1
|
Albano C, Nabawy A, Tran WC, Prithviraj M, Kado T, Hassan MA, Makabenta JMV, Rotello VM, Morita YS. Effective killing of Mycobacterium abscessus biofilm by nanoemulsion delivery of plant phytochemicals. Microbiol Spectr 2025:e0216624. [PMID: 39873503 DOI: 10.1128/spectrum.02166-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 12/06/2024] [Indexed: 01/30/2025] Open
Abstract
Mycobacterium is an acid-fast, aerobic, non-motile, and biofilm-forming bacterium. The increasing prevalence of mycobacterial infections makes it necessary to find new methods to combat the resistance of bacteria to conventional antibiotics. Mycobacterium abscessus is an emerging pathogen that is intrinsically drug resistant due to several factors, including an impermeable cell envelope, drug efflux pumps, target-modifying enzymes, and the ability to form thick, robust biofilms. Phytochemicals are promising antimicrobials; however, their poor solubility in water and their inability to penetrate biofilms render them inefficient in killing bacterial biofilms. In this study, we demonstrate the efficacy of polymer-stabilized phytochemical nanoemulsions in killing M. abscessus biofilms. These nanoemulsions improve the solubility and stability of the phytochemicals and enable biofilm penetration and eradication. We show that the phytochemical emulsions effectively eliminated M. abscessus in an in vitro biofilm model and killed non-replicating persister cells in the Wayne hypoxia model. These nanoemulsions were also effective in vivo in a wound infection model. These findings demonstrate the potential of polymer-stabilized phytochemical nanoemulsions as a promising alternative to conventional antibiotics for the treatment of mycobacterial infections. IMPORTANCE Mycobacterium abscessus is among the opportunistic bacterial pathogens that cause nontuberculous mycobacterial diseases. The infection caused by M. abscessus is difficult to treat because the bacterium is resistant to many of the currently available antibiotics, limiting chemotherapeutic strategies. Furthermore, it forms biofilms in clinically relevant settings, making the infection difficult to treat. Many phytochemicals have potent antimicrobial activities, but their hydrophobicity limits clinical applications. In this study, we tested a new drug delivery strategy where hydrophobic plant phytochemicals were emulsified with a biodegradable nanosponge. We show that the emulsification makes phytochemicals such as carvacrol and eugenol more effective against M. abscessus biofilms. We further demonstrate that nanoemulsified phytochemicals can kill hypoxia-induced dormant M. abscessus and effectively improve skin wound infection in mice. Our data pave the way to use phytochemical nanosponge as a platform to create synergy by combining other antimycobacterial drugs.
Collapse
Affiliation(s)
- Casey Albano
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Ahmed Nabawy
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, USA
| | - Wyatt C Tran
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Malavika Prithviraj
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Takehiro Kado
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | | | | | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, USA
| | - Yasu S Morita
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
2
|
Dartois V, Dick T. Toward better cures for Mycobacterium abscessus lung disease. Clin Microbiol Rev 2024; 37:e0008023. [PMID: 39360834 PMCID: PMC11629636 DOI: 10.1128/cmr.00080-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
SUMMARYThe opportunistic pathogen Mycobacterium abscessus (Mab) causes fatal lung infections that bear similarities-and notable differences-with tuberculosis (TB) pulmonary disease. In contrast to TB, no antibiotic is formally approved to treat Mab disease, there is no reliable cure, and the discovery and development pipeline is incredibly thin. Here, we discuss the factors behind the unsatisfactory cure rates of Mab disease, namely intrinsic resistance and persistence of the pathogen, and the use of underperforming, often parenteral and toxic, repurposed drugs. We propose preclinical strategies to build injectable-free sterilizing and safe regimens: (i) prioritize oral bactericidal antibiotic classes, with an initial focus on approved agents or advanced clinical candidates to provide immediate options for desperate patients, (ii) test drug combinations early, (iii) optimize novel leads specifically for M. abscessus, and (iv) consider pharmacokinetic-pharmacodynamic targets at the site of disease, the lung lesions in which drug tolerant bacterial populations reside. Knowledge and tool gaps in the preclinical drug discovery process are identified, including validated mouse models and computational platforms to enable in vitro mouse-human translation. We briefly discuss recent advances in clinical development, the need for readouts and biomarkers that correlate with cure, and clinical trial concepts adapted to the uniqueness of Mab patient populations for new regimen development. In an era when most pharmaceutical firms have withdrawn from antimicrobial drug discovery, the breakthroughs needed to fill the regimen development pipeline will likely come from partnerships between academia, biotech, pharma, non-profit organizations, and governments, with incentives that reward cooperation.
Collapse
Affiliation(s)
- Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| |
Collapse
|
3
|
Leestemaker-Palmer A, Bermudez LE. Mycobacteroides abscessus ability to interact with the host mucosal cells plays an important role in pathogenesis of the infection. Crit Rev Microbiol 2024:1-13. [PMID: 39460453 DOI: 10.1080/1040841x.2024.2418130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024]
Abstract
Non-tuberculous mycobacteria (NTM) are opportunistic pathogens ubiquitous in the environment. Mycobacteroides abscessus is a relatively new pathogen associated with underlying lung chronic pathologies, accounting for most of the pulmonary infections linked to the rapidly growing mycobacteria group. This includes chronic obstructive pulmonary disease, bronchiectasis, or cystic fibrosis. Patient outcomes from M. abscessus infections are poor due to complicated treatments and other factors. Intrinsic drug resistance plays an important role. The M. abscessus toolbox of resistance is varied leading to complex strategies for treatment. Mechanisms include waxy cell walls, drug export mechanisms, and acquired resistance. Many studies have also shown the impact of extracellular DNA found in the biofilm matrix during early infection and its possible advantage in pathogenicity. In this review, we discuss the current knowledge of early infection focusing on biofilm formation, an environmental strategy, and which treatments prevent its formation improving current antibiotic treatment outcomes in preliminary studies.
