drugs to thwart the HIV virus. The main technique used to study these interactions is diffuse X-ray scattering, which yields the bending modulus, KC, as well as structural parameters such as membrane thickness, area/lipid and position of HIV peptides (parts of HIV proteins) in the membrane. Our methods also yield information about lipid chain order or disorder caused by the peptides. This review focuses on three stages of the HIV-1 life cycle: 1) infection, 2) Tat membrane transport, and 3) budding. In the infection stage, our lab studied three different parts of HIV-1 gp41 (glycoprotein 41 fusion protein): 1) FP23, the N-terminal 23 amino acids that interact non-specifically with the T-cell host membrane to cause fusion of two membranes, and its trimer version, 2) CRAC (cholesterol recognition amino acid consensus sequence), on the MPER (membrane proximal external region) near the membrane-spanning domain, and 3) LLP2 (lentiviral lytic peptide 2) on the CTT (cytoplasmic C-terminal tail). For Tat transport, we used membrane mimics of the T-cell nuclear membrane as well as simpler models that varied charge and negative curvature. For membrane budding, we varied the myristoylation of the MA31 peptide as well as the negatively charged lipid. These studies show that HIV peptides with different roles in the HIV life cycle affect differently the relevant membrane mimics. In addition, the membrane lipid composition plays an important role in the peptides' effects.
Collapse
|
11
|
Walls ZF, Schwengels M, Palau V. Intracellular sequestration of HER2 via targeted subcellular peptide delivery. J Drug Target 2018. [DOI: 10.1080/1061186x.2018.1450411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Zachary F. Walls
- Department of Pharmaceutical Sciences, Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN, USA
- Center of Excellence for Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, USA
| | | | - Victoria Palau
- Department of Pharmaceutical Sciences, Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
12
|
Che Nordin MA, Teow SY. Review of Current Cell-Penetrating Antibody Developments for HIV-1 Therapy. Molecules 2018; 23:molecules23020335. [PMID: 29415435 PMCID: PMC6017373 DOI: 10.3390/molecules23020335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/06/2018] [Accepted: 01/08/2018] [Indexed: 12/22/2022] Open
Abstract
The discovery of highly active antiretroviral therapy (HAART) in 1996 has significantly reduced the global mortality and morbidity caused by the acquired immunodeficiency syndrome (AIDS). However, the therapeutic strategy of HAART that targets multiple viral proteins may render off-target toxicity and more importantly results in drug-resistant escape mutants. These have been the main challenges for HAART and refinement of this therapeutic strategy is urgently needed. Antibody-mediated treatments are emerging therapeutic modalities for various diseases. Most therapeutic antibodies have been approved by Food and Drug Administration (FDA) mainly for targeting cancers. Previous studies have also demonstrated the promising effect of therapeutic antibodies against HIV-1, but there are several limitations in this therapy, particularly when the viral targets are intracellular proteins. The conventional antibodies do not cross the cell membrane, hence, the pathogenic intracellular proteins cannot be targeted with this classical therapeutic approach. Over the years, the advancement of antibody engineering has permitted the therapeutic antibodies to comprehensively target both extra- and intra-cellular proteins in various infections and diseases. This review aims to update on the current progress in the development of antibody-based treatment against intracellular targets in HIV-1 infection. We also attempt to highlight the challenges and limitations in the development of antibody-based therapeutic modalities against HIV-1.
Collapse
Affiliation(s)
- Muhamad Alif Che Nordin
- Kulliyyah of Medicine and Health Sciences (KMHS), Kolej Universiti INSANIAH, 09300 Kuala Ketil, Kedah, Malaysia.
| | - Sin-Yeang Teow
- Sunway Institute for Healthcare Development (SIHD), School of Healthcare and Medical Sciences (SHMS), Sunway University, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
13
|
Pseudomonas aeruginosa Effector ExoS Inhibits ROS Production in Human Neutrophils. Cell Host Microbe 2017; 21:611-618.e5. [PMID: 28494242 DOI: 10.1016/j.chom.2017.04.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 03/10/2017] [Accepted: 04/11/2017] [Indexed: 12/31/2022]
Abstract
Neutrophils are the first line of defense against bacterial infections, and the generation of reactive oxygen species is a key part of their arsenal. Pathogens use detoxification systems to avoid the bactericidal effects of reactive oxygen species. Here we demonstrate that the Gram-negative pathogen Pseudomonas aeruginosa is susceptible to reactive oxygen species but actively blocks the reactive oxygen species burst using two type III secreted effector proteins, ExoS and ExoT. ExoS ADP-ribosylates Ras and prevents it from interacting with and activating phosphoinositol-3-kinase (PI3K), which is required to stimulate the phagocytic NADPH-oxidase that generates reactive oxygen species. ExoT also affects PI3K signaling via its ADP-ribosyltransferase activity but does not act directly on Ras. A non-ribosylatable version of Ras restores reactive oxygen species production and results in increased bacterial killing. These findings demonstrate that subversion of the host innate immune response requires ExoS-mediated ADP-ribosylation of Ras in neutrophils.
Collapse
|
14
|
Knight JC, Koustoulidou S, Cornelissen B. Imaging the DNA damage response with PET and SPECT. Eur J Nucl Med Mol Imaging 2017; 44:1065-1078. [PMID: 28058462 PMCID: PMC5397662 DOI: 10.1007/s00259-016-3604-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/16/2016] [Indexed: 01/05/2023]
Abstract
DNA integrity is constantly challenged by endogenous and exogenous factors that can alter the DNA sequence, leading to mutagenesis, aberrant transcriptional activity, and cytotoxicity. Left unrepaired, damaged DNA can ultimately lead to the development of cancer. To overcome this threat, a series of complex mechanisms collectively known as the DNA damage response (DDR) are able to detect the various types of DNA damage that can occur and stimulate the appropriate repair process. Each DNA damage repair pathway leads to the recruitment, upregulation, or activation of specific proteins within the nucleus, which, in some cases, can represent attractive targets for molecular imaging. Given the well-established involvement of DDR during tumorigenesis and cancer therapy, the ability to monitor these repair processes non-invasively using nuclear imaging techniques may facilitate the earlier detection of cancer and may also assist in monitoring response to DNA damaging treatment. This review article aims to provide an overview of recent efforts to develop PET and SPECT radiotracers for imaging of DNA damage repair proteins.
