1
|
Sun Y, Liu B, Chen Y, Xing Y, Zhang Y. Multi-Omics Prognostic Signatures Based on Lipid Metabolism for Colorectal Cancer. Front Cell Dev Biol 2022; 9:811957. [PMID: 35223868 PMCID: PMC8874334 DOI: 10.3389/fcell.2021.811957] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Background: The potential biological processes and laws of the biological components in malignant tumors can be understood more systematically and comprehensively through multi-omics analysis. This study elaborately explored the role of lipid metabolism in the prognosis of colorectal cancer (CRC) from the metabonomics and transcriptomics. Methods: We performed K-means unsupervised clustering algorithm and t test to identify the differential lipid metabolites determined by liquid chromatography tandem mass spectrometry (LC-MS/MS) in the serum of 236 CRC patients of the First Hospital of Jilin University (JLUFH). Cox regression analysis was used to identify prognosis-associated lipid metabolites and to construct multi-lipid-metabolite prognostic signature. The composite nomogram composed of independent prognostic factors was utilized to individually predict the outcome of CRC patients. Glycerophospholipid metabolism was the most significant enrichment pathway for lipid metabolites in CRC, whose related hub genes (GMRHGs) were distinguished by gene set variation analysis (GSVA) and weighted gene co-expression network analysis (WGCNA). Cox regression and least absolute shrinkage and selection operator (LASSO) regression analysis were utilized to develop the prognostic signature. Results: Six-lipid-metabolite and five-GMRHG prognostic signatures were developed, indicating favorable survival stratification effects on CRC patients. Using the independent prognostic factors as variables, we established a composite nomogram to individually evaluate the prognosis of CRC patients. The AUCs of one-, three-, and five-year ROC curves were 0.815, 0.815, and 0.805, respectively, showing auspicious prognostic accuracy. Furthermore, we explored the potential relationship between tumor microenvironment (TME) and immune infiltration. Moreover, the mutational frequency of TP53 in the high-risk group was significantly higher than that in the low-risk group (p < 0.001), while in the coordinate mutational status of TP53, the overall survival of CRC patients in the high-risk group was significantly lower than that in low-risk group with statistical differences. Conclusion: We identified the significance of lipid metabolism for the prognosis of CRC from the aspects of metabonomics and transcriptomics, which can provide a novel perspective for promoting individualized treatment and revealing the potential molecular biological characteristics of CRC. The composite nomogram including a six-lipid-metabolite prognostic signature is a promising predictor of the prognosis of CRC patients.
Collapse
|
2
|
Tomé M, Pappalardo A, Soulet F, López JJ, Olaizola J, Leger Y, Dubreuil M, Mouchard A, Fessart D, Delom F, Pitard V, Bechade D, Fonck M, Rosado JA, Ghiringhelli F, Déchanet-Merville J, Soubeyran I, Siegfried G, Evrard S, Khatib AM. Inactivation of Proprotein Convertases in T Cells Inhibits PD-1 Expression and Creates a Favorable Immune Microenvironment in Colorectal Cancer. Cancer Res 2019; 79:5008-5021. [PMID: 31358531 DOI: 10.1158/0008-5472.can-19-0086] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/27/2019] [Accepted: 07/22/2019] [Indexed: 11/16/2022]
Abstract
Proprotein convertases (PC) activate precursor proteins that play crucial roles in various cancers. In this study, we investigated whether PC enzyme activity is required for expression of the checkpoint protein programmed cell death protein 1 (PD-1) on cytotoxic T lymphocytes (CTL) in colon cancer. Although altered expression of the PC secretory pathway was observed in human colon cancers, only furin showed highly diffuse expression throughout the tumors. Inhibition of PCs in T cells using the general protein-based inhibitor α1-PDX or the pharmacologic inhibitor Decanoyl-Arg-Val-Lys-Arg-chloromethylketone repressed PD-1 and exhausted CTLs via induction of T-cell proliferation and apoptosis inhibition, which improved CTL efficacy against microsatellite instable and microsatellite stable colon cancer cells. In vivo, inhibition of PCs enhanced CTL infiltration in colorectal tumors and increased tumor clearance in syngeneic mice compared with immunodeficient mice. Inhibition of PCs repressed PD-1 expression by blocking proteolytic maturation of the Notch precursor, inhibiting calcium/NFAT and NF-κB signaling, and enhancing ERK activation. These findings define a key role for PCs in regulating PD-1 expression and suggest targeting PCs as an adjunct approach to colorectal tumor immunotherapy. SIGNIFICANCE: Protein convertase enzymatic activity is required for PD-1 expression on T cells, and inhibition of protein convertase improves T-cell targeting of microsatellite instable and stable colorectal cancer. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/79/19/5008/F1.large.jpg.