Collapse
Affiliation(s)
- Amy Leestemaker-Palmer
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Corvallis, OR, USA
| | - Luiz E Bermudez
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Corvallis, OR, USA
- Department of Microbiology, College of Sciences, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
4
|
Bento CM, van Calster K, Piller T, Oliveira GS, de Vooght L, Cappoen D, Cos P, Gomes MS, Silva T. Characterization of novel double-reporter strains of Mycobacterium abscessus for drug discovery: a study in mScarlet. Microbiol Spectr 2024; 12:e0036224. [PMID: 39189762 PMCID: PMC11448253 DOI: 10.1128/spectrum.00362-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/26/2024] [Indexed: 08/28/2024] Open
Abstract
Mycobacterium abscessus (Mab) is an emerging pathogen that poses a severe health threat, especially in people with cystic fibrosis and other chronic lung diseases. Available drugs are largely ineffective due to an exquisite intrinsic resistance, making Mab infections only comparable to multidrug-resistant tuberculosis. Current treatment is based on lengthy multidrug therapy, complicated by poor outcomes and high rates of treatment failure, recurrence, and mortality. Thus, finding new and more efficient drugs to combat this pathogen is urgent. However, drug discovery efforts targeting Mab have been limited, and traditional drug screening methods are labor-intensive, low-throughput, and do not reflect clinical effectiveness. Therefore, this work aimed to develop a new, efficient, and reliable tool for drug screening against Mab that can be used in vitro for identifying hits in a high-throughput manner and in vivo to select drug candidates for future clinical trials. We engineered two stable double-reporter strains of Mab capable of emitting strong fluorescent and luminescent signals. This is due to the expression of mScarlet protein and luciferase enzyme or the entire lux operon. Importantly, these strains maintain the same ground characteristics as the non-transformed Mab strain. We show that these new strains can be applied to various setups, from MIC determination in broth cultures and macrophage infection assays to in vivo infection (using the Galleria mellonella model). Using these strains enhances the potential for high-throughput screening of thousands of compounds in a fast and reliable way. IMPORTANCE Mycobacterium abscessus (Mab) is currently considered an "incurable nightmare." Its intrinsic resistance, high toxicity, long duration, and low cure rates of available therapies often lead to the clinical decision not to treat. Moreover, one of the significant drawbacks of anti-Mab drug development is the lack of correlation between in vitro susceptibility and clinical efficacy. Most drug screening assays are performed on Mab growing in liquid cultures. But being an intracellular pathogen, inducing granulomas and biofilm formation, the broth culture is far from ideal as in vitro drug-testing setup. This study presents new double-reporter Mab strains that allow direct real-time bacterial detection and quantification in a non-invasive way. These strains can be applied to an extensive range of experimental settings, far surpassing the utility of single-reporter bacteria. They can be used in all steps of the pre-clinical anti-Mab drug development pipeline, constituting a highly valuable tool to increase its success.
Collapse
Affiliation(s)
- Clara M Bento
- i3S-Instituto de Investigação e Inovação e Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Celular e Molecular, Universidade do Porto, Porto, Portugal
- Programa Doutoral em Biologia Molecular e Celular (MCBiology), Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto, Porto, Portugal
| | - Kevin van Calster
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
| | - Tatiana Piller
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
| | - Gabriel S Oliveira
- i3S-Instituto de Investigação e Inovação e Saúde, Universidade do Porto, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto, Porto, Portugal
| | - Linda de Vooght
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
| | - Davie Cappoen
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
| | - M Salomé Gomes
- i3S-Instituto de Investigação e Inovação e Saúde, Universidade do Porto, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto, Porto, Portugal
| | - Tânia Silva
- i3S-Instituto de Investigação e Inovação e Saúde, Universidade do Porto, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto, Porto, Portugal
| |
Collapse
|
5
|
Sreekumar A, Kumar A, Biswas R, Biswas L. Emerging and alternative strategies for the treatment of nontuberculous mycobacterial infections. Expert Rev Anti Infect Ther 2024; 22:835-853. [PMID: 39161153 DOI: 10.1080/14787210.2024.2395003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/18/2024] [Indexed: 08/21/2024]
Abstract
INTRODUCTION Nontuberculous mycobacteria (NTM) infections have emerged as a significant clinical challenge due to their intrinsic multidrug resistance and the limited efficacy of existing treatments. These infections are becoming increasingly prevalent, with a need for new and effective therapeutic strategies. AREAS COVERED This review addresses several key aspects of NTM infections: i) pathogenesis and epidemiology; ii) the limitations and challenges of current treatment options; iii) emerging and alternative therapeutic strategies; iv) advanced drug delivery systems such as nanoparticles and efflux pump inhibitors; v) innovative antibacterial alternatives like antimicrobial peptides, bacteriophage therapy, and phytochemicals; and vi) other potential treatment modalities such as inhaled nitric oxide, small molecules, surgical debridement, phototherapy, and immunomodulatory therapy. EXPERT OPINION Personalized medicine, advanced drug delivery systems, and alternative therapies hold promise for the future of NTM treatment. Early and accurate identification of NTM species, enabled by improved diagnostic methods, is critical for tailoring treatment regimens. Emerging therapies show promise against drug-resistant NTM strains, but overcoming barriers like clinical trials, regulatory hurdles, and high production costs is crucial. Continued research and innovation are essential to improve treatment efficacy and patient outcomes.