Collapse
Affiliation(s)
- James C Knight
- CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7LJ, UK
| | - Sofia Koustoulidou
- CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7LJ, UK
| | - Bart Cornelissen
- CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7LJ, UK.
| |
Collapse
|
15
|
Nano-biomimetic carriers are implicated in mechanistic evaluation of intracellular gene delivery. Sci Rep 2017; 7:41507. [PMID: 28128339 PMCID: PMC5269746 DOI: 10.1038/srep41507] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/20/2016] [Indexed: 12/31/2022] Open
Abstract
Several tissue specific non-viral carriers have been developed for gene delivery purposes. However, the inability to escape endosomes, undermines the efficacy of these carriers. Researchers inspired by HIV and influenza virus, have randomly used Gp41 and H5WYG fusogenic peptides in several gene delivery systems without any rational preference. Here for the first time, we have genetically engineered two Nano-biomimetic carriers composed of either HWYG (HNH) or Gp41 (GNH) that precisely provide identical conditions for the study and evaluation of these fusogenic peptides. The luciferase assay demonstrated a two-fold higher transfection efficiency of HNH compared to GNH. These nanocarriers also displayed equivalent properties in terms of DNA binding ability and DNA protection against serum nucleases and formed similar nanoparticles in terms of surface charge and size. Interestingly, hemolysis and cellular analysis demonstrated both of nanoparticles internalized into cells in similar rate and escaped from endosome with different efficiency. Furthermore, the structural analysis revealed the mechanisms responsible for the superior endosomal escaping capability of H5WYG. In conclusion, this study describes the rationale for using H5WYG peptide to deliver nucleic acids and suggests that using nano-biomimetic carriers to screen different endosomal release peptides, improves gene delivery significantly.
Collapse
|
16
|
Shimura M, Szyrwiel L, Matsuyama S, Yamauchi K. Visualization of Intracellular Elements Using Scanning X-Ray Fluorescence Microscopy. Metallomics 2017. [DOI: 10.1007/978-4-431-56463-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
CPP-Assisted Intracellular Drug Delivery, What Is Next? Int J Mol Sci 2016; 17:ijms17111892. [PMID: 27854260 PMCID: PMC5133891 DOI: 10.3390/ijms17111892] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 11/16/2022] Open
Abstract
For the past 20 years, we have witnessed an unprecedented and, indeed, rather miraculous event of how cell-penetrating peptides (CPPs), the naturally originated penetrating enhancers, help overcome the membrane barrier that has hindered the access of bio-macromolecular compounds such as genes and proteins into cells, thereby denying their clinical potential to become potent anti-cancer drugs. By taking the advantage of the unique cell-translocation property of these short peptides, various payloads of proteins, nucleic acids, or even nanoparticle-based carriers were delivered into all cell types with unparalleled efficiency. However, non-specific CPP-mediated cell penetration into normal tissues can lead to widespread organ distribution of the payloads, thereby reducing the therapeutic efficacy of the drug and at the same time increasing the drug-induced toxic effects. In view of these challenges, we present herein a review of the new designs of CPP-linked vehicles and strategies to achieve highly effective yet less toxic chemotherapy in combating tumor oncology.
Collapse
|
18
|
Gautam A, Nanda JS, Samuel JS, Kumari M, Priyanka P, Bedi G, Nath SK, Mittal G, Khatri N, Raghava GPS. Topical Delivery of Protein and Peptide Using Novel Cell Penetrating Peptide IMT-P8. Sci Rep 2016; 6:26278. [PMID: 27189051 PMCID: PMC4870705 DOI: 10.1038/srep26278] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 04/25/2016] [Indexed: 12/21/2022] Open
Abstract
Skin, being the largest organ of the body, is an important site for drug administration. However, most of the drugs have poor permeability and thus drug delivery through the skin is very challenging. In this study, we examined the transdermal delivery capability of IMT-P8, a novel cell-penetrating peptide. We generated IMT-P8-GFP and IMT-P8-KLA fusion constructs and evaluated their internalization into mouse skin after topical application. Our results demonstrate that IMT-P8 is capable of transporting green fluorescent protein (GFP) and proapoptotic peptide, KLA into the skin and also in different cell lines. Interestingly, uptake of IMT-P8-GFP was considerably higher than TAT-GFP in HeLa cells. After internalization, IMT-P8-KLA got localized to the mitochondria and caused significant cell death in HeLa cells signifying an intact biological activity. Further in vivo skin penetration experiments revealed that after topical application, IMT-P8 penetrated the stratum corneum, entered into the viable epidermis and accumulated inside the hair follicles. In addition, both IMT-P8-KLA and IMT-P8-GFP internalized into the hair follicles and dermal tissue of the skin following topical application. These results suggested that IMT-P8 could be a potential candidate to be used as a topical delivery vehicle for various cosmetic and skin disease applications.
Collapse
Affiliation(s)
- Ankur Gautam
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Jagpreet Singh Nanda
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Jesse S Samuel
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Manisha Kumari
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Priyanka Priyanka
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Gursimran Bedi
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Samir K Nath
- Department of Protein Science and Engineering, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Garima Mittal
- Experimental Animal Facility, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Neeraj Khatri
- Experimental Animal Facility, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | | |
Collapse
|
19
|
Habibi N, Kamaly N, Memic A, Shafiee H. Self-assembled peptide-based nanostructures: Smart nanomaterials toward targeted drug delivery. NANO TODAY 2016; 11:41-60. [PMID: 27103939 PMCID: PMC4834907 DOI: 10.1016/j.nantod.2016.02.004] [Citation(s) in RCA: 382] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Self-assembly of peptides can yield an array of well-defined nanostructures that are highly attractive nanomaterials for many biomedical applications such as drug delivery. Some of the advantages of self-assembled peptide nanostructures over other delivery platforms include their chemical diversity, biocompatibility, high loading capacity for both hydrophobic and hydrophilic drugs, and their ability to target molecular recognition sites. Furthermore, these self-assembled nanostructures could be designed with novel peptide motifs, making them stimuli-responsive and achieving triggered drug delivery at disease sites. The goal of this work is to present a comprehensive review of the most recent studies on self-assembled peptides with a focus on their "smart" activity for formation of targeted and responsive drug-delivery carriers.