Collapse
Affiliation(s)
- Mercedes Tomé
- Université Bordeaux, Bordeaux, France.
- INSERM UMR1029, Pessac, France
| | - Angela Pappalardo
- ImmunoConcept, CNRS UMR 5164, University of Bordeaux, Bordeaux, France
| | - Fabienne Soulet
- Université Bordeaux, Bordeaux, France
- INSERM UMR1029, Pessac, France
| | - José Javier López
- Department of Physiology, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Jone Olaizola
- Université Bordeaux, Bordeaux, France
- INSERM UMR1029, Pessac, France
| | - Yannick Leger
- Université Bordeaux, Bordeaux, France
- INSERM UMR1029, Pessac, France
| | | | - Amandine Mouchard
- Université Bordeaux, Bordeaux, France
- Institut Bergonié, Bordeaux, France
| | - Delphine Fessart
- Institut Bergonié, Bordeaux, France
- INSERM U1218, ACTION, Bordeaux, France
| | - Frédéric Delom
- Institut Bergonié, Bordeaux, France
- INSERM U1218, ACTION, Bordeaux, France
| | - Vincent Pitard
- ImmunoConcept, CNRS UMR 5164, University of Bordeaux, Bordeaux, France
| | | | | | - Juan Antonio Rosado
- Department of Physiology, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | | | | | | | | | - Serge Evrard
- Université Bordeaux, Bordeaux, France
- INSERM UMR1029, Pessac, France
- Institut Bergonié, Bordeaux, France
| | | |
Collapse
|
3
|
Wang P, Wang F, Wang L, Pan J. Proprotein convertase subtilisin/kexin type 6 activates the extracellular signal-regulated kinase 1/2 and Wnt family member 3A pathways and promotes in vitro proliferation, migration and invasion of breast cancer MDA-MB-231 cells. Oncol Lett 2018; 16:145-150. [PMID: 29928395 PMCID: PMC6006270 DOI: 10.3892/ol.2018.8654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/28/2018] [Indexed: 11/11/2022] Open
Abstract
Breast cancer progression results from the acquisition of genetic and epigenetic alterations that promote tumor cell proliferation and survival. Proprotein convertase subtilisin/kexin type 6 (PCSK6) is a proteinase that regulates the proteolytic activity of various precursor proteins as well as protein maturation. PCSK6 also influences cancer cell proliferation, invasion and migration. Therefore, to investigate the effects of PCSK6 in breast cancer, human breast cancer MDA-MB-231 cells were treated with recombinant human PCSK6 in vitro. Treatment with recombinant PCSK6 significantly increased the proliferation, invasion and migration abilities of MDA-MB-231 cells. In addition, PCSK6 treatment reduced cell cycle arrest and prevented apoptosis of MDA-MB-231 cells. This provides further support for the hypothesis that PCSK6 serves a role in promoting tumor cell proliferation. PCSK6 treatment also increased the expression of phosphorylated extracellular signal-regulated kinase 1/2 and Wnt family member 3A, suggesting that these pathways are activated by PCSK6. The results of the present study suggested that PCSK6 may promote the proliferation of breast cancer MDA-MB-231 cells by disturbing cell cycle arrest via the mitogen-activated protein kinase pathway. Therefore, PCSK6 may be a potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Ping Wang
- Anesthesia Department, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250000, P.R. China
| | - Feifei Wang
- Anesthesia Department, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250000, P.R. China.,Shandong Medicinal Biotechnology Center, Jinan, Shandong 250062, P.R. China.,Key Laboratory for Biotechnology Drugs of Ministry of Health, Jinan, Shandong 250062, P.R. China.,Key Laboratory of Rare and Uncommon Disease, Jinan, Shandong 250062, P.R. China
| | - Lin Wang
- Anesthesia Department, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250000, P.R. China.,Shandong Medicinal Biotechnology Center, Jinan, Shandong 250062, P.R. China.,Key Laboratory for Biotechnology Drugs of Ministry of Health, Jinan, Shandong 250062, P.R. China.,Key Laboratory of Rare and Uncommon Disease, Jinan, Shandong 250062, P.R. China
| | - Jihong Pan
- Anesthesia Department, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250000, P.R. China.,Shandong Medicinal Biotechnology Center, Jinan, Shandong 250062, P.R. China.,Key Laboratory for Biotechnology Drugs of Ministry of Health, Jinan, Shandong 250062, P.R. China.,Key Laboratory of Rare and Uncommon Disease, Jinan, Shandong 250062, P.R. China
| |
Collapse
|
4
|
Ortutay Z, Oksanen A, Aittomäki S, Ortutay C, Pesu M. Proprotein convertase FURIN regulates T cell receptor-induced transactivation. J Leukoc Biol 2015; 98:73-83. [PMID: 25926688 DOI: 10.1189/jlb.2a0514-257rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 04/08/2015] [Indexed: 12/23/2022] Open
Abstract