Collapse
Affiliation(s)
| | - Anil Kumar
- Department of Microbiology, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Raja Biswas
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Lalitha Biswas
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
6
|
Degiacomi G, Chiarelli LR, Riabova O, Loré NI, Muñoz-Muñoz L, Recchia D, Stelitano G, Postiglione U, Saliu F, Griego A, Scoffone VC, Kazakova E, Scarpa E, Ezquerra-Aznárez JM, Stamilla A, Buroni S, Tortoli E, Rizzello L, Sassera D, Ramón-García S, Cirillo DM, Makarov V, Pasca MR. The novel drug candidate VOMG kills Mycobacterium abscessus and other pathogens by inhibiting cell division. Int J Antimicrob Agents 2024; 64:107278. [PMID: 39069229 DOI: 10.1016/j.ijantimicag.2024.107278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/14/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
AIMS The incidence of lung infections is increasing worldwide in individuals suffering from cystic fibrosis and chronic obstructive pulmonary disease. Mycobacterium abscessus is associated with chronic lung deterioration in these populations. The intrinsic resistance of M. abscessus to most conventional antibiotics jeopardizes treatment success rates. To date, no single drug has been developed targeting M. abscessus specifically. The objective of this study was to characterize VOMG, a pyrithione-core drug-like small molecule, as a new compound active against M. abscessus and other pathogens. METHODS A multi-disciplinary approach including microbiological, chemical, biochemical and transcriptomics procedures was used to validate VOMG as a promising anti-M. abscessus drug candidate. RESULTS To the authors' knowledge, this is the first study to report the in-vitro and in-vivo bactericidal activity of VOMG against M. abscessus and other pathogens. Besides being active against M. abscessus biofilm, the compound showed a favourable pharmacological (ADME-Tox) profile. Frequency of resistance studies were unable to isolate resistant mutants. VOMG inhibits cell division, particularly the FtsZ enzyme. CONCLUSIONS VOMG is a new drug-like molecule active against M. abscessus, inhibiting cell division with broad-spectrum activity against other microbial pathogens.
Collapse
Affiliation(s)
- Giulia Degiacomi
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Laurent R Chiarelli
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Olga Riabova
- Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Nicola Ivan Loré
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lara Muñoz-Muñoz
- Department of Microbiology/Faculty of Medicine, University of Zaragoza, Zaragoza, Spain
| | - Deborah Recchia
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Giovanni Stelitano
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Umberto Postiglione
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Fabio Saliu
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Anna Griego
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy; National Institute of Molecular Genetics, Milan, Italy
| | - Viola Camilla Scoffone
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Elena Kazakova
- Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Edoardo Scarpa
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy; National Institute of Molecular Genetics, Milan, Italy
| | | | - Alessandro Stamilla
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Silvia Buroni
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Enrico Tortoli
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Loris Rizzello
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy; National Institute of Molecular Genetics, Milan, Italy
| | - Davide Sassera
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy; Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Santiago Ramón-García
- Department of Microbiology/Faculty of Medicine, University of Zaragoza, Zaragoza, Spain; Research and Development Agency of Aragon Foundation, Zaragoza, Spain; Spanish Network for Research on Respiratory Diseases, Carlos III Health Institute, Madrid, Spain.
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Vadim Makarov
- Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia.
| | - Maria Rosalia Pasca
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy; Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| |
Collapse
|
7
|
Dartois V, Bonfield TL, Boyce JP, Daley CL, Dick T, Gonzalez-Juarrero M, Gupta S, Kramnik I, Lamichhane G, Laughon BE, Lorè NI, Malcolm KC, Olivier KN, Tuggle KL, Jackson M. Preclinical murine models for the testing of antimicrobials against Mycobacterium abscessus pulmonary infections: Current practices and recommendations. Tuberculosis (Edinb) 2024; 147:102503. [PMID: 38729070 PMCID: PMC11168888 DOI: 10.1016/j.tube.2024.102503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/08/2024] [Accepted: 03/17/2024] [Indexed: 05/12/2024]
Abstract
Mycobacterium abscessus, a rapidly growing nontuberculous mycobacterium, is increasingly recognized as an important pathogen of the human lung, disproportionally affecting people with cystic fibrosis (CF) and other susceptible individuals with non-CF bronchiectasis and compromised immune functions. M. abscessus infections are extremely difficult to treat due to intrinsic resistance to many antibiotics, including most anti-tuberculous drugs. Current standard-of-care chemotherapy is long, includes multiple oral and parenteral repurposed drugs, and is associated with significant toxicity. The development of more effective oral antibiotics to treat M. abscessus infections has thus emerged as a high priority. While murine models have proven instrumental in predicting the efficacy of therapeutic treatments for M. tuberculosis infections, the preclinical evaluation of drugs against M. abscessus infections has proven more challenging due to the difficulty of establishing a progressive, sustained, pulmonary infection with this pathogen in mice. To address this issue, a series of three workshops were hosted in 2023 by the Cystic Fibrosis Foundation (CFF) and the National Institute of Allergy and Infectious Diseases (NIAID) to review the current murine models of M. abscessus infections, discuss current challenges and identify priorities toward establishing validated and globally harmonized preclinical models. This paper summarizes the key points from these workshops. The hope is that the recommendations that emerged from this exercise will facilitate the implementation of informative murine models of therapeutic efficacy testing across laboratories, improve reproducibility from lab-to-lab and accelerate preclinical-to-clinical translation.