Collapse
Affiliation(s)
- Neda Habibi
- Division of Biomedical Engineering, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139 (USA)
| | - Nazila Kamaly
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 (USA)
| | - Adnan Memic
- Center for Nanotechnology, King AbdulAziz University, Jeddah, 21589, Saudi Arabia
| | - Hadi Shafiee
- Division of Biomedical Engineering, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139 (USA)
| |
Collapse
|
20
|
Gao D, Lin XP, Zhang ZP, Li W, Men D, Zhang XE, Cui ZQ. Intracellular cargo delivery by virus capsid protein-based vehicles: From nano to micro. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 12:365-76. [PMID: 26711962 DOI: 10.1016/j.nano.2015.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/27/2015] [Accepted: 10/29/2015] [Indexed: 12/31/2022]
Abstract
UNLABELLED Cellular delivery is an important concern for the efficiency of medicines and sensors for disease diagnoses and therapy. However, this task is quite challenging. Self-assembly virus capsid proteins might be developed as building blocks for multifunctional cellular delivery vehicles. In this work, we found that SV40 VP1 (Simian virus 40 major capsid protein) could function as a new cell-penetrating protein. The VP1 protein could carry foreign proteins into cells in a pentameric structure. A double color structure, with red QDs (Quantum dots) encapsulated by viral capsids fused with EGFP, was created for imaging cargo delivery and release from viral capsids. The viral capsids encapsulating QDs were further used for cellular delivery of micron-sized iron oxide particles (MPIOs). MPIOs were efficiently delivered into live cells and controlled by a magnetic field. Therefore, our study built virus-based cellular delivery systems for different sizes of cargos: protein molecules, nanoparticles, and micron-sized particles. FROM THE CLINICAL EDITOR Much research is being done to investigate methods for efficient and specific cellular delivery of drugs, proteins or genetic material. In this article, the authors describe their approach in using self-assembly virus capsid proteins SV40 VP1 (Simian virus 40 major capsid protein). The cell-penetrating behavior provided excellent cellular delivery and should give a new method for biomedical applications.
Collapse
Affiliation(s)
- Ding Gao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Xiu-Ping Lin
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Ping Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wei Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Dong Men
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xian-En Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; National Key Laboratory of Macrobiomolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zong-Qiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
21
|
Neale C, Huang K, García AE, Tristram-Nagle S. Penetration of HIV-1 Tat47-57 into PC/PE Bilayers Assessed by MD Simulation and X-ray Scattering. MEMBRANES 2015; 5:473-94. [PMID: 26402709 PMCID: PMC4584291 DOI: 10.3390/membranes5030473] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 09/09/2015] [Indexed: 01/07/2023]
Abstract
The interactions of the basic, cell-penetrating region (Y47GRKKRRQRRR57) of the HIV-1 Tat protein with dioleoylphosphatidylcholine (DOPC) bilayers were previously assessed by comparing experimental X-ray diffuse scattering with atomistic molecular dynamics simulations. Here, we extend this investigation by evaluating the influence of phosphatidylethanolamine (PE) lipids. Using experimental bilayer form factors derivedfrom X-ray diffuse scattering data as a guide, our simulations indicate that Tat peptides localize close to the carbonyl-glycerol group in the headgroup region of bilayers composed of either DOPC or DOPC:DOPE (1:1) lipid. Our results also suggest that Tat peptides may more frequently insert into the hydrophobic core of bilayers composed of PC:PE (1:1) lipids than into bilayers composed entirely of PC lipids. PE lipids may facilitate peptide translocation across a lipid bilayer by stabilizing intermediate states in which hydrated peptides span the bilayer.
Collapse
Affiliation(s)
- Chris Neale
- Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY 12180-3590, USA.
| | - Kun Huang
- Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY 12180-3590, USA.
| | - Angel E García
- Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY 12180-3590, USA.
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY 12180-3590, USA.
| | - Stephanie Tristram-Nagle
- Biological Physics Group, Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
22
|
Choi JY, Ryu K, Lee GJ, Kim K, Kim TI. Agmatine-Containing Bioreducible Polymer for Gene Delivery Systems and Its Dual Degradation Behavior. Biomacromolecules 2015; 16:2715-25. [DOI: 10.1021/acs.biomac.5b00590] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ji-yeong Choi
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, and §Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-921, Republic of Korea
| | - Kitae Ryu
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, and §Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-921, Republic of Korea
| | - Gyeong Jin Lee
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, and §Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-921, Republic of Korea
| | - Kyunghwan Kim
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, and §Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-921, Republic of Korea
| | - Tae-il Kim
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, and §Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-921, Republic of Korea
| |
Collapse
|
23
|
Winter J. Cell penetrating peptide mediated quantum dot delivery and release in live mammalian cells. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:4260-3. [PMID: 25570933 DOI: 10.1109/embc.2014.6944565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Quantum dots (QDs) are semiconductor nanocrystals whose unique fluorescence properties make them desirable biological imaging probes. However, reliable and efficient cellular delivery of QDs remains technically challenging. To address this problem, we developed a cell penetrating peptide (CPP) based approach that delivers QDs into mammalian cells with high reproducibility and efficiency and minimal cytotoxicity. To understand the delivery mechanism, we analyzed related cell uptake pathways. We followed internalization and endosomal release of CPP conjugated QDs (CPP-QDs) and found that although endocytosis (micropinocytosis) was the predominant pathway, some CPP-QDs were internalized through direct permeation of the plasma membrane. Internalized QDs could be released from endosomes to the cytoplasm if conjugated with an endosomolytic peptide (HA2), but most of released particles either were re-captured by lysosomes or aggregated in the cytoplasm. Together, our results provide insights into mechanisms of CPP mediated cellular delivery of quantum dots for intracellular imaging as well as therapeutic applications.
Collapse
|
24
|
Low molecular weight protamine (LMWP): A nontoxic protamine substitute and an effective cell-penetrating peptide. J Control Release 2014; 193:63-73. [DOI: 10.1016/j.jconrel.2014.05.056] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/21/2014] [Accepted: 05/27/2014] [Indexed: 01/07/2023]
|
25
|
Zope H, Quer CB, Bomans PHH, Sommerdijk NAJM, Kros A, Jiskoot W. Peptide amphiphile nanoparticles enhance the immune response against a CpG-adjuvanted influenza antigen. Adv Healthc Mater 2014; 3:343-8. [PMID: 23983195 DOI: 10.1002/adhm.201300247] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/15/2013] [Indexed: 12/16/2022]
Abstract
Cationic peptide amphiphile nanoparticles are employed for co-delivery of immune modulator CpG and antigen. This results in better targeting to the antigen presenting cells and eliciting strong Th1 response, which is effective against the intracellular pathogens.
Collapse
Affiliation(s)
- Harshal Zope
- Department of Soft Matter Chemistry, Leiden Institute of Chemistry; Leiden University; P.O. Box 9502 2300 RA Leiden The Netherlands
| | - Christophe Barnier Quer
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research; Leiden University; P.O. Box 9502 2300 RA Leiden The Netherlands
| | - Paul H. H. Bomans
- Laboratory of Materials and Interface Chemistry; Eindhoven University of Technology; P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Nico A. J. M. Sommerdijk
- Laboratory of Materials and Interface Chemistry; Eindhoven University of Technology; P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Alexander Kros
- Department of Soft Matter Chemistry, Leiden Institute of Chemistry; Leiden University; P.O. Box 9502 2300 RA Leiden The Netherlands
| | - Wim Jiskoot
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research; Leiden University; P.O. Box 9502 2300 RA Leiden The Netherlands
| |
Collapse
|
26
|
Synthesis and characterization of guanidinylated polyethylenimine-conjugated chitosan for gene delivery systems. Macromol Res 2014. [DOI: 10.1007/s13233-014-2048-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Boeneman K, Delehanty JB, Blanco-Canosa JB, Susumu K, Stewart MH, Oh E, Huston AL, Dawson G, Ingale S, Walters R, Domowicz M, Deschamps JR, Algar WR, DiMaggio S, Manono J, Spillmann CM, Thompson D, Jennings TL, Dawson PE, Medintz IL. Selecting improved peptidyl motifs for cytosolic delivery of disparate protein and nanoparticle materials. ACS NANO 2013; 7:3778-96. [PMID: 23710591 PMCID: PMC3880025 DOI: 10.1021/nn400702r] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Cell penetrating peptides facilitate efficient intracellular uptake of diverse materials ranging from small contrast agents to larger proteins and nanoparticles. However, a significant impediment remains in the subsequent compartmentalization/endosomal sequestration of most of these cargoes. Previous functional screening suggested that a modular peptide originally designed to deliver palmitoyl-protein thioesterase inhibitors to neurons could mediate endosomal escape in cultured cells. Here, we detail properties relevant to this peptide's ability to mediate cytosolic delivery of quantum dots (QDs) to a wide range of cell-types, brain tissue culture and a developing chick embryo in a remarkably nontoxic manner. The peptide further facilitated efficient endosomal escape of large proteins, dendrimers and other nanoparticle materials. We undertook an iterative structure-activity relationship analysis of the peptide by discretely modifying key components including length, charge, fatty acid content and their order using a comparative, semiquantitative assay. This approach allowed us to define the key motifs required for endosomal escape, to select more efficient escape sequences, along with unexpectedly identifying a sequence modified by one methylene group that specifically targeted QDs to cellular membranes. We interpret our results within a model of peptide function and highlight implications for in vivo labeling and nanoparticle-mediated drug delivery by using different peptides to co-deliver cargoes to cells and engage in multifunctional labeling.
Collapse
Affiliation(s)
- Kelly Boeneman
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375 U.S.A
| | - James B. Delehanty
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375 U.S.A
| | - Juan B. Blanco-Canosa
- Departments of Cell Biology & Chemistry, The Scripps Research Institute, La Jolla, CA 92037 U.S.A
- Institute for Research in Biomedicine (IRB Barcelona), Chemistry and Molecular Pharmacology Programme, Barcelona 08028 Spain
| | - Kimihiro Susumu
- Optical Sciences Division, Code 5611, U.S. Naval Research Laboratory, Washington, DC 20375 U.S.A
- Sotera Defense Solutions, Annapolis Junction, MD 20701 U.S.A
| | - Michael H. Stewart
- Optical Sciences Division, Code 5611, U.S. Naval Research Laboratory, Washington, DC 20375 U.S.A
| | - Eunkeu Oh
- Optical Sciences Division, Code 5611, U.S. Naval Research Laboratory, Washington, DC 20375 U.S.A
- Sotera Defense Solutions, Annapolis Junction, MD 20701 U.S.A
| | - Alan L. Huston
- Optical Sciences Division, Code 5611, U.S. Naval Research Laboratory, Washington, DC 20375 U.S.A
| | - Glyn Dawson
- Departments of Pediatrics, Biochemistry, Committee on Neurobiology, University of Chicago, Chicago, IL 60637 U.S.A
| | - Sampat Ingale
- Departments of Cell Biology & Chemistry, The Scripps Research Institute, La Jolla, CA 92037 U.S.A
| | - Ryan Walters
- Departments of Pediatrics, Biochemistry, Committee on Neurobiology, University of Chicago, Chicago, IL 60637 U.S.A
- Institute for Research in Biomedicine (IRB Barcelona), Chemistry and Molecular Pharmacology Programme, Barcelona 08028 Spain
| | - Miriam Domowicz
- Departments of Pediatrics, Biochemistry, Committee on Neurobiology, University of Chicago, Chicago, IL 60637 U.S.A
| | - Jeffrey R. Deschamps
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375 U.S.A
| | - W. Russ Algar
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375 U.S.A
- College of Science, George Mason University, Fairfax, VA 22030 U.S.A
| | - Stassi DiMaggio
- Department of Chemistry, Xavier University of Louisiana, New Orleans LA 70125 U.S.A
| | - Janet Manono
- Department of Chemistry, Xavier University of Louisiana, New Orleans LA 70125 U.S.A
| | - Christopher M. Spillmann
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375 U.S.A
| | - Darren Thompson
- Departments of Cell Biology & Chemistry, The Scripps Research Institute, La Jolla, CA 92037 U.S.A
| | - Travis L. Jennings
- eBioscience, Inc., 10255 Science Center Drive, San Diego, CA 92121 U.S.A
| | - Philip E. Dawson
- Departments of Cell Biology & Chemistry, The Scripps Research Institute, La Jolla, CA 92037 U.S.A
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375 U.S.A
| |
Collapse
|
28
|
Hong F, Liu B, Chiosis G, Gewirth DT, Li Z. α7 helix region of αI domain is crucial for integrin binding to endoplasmic reticulum chaperone gp96: a potential therapeutic target for cancer metastasis. J Biol Chem 2013; 288:18243-8. [PMID: 23671277 DOI: 10.1074/jbc.m113.468850] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integrins play important roles in regulating a diverse array of cellular functions crucial to the initiation, progression, and metastasis of tumors. Previous studies have shown that a majority of integrins are folded by the endoplasmic reticulum chaperone gp96. Here, we demonstrate that the dimerization of integrin αL and β2 is highly dependent on gp96. The αI domain (AID), a ligand binding domain shared by seven integrin α-subunits, is a critical region for integrin binding to gp96. Deletion of AID significantly reduced the interaction between integrin αL and gp96. Overexpression of AID intracellularly decreased surface expression of gp96 clients (integrins and Toll-like receptors) and cancer cell invasion. The α7 helix region is crucial for AID binding to gp96. A cell-permeable α7 helix peptide competitively inhibited the interaction between gp96 and integrins and blocked cell invasion. Thus, targeting the binding site of α7 helix of AID on gp96 is potentially a new strategy for treatment of cancer metastasis.
Collapse
Affiliation(s)
- Feng Hong
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | |
Collapse
|
29
|
Alhakamy NA, Berkland CJ. Polyarginine molecular weight determines transfection efficiency of calcium condensed complexes. Mol Pharm 2013; 10:1940-8. [PMID: 23534410 PMCID: PMC4207646 DOI: 10.1021/mp3007117] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cell penetrating peptides (CPPs) have been extensively studied in polyelectrolyte complexes as a means to enhance the transfection efficiency of plasmid DNA (pDNA). Increasing the molecular weight of CPPs often enhances gene expression but poses a risk of increased cytotoxicity and immunogenicity compared to low molecular weight CCPs. Conversely, low molecular weight CPPs typically have low transfection efficiency due to large complex size. Complexes made using low molecular weight CPPs were found to be condensed to a small size by adding calcium. In this study, complexes of low molecular weight polyarginine and pDNA were condensed with calcium. These complexes showed high transfection efficiency and low cytotoxicity in A549 carcinomic human alveolar basal epithelial cells. The relationships between transfection efficiency and polyarginine size (5, 7, 9, or 11 amino acids), polyarginine/pDNA charge ratios, and calcium concentrations were studied. Polyarginine 7 was significantly more effective than other polyarginines under most formulation conditions, suggesting a link between cell penetration ability and transfection efficiency.
Collapse
Affiliation(s)
- Nabil A. Alhakamy
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA 66047
| | - Cory J. Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA 66047
- Department of Chemical & Petroleum Engineering, University of Kansas, Lawrence, KS, USA 66047
| |
Collapse
|
30
|
Tang S, Li W, Zhu Y, Hu Q, Wang Y. Tat-conjugated hyaluronic acid enveloping polyplexes with facilitated nuclear entry and improved transfection. Colloids Surf A Physicochem Eng Asp 2013. [DOI: 10.1016/j.colsurfa.2013.01.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
31
|
Design, synthesis, and evaluation of fluorescent cell-penetrating peptidic antagonists of Grb2-SH2 for targeting MCF-7 breast cancer cells. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0538-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Ryu JK, Choi MJ, Kim TI, Jin HR, Kwon KD, Batbold D, Song KM, Kwon MH, Yin GN, Lee M, Kim SW, Suh JK. A guanidinylated bioreducible polymer as a novel gene carrier to the corpus cavernosum of mice with high-cholesterol diet-induced erectile dysfunction. Andrology 2013; 1:216-22. [DOI: 10.1111/j.2047-2927.2012.00057.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 11/29/2012] [Accepted: 12/03/2012] [Indexed: 11/29/2022]
Affiliation(s)
- J.-K. Ryu
- National Research Center for Sexual Medicine and Department of Urology; Inha University School of Medicine; Incheon; Korea
| | - M. J. Choi
- National Research Center for Sexual Medicine and Department of Urology; Inha University School of Medicine; Incheon; Korea
| | - T.-I. Kim
- Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry; University of Utah; Salt Lake City; UT; USA
| | | | - K.-D. Kwon
- National Research Center for Sexual Medicine and Department of Urology; Inha University School of Medicine; Incheon; Korea
| | - D. Batbold
- National Research Center for Sexual Medicine and Department of Urology; Inha University School of Medicine; Incheon; Korea
| | - K.-M. Song
- National Research Center for Sexual Medicine and Department of Urology; Inha University School of Medicine; Incheon; Korea
| | - M.-H. Kwon
- National Research Center for Sexual Medicine and Department of Urology; Inha University School of Medicine; Incheon; Korea
| | - G. N. Yin
- National Research Center for Sexual Medicine and Department of Urology; Inha University School of Medicine; Incheon; Korea
| | - M. Lee
- Department of Bioengineering; College of Engineering, Hanyang University; Seoul; Korea
| | - S. W. Kim
- Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry; University of Utah; Salt Lake City; UT; USA
| | - J.-K. Suh
- National Research Center for Sexual Medicine and Department of Urology; Inha University School of Medicine; Incheon; Korea
| |
Collapse
|
33
|
Li C, Liu Y, Wu Y, Sun Y, Li F. The cellular uptake and localization of non-emissive iridium(III) complexes as cellular reaction-based luminescence probes. Biomaterials 2013; 34:1223-34. [DOI: 10.1016/j.biomaterials.2012.09.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Accepted: 09/10/2012] [Indexed: 10/27/2022]
|
34
|
Maji S, Mitschang F, Chen L, Jin Q, Wang Y, Agarwal S. Functional Poly(Dimethyl Aminoethyl Methacrylate) by Combination of Radical Ring-Opening Polymerization and Click Chemistry for Biomedical Applications. MACROMOL CHEM PHYS 2012. [DOI: 10.1002/macp.201200220] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Lee Y, Nam HY, Kim J, Lee M, Yockman JW, Shin SK, Kim SW. Human erythropoietin gene delivery using an arginine-grafted bioreducible polymer system. Mol Ther 2012; 20:1360-6. [PMID: 22472948 DOI: 10.1038/mt.2012.62] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Erythropoiesis-stimulating agents are widely used to treat anemia for chronic kidney disease (CKD) and cancer, however, several clinical limitations impede their effectiveness. Nonviral gene therapy systems are a novel solution to these problems as they provide stable and low immunogenic protein expression levels. Here, we show the application of an arginine-grafted bioreducible poly(disulfide amine) (ABP) polymer gene delivery system as a platform for in vivo transfer of human erythropoietin plasmid DNA (phEPO) to produce long-term, therapeutic erythropoiesis. A single systemic injection of phEPO/ABP polyplex led to higher hematocrit levels over a 60-day period accompanied with reticulocytosis and high hEPO protein expression. In addition, we found that the distinct temporal and spatial distribution of phEPO/ABP polyplexes contributed to increased erythropoietic effects compared to those of traditional EPO therapies. Overall, our study suggests that ABP polymer-based gene therapy provides a promising clinical strategy to reach effective therapeutic levels of hEPO gene.
Collapse
Affiliation(s)
- Youngsook Lee
- Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112-5820, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Tat(48-60) peptide amino acid sequence is not unique in its cell penetrating properties and cell-surface glycosaminoglycans inhibit its cellular uptake. J Control Release 2012; 158:277-85. [DOI: 10.1016/j.jconrel.2011.11.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 10/25/2011] [Accepted: 11/06/2011] [Indexed: 11/20/2022]
|
37
|
Zhang Y, Ning JF, Qu XQ, Meng XL, Xu JP. TAT-mediated oral subunit vaccine against white spot syndrome virus in crayfish. J Virol Methods 2012; 181:59-67. [PMID: 22306106 DOI: 10.1016/j.jviromet.2012.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 01/13/2012] [Accepted: 01/16/2012] [Indexed: 11/25/2022]
Abstract
White spot syndrome virus is a highly pathogenic virus that infects crayfish and other crustaceans. VP28 is one of its major envelope proteins, and plays a crucial role in viral infection. Cell-penetrating peptides are short peptides that facilitate cellular uptake of various molecular cargoes, and one well known example is TAT peptide from HIV-1 TAT protein. In this study, recombinant plasmids were constructed and transformed into Escherichia coli strain BL21 (DE3) to express TAT-VP28, VP28, TAT-VP28-EGFP and VP28-EGFP fusion proteins. Enzyme-linked immunosorbent assay (ELISA) and flow cytometry methods were used to confirm that TAT fusion proteins can translocate from the intestine to the hemolymph of the crayfish Cambarus clarkii. After immunization, activities of phenoloxidase and superoxide dismutase were analyzed, and it was found that rTAT-VP28 produced the most pronounced increase in both C. clarkii were vaccinated by oral administration of rTAT-VP28 and rVP28 for 7 and 14 days, and rTAT-VP28 resulted in the highest relative percent survival (RPS) (63.3% at 7 days, and 67.8% at 14 days), compared with rVP28 (44.4% at 7 days, and 53.6% at 14 days) following challenge with WSSV after the last day of feeding. This study reports the use of TAT-derived peptide as an oral delivery method of a subunit vaccine against WSSV in C. clarkii.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, China.
| | | | | | | | | |
Collapse
|
38
|
Qin Y, Zhang Q, Chen H, Yuan W, Kuai R, Xie F, Zhang L, Wang X, Zhang Z, Liu J, He Q. Comparison of four different peptides to enhance accumulation of liposomes into the brain. J Drug Target 2011; 20:235-45. [DOI: 10.3109/1061186x.2011.639022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
39
|
Cancer nanomedicines targeting tumor extracellular pH. Colloids Surf B Biointerfaces 2011; 99:116-26. [PMID: 22078927 DOI: 10.1016/j.colsurfb.2011.10.039] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/18/2011] [Accepted: 10/20/2011] [Indexed: 12/13/2022]
Abstract
Tumors have been a highlight in the research of nanomedicine for decades. Despite all the efforts in the decoration of the nano systems, tumor specific targeting is still an issue due to the heterogeneous nature of tumors. Hypoxia is frequently observed in solid tumors. The consequent acidification of tumor extracellular matrices may bring new insight to tumor targeting. In this review, we present the polymeric nano systems that target tumor extracellular pH (pH(e)).
Collapse
|
40
|
Farah CA, Sossin WS. A new mechanism of action of a C2 domain-derived novel PKC inhibitor peptide. Neurosci Lett 2011; 504:306-10. [PMID: 21982802 DOI: 10.1016/j.neulet.2011.09.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/14/2011] [Accepted: 09/23/2011] [Indexed: 11/30/2022]
Abstract
Novel protein kinase Cs (nPKCs) contain an N-terminal C2 domain that cannot bind to calcium. We have previously shown that the Aplysia novel PKC Apl II's C2 domain inhibits binding of diacylglycerol (DAG) to the C1 domain and that this inhibition is removed by phosphatidic acid (PA) binding to the C1b domain. Another model for C2 domain regulation of nPKCs suggests that the C2 domain binds to receptors for activated C kinase (RACKs) to assist in kinase translocation and activation. In the present study, we examined how a pharmacological peptide derived from RACK-binding site in the vertebrate novel PKCɛ regulates translocation of PKC Apl II from the cytosol to the plasma membrane. We found that a C2 domain-derived inhibitor peptide inhibited PKC Apl II translocation. This inhibition was removed by R273H mutation in the C1b domain and by phosphatidic acid, which can both remove C2-domain mediated inhibition suggesting that the peptide can regulate C1-C2 domain interactions.
Collapse
Affiliation(s)
- Carole A Farah
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, BT 110, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| | | |
Collapse
|
41
|
Qin Y, Chen H, Yuan W, Kuai R, Zhang Q, Xie F, Zhang L, Zhang Z, Liu J, He Q. Liposome formulated with TAT-modified cholesterol for enhancing the brain delivery. Int J Pharm 2011; 419:85-95. [DOI: 10.1016/j.ijpharm.2011.07.021] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 06/27/2011] [Accepted: 07/14/2011] [Indexed: 11/28/2022]
|
42
|
Oh E, Delehanty JB, Sapsford KE, Susumu K, Goswami R, Blanco-Canosa JB, Dawson PE, Granek J, Shoff M, Zhang Q, Goering PL, Huston A, Medintz IL. Cellular uptake and fate of PEGylated gold nanoparticles is dependent on both cell-penetration peptides and particle size. ACS NANO 2011; 5:6434-48. [PMID: 21774456 DOI: 10.1021/nn201624c] [Citation(s) in RCA: 308] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Numerous studies have examined how the cellular delivery of gold nanoparticles (AuNPs) is influenced by different physical and chemical characteristics; however, the complex relationship between AuNP size, uptake efficiency and intracellular localization remains only partially understood. Here we examine the cellular uptake of a series of AuNPs ranging in diameter from 2.4 to 89 nm that are synthesized and made soluble with poly(ethylene glycol)-functionalized dithiolane ligands terminating in either carboxyl or methoxy groups and covalently conjugated to cell penetrating peptides. Following synthesis, extensive physical characterization of the AuNPs was performed with UV-vis absorption, gel electrophoresis, zeta potential, dynamic light scattering, and high resolution transmission electron microscopy. Uptake efficiency and intracellular localization of the AuNP-peptide conjugates in a model COS-1 cell line were probed with a combination of silver staining, fluorescent counterstaining, and dual mode fluorescence coupled to nonfluorescent scattering. Our findings show that AuNP cellular uptake is directly dependent on the surface display of the cell-penetrating peptide and that the ultimate intracellular destination is further determined by AuNP diameter. The smallest 2.4 nm AuNPs were found to localize in the nucleus, while intermediate 5.5 and 8.2 nm particles were partially delivered into the cytoplasm, showing a primarily perinuclear fate along with a portion of the nanoparticles appearing to remain at the membrane. The 16 nm and larger AuNPs did not enter the cells and were located at the cellular periphery. A preliminary assessment of cytotoxicity demonstrated minimal effects on cellular viability following peptide-mediated uptake.
Collapse
Affiliation(s)
- Eunkeu Oh
- Optical Sciences Division, Code 5611, U.S. Naval Research Laboratory, Washington, DC 20375, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ahn DG, Shim SB, Moon JE, Kim JH, Kim SJ, Oh JW. Interference of hepatitis C virus replication in cell culture by antisense peptide nucleic acids targeting the X-RNA. J Viral Hepat 2011; 18:e298-306. [PMID: 21692941 DOI: 10.1111/j.1365-2893.2010.01416.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The RNA-dependent RNA polymerase (RdRp) of hepatitis C virus (HCV) is the essential catalytic enzyme for viral genome replication. It initiates minus-strand RNA synthesis from a highly conserved 98-nt sequence, called the X-RNA, at the 3'-end of the plus-strand viral genome. In this study, we evaluated the antiviral effects of peptide nucleic acids (PNAs) targeting the X-RNA. Our in vitro RdRp assay results showed that PNAs targeting the three major stem-loop (SL) domains of X-RNA can inhibit RNA synthesis initiation. Delivery of X-RNA-targeted PNAs by fusing the PNAs to cell-penetrating peptides (CPPs) into HCV-replicating cells effectively suppressed HCV replication. Electrophoretic mobility shift assays revealed that the PNA targeting the SL3 region at the 5'-end of X-RNA dissociated the viral RdRp from the X-RNA. Furthermore, delivery of the SL3-targeted PNA into HCV-infected cells resulted in the suppression of HCV RNA replication without activation of interferon β expression. Collectively, our results indicate that the HCV X-RNA can be effectively targeted by CPP-fused PNAs to block RNA-protein and/or RNA-RNA interactions essential for viral RNA replication and identify X-RNA SL3 as an RdRp binding site crucial for HCV replication. In addition, the ability to inhibit RNA synthesis initiation by targeting HCV X-RNA using antisense PNAs suggests their promising therapeutic potential against HCV infection.
Collapse
Affiliation(s)
- D G Ahn
- Department of Biotechnology and Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
44
|
Martín I, Teixidó M, Giralt E. Design, synthesis and characterization of a new anionic cell-penetrating peptide: SAP(E). Chembiochem 2011; 12:896-903. [PMID: 21365733 DOI: 10.1002/cbic.201000679] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Indexed: 01/16/2023]
Abstract
Cell-penetrating peptides (CPPs) are powerful tools to transport cell-impermeable cargoes into the cytoplasm without damaging the cell membrane. The vast majority of these peptides described to date share several features, among others, they are positively charged at physiological pH. In several cases a clear correlation between an increasing number of positive charges and internalization properties has been reported. Here, we describe what, to the best of our knowledge, is the first anionic CPP. This new compound SAP(E) internalizes into a range of cell lines with good efficiency and it shows low toxicity. We also report on the internalization mechanism. The discovery of this new class of CPP opens the way to the intracellular delivery of new molecular cargoes.
Collapse
Affiliation(s)
- Irene Martín
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Science Park, Baldiri Reixac 10, 08028 Barcelona, Spain
| | | | | |
Collapse
|
45
|
Abstract
Bioreducible polymers, which possess mainly disulfide linkages in the polymer structures, have appeared as ideal gene delivery carriers due to the high stability in extracellular physiological condition and bioreduction-triggered release of genetic materials, as well as decreased cytotoxicity because intracellular cytosol is a reducing environment containing high level of reducing molecules such as glutathione. This review will describe the initiation and recent advances in the development of bioreducible polymers for gene delivery, which includes reducibly cross-linked PEIs, polypeptides, polyion complex micelles, and poly(amido amine)s. There have been extensive researches performed to exhibit great gene delivery efficacy but still several important issues about pharmacokinetics or safety should be answered thoroughly for further rational design of bioreducible polymers having potentials in human gene delivery systems.
Collapse
Affiliation(s)
- Tae-il Kim
- Department of Biosystems and Biomaterials Science and Engineering, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sung Wan Kim
- Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
46
|
Kim TI, Rothmund T, Kissel T, Kim SW. Bioreducible polymers with cell penetrating and endosome buffering functionality for gene delivery systems. J Control Release 2011; 152:110-9. [PMID: 21352876 DOI: 10.1016/j.jconrel.2011.02.013] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 02/08/2011] [Accepted: 02/11/2011] [Indexed: 10/18/2022]
Abstract
Bioreducible cationic polymers (p(DAH(a)-R/API(b))s) composed of different ratios (a:b=2:1, 1:1, 1:2) between arginine-grafted diaminohexane (DAH-R) (cell penetrating functionality) and 1-(3-aminopropyl) imidazole (API) (endosome buffering functionality) monomers were synthesized by Michael reaction of N,N'-cystaminebisacrylamide (CBA) with them, in order to study the effect of endosome buffering moiety on arginine-grafted bioreducible polymeric gene carriers. Several experiments displayed a distinct correlation between monomer composition ratios of p(DAH-R/API)s and the polymer features. Increased endosome buffering capacities proportional to API portions was evaluated for p(DAH-R/API)s due to the imidazole group (pKa=6) of API. Increased portions of API non-ionized at physiological pH and resultant decrease of arginine residues also reduced cytotoxicities of the polymers due to less interaction of cellular compartments with less positively charged polymers but decreased pDNA condensing abilities, Zeta-potential values, cellular uptakes of polyplexes, and finally transfection efficiencies as well. Thus, the predominance of arginine residues over endosome buffering moieties was revealed regarding efficient gene delivery for p(DAH-R/API)s. From transfection results with chloroquine or nigericin, it can be deduced that the endosomal escape of p(DAH-R/API) polyplexes occurs by direct endosome membrane penetration of arginine moieties as well as endosome buffering of the polymers after cellular uptake, which emphasizes the importance of arginine moieties for polymeric gene delivery systems.
Collapse
Affiliation(s)
- Tae-il Kim
- Department of Biosystems and Biomaterials Science and Engineering, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
47
|
Ho YC, Liao ZX, Panda N, Tang DW, Yu SH, Mi FL, Sung HW. Self-organized nanoparticles prepared by guanidine- and disulfide-modified chitosan as a gene delivery carrier. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm11639h] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
48
|
Kuil J, Fischer MJE, de Mol NJ, Liskamp RMJ. Cell permeable ITAM constructs for the modulation of mediator release in mast cells. Org Biomol Chem 2010; 9:820-33. [PMID: 21107489 DOI: 10.1039/c0ob00441c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spleen tyrosine kinase (Syk) is essential for high affinity IgE receptor (FcεRI) mediated mast cell degranulation. Once FcεRI is stimulated, intracellular ITAM motifs of the receptor are diphosphorylated (dpITAM) and Syk is recruited to the receptor by binding of the Syk tandem SH2 domain to dpITAM, resulting in activation of Syk and, eventually, degranulation. To investigate intracellular effects of ITAM mimics, constructs were synthesized with ITAM mimics conjugated to different cell penetrating peptides, i.e. Tat, TP10, octa-Arg and K(Myr)KKK, or a lipophilic C(12)-chain. In most constructs the cargo and carrier were linked to each other through a disulfide bridge, which is convenient for combining different cargos with different carriers and has the advantage that the cargo and the carrier may be separated by reduction of the disulfide once it is intracellular. The ability of these ITAM constructs to label RBL-2H3 cells was assessed using flow cytometry. Fluorescence microscopy showed that the octa-Arg-SS-Flu-ITAM construct was present in various parts of the cells, although it was not homogeneously distributed. In addition, cell penetrating constructs without fluorescent labels were synthesized to examine degranulation in RBL-2H3 cells. Octa-Arg-SS-ITAM stimulated the mediator release up to 140%, indicating that ITAM mimics may have the ability to activate non-receptor bound Syk.
Collapse
Affiliation(s)
- Joeri Kuil
- Department of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Sorbonnelaan 16, 3584 CA, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
49
|
Zheng Z, Aojula H, Clarke D. Reduction of doxorubicin resistance in P-glycoprotein overexpressing cells by hybrid cell-penetrating and drug-binding peptide. J Drug Target 2010; 18:477-87. [PMID: 20088680 DOI: 10.3109/10611860903548347] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Drug efflux by the membrane transporter P-glycoprotein (P-gp) plays a key role in multidrug resistance (MDR). In order to bypass P-gp, thus overcoming MDR, a hybrid peptide comprising a cell penetrating peptide (Tat) and a drug binding motif (DBM) has been developed to noncovalently bind and deliver doxorubicin (Dox) into MDR cells. The uptake of Dox into the leukemia cell line K562 and its P-gp overexpressing subline KD30 increased in the presence of DBM-Tat peptide. Confocal microscopy indicated that DBM-Tat associated Dox was directed to a perinuclear area of KD30 cells, while this was not observed in parent K562 cells. When KD30 cells were pretreated with the endosomotropic agent chloroquine (CLQ), peptide associated Dox redistributed into the cytosol, indicating that endocytosis was the predominant uptake route. Altered drug uptake kinetics observed by cellular accumulation assay also supported an endocytic uptake. In the presence of CLQ, DBM-Tat was able to enhance the cytotoxicity of Dox by 68.4% at 5 microM peptide concentration in KD30 cells but there were only minor effects on Dox cytotoxicity in K562 cells even in the presence of CLQ. Thus, combining Dox with DBM-Tat reduces P-gp mediated drug efflux, without a requirement for drug modification or inhibiting P-gp function.
Collapse
Affiliation(s)
- Zhaohua Zheng
- School of Pharmacy and Pharmaceutical Sciences, The University of Manchester, Stopford Building, Oxford Road, Manchester, UK.
| | | | | |
Collapse
|
50
|
Loh Y, Shi H, Hu M, Yao SQ. "Click" synthesis of small molecule-peptide conjugates for organelle-specific delivery and inhibition of lysosomal cysteine proteases. Chem Commun (Camb) 2010; 46:8407-9. [PMID: 20931108 DOI: 10.1039/c0cc03738a] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A click chemistry approach for the synthesis of small molecule inhibitor-peptide conjugates to achieve organelle-specific delivery has been developed. Biological testing showed that the inhibitor-Tat conjugate was successfully delivered to the lysosomes, leading to potent inhibition of lysosomal cysteine proteases in cultured cells.
Collapse
Affiliation(s)
- Yuhui Loh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 11754
| | | | | | | |
Collapse
|