Antigen emergence rapidly stimulates T cells, which leads to changes in cytokine production, cell proliferation, and differentiation. Some of the key molecules involved in these events, such as TGF-β1 and NOTCH1, are synthesized initially as inactive precursors and are proteolytically activated during T cell activation. PCSKs regulate proprotein maturation by catalyzing the proteolytic cleavage of their substrates. The prototype PCSK FURIN is induced upon TCR activation, and its expression in T cells is critical for the maintenance of peripheral immune tolerance. In this study, we tested the hypothesis that FURIN regulates T cell activation. Our data demonstrate that IL-2 is increased initially in FURIN-deficient mouse CD4(+) T cells, but the TCR-induced IL-2 mRNA expression is not sustained in the absence of FURIN. Accordingly, the inhibition of FURIN in human Jurkat T cell lines also results in a decrease in IL-2 production, whereas the overexpression of WT FURIN is associated with elevated IL-2 levels. In Jurkat cells, FURIN is dispensable for immediate TCR signaling steps, such as ERK, ZAP70, or LAT phosphorylation. However, with the use of gene reporter assays, we demonstrate that FURIN regulates the AP-1, NFAT, and NF-κB transcription factors. Finally, by performing a transcription factor-binding site enrichment analysis on FURIN-dependent transcriptomes, we identify the FURIN-regulated transcription factors in mouse CD4(+) T cell subsets. Collectively, our work confirms the hypothesis that the TCR-regulated protease FURIN plays an important role in T cell activation and that it can specifically modulate TCR-activated transactivation.
Collapse
Affiliation(s)
- Zsuzsanna Ortutay
- *Immunoregulation, BioMediTech, University of Tampere, Finland; HiDucator Oy, Kangasala, Finland; and Department of Dermatology and Fimlab Laboratories, Tampere University Hospital, Pirkanmaa Hospital District, Tampere, Finland
| | - Anna Oksanen
- *Immunoregulation, BioMediTech, University of Tampere, Finland; HiDucator Oy, Kangasala, Finland; and Department of Dermatology and Fimlab Laboratories, Tampere University Hospital, Pirkanmaa Hospital District, Tampere, Finland
| | - Saara Aittomäki
- *Immunoregulation, BioMediTech, University of Tampere, Finland; HiDucator Oy, Kangasala, Finland; and Department of Dermatology and Fimlab Laboratories, Tampere University Hospital, Pirkanmaa Hospital District, Tampere, Finland
| | - Csaba Ortutay
- *Immunoregulation, BioMediTech, University of Tampere, Finland; HiDucator Oy, Kangasala, Finland; and Department of Dermatology and Fimlab Laboratories, Tampere University Hospital, Pirkanmaa Hospital District, Tampere, Finland
| | - Marko Pesu
- *Immunoregulation, BioMediTech, University of Tampere, Finland; HiDucator Oy, Kangasala, Finland; and Department of Dermatology and Fimlab Laboratories, Tampere University Hospital, Pirkanmaa Hospital District, Tampere, Finland
| |
Collapse
|
5
|
Abdizadeh H, Guven G, Atilgan AR, Atilgan C. Perturbation response scanning specifies key regions in subtilisin serine protease for both function and stability. J Enzyme Inhib Med Chem 2015; 30:867-73. [DOI: 10.3109/14756366.2014.979345] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Haleh Abdizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul, Turkey
| | - Gokce Guven
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul, Turkey
| | - Ali Rana Atilgan
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul, Turkey
| | - Canan Atilgan
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul, Turkey
| |
Collapse
|
6
|
Scamuffa N, Sfaxi F, Ma J, Lalou C, Seidah N, Calvo F, Khatib AM. Prodomain of the proprotein convertase subtilisin/kexin Furin (ppFurin) protects from tumor progression and metastasis. Carcinogenesis 2013; 35:528-36. [PMID: 24127186 DOI: 10.1093/carcin/bgt345] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Proteolytic maturation of various precursor proteins by the proprotein convertase Furin is now considered as a crucial step in tumor progression and metastasis. Here, we report the repression of the malignant and metastatic potential of carcinoma cells by the prodomain region of Furin (ppFurin), a naturally occurring inhibitor of this convertase. Overexpression of ppFurin in carcinoma cells in a stable manner significantly reduced their convertase activity and ability to mediate processing of the Furin cancer-related substrates platelet-derived growth factor (PDGF)-A and insulin-like growth factor-I receptor precursors. Unprocessed platelet-derived growth factor-A produced by ppFurin expressing cells failed to induce the activation of Akt in the platelet-derived growth factor receptor-expressing cells NIH BALB/c-3T3 and treatment of ppFurin expressing cells with insulin-like growth factor-I failed to induce Akt phosphorylation, compared with controls. The malignant potential of ppFurin expressing cells was significantly reduced as revealed by the loss of anchorage-independent growth and survival that associated their increased chemosensitivity. In vivo, comparative studies revealed that expression of ppFurin in the carcinoma cells MDA-MB-231 and CT-26 cells inhibited tumor growth when subcutaneously inoculated in nude mice. The use of an experimental liver colorectal metastasis model revealed the reduced ability of metastatic carcinoma CT-26 cells to colonize the liver in response to intrasplenic/portal inoculation. Further analyses revealed reduced Furin activity in tumors derived from intrasplenic inoculated mice with ppFurin expressing CT-26 cells. This finding highlights the role of Furin in the malignant and metastatic potential of tumor cells and suggests the possible consideration of using its naturally occurring inhibitor ppFurin in anticancer therapy.
Collapse
|
7
|
López-Vallejo F, Martínez-Mayorga K. Furin inhibitors: importance of the positive formal charge and beyond. Bioorg Med Chem 2012; 20:4462-71. [PMID: 22682919 DOI: 10.1016/j.bmc.2012.05.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 05/03/2012] [Accepted: 05/12/2012] [Indexed: 02/02/2023]
Abstract
Furin is the prototype member of the proprotein convertases superfamily. Proprotein convertases are associated with hormonal response, neural degeneration, viral and bacterial activation, and cancer. Several studies over the last decade have examined small molecules, natural products, peptides and peptide derivatives as furin inhibitors. Currently, subnanomolar inhibition of furin is possible. Herein, we report the analysis of 115 furin inhibitors reported in the literature. Analysis of the physicochemical properties of these compounds highlights the dependence of the inhibitory potency with the total formal charge and also shows how the most potent (peptide-based) furin inhibitors have physicochemical properties similar to drugs. In addition, we report docking studies of 26 furin inhibitors using Glide XP. Inspection of binding interactions shows that the two putative binding modes derived from our study are reasonable. Analysis of the binding modes and protein-ligand interaction fingerprints, used here as postdocking procedure, shows that electrostatic interactions predominate on S1, S2 and S4 subsites but are seldom in S3. Our models also show that the benzimidamide group, present in the most active inhibitors, can be accommodated in the S1 subsite. These results are valuable for the design of new furin inhibitors.
Collapse
Affiliation(s)
- Fabian López-Vallejo
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA
| | | |
Collapse
|
8
|
Arsenault D, Lucien F, Dubois CM. Hypoxia enhances cancer cell invasion through relocalization of the proprotein convertase furin from the trans-Golgi network to the cell surface. J Cell Physiol 2012; 227:789-800. [PMID: 21503879 DOI: 10.1002/jcp.22792] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Tumor hypoxia is strongly associated with malignant progression such as increased cell invasion and metastasis. Although the invasion-related genes affected by hypoxia have been well described, the contribution of post-transcriptional mechanisms such as protein trafficking and proprotein processing associated with the hypoxic response remains poorly understood. The proprotein convertase furin, the major processing enzyme of the secretory pathway, resides in the trans-Golgi network and most studies support a model where endogenous substrates are processed by furin within this compartment. Here, we report that hypoxia triggered an unexpected relocalization of furin from the trans-Golgi network to endosomomal compartments and the cell surface in cancer cells. Exposing these cells back to normoxic conditions reversed furin redistribution, suggesting that the tumor microenvironment modulates furin trafficking in a highly regulated manner. Assessment of the mechanisms involved revealed that both Rab4GTPase-dependent recycling and interaction of furin with the cytoskeletal anchoring protein, filamin-A, are essential for the cell surface relocalization of furin. Interference with the association of furin with filamin-A, prevented cell surface relocalization of furin and abolished the ability of cancer cells to migrate in response to hypoxia. Our observations support the notion that hypoxia promotes the formation of a peripheral processing compartment where furin translocates for enhanced processing of proproteins involved in tumorigenesis.
Collapse
Affiliation(s)
- Dominique Arsenault
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | |
Collapse
|
9
|
Kuester M, Becker GL, Hardes K, Lindberg I, Steinmetzer T, Than ME. Purification of the proprotein convertase furin by affinity chromatography based on PC-specific inhibitors. Biol Chem 2011; 392:973-81. [PMID: 21875402 DOI: 10.1515/bc.2011.100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In eucaryotes, many secreted proteins and peptides are proteolytically excised from larger precursor proteins by a specific class of serine proteases, the proprotein/prohormone convertases (PCs). This cleavage is essential for substrate activation, making the PCs very interesting pharmacological targets in cancer and infectious disease research. Correspondingly, their structure, function and inhibition are intensely studied - studies that require the respective target proteins in large amounts and at high purity. Here we describe the development of a novel purification protocol of furin, the best-studied member of the PC family. We combined the heterologous expression of furin from CHO cells with a novel purification scheme employing an affinity step that efficiently extracts only active furin from the conditioned medium by using furin-specific inhibitor moieties as bait. Several potential affinity tags were synthesized and their binding to furin characterized. The best compound, Biotin-(Adoa)(2)-Arg-Pro-Arg-4-Amba coupled to streptavidin-Sepharose beads, was used in a three-step chromatographic protocol and routinely resulted in a high yield of a homogeneous furin preparation with a specific activity of ~60 units/mg protein. This purification and the general strategy can easily be adapted to the efficient purification of other PC family members.
Collapse
Affiliation(s)
- Miriam Kuester
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Protein Crystallography Group, Beutenbergstr. 11, D-07745 Jena, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Becker GL, Hardes K, Steinmetzer T. New substrate analogue furin inhibitors derived from 4-amidinobenzylamide. Bioorg Med Chem Lett 2011; 21:4695-7. [DOI: 10.1016/j.bmcl.2011.06.091] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 06/17/2011] [Accepted: 06/19/2011] [Indexed: 12/15/2022]
|
11
|
Abstract
In vitro growth of alveolar soft part sarcoma (ASPS) and establishment of an ASPS cell line, ASPS-1, are described in this study. Using a recently developed xenograft model of ASPS derived from a lymph node metastasis, organoid nests consisting of 15 to 25 ASPS cells were isolated from ASPS xenograft tumors by capture on 70 μm filters and plated in vitro. After attachment to the substratum, these nests deposited small aggregates of ASPS cells. These cells grew slowly and were expanded over a period of 3 years and have maintained characteristics consistent with those of both the original ASPS tumor from the patient and the xenograft tumor including (1) presence of the alveolar soft part locus-transcription factor E3 type 1 fusion transcript and nuclear expression of the alveolar soft part locus-transcription factor E3 type 1 fusion protein; (2) maintenance of the t(X;17)(p11;q25) translocation characteristic of ASPS; and (3) expression of upregulated ASPS transcripts involved in angiogenesis (ANGPTL2, HIF-1-α, MDK, c-MET, VEGF, and TIMP-2), cell proliferation (PRL, PCSK1), metastasis (ADAM9), as well as the transcription factor BHLHB3 and the muscle-specific transcripts TRIM63 and ITGβ1BP3. This ASPS cell line forms colonies in soft agar and retains the ability to produce highly vascularized ASPS tumors in NOD.SCID/NCr mice. Immunohistochemistry of selected ASPS markers on these tumors indicated similarity to those of the original patient tumor as well as to the xenografted ASPS tumor. We anticipate that this ASPS cell line will accelerate investigations into the biology of ASPS including identification of new therapeutic approaches for treatment of this slow growing soft tissue sarcoma.
Collapse
|
12
|
Khatib AM, Lahlil R, Scamuffa N, Akimenko MA, Ernest S, Lomri A, Lalou C, Seidah NG, Villoutreix BO, Calvo F, Siegfried G. Zebrafish ProVEGF-C expression, proteolytic processing and inhibitory effect of unprocessed ProVEGF-C during fin regeneration. PLoS One 2010; 5:e11438. [PMID: 20625388 PMCID: PMC2896389 DOI: 10.1371/journal.pone.0011438] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 06/06/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In zebrafish, vascular endothelial growth factor-C precursor (proVEGF-C) processing occurs within the dibasic motif HSIIRR(214) suggesting the involvement of one or more basic amino acid-specific proprotein convertases (PCs) in this process. In the present study, we examined zebrafish proVEGF-C expression and processing and the effect of unprocessed proVEGF-C on caudal fin regeneration. METHODOLOGY/PRINCIPAL FINDINGS Cell transfection assays revealed that the cleavage of proVEGF-C, mainly mediated by the proprotein convertases Furin and PC5 and to a less degree by PACE4 and PC7, is abolished by PCs inhibitors or by mutation of its cleavage site (HSIIRR(214) into HSIISS(214)). In vitro, unprocessed proVEGF-C failed to activate its signaling proteins Akt and ERK and to induce cell proliferation. In vivo, following caudal fin amputation, the induction of VEGF-C, Furin and PC5 expression occurs as early as 2 days post-amputation (dpa) with a maximum levels at 4-7 dpa. Using immunofluorescence staining we localized high expression of VEGF-C and the convertases Furin and PC5 surrounding the apical growth zone of the regenerating fin. While expression of wild-type proVEGF-C in this area had no effect, unprocessed proVEGF-C inhibited fin regeneration. CONCLUSIONS/SIGNIFICANCES Taken together, these data indicate that zebrafish fin regeneration is associated with up-regulation of VEGF-C and the convertases Furin and PC5 and highlight the inhibitory effect of unprocessed proVEGF-C on fin regeneration.
Collapse
Affiliation(s)
- Abdel-Majid Khatib
- INSERM, UMRS940, Equipe Avenir. Institut de Génétique Moléculaire, Hôpital St-Louis, Université Paris 7, Paris, France
| | - Rachid Lahlil
- INSERM, UMRS940, Equipe Avenir. Institut de Génétique Moléculaire, Hôpital St-Louis, Université Paris 7, Paris, France
- INSERM U 770, Kremlin-Bicetre, France
| | - Nathalie Scamuffa
- INSERM, UMRS940, Equipe Avenir. Institut de Génétique Moléculaire, Hôpital St-Louis, Université Paris 7, Paris, France
| | | | | | - Abdderahim Lomri
- INSERM U 606, Université Paris 7, Lariboisière Hospital, Paris, France
| | - Claude Lalou
- INSERM, UMRS940, Equipe Avenir. Institut de Génétique Moléculaire, Hôpital St-Louis, Université Paris 7, Paris, France
| | - Nabil G. Seidah
- Clinical Research Institute of Montreal, IRCM, Montreal, Quebec, Canada
| | | | - Fabien Calvo
- INSERM, UMRS940, Equipe Avenir. Institut de Génétique Moléculaire, Hôpital St-Louis, Université Paris 7, Paris, France
| | | |
Collapse
|
13
|
C2-Symmetric azobenzene-amino acid conjugates and their inhibition of Subtilisin Kexin Isozyme-1. Bioorg Med Chem Lett 2010; 20:3977-81. [DOI: 10.1016/j.bmcl.2010.04.101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 04/21/2010] [Accepted: 04/22/2010] [Indexed: 11/22/2022]
|
14
|
Lalou C, Scamuffa N, Mourah S, Plassa F, Podgorniak MP, Soufir N, Dumaz N, Calvo F, Basset-Seguin N, Khatib AM. Inhibition of the proprotein convertases represses the invasiveness of human primary melanoma cells with altered p53, CDKN2A and N-Ras genes. PLoS One 2010; 5:e9992. [PMID: 20404912 PMCID: PMC2852400 DOI: 10.1371/journal.pone.0009992] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 03/05/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Altered tumor suppressor p53 and/or CDKN2A as well as Ras genes are frequently found in primary and metastatic melanomas. These alterations were found to be responsible for acquisition of invasive and metastatic potential through their defective regulatory control of metalloproteinases and urokinase genes. METHODOLOGY/PRINCIPAL FINDINGS Using primary human melanoma M10 cells with altered p53, CDKN2A and N-Ras genes, we found that inhibition of the proprotein convertases (PCs), enzymes involved in the proteolytic activation of various cancer-related protein precursors resulted in significantly reduced invasiveness. Analysis of M10 cells and their gastric and lymph node derived metastatic cells revealed the presence of all the PCs found in the secretory pathway. Expression of the general PCs inhibitor alpha1-PDX in these cells in a stable manner (M10/PDX) had no effect on the mRNA expression levels of these PCs. Whereas, in vitro digestion assays and cell transfection experiments, revealed that M10/PDX cells display reduced PCs activity and are unable to process the PCs substrates proIGF-1R and proPDGF-A. These cells showed reduced migration and invasion that paralleled decreased gelatinase MMP-2 activity and increased expression and secretion of tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2. Furthermore, these cells showed decreased levels of urokinase-type plasminogen activator receptor (uPAR) and increased levels of plasminogen activator inhibitor-1 (PAI-1). CONCLUSIONS Taken together, these data suggest that inhibition of PCs activity results in decreased invasiveness of primary human melanoma cells despite their altered p53, CDKN2A and N-Ras genes, suggesting that PCs may serve as novel therapeutic targets in melanoma.
Collapse
Affiliation(s)
- Claude Lalou
- INSERM, UMRS940, Equipe Avenir, Institut de Génétique Moléculaire, Hôpital Saint-Louis, Université Paris 7, Paris, France
| | - Nathalie Scamuffa
- INSERM, UMRS940, Equipe Avenir, Institut de Génétique Moléculaire, Hôpital Saint-Louis, Université Paris 7, Paris, France
| | - Samia Mourah
- INSERM, UMRS940, Equipe Avenir, Institut de Génétique Moléculaire, Hôpital Saint-Louis, Université Paris 7, Paris, France
| | - Francois Plassa
- Laboratoire de Biochimie, Hôpital Saint-Louis, Paris, France
| | - Marie-Pierre Podgorniak
- INSERM, UMRS940, Equipe Avenir, Institut de Génétique Moléculaire, Hôpital Saint-Louis, Université Paris 7, Paris, France
| | - Nadem Soufir
- Laboratoire de Biochimie Hormonale et Génétique, Hôpital Bichat, Paris, France
| | | | - Fabien Calvo
- INSERM, UMRS940, Equipe Avenir, Institut de Génétique Moléculaire, Hôpital Saint-Louis, Université Paris 7, Paris, France
| | - Nicole Basset-Seguin
- INSERM, UMRS940, Equipe Avenir, Institut de Génétique Moléculaire, Hôpital Saint-Louis, Université Paris 7, Paris, France
| | - Abdel-Majid Khatib
- INSERM, UMRS940, Equipe Avenir, Institut de Génétique Moléculaire, Hôpital Saint-Louis, Université Paris 7, Paris, France
- * E-mail:
| |
Collapse
|
15
|
Becker GL, Sielaff F, Than ME, Lindberg I, Routhier S, Day R, Lu Y, Garten W, Steinmetzer T. Potent inhibitors of furin and furin-like proprotein convertases containing decarboxylated P1 arginine mimetics. J Med Chem 2010; 53:1067-75. [PMID: 20038105 DOI: 10.1021/jm9012455] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Furin belongs to the family of proprotein convertases (PCs) and is involved in numerous normal physiological and pathogenic processes, such as viral propagation, bacterial toxin activation, cancer, and metastasis. Furin and related furin-like PCs cleave their substrates at characteristic multibasic consensus sequences, preferentially after an arginine residue. By incorporating decarboxylated arginine mimetics in the P1 position of substrate analogue peptidic inhibitors, we could identify highly potent furin inhibitors. The most potent compound, phenylacetyl-Arg-Val-Arg-4-amidinobenzylamide (15), inhibits furin with a K(i) value of 0.81 nM and has also comparable affinity to other PCs like PC1/3, PACE4, and PC5/6, whereas PC2 and PC7 or trypsin-like serine proteases were poorly affected. In fowl plague virus (influenza A, H7N1)-infected MDCK cells, inhibitor 15 inhibited proteolytic hemagglutinin cleavage and was able to reduce virus propagation in a long-term infection test. Molecular modeling revealed several key interactions of the 4-amidinobenzylamide residue in the S1 pocket of furin contributing to the excellent affinity of these inhibitors.
Collapse
Affiliation(s)
- Gero L Becker
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Pagán M, Solá RJ, Griebenow K. On the role of protein structural dynamics in the catalytic activity and thermostability of serine protease subtilisin Carlsberg. Biotechnol Bioeng 2009; 103:77-84. [PMID: 19132746 DOI: 10.1002/bit.22221] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The effect of structural dynamics on enzyme activity and thermostability has thus far only been investigated in detail for the serine protease alpha-chymotrypsin (for a recent review see Solá et al., Cell Mol Life Sci 2007, 64(16): 2133-2152). Herein, we extend this type of study to a structurally unrelated serine protease, specifically, subtilisin Carlsberg. The protease was incrementally glycosylated with chemically activated lactose to obtain various subtilisin glycoconjugates which were biophysically characterized. Near UV-CD spectroscopy revealed that the tertiary structure was unaffected by the glycosylation procedure. H/D exchange FT-IR spectroscopy was performed to assess the changes in structural dynamics of the enzyme. It was found that increasing the level of glycosylation caused a linearly dependent reduction in structural dynamics. This led to an increase in thermostability and a decrease in the catalytic turnover rate for both, the enzyme acylation and deacylation steps. These results highlight the possibility that a structural dynamics-activity relationship might be a phenomenon generally found in serine proteases.
Collapse
Affiliation(s)
- Miraida Pagán
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, PO Box 23346, San Juan 00931-3346, Puerto Rico
| | | | | |
Collapse
|
17
|
Kim DW, Hesketh A, Kim ES, Song JY, Lee DH, Kim IS, Chater KF, Lee KJ. Complex extracellular interactions of proteases and a protease inhibitor influence multicellular development ofStreptomyces coelicolor. Mol Microbiol 2008; 70:1180-93. [DOI: 10.1111/j.1365-2958.2008.06471.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Scamuffa N, Siegfried G, Bontemps Y, Ma L, Basak A, Cherel G, Calvo F, Seidah NG, Khatib AM. Selective inhibition of proprotein convertases represses the metastatic potential of human colorectal tumor cells. J Clin Invest 2008; 118:352-63. [PMID: 18064302 DOI: 10.1172/jci32040] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 10/17/2007] [Indexed: 01/14/2023] Open
Abstract
The proprotein convertases (PCs) are implicated in the activation of various precursor proteins that play an important role in tumor cell metastasis. Here, we report their involvement in the regulation of the metastatic potential of colorectal tumor cells. PC function in the human and murine colon carcinoma cell lines HT-29 and CT-26, respectively, was inhibited using siRNA targeting the PCs furin, PACE4, PC5, and PC7 or by overexpression of the general PC inhibitor alpha1-antitrypsin Portland (alpha1-PDX). We found that overexpression of alpha1-PDX and knockdown of furin expression inhibited processing of IGF-1 receptor and its subsequent activation by IGF-1 to induce IRS-1 and Akt phosphorylation, all important in colon carcinoma metastasis. These data suggest that the PC furin is a major IGF-1 receptor convertase. Expression of alpha1-PDX reduced the production of TNF-alpha and IL-1alpha by human colon carcinoma cells, and incubation of murine liver endothelial cells with conditioned media derived from these cells failed to induce tumor cell adhesion to activated murine endothelial cells, a critical step in metastatic invasion. Furthermore, colon carcinoma cells in which PC activity was inhibited by overexpression of alpha1-PDX when injected into the portal vein of mice showed a significantly reduced ability to form liver metastases. This suggests that inhibition of PCs is a potentially promising strategy for the prevention of colorectal liver metastasis.
Collapse
Affiliation(s)
- Nathalie Scamuffa
- INSERM U716, Equipe Avenir, Institut de Génétique Moléculaire, and Université Paris 7, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lapierre M, Siegfried G, Scamuffa N, Bontemps Y, Calvo F, Seidah NG, Khatib AM. Opposing Function of the Proprotein Convertases Furin and PACE4 on Breast Cancer Cells' Malignant Phenotypes: Role of Tissue Inhibitors of Metalloproteinase-1. Cancer Res 2007; 67:9030-4. [PMID: 17909005 DOI: 10.1158/0008-5472.can-07-0807] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Proteolytic cleavage of various cancer-related substrates by the proprotein convertases (PC) was reported to be important in the processes of neoplasia. These enzymes are inhibited by their naturally occurring inhibitors, the prosegments (ppPC), and by the engineered general PC inhibitor, the serpin variant alpha1-PDX. In the present study, we sought to compare the effect of these PC inhibitors on malignant phenotypes of breast cancer cells. Overexpression in a stable manner of alpha1-PDX and the prosegment ppPACE4 in MDA-MB-231 breast cancer cells resulted in increased matrix metalloproteinase (MMP)-9 (but not MMP-2) activity and a reduced secretion of tissue inhibitor of metalloproteinase 1 (TIMP-1). This was associated with significant enhancement in cell motility, migration, and invasion of collagen in vitro. In contrast, ppFurin expression in these cells decreased MMP-9 activity and diminished these biological functions, but had no significant effect on TIMP-1 secretion. Taken together, these data showed the specific and opposing roles of Furin and PACE4 in the regulation of MMP-9/TIMP-1-mediated cell motility and invasion.
Collapse
Affiliation(s)
- Marion Lapierre
- INSERM U716, Team AVENIR, Institut de Génétique Moléculaire, Université Paris 7, Paris, France
| | | | | | | | | | | | | |
Collapse
|