Collapse
Affiliation(s)
- Véronique Dartois
- Center for Discovery and Innovation & Department of Medical Sciences, Hackensack Meridian School of Medicine, Hackensack Meridian Health, Nutley, NJ, USA.
| | - Tracey L Bonfield
- Genetics and Genome Sciences and National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jim P Boyce
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Charles L Daley
- Department of Medicine, National Jewish Health, Denver, CO, USA; Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Thomas Dick
- Center for Discovery and Innovation & Department of Medical Sciences, Hackensack Meridian School of Medicine, Hackensack Meridian Health, Nutley, NJ, USA; Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| | - Mercedes Gonzalez-Juarrero
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA
| | - Shashank Gupta
- Laboratory of Chronic Airway Infection, Pulmonary Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, USA; Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Igor Kramnik
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02215, USA; Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Gyanu Lamichhane
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Barbara E Laughon
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicola I Lorè
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Kenneth C Malcolm
- Department of Medicine, National Jewish Health, Denver, CO, USA; Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kenneth N Olivier
- Department of Medicine, Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, USA; Marsico Lung Institute, Chapel Hill, 27599-7248, NC, USA
| | | | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA.
| |
Collapse
|
8
|
Palucci I, Delogu G. Alternative therapies against Mycobacterium abscessus infections. Clin Microbiol Infect 2024; 30:732-737. [PMID: 37820951 DOI: 10.1016/j.cmi.2023.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/28/2023] [Accepted: 10/01/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Mycobacterium abscessus (Mab) is considered as the most pathogenic rapid-growing mycobacteria in humans, causing pulmonary and extra-pulmonary diseases, especially in patients with cystic fibrosis. Mab shows intrinsic and acquired resistance to many drugs, leaving limited treatment options that lead to a generally poor prognosis. The standard therapeutic regimen last for more than 6 months and consists of a drug cocktail that ideally includes a macrolide and amikacin. Yet, toxicity and efficacy are suboptimal due also to the high toxicity. There is a need to introduce innovative and out-of-the-box approaches to improve treatments. OBJECTIVES In this narrative review, we summarize the recent research on the alternative strategies proposed and discuss the importance of using appropriate experimental assays to assess their activity. SOURCES Included articles were identified by searching PubMed and MEDLINE until June 2023. The search terms were 'Mycobacterium abscessus', 'antimicrobial', and 'alternative therapies'. Additional relevant references were obtained from articles retrieved from the primary search. CONTENT Therapies against Mab including host directed therapies, repurposed drugs, phage therapy, anti-virulence strategies, essential oils, and inhalation therapies. IMPLICATIONS Alternative treatments may represent a valid tool to cope the burden of antimicrobial resistance in Mab-caused diseases.
Collapse
Affiliation(s)
- Ivana Palucci
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy; Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie - Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Delogu
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie - Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy; Mater Olbia Hospital, Olbia, Italy.
| |
Collapse
|
9
|
Yang JJ, Goff A, Wild DJ, Ding Y, Annis A, Kerber R, Foote B, Passi A, Duerksen JL, London S, Puhl AC, Lane TR, Braunstein M, Waddell SJ, Ekins S. Computational drug repositioning identifies niclosamide and tribromsalan as inhibitors of Mycobacterium tuberculosis and Mycobacterium abscessus. Tuberculosis (Edinb) 2024; 146:102500. [PMID: 38432118 PMCID: PMC10978224 DOI: 10.1016/j.tube.2024.102500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/20/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Tuberculosis (TB) is still a major global health challenge, killing over 1.5 million people each year, and hence, there is a need to identify and develop novel treatments for Mycobacterium tuberculosis (M. tuberculosis). The prevalence of infections caused by nontuberculous mycobacteria (NTM) is also increasing and has overtaken TB cases in the United States and much of the developed world. Mycobacterium abscessus (M. abscessus) is one of the most frequently encountered NTM and is difficult to treat. We describe the use of drug-disease association using a semantic knowledge graph approach combined with machine learning models that has enabled the identification of several molecules for testing anti-mycobacterial activity. We established that niclosamide (M. tuberculosis IC90 2.95 μM; M. abscessus IC90 59.1 μM) and tribromsalan (M. tuberculosis IC90 76.92 μM; M. abscessus IC90 147.4 μM) inhibit M. tuberculosis and M. abscessus in vitro. To investigate the mode of action, we determined the transcriptional response of M. tuberculosis and M. abscessus to both compounds in axenic log phase, demonstrating a broad effect on gene expression that differed from known M. tuberculosis inhibitors. Both compounds elicited transcriptional responses indicative of respiratory pathway stress and the dysregulation of fatty acid metabolism.
Collapse
Affiliation(s)
- Jeremy J Yang
- School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN, USA; Data2Discovery, Inc., Bloomington, IN, USA; Department of Internal Medicine Translational Informatics Division, University of New Mexico, Albuquerque, NM, USA
| | - Aaron Goff
- Department of Global Health and Infection, Brighton & Sussex Medical School, University of Sussex, UK
| | - David J Wild
- School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN, USA; Data2Discovery, Inc., Bloomington, IN, USA
| | - Ying Ding
- School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN, USA; Data2Discovery, Inc., Bloomington, IN, USA; School of Information, Dell Medical School, University of Texas, Austin, TX, USA
| | - Ayano Annis
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, NC, 27599, USA
| | | | | | - Anurag Passi
- Department of Pediatrics, UC San Diego, San Diego, CA, USA
| | | | | | - Ana C Puhl
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, 27606, USA
| | - Thomas R Lane
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, 27606, USA
| | - Miriam Braunstein
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Simon J Waddell
- Department of Global Health and Infection, Brighton & Sussex Medical School, University of Sussex, UK
| | - Sean Ekins
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, 27606, USA.
| |
Collapse
|
10
|
Dartois V, Dick T. Therapeutic developments for tuberculosis and nontuberculous mycobacterial lung disease. Nat Rev Drug Discov 2024; 23:381-403. [PMID: 38418662 PMCID: PMC11078618 DOI: 10.1038/s41573-024-00897-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Tuberculosis (TB) drug discovery and development has undergone nothing short of a revolution over the past 20 years. Successful public-private partnerships and sustained funding have delivered a much-improved understanding of mycobacterial disease biology and pharmacology and a healthy pipeline that can tolerate inevitable attrition. Preclinical and clinical development has evolved from decade-old concepts to adaptive designs that permit rapid evaluation of regimens that might greatly shorten treatment duration over the next decade. But the past 20 years also saw the rise of a fatal and difficult-to-cure lung disease caused by nontuberculous mycobacteria (NTM), for which the drug development pipeline is nearly empty. Here, we discuss the similarities and differences between TB and NTM lung diseases, compare the preclinical and clinical advances, and identify major knowledge gaps and areas of cross-fertilization. We argue that applying paradigms and networks that have proved successful for TB, from basic research to clinical trials, will help to populate the pipeline and accelerate curative regimen development for NTM disease.
Collapse
Affiliation(s)
- Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA.
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA.
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| |
Collapse
|
11
|
Zhang K, Limwongyut J, Moreland AS, Wei SCJ, Jim Jia Min T, Sun Y, Shin SJ, Kim SY, Jhun BW, Pethe K, Bazan GC. An anti-mycobacterial conjugated oligoelectrolyte effective against Mycobacterium abscessus. Sci Transl Med 2024; 16:eadi7558. [PMID: 38381846 DOI: 10.1126/scitranslmed.adi7558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024]
Abstract
Infections caused by nontuberculous mycobacteria have increased more than 50% in the past two decades and more than doubled in the elderly population. Mycobacterium abscessus (Mab), one of the most prevalent of these rapidly growing species, is intrinsically resistant to numerous antibiotics. Current standard-of-care treatments are not satisfactory, with high failure rate and notable adverse effects. We report here a potent anti-Mab compound from the flexible molecular framework afforded by conjugated oligoelectrolytes (COEs). A screen of structurally diverse, noncytotoxic COEs identified a lead compound, COE-PNH2, which was bactericidal against replicating, nonreplicating persisters and intracellular Mab.COE-PNH2 had low propensity for resistance development, with a frequency of resistance below 1.25 × 10-9 and showed no detectable resistance upon serial passaging. Mechanism of action studies were in line with COE-PNH2 affecting the physical and functional integrity of the bacterial envelope and disrupting the mycomembrane and associated essential bioenergetic pathways. Moreover, COE-PNH2 was well-tolerated and efficacious in a mouse model of Mab lung infection. This study highlights desirable in vitro and in vivo potency and safety index of this COE structure, which represents a promising anti-mycobacterial to tackle an unmet medical need.
Collapse
Affiliation(s)
- Kaixi Zhang
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, 117543 Singapore, Singapore
| | - Jakkarin Limwongyut
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, 117543 Singapore, Singapore
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Alex S Moreland
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Samuel Chan Jun Wei
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, 117543 Singapore, Singapore
| | - Tania Jim Jia Min
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, 117543 Singapore, Singapore
| | - Yan Sun
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921 Singapore, Singapore
| | - Sung Jae Shin
- Department of Microbiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Su-Young Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Byung Woo Jhun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Kevin Pethe
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921 Singapore, Singapore
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), 60 Nanyang Drive, 639798 Singapore, Singapore
- National Centre for Infectious Diseases (NCID), 16 Jalan Tan Tock Seng, 308442 Singapore, Singapore
| | - Guillermo C Bazan
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, 117543 Singapore, Singapore
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), 60 Nanyang Drive, 639798 Singapore, Singapore
- Institute for Functional Intelligent Materials (I-FIM), National University of Singapore, 117544 Singapore, Singapore
| |
Collapse
|
12
|
Nguyen TQ, Heo BE, Jeon S, Ash A, Lee H, Moon C, Jang J. Exploring antibiotic resistance mechanisms in Mycobacterium abscessus for enhanced therapeutic approaches. Front Microbiol 2024; 15:1331508. [PMID: 38380095 PMCID: PMC10877060 DOI: 10.3389/fmicb.2024.1331508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/17/2024] [Indexed: 02/22/2024] Open
Abstract
Mycobacterium abscessus, a leading cause of severe lung infections in immunocompromised individuals, poses significant challenges for current therapeutic strategies due to resistance mechanisms. Therefore, understanding the intrinsic and acquired antibiotic resistance of M. abscessus is crucial for effective treatment. This review highlights the mechanisms employed by M. abscessus to sustain antibiotic resistance, encompassing not only conventional drugs but also newly discovered drug candidates. This comprehensive analysis aims to identify novel entities capable of overcoming the notorious resistance exhibited by M. abscessus, providing insights for the development of more effective therapeutic interventions.
Collapse
Affiliation(s)
- Thanh Quang Nguyen
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Bo Eun Heo
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Seunghyeon Jeon
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Anwesha Ash
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Heehyun Lee
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Cheol Moon
- Department of Clinical Laboratory Science, Semyung University, Jecheon, Republic of Korea
| | - Jichan Jang
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
13
|
Aragaw WW, Negatu DA, Bungard CJ, Dartois VA, Marrouni AE, Nickbarg EB, Olsen DB, Warrass R, Dick T. Pharmacological validation of dihydrofolate reductase as a drug target in Mycobacterium abscessus. Antimicrob Agents Chemother 2024; 68:e0071723. [PMID: 38018963 PMCID: PMC10777855 DOI: 10.1128/aac.00717-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/13/2023] [Indexed: 11/30/2023] Open
Abstract
The Mycobacterium abscessus drug development pipeline is poorly populated, with particularly few validated target-lead couples to initiate de novo drug discovery. Trimethoprim, an inhibitor of dihydrofolate reductase (DHFR) used for the treatment of a range of bacterial infections, is not active against M. abscessus. Thus, evidence that M. abscessus DHFR is vulnerable to pharmacological intervention with a small molecule inhibitor is lacking. Here, we show that the pyrrolo-quinazoline PQD-1, previously identified as a DHFR inhibitor active against Mycobacterium tuberculosis, exerts whole cell activity against M. abscessus. Enzyme inhibition studies showed that PQD-1, in contrast to trimethoprim, is a potent inhibitor of M. abscessus DHFR and over-expression of DHFR causes resistance to PQD-1, providing biochemical and genetic evidence that DHFR is a vulnerable target and mediates PQD-1's growth inhibitory activity in M. abscessus. As observed in M. tuberculosis, PQD-1 resistant mutations mapped to the folate pathway enzyme thymidylate synthase (TYMS) ThyA. Like trimethoprim in other bacteria, PQD-1 synergizes with the dihydropteroate synthase (DHPS) inhibitor sulfamethoxazole (SMX), offering an opportunity to exploit the successful dual inhibition of the folate pathway and develop similarly potent combinations against M. abscessus. PQD-1 is active against subspecies of M. abscessus and a panel of clinical isolates, providing epidemiological validation of the target-lead couple. Leveraging a series of PQD-1 analogs, we have demonstrated a dynamic structure-activity relationship (SAR). Collectively, the results identify M. abscessus DHFR as an attractive target and PQD-1 as a chemical starting point for the discovery of novel drugs and drug combinations that target the folate pathway in M. abscessus.
Collapse
Affiliation(s)
- Wassihun Wedajo Aragaw
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Dereje A. Negatu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | | | - Véronique A. Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | | | | | | | - Ralf Warrass
- MSD Animal Health Innovation GmbH, Zur Propstei, Schwabenheim, Germany
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
- Department of Microbiology and Immunology, Georgetown University, Washington, USA
| |
Collapse
|
14
|
Nazli A, Tao W, You H, He X, He Y. Treatment of MRSA Infection: Where are We? Curr Med Chem 2024; 31:4425-4460. [PMID: 38310393 DOI: 10.2174/0109298673249381231130111352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/10/2023] [Accepted: 10/10/2023] [Indexed: 02/05/2024]
Abstract
Staphylococcus aureus is a leading cause of septicemia, endocarditis, pneumonia, skin and soft tissue infections, bone and joint infections, and hospital-acquired infections. In particular, methicillin-resistant Staphylococcus aureus (MRSA) is associated with high morbidity and mortality, and continues to be a major public health problem. The emergence of multidrug-resistant MRSA strains along with the wide consumption of antibiotics has made anti-MRSA treatment a huge challenge. Novel treatment strategies (e.g., novel antimicrobials and new administrations) against MRSA are urgently needed. In the past decade, pharmaceutical companies have invested more in the research and development (R&D) of new antimicrobials and strategies, spurred by favorable policies. All research articles were collected from authentic online databases, including Google Scholar, PubMed, Scopus, and Web of Science, by using different combinations of keywords, including 'anti-MRSA', 'antibiotic', 'antimicrobial', 'clinical trial', 'clinical phase', clinical studies', and 'pipeline'. The information extracted from articles was compared to information provided on the drug manufacturer's website and Clinical Trials.gov (https://clinicaltrials.gov/) to confirm the latest development phase of anti-MRSA agents. The present review focuses on the current development status of new anti-MRSA strategies concerning chemistry, pharmacological target(s), indications, route of administration, efficacy and safety, pharmacokinetics, and pharmacodynamics, and aims to discuss the challenges and opportunities in developing drugs for anti-MRSA infections.
Collapse
Affiliation(s)
- Adila Nazli
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Wenlan Tao
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing, 400714, China
| | - Hengyao You
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Xiaoli He
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing, 400714, China
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| |
Collapse
|
15
|
North EJ, Schwartz CP, Zgurskaya HI, Jackson M. Recent advances in mycobacterial membrane protein large 3 inhibitor drug design for mycobacterial infections. Expert Opin Drug Discov 2023; 18:707-724. [PMID: 37226498 PMCID: PMC10330604 DOI: 10.1080/17460441.2023.2218082] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/22/2023] [Indexed: 05/26/2023]
Abstract
INTRODUCTION Tuberculosis and nontuberculous mycobacterial infections are notoriously difficult to treat, requiring long-courses of intensive multi-drug therapies associated with adverse side effects. To identify better therapeutics, whole cell screens have identified novel pharmacophores, a surprisingly high number of which target an essential lipid transporter known as MmpL3. AREAS COVERED This paper summarizes what is known about MmpL3, its mechanism of lipid transport and therapeutic potential, and provides an overview of the different classes of MmpL3 inhibitors currently under development. It further describes the assays available to study MmpL3 inhibition by these compounds. EXPERT OPINION MmpL3 has emerged as a target of high therapeutic value. Accordingly, several classes of MmpL3 inhibitors are currently under development with one drug candidate (SQ109) having undergone a Phase 2b clinical study. The hydrophobic character of most MmpL3 series identified to date seems to drive antimycobacterial potency resulting in poor bioavailability, which is a significant impediment to their development. There is also a need for more high-throughput and informative assays to elucidate the precise mechanism of action of MmpL3 inhibitors and drive the rational optimization of analogues.
Collapse
Affiliation(s)
- E. Jeffrey North
- Department of Pharmacy Sciences, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Chris P. Schwartz
- Department of Pharmacy Sciences, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Helen I. Zgurskaya
- University of Oklahoma, Department of Chemistry and Biochemistry, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
16
|
Makafe GG, Cole L, Roberts A, Muncil S, Patwardhan A, Bernacki D, Chojnacki M, Weinrick B, Sheinerman F. A novel chemogenomic discovery platform identifies bioactive hits with rapid bactericidal activity against Mycobacteroides Abscessus. Tuberculosis (Edinb) 2023; 139:102317. [PMID: 36736037 DOI: 10.1016/j.tube.2023.102317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
Mycobacteroides abscessus (M. ab) infections are innately resistant to most currently available antibiotics and present a growing, poorly addressed medical need. The existing treatment regimens are lengthy and produce inadequate outcomes for many patients. Importantly, most clinically used drugs and drug candidates against M. ab are either bacteriostatic, or only weakly bactericidal. New strategies exploring a broader chemical space are urgently needed, as innovative agents in development are scarce and hit rates in large unbiased screens against the mycobacterium have been discouragingly low. Here we present a computational chemogenomics-driven approach to discovery of novel antibacterials that effectively reveals drug-like compounds active against M. ab, paired with small sets of predicted molecular targets for the compounds. Several of the bioactive hits identified exhibited rapid bactericidal, including sterilizing, activity against the mycobacterium, indicating that there are currently unexploited chemically tractable molecular mechanisms for rapid sterilization of M. ab. Interestingly, starvation, which typically induces drug tolerance, sensitized M. ab to some of the compounds, resulting in potencies similar to those of drugs in clinical use. The presented drug discovery platform has potential to identify highly differentiated prototype anti-infective molecules and thereby contribute to development of regimens for shorter treatment and improved outcomes for non-tuberculous mycobacterial infections.
Collapse
Affiliation(s)
| | - Laura Cole
- Trudeau Institute, 154 Algonquin Ave, Saranac Lake, NY, 12983, USA
| | - Alan Roberts
- Trudeau Institute, 154 Algonquin Ave, Saranac Lake, NY, 12983, USA
| | - Shania Muncil
- Trudeau Institute, 154 Algonquin Ave, Saranac Lake, NY, 12983, USA
| | | | - Derek Bernacki
- Trudeau Institute, 154 Algonquin Ave, Saranac Lake, NY, 12983, USA
| | | | - Brian Weinrick
- Trudeau Institute, 154 Algonquin Ave, Saranac Lake, NY, 12983, USA.
| | - Felix Sheinerman
- Trudeau Institute, 154 Algonquin Ave, Saranac Lake, NY, 12983, USA.
| |
Collapse
|
17
|
Activity of Oral Tebipenem-Avibactam in a Mouse Model of Mycobacterium abscessus Lung Infection. Antimicrob Agents Chemother 2023; 67:e0145922. [PMID: 36688684 PMCID: PMC9933631 DOI: 10.1128/aac.01459-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The combination of the β-lactam tebipenem and the β-lactamase inhibitor avibactam shows potent bactericidal activity against Mycobacterium abscessus in vitro. Here, we report that the combination of the respective oral prodrugs tebipenem-pivoxil and avibactam ARX-1796 showed efficacy in a mouse model of M. abscessus lung infection. The results suggest that tebipenem-avibactam presents an attractive oral drug candidate pair for the treatment of M. abscessus pulmonary disease and could inform the design of clinical trials.
Collapse
|
18
|
He Z, Xu X, Wang C, Li Y, Dong B, Li S, Zeng J. Effect of Panax quinquefolius extract on Mycobacterium abscessus biofilm formation. BIOFOULING 2023; 39:24-35. [PMID: 36644897 DOI: 10.1080/08927014.2023.2166405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Mycobacterium abscessus (M. abscessus) can exist either as planktonic bacteria or as a biofilm. Biofilm formation is one of the important causes of conversion to resistance to antibiotics of bacteria that were previously sensitive when in their planktonic form, resulting in infections difficult to manage. Panax quinquefolius and its active ingredient ginsenosides have the potential ability in fighting pathogenic infections. In this study, the P. quinquefolius extract (PQE) showed good antibacterial/bactericidal activity against the M. abscessus planktonic cells. The extract reduced the biomass, thickness, and number of M. abscessus in the biofilm and altered its morphological characteristics as well as the spatial distribution of dead/alive bacteria. Moreover, the ginsenoside CK monomer had a similar inhibitory effect on M. abscessus planktonic bacteria and biofilm formation. Therefore, PQE and its monomer CK might be potential novel antimicrobial agents for the clinical prevention and treatment of M. abscessus, including biofilms in chronic infections.
Collapse
Affiliation(s)
- Zhiqun He
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xinyue Xu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chuan Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Baoyu Dong
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Shuai Li
- Pharmaceutical Research Institute of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, Sichuan, China
| | - Jumei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Mycobacterium tuberculosis DprE1 Inhibitor OPC-167832 Is Active against Mycobacterium abscessus In Vitro. Antimicrob Agents Chemother 2022; 66:e0123722. [PMID: 36350151 PMCID: PMC9765218 DOI: 10.1128/aac.01237-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The antituberculosis candidate OPC-167832, an inhibitor of DprE1, was active against Mycobacterium abscessus. Resistance mapped to M. abscessus dprE1, suggesting target retention. OPC-167832 was bactericidal and did not antagonize activity of clinical anti-M. abscessus antibiotics. Due to its moderate potency compared to that against Mycobacterium tuberculosis, the compound lacked efficacy in a mouse model and is thus not a repurposing candidate. These results identify OPC-167832-DprE1 as a lead-target couple for a M. abscessus-specific optimization program.
Collapse
|
20
|
He G, Wu L, Zheng Q, Jiang X. Antimicrobial susceptibility and minimum inhibitory concentration distribution of common clinically relevant non-tuberculous mycobacterial isolates from the respiratory tract. Ann Med 2022; 54:2500-2510. [PMID: 36120867 PMCID: PMC9518250 DOI: 10.1080/07853890.2022.2121984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective: To determine the minimum inhibitory concentration (MIC) distribution of antibacterial drugs and the susceptibility of non-tuberculous mycobacterial (NTM) isolates to provide a reference basis for the clinical selection of an effective starting regimen.Methods: The common clinical isolates of NTM in the respiratory tract, which met the standards of the American Thoracic Society for NTM lung disease, were collected. The MICs of 81 isolates were determined using the microbroth dilution method (Thermo Fisher Scientific, USA), as recommended by the Clinical and Laboratory Standards Institute, USA.Results: Included were 43 Mycobacterium avium complex (MAC) strains, 24 M. abscessus complex (MAB) strains, and 14 M. kansasii strains. The sensitivity rates of MAC to clarithromycin and amikacin were 81.4% and 79.1%, respectively, while the sensitivity rates to linezolid and moxifloxacin were only 20.9% and 9.3%; the MIC of rifabutin was the lowest (MIC50% was just 2 μg/mL). After incubation for 3-5 days, the sensitivity rate of MAB to clarithromycin was 87.5%; this decreased to 50% after 14 days' incubation. Most of them were susceptible to amikacin (91.6%), and most were resistant to moxifloxacin (95.8%), ciprofloxacin (95.8%), imipenem (95.8%), amoxicillin/clavulanate (95.8%), tobramycin (79.1%), doxycycline (95.8%) and trimethoprim/sulfamethoxazole (95.8%). intermediate (83.3%) and resistant (16.7%) to cefoxitin. The susceptibility to linezolid was only 33.3%. The sensitivity and resistance breakpoints of tigecycline were set to ≤0.5 and ≥8 μg/mL, respectively, and the sensitivity and resistance rates were 50% and 0%, respectively. M. kansasii was susceptible to clarithromycin, amikacin, linezolid, moxifloxacin, rifampicin and rifabutin (100%).Discussion: In Wenzhou, clarithromycin, amikacin and rifabutin have good antibacterial activity against MAC, while linezolid and moxifloxacin have high resistance. Amikacin and tigecycline have strong antibacterial activity against MAB, while most other antibacterial drugs are resistant to varying degrees. Most antibacterial drugs are susceptible to M. kansasii and have good antibacterial activity.Conclusion: The identification of NTM species and the detection of their MICs have certain guiding values for the treatment of NTM lung disease.Key MessageThe three most common respiratory non-tuberculous mycobacterial (NTM) isolates with clinical significance in the Wenzhou area were tested for drug susceptibility. The broth microdilution method was used to determine the minimum inhibitory concentration distribution of antibacterial drugs and the susceptibility of NTM isolates to provide a reference basis for the clinical selection of an effective starting regimen.
Collapse
Affiliation(s)
- Guiqing He
- Department of Infectious Diseases, Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, The Second Affiliated Hospital of Shanghai University, Wenzhou, People's Republic of China.,Laboratory of Infectious Diseases, Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, The Second Affiliated Hospital of Shanghai University, Wenzhou, People's Republic of China
| | - Lianpeng Wu
- Department of Clinical Laboratory, Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, The Second Affiliated Hospital of Shanghai University, Wenzhou, People's Repulic of China
| | - Qingyong Zheng
- Laboratory of Infectious Diseases, Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, The Second Affiliated Hospital of Shanghai University, Wenzhou, People's Republic of China
| | - Xiangao Jiang
- Department of Infectious Diseases, Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, The Second Affiliated Hospital of Shanghai University, Wenzhou, People's Republic of China
| |
Collapse
|
21
|
Why Matter Matters: Fast-Tracking Mycobacterium abscessus Drug Discovery. Molecules 2022; 27:molecules27206948. [PMID: 36296540 PMCID: PMC9608607 DOI: 10.3390/molecules27206948] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Unlike Tuberculosis (TB), Mycobacterium abscessus lung disease is a highly drug-resistant bacterial infection with no reliable treatment options. De novo M. abscessus drug discovery is urgently needed but is hampered by the bacterium's extreme drug resistance profile, leaving the current drug pipeline underpopulated. One proposed strategy to accelerate de novo M. abscessus drug discovery is to prioritize screening of advanced TB-active compounds for anti-M. abscessus activity. This approach would take advantage of the greater chance of homologous drug targets between mycobacterial species, increasing hit rates. Furthermore, the screening of compound series with established structure-activity-relationship, pharmacokinetic, and tolerability properties should fast-track the development of in vitro anti-M. abscessus hits into lead compounds with in vivo efficacy. In this review, we evaluated the effectiveness of this strategy by examining the literature. We found several examples where the screening of advanced TB chemical matter resulted in the identification of anti-M. abscessus compounds with in vivo proof-of-concept, effectively populating the M. abscessus drug pipeline with promising new candidates. These reports validate the screening of advanced TB chemical matter as an effective means of fast-tracking M. abscessus drug discovery.
Collapse
|
22
|
Sun H, Li ZZ, Jeyakkumar P, Zang ZL, Fang B, Zhou CH. A New Discovery of Unique 13-(Benzimidazolylmethyl)berberines as Promising Broad-Spectrum Antibacterial Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12320-12329. [PMID: 36135960 DOI: 10.1021/acs.jafc.2c03849] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A new hybridization of berberine and benzimidazoles was performed to produce 13-(benzimidazolylmethyl)berberines (BMB) as potentially broad-spectrum antibacterial agents with the hope of confronting multidrug-resistant bacterial infections in the livestock industry. Some of the newly prepared hybrids showed obvious antibacterial effects against tested strains. Particularly, 13-((1-octyl-benzimidazolyl)methyl)berberine 6f (OBMB-6f) was found to be the most promising compound that not only exerted a strong activity (MIC = 0.25-2 μg/mL) and low cytotoxicity but also possessed a fast bactericidal capacity and low propensity to develop resistance toward Staphylococcus aureus and Escherichia coli even after 26 serial passages. Moreover, OBMB-6