1
|
Gadi MR, Han J, Shen T, Fan S, Xiao Z, Li L. Divergent synthesis of amino acid-linked O-GalNAc glycan core structures. Nat Protoc 2024:10.1038/s41596-024-01051-6. [PMID: 39327537 DOI: 10.1038/s41596-024-01051-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/19/2024] [Indexed: 09/28/2024]
Abstract
O-GalNAc glycans, also known as mucin-type O-glycans, are primary constituents of mucins on various mucosal sites of the body and also ubiquitously expressed on cell surface and secreted proteins. They have crucial roles in a wide range of physiological and pathological processes, including tumor growth and progression. In addition, altered expression of O-GalNAc glycans is frequently observed during different disease states. Research dedicated to unraveling the structure-function relationships of O-GalNAc glycans has led to the discovery of disease biomarkers and diagnostic tools and the development of O-glycopeptide-based cancer vaccines. Many of these efforts require amino acid-linked O-GalNAc core structures as building blocks to assemble complex O-glycans and glycopeptides. There are eight core structures (cores one to eight), from which all mucin-type O-glycans are derived. In this protocol, we describe the first divergent synthesis of all eight cores from a versatile precursor in practical scales. The protocol involves (i) chemical synthesis of the orthogonally protected precursor (3 days) from commercially available materials, (ii) chemical synthesis of five unique glycosyl donors (1-2 days for each donor) and (iii) selective deprotection of the precursor and assembly of the eight cores (2-4 days for each core). The procedure can be adopted to prepare O-GalNAc cores linked to serine, threonine and tyrosine, which can then be utilized directly for solid-phase glycopeptide synthesis or chemoenzymatic synthesis of complex O-glycans. The procedure empowers researchers with fundamental organic chemistry skills to prepare gram scales of any desired O-GalNAc core(s) or all eight cores concurrently.
Collapse
Affiliation(s)
- Madhusudhan Reddy Gadi
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Jinghua Han
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Tangliang Shen
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Shuquan Fan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Zhongying Xiao
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Lei Li
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
2
|
Wang S, Chen C, Gadi MR, Saikam V, Liu D, Zhu H, Bollag R, Liu K, Chen X, Wang F, Wang PG, Ling P, Guan W, Li L. Chemoenzymatic modular assembly of O-GalNAc glycans for functional glycomics. Nat Commun 2021; 12:3573. [PMID: 34117223 PMCID: PMC8196059 DOI: 10.1038/s41467-021-23428-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 04/29/2021] [Indexed: 01/16/2023] Open
Abstract
O-GalNAc glycans (or mucin O-glycans) play pivotal roles in diverse biological and pathological processes, including tumor growth and progression. Structurally defined O-GalNAc glycans are essential for functional studies but synthetic challenges and their inherent structural diversity and complexity have limited access to these compounds. Herein, we report an efficient and robust chemoenzymatic modular assembly (CEMA) strategy to construct structurally diverse O-GalNAc glycans. The key to this strategy is the convergent assembly of O-GalNAc cores 1-4 and 6 from three chemical building blocks, followed by enzymatic diversification of the cores by 13 well-tailored enzyme modules. A total of 83 O-GalNAc glycans presenting various natural glycan epitopes are obtained and used to generate a unique synthetic mucin O-glycan microarray. Binding specificities of glycan-binding proteins (GBPs) including plant lectins and selected anti-glycan antibodies towards these O-GalNAc glycans are revealed by this microarray, promoting their applicability in functional O-glycomics. Serum samples from colorectal cancer patients and healthy controls are assayed using the array reveal higher bindings towards less common cores 3, 4, and 6 than abundant cores 1 and 2, providing insights into O-GalNAc glycan structure-activity relationships.
Collapse
Affiliation(s)
- Shuaishuai Wang
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Congcong Chen
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Glycochemistry and Glycobiology, Shandong University, Qingdao, 266237, Shandong, China
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan, 250101, Shandong, China
| | | | - Varma Saikam
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Ding Liu
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - He Zhu
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Roni Bollag
- Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, 30912, USA
| | - Xi Chen
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Fengshan Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Science, Shandong University, Jinan, 250012, Shandong, China
| | - Peng George Wang
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA.
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
| | - Peixue Ling
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Glycochemistry and Glycobiology, Shandong University, Qingdao, 266237, Shandong, China.
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan, 250101, Shandong, China.
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Science, Shandong University, Jinan, 250012, Shandong, China.
| | - Wanyi Guan
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, Hebei, China.
| | - Lei Li
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
3
|
Wu J, Kaplaneris N, Ni S, Kaltenhäuser F, Ackermann L. Late-stage C(sp 2)-H and C(sp 3)-H glycosylation of C-aryl/alkyl glycopeptides: mechanistic insights and fluorescence labeling. Chem Sci 2020; 11:6521-6526. [PMID: 34094117 PMCID: PMC8152807 DOI: 10.1039/d0sc01260b] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
C(sp3)–H and C(sp2)–H glycosylations of structurally complex amino acids and peptides were accomplished through the assistance of triazole peptide-isosteres. The palladium-catalyzed peptide–saccharide conjugation provided modular access to structurally complex C-alkyl glycoamino acids, glycopeptides and C-aryl glycosides, while enabling the assembly of fluorescent-labeled glycoamino acids. The C–H activation approach represents an expedient and efficient strategy for peptide late-stage diversification in a programmable as well as chemo-, regio-, and diastereo-selective fashion. C–H glycosylations of complex amino acids and peptides were accomplished through the assistance of triazole peptide-isosteres. The palladium-catalyzed glycosylation provided access to complex C-glycosides and fluorescent-labeled glycoamino acids.![]()
Collapse
Affiliation(s)
- Jun Wu
- Institut fuer Organische und Biomolekulare Chemie, Georg-August-Universitaet Gottingen Tammannstrasse 2 37077 Goettingen Germany
| | - Nikolaos Kaplaneris
- Institut fuer Organische und Biomolekulare Chemie, Georg-August-Universitaet Gottingen Tammannstrasse 2 37077 Goettingen Germany
| | - Shaofei Ni
- Institut fuer Organische und Biomolekulare Chemie, Georg-August-Universitaet Gottingen Tammannstrasse 2 37077 Goettingen Germany
| | - Felix Kaltenhäuser
- Institut fuer Organische und Biomolekulare Chemie, Georg-August-Universitaet Gottingen Tammannstrasse 2 37077 Goettingen Germany
| | - Lutz Ackermann
- Institut fuer Organische und Biomolekulare Chemie, Georg-August-Universitaet Gottingen Tammannstrasse 2 37077 Goettingen Germany .,German Center for Cardiovascular Research (DZHK) Potsdamer Strasse 58 10785 Berlin Germany
| |
Collapse
|
4
|
Wang W, Subramanian P, Martinazzoli O, Wu J, Ackermann L. Glycopeptides by Linch‐Pin C−H Activations for Peptide‐Carbohydrate Conjugation by Manganese(I)‐Catalysis. Chemistry 2019; 25:10585-10589. [DOI: 10.1002/chem.201902788] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Wei Wang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
| | - Parthasarathi Subramanian
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
| | - Oscar Martinazzoli
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
| | - Jun Wu
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
| |
Collapse
|
5
|
Bensalah FO, Bil A, Wittine K, Bellahouel S, Lesur D, Markovic D, Laclef S. Solvent- and catalyst-free transamidations of unprotected glycosyl carboxamides. Org Biomol Chem 2019; 17:9425-9429. [DOI: 10.1039/c9ob02096a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New green and atom efficient transamidation reactions of various glycosyl carboxamides with primary and secondary amines are described.
Collapse
Affiliation(s)
- Fouzia Ouadah Bensalah
- Laboratoire de Glycochimie
- des Antimicrobiens et des Agroressources (LG2A) UMR CNRS 7378 – Institut de Chimie de Picardie FR 3085
- Université de Picardie Jules Verne
- FR-80039 Amiens Cedex
- France
| | - Abed Bil
- Laboratoire de Glycochimie
- des Antimicrobiens et des Agroressources (LG2A) UMR CNRS 7378 – Institut de Chimie de Picardie FR 3085
- Université de Picardie Jules Verne
- FR-80039 Amiens Cedex
- France
| | - Karlo Wittine
- University of Rijeka
- Department of Biotechnology
- 51000 Rijeka
- Croatia
| | - Salima Bellahouel
- Université Oran1
- Laboratoire de Synthèse Organique Appliquée LSOA
- Oran 31000
- Algérie
| | - David Lesur
- Laboratoire de Glycochimie
- des Antimicrobiens et des Agroressources (LG2A) UMR CNRS 7378 – Institut de Chimie de Picardie FR 3085
- Université de Picardie Jules Verne
- FR-80039 Amiens Cedex
- France
| | - Dean Markovic
- University of Rijeka
- Department of Biotechnology
- 51000 Rijeka
- Croatia
| | - Sylvain Laclef
- Laboratoire de Glycochimie
- des Antimicrobiens et des Agroressources (LG2A) UMR CNRS 7378 – Institut de Chimie de Picardie FR 3085
- Université de Picardie Jules Verne
- FR-80039 Amiens Cedex
- France
| |
Collapse
|
6
|
Buettner MJ, Shah SR, Saeui CT, Ariss R, Yarema KJ. Improving Immunotherapy Through Glycodesign. Front Immunol 2018; 9:2485. [PMID: 30450094 PMCID: PMC6224361 DOI: 10.3389/fimmu.2018.02485] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/08/2018] [Indexed: 01/04/2023] Open
Abstract
Immunotherapy is revolutionizing health care, with the majority of high impact "drugs" approved in the past decade falling into this category of therapy. Despite considerable success, glycosylation-a key design parameter that ensures safety, optimizes biological response, and influences the pharmacokinetic properties of an immunotherapeutic-has slowed the development of this class of drugs in the past and remains challenging at present. This article describes how optimizing glycosylation through a variety of glycoengineering strategies provides enticing opportunities to not only avoid past pitfalls, but also to substantially improve immunotherapies including antibodies and recombinant proteins, and cell-based therapies. We cover design principles important for early stage pre-clinical development and also discuss how various glycoengineering strategies can augment the biomanufacturing process to ensure the overall effectiveness of immunotherapeutics.
Collapse
Affiliation(s)
- Matthew J Buettner
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Sagar R Shah
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Christopher T Saeui
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States.,Pharmacology/Toxicology Branch I, Division of Clinical Evaluation and Pharmacology/Toxicology, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD, United States
| | - Ryan Ariss
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Kevin J Yarema
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
7
|
Abstract
Glycosylation is one of the most prevalent posttranslational modifications that profoundly affects the structure and functions of proteins in a wide variety of biological recognition events. However, the structural complexity and heterogeneity of glycoproteins, usually resulting from the variations of glycan components and/or the sites of glycosylation, often complicates detailed structure-function relationship studies and hampers the therapeutic applications of glycoproteins. To address these challenges, various chemical and biological strategies have been developed for producing glycan-defined homogeneous glycoproteins. This review highlights recent advances in the development of chemoenzymatic methods for synthesizing homogeneous glycoproteins, including the generation of various glycosynthases for synthetic purposes, endoglycosidase-catalyzed glycoprotein synthesis and glycan remodeling, and direct enzymatic glycosylation of polypeptides and proteins. The scope, limitation, and future directions of each method are discussed.
Collapse
Affiliation(s)
- Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
8
|
Gupta MR, Thakur K, Khare NK. L-Proline/CeCl 3·7H 2O-NaI mediated stereoselective synthesis of α-2-deoxy glycosides from glucal. Carbohydr Res 2018; 457:51-55. [PMID: 29422121 DOI: 10.1016/j.carres.2018.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/13/2018] [Accepted: 01/13/2018] [Indexed: 12/30/2022]
Abstract
Glucal with different alcohols can be converted into the corresponding 2-deoxy glycosides without Ferrier rearrangement in high yield by treatment with eco friendly transition metal based catalysts [CuCl3·2H2O-NaI (A) or CeCl3·7H2O-NaI (B)] and chiral amine ligand L-proline at various reaction conditions which were optimized for stereoselectivity. The catalyst CeCl3·7H2O-NaI (B) and ligand L-proline in toluene, was found to be much more efficient and high atom economic for the stereoselective glycosidation of propargyl alcohol with glucal, afforded exclusively α-2-deoxy propargyl glycoside in 98% optimized yield. The ligand L-proline was used for the first time in stereoselective glycosidation of α-2-deoxy glycosides involving glucal and alcohols.
Collapse
Affiliation(s)
- Mukul R Gupta
- Department of Chemistry, University of Lucknow, Lucknow, 226007, India
| | - Kratima Thakur
- Department of Chemistry, University of Lucknow, Lucknow, 226007, India
| | - Naveen K Khare
- Department of Chemistry, University of Lucknow, Lucknow, 226007, India.
| |
Collapse
|
9
|
Chaffey PK, Guan X, Li Y, Tan Z. Using Chemical Synthesis To Study and Apply Protein Glycosylation. Biochemistry 2018; 57:413-428. [PMID: 29309128 DOI: 10.1021/acs.biochem.7b01055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Protein glycosylation is one of the most common post-translational modifications and can influence many properties of proteins. Abnormal protein glycosylation can lead to protein malfunction and serious disease. While appreciation of glycosylation's importance is growing in the scientific community, especially in recent years, a lack of homogeneous glycoproteins with well-defined glycan structures has made it difficult to understand the correlation between the structure of glycoproteins and their properties at a quantitative level. This has been a significant limitation on rational applications of glycosylation and on optimizing glycoprotein properties. Through the extraordinary efforts of chemists, it is now feasible to use chemical synthesis to produce collections of homogeneous glycoforms with systematic variations in amino acid sequence, glycosidic linkage, anomeric configuration, and glycan structure. Such a technical advance has greatly facilitated the study and application of protein glycosylation. This Perspective highlights some representative work in this research area, with the goal of inspiring and encouraging more scientists to pursue the glycosciences.
Collapse
Affiliation(s)
- Patrick K Chaffey
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Xiaoyang Guan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Yaohao Li
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Zhongping Tan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| |
Collapse
|
10
|
C6-Modifications on chitosan to develop chitosan-based glycopolymers and their lectin-affinities with sigmoidal binding profiles. Carbohydr Polym 2016; 137:277-286. [DOI: 10.1016/j.carbpol.2015.10.073] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 10/16/2015] [Accepted: 10/22/2015] [Indexed: 01/10/2023]
|
11
|
Wang LX, Amin MN. Chemical and chemoenzymatic synthesis of glycoproteins for deciphering functions. ACTA ACUST UNITED AC 2015; 21:51-66. [PMID: 24439206 DOI: 10.1016/j.chembiol.2014.01.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 12/31/2013] [Accepted: 01/02/2014] [Indexed: 12/11/2022]
Abstract
Glycoproteins are an important class of biomolecules involved in a number of biological recognition processes. However, natural and recombinant glycoproteins are usually produced as mixtures of glycoforms that differ in the structures of the pendent glycans, which are difficult to separate in pure glycoforms. As a result, synthetic homogeneous glycopeptides and glycoproteins have become indispensable probes for detailed structural and functional studies. A number of elegant chemical and biological strategies have been developed for synthetic construction of tailor-made, full-size glycoproteins to address specific biological problems. In this review, we highlight recent advances in chemical and chemoenzymatic synthesis of homogeneous glycoproteins. Selected examples are given to demonstrate the applications of tailor-made, glycan-defined glycoproteins for deciphering glycosylation functions.
Collapse
Affiliation(s)
- Lai-Xi Wang
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Mohammed N Amin
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
12
|
Liu L, Tharmalingam T, Maischberger E, Albrecht S, Gallagher ME, Miranda-Casoluengo R, Meijer WG, Rudd PM, Irwin JA. A HPLC-based glycoanalytical protocol allows the use of natural O-glycans derived from glycoproteins as substrates for glycosidase discovery from microbial culture. Glycoconj J 2013; 30:791-800. [PMID: 23793847 DOI: 10.1007/s10719-013-9483-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 05/31/2013] [Accepted: 06/04/2013] [Indexed: 10/26/2022]
Abstract
Many disorders are characterised by changes in O-glycosylation, but analysis of O-glycosylation has been limited by the availability of specific endo- and exo-glycosidases. As a result chemical methods are employed. However, these may give rise to glycan degradation, so therefore novel O-glycosidases are needed. Artificial substrates do not always identify every glycosidase activity present in an extract. To overcome this, an HPLC-based protocol for glycosidase identification from microbial culture was developed using natural O-glycans and O-glycosylated glycoproteins (porcine stomach mucin and fetuin) as substrates. O-glycans were released by ammonia-based β-elimination for use as substrates, and the bacterial culture supernatants were subjected to ultrafiltration to separate the proteins from glycans and low molecular size molecules. Two bacterial cultures, the psychrotroph Arthrobacter C1-1 and a Corynebacterium isolate, were examined as potential sources of novel glycosidases. Arthrobacter C1-1 culture contained a β-galactosidase and N-acetyl-β-glucosaminidase when assayed using 4-methylumbelliferyl substrates, but when defucosylated O-glycans from porcine stomach mucin were used as substrate, the extract did not cleave β-linked galactose or N-acetylglucosamine. Sialidase activity was identified in Corynebacterium culture supernatant, which hydrolysed sialic acid from fetuin glycans. When both culture supernatants were assayed using the glycoproteins as substrate, neither contained endoglycosidase activity. This method may be applied to investigate a microbial or other extract for glycosidase activity, and has potential for scale-up on high-throughput platforms.
Collapse
Affiliation(s)
- Li Liu
- Dublin-Oxford Glycobiology Group, National Institute for Bioprocessing Research & Training, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Wang P, Aussedat B, Vohra Y, Danishefsky SJ. An advance in the chemical synthesis of homogeneous N-linked glycopolypeptides by convergent aspartylation. Angew Chem Int Ed Engl 2012; 51:11571-5. [PMID: 23011954 PMCID: PMC3500778 DOI: 10.1002/anie.201205038] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 07/17/2012] [Indexed: 12/12/2022]
Abstract
We describe a useful advance in glycopeptide synthesis. We have developed a one-flask aspartylation/deprotection method, wherein long peptide fragments, bearing proximal pseudoproline functionality are merged with complex glycan domains. Following aspartylation, acidmediated global deprotection reveals the elaborated glycopeptide. The temporary pseudoproline functionality serves to suppress formation of aspartimide side products during solid phase peptide synthesis and aspartylation.
Collapse
Affiliation(s)
- Ping Wang
- Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065, USA
| | | | | | | |
Collapse
|
14
|
Wang P, Aussedat B, Vohra Y, Danishefsky SJ. An Advance in the Chemical Synthesis of Homogeneous N-Linked Glycopolypeptides by Convergent Aspartylation. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201205038] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Affiliation(s)
- Ryan M Schmaltz
- The Department of Chemistry and Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
16
|
Huang W, Zhang X, Ju T, Cummings RD, Wang LX. Expeditious chemoenzymatic synthesis of CD52 glycopeptide antigens. Org Biomol Chem 2010; 8:5224-33. [PMID: 20848033 DOI: 10.1039/c0ob00341g] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CD52 is a glycosylphosphatidylinositol (GPI)-anchored glycopeptide antigen found on sperm cells and human lymphocytes. Recent structural studies indicate that sperm-associated CD52 antigen carries both a complex type N-glycan and an O-glycan on the polypeptide backbone. To facilitate functional and immunological studies of distinct CD52 glycoforms, we report in this paper the first chemoenzymatic synthesis of homogeneous CD52 glycoforms carrying both N- and O-glycans. The synthetic strategy consists of two key steps: monosaccharide primers GlcNAc and GalNAc were first installed at the pre-determined N- and O-glycosylation sites by a facile solid-phase peptide synthesis, and then the N- and O-glycans were extended by respective enzymatic glycosylations. It was found that the endoglycosidase-catalyzed transglycosylation allowed efficient attachment of an intact N-glycan in a single step at the N-glycosylation site, while the recombinant human T-synthase could independently extend the O-linked GalNAc to form the core 1 O-glycan. This chemoenzymatic approach is highly convergent and permits easy construction of various homogeneous CD52 glycoforms from a common polypeptide precursor. In addition, the introduction of a latent thiol group in the form of protected cysteamine at the C-terminus of the CD52 glycoforms will enable site-specific conjugation to a carrier protein to provide immunogens for generating CD52 glycoform-specific antibodies for functional studies.
Collapse
Affiliation(s)
- Wei Huang
- Institute of Human Virology and Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | |
Collapse
|
17
|
Jaradat DMM, Hamouda H, Hackenberger CPR. Solid-Phase Synthesis of Phosphoramidate-Linked Glycopeptides. European J Org Chem 2010. [DOI: 10.1002/ejoc.201000627] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Rich JR, Withers SG. Emerging methods for the production of homogeneous human glycoproteins. Nat Chem Biol 2009; 5:206-15. [PMID: 19295526 DOI: 10.1038/nchembio.148] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most circulating human proteins exist as heterogeneously glycosylated variants (glycoforms) of an otherwise homogeneous polypeptide. Though glycan heterogeneity is most likely important to glycoprotein function, the preparation of homogeneous glycoforms is important both for the study of the consequences of glycosylation and for therapeutic purposes. This review details selected approaches to the production of homogeneous human N- and O-linked glycoproteins with human-type glycans. Particular emphasis is placed on recent developments in the engineering of glycosylation pathways within yeast and bacteria for in vivo production, and on the in vitro remodeling of glycoproteins by enzymatic means. The future of this field is very exciting.
Collapse
Affiliation(s)
- Jamie R Rich
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
19
|
Henricus MM, Fath KR, Menzenski MZ, Banerjee IA. Morphology Controlled Growth of Chitosan-Bound Microtubes and a Study of their Biocompatibility and Antibacterial Activity. Macromol Biosci 2009; 9:317-25. [DOI: 10.1002/mabi.200800220] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Piontek C, Varón Silva D, Heinlein C, Pöhner C, Mezzato S, Ring P, Martin A, Schmid F, Unverzagt C. Semisynthesis of a Homogeneous Glycoprotein Enzyme: Ribonuclease C: Part 2. Angew Chem Int Ed Engl 2009; 48:1941-5. [DOI: 10.1002/anie.200804735] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Piontek C, Varón Silva D, Heinlein C, Pöhner C, Mezzato S, Ring P, Martin A, Schmid F, Unverzagt C. Semisynthese eines homogenen Glycoprotein-Enzyms: Ribonuclease C (Teil 2). Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200804735] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
22
|
Affiliation(s)
- David P Gamblin
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | | | | |
Collapse
|
23
|
Swarts BM, Chang YC, Hu H, Guo Z. Synthesis and CD structural studies of CD52 peptides and glycopeptides. Carbohydr Res 2008; 343:2894-902. [DOI: 10.1016/j.carres.2008.08.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2008] [Revised: 08/21/2008] [Accepted: 08/25/2008] [Indexed: 10/21/2022]
|
24
|
Ochiai H, Huang W, Wang LX. Expeditious chemoenzymatic synthesis of homogeneous N-glycoproteins carrying defined oligosaccharide ligands. J Am Chem Soc 2008; 130:13790-803. [PMID: 18803385 DOI: 10.1021/ja805044x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient chemoenzymatic method for the construction of homogeneous N-glycoproteins was described that explores the transglycosylation activity of the endo-beta-N-acetylglucosaminidase from Arthrobacter protophormiae (Endo-A) with synthetic sugar oxazolines as the donor substrates. First, an array of large oligosaccharide oxazolines were synthesized and evaluated as substrates for the Endo-A-catalyzed transglycosylation by use of ribonuclease B as a model system. The experimental results showed that Endo-A could tolerate modifications at the outer mannose residues of the Man3GlcNAc-oxazoline core, thus allowing introduction of large oligosaccharide ligands into a protein and meanwhile preserving the natural, core N-pentasaccharide (Man3GlcNAc2) structure in the resulting glycoprotein upon transglycosylation. In addition to ligands for galectins and mannose-binding lectins, azido functionality could be readily introduced at the N-pentasaccharide (Man3GlcNAc2) core by use of azido-containing Man3GlcNAc oxazoline as the donor substrate. The introduction of azido functionality permits further site-specific modifications of the resulting glycoproteins, as demonstrated by the successful attachment of two copies of alphaGal epitopes to ribonuclease B. This study reveals a broad substrate specificity of Endo-A for transglycosylation, and the chemoenzymatic method described here points to a new avenue for quick access to various homogeneous N-glycoproteins for structure-activity relationship studies and for biomedical applications.
Collapse
Affiliation(s)
- Hirofumi Ochiai
- Institute of Human Virology, Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
25
|
Okamoto R, Kajihara Y. Uncovering a latent ligation site for glycopeptide synthesis. Angew Chem Int Ed Engl 2008; 47:5402-6. [PMID: 18548471 DOI: 10.1002/anie.200801097] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ryo Okamoto
- International Graduate School of Arts and Sciences, Yokohama City University, 22-2, Seto, Kanazawa-ku, Yokohama, 236-0027, Japan
| | | |
Collapse
|
26
|
Niederhafner P, Reinis M, Sebestík J, Jezek J. Glycopeptide dendrimers, part III: a review. Use of glycopeptide dendrimers in immunotherapy and diagnosis of cancer and viral diseases. J Pept Sci 2008; 14:556-87. [PMID: 18275089 DOI: 10.1002/psc.1011] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Glycopeptide dendrimers containing different types of tumor associated-carbohydrate antigens (T(N), TF, sialyl-T(N), sialyl-TF, sialyl-Le(x), sialyl-Le(a) etc.) were used in diagnosis and therapy of different sorts of cancer. These dendrimeric structures with incorporated T-cell epitopes and adjuvants can be used as antitumor vaccines. Best results were obtained with multiantigenic vaccines, containing, e.g. five or six different TAAs. The topic of TAAs and their dendrimeric forms at molecular level are reviewed, including structure, syntheses, and biological activities. Use of glycopeptide dendrimers as antiviral vaccines against HIV and influenza is also described. Their syntheses, physico-chemical properties, and biological activities are given with many examples.
Collapse
Affiliation(s)
- Petr Niederhafner
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague 6, Czech Republic
| | | | | | | |
Collapse
|
27
|
Wrodnigg TM, Kartusch C, Illaszewicz C. The Amadori rearrangement as key reaction for the synthesis of neoglycoconjugates. Carbohydr Res 2008; 343:2057-66. [DOI: 10.1016/j.carres.2008.02.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 02/20/2008] [Accepted: 02/26/2008] [Indexed: 11/28/2022]
|
28
|
Wang LX. Chemoenzymatic synthesis of glycopeptides and glycoproteins through endoglycosidase-catalyzed transglycosylation. Carbohydr Res 2008; 343:1509-22. [PMID: 18405887 PMCID: PMC2519876 DOI: 10.1016/j.carres.2008.03.025] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 03/16/2008] [Accepted: 03/18/2008] [Indexed: 11/23/2022]
Abstract
Homogeneous glycopeptides and glycoproteins are indispensable for detailed structural and functional studies of glycoproteins. It is also fundamentally important to correct glycosylation patterns for developing effective glycoprotein-based therapeutics. This review discusses a useful chemoenzymatic method that takes advantage of the endoglycosidase-catalyzed transglycosylation to attach an intact oligosaccharide to a polypeptide in a single step, without the need for any protecting groups. The exploration of sugar oxazolines (enzymatic reaction intermediates) as donor substrates has not only expanded substrate availability, but also has significantly enhanced the enzymatic transglycosylation efficiency. Moreover, the discovery of a novel mutant with glycosynthase-like activity has made it possible to synthesize homogeneous glycoproteins with full-size natural N-glycans. Recent advances in this highly convergent chemoenzymatic approach and its application for glycopeptide and glycoprotein synthesis are highlighted.
Collapse
Affiliation(s)
- Lai-Xi Wang
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
29
|
Okamoto R, Kajihara Y. Uncovering a Latent Ligation Site for Glycopeptide Synthesis. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200801097] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Ingale S, Buskas T, Boons GJ. Synthesis of glyco(lipo)peptides by liposome-mediated native chemical ligation. Org Lett 2007; 8:5785-8. [PMID: 17134272 DOI: 10.1021/ol062423x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although native chemical ligation (NCL) is emerging as a powerful method for the assembly of (glyco)peptide building blocks, its applicability is reduced when peptide segments are poorly soluble in aqueous buffer. We have found that incorporating reactants in liposomes allows NCL of lipophilic peptides and lipopeptides. Furthermore, the reaction rates of liposome-mediated NCL are higher than traditional reaction conditions resulting in improved yields. [reaction: see text]
Collapse
Affiliation(s)
- Sampat Ingale
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | | | | |
Collapse
|
31
|
Abstract
Sugar-assisted ligation (SAL) presents an attractive strategy for the synthesis of glycopeptides, including the synthesis of cysteine-free beta-O-linked and N-linked glycopeptides. Here we extended the utility of SAL for the synthesis of alpha-O-linked glycopeptides and glycoproteins. In order to explore SAL in the context of glycoprotein synthesis, we developed a new chemical synthetic route for the alpha-O-linked glycoprotein diptericin epsilon. In the first stage of our synthesis, diptericin segment Cys(Acm)37-Gly(52) and segment Val(53)-Phe(82) were assembled by SAL through a Gly-Val ligation junction. Subsequently, after Acm deprotection, diptericin segment Cys(37)-Phe(82) was ligated to segment Asp(1)-Asn(36) by means of native chemical ligation (NCL) to give the full sequence of diptericin epsilon. In the final synthetic step, hydrogenolysis was applied to remove the thiol handle from the sugar moiety with the concomitant conversion of mutated Cys(37) into the native alanine residue. In addition, we extended the applicability of SAL to the synthesis of glycopeptides containing cysteine residues by carrying out selective desulfurization of the sulfhydryl-modified sugar moiety in the presence of acetamidomethyl (Acm) protected cysteine residues. The results presented here demonstrated for the first time that SAL could be a general and useful tool in the chemical synthesis of glycoproteins.
Collapse
Affiliation(s)
- Yu-Ying Yang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Simon Ficht
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ashraf Brik
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
- E-mail: ,
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
- Genomic Research Center, Academia Sinica, 128 Sec. 2, Academia Road, Nankang, Taipei 115, Taiwan
- E-mail: ,
| |
Collapse
|
32
|
Bourgeaux V, Cadène M, Piller F, Piller V. Efficient enzymatic glycosylation of peptides and oligosaccharides from GalNAc and UTP. Chembiochem 2007; 8:37-40. [PMID: 17111441 DOI: 10.1002/cbic.200600369] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Vanessa Bourgeaux
- Centre de Biophysique Moléculaire, CNRS UPR4301 affiliée à l'Université d'Orléans et à l'INSERM rue Charles Sadron, 45071 Orléans Cedex 02, France
| | | | | | | |
Collapse
|
33
|
|
34
|
Abstract
This review describes the recent advances in the field of glycopeptide and small glycoprotein synthesis. The strategies covered include chemical and chemoenzymatic synthesis, native chemical ligation (NCL), and expressed chemical ligation. The importance of glycopeptide synthesis is exemplified by giving the reader an overview of how versatile and important these well-defined glycopeptides are as tools in glycobiology.
Collapse
Affiliation(s)
- Therese Buskas
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, USA
| | | | | |
Collapse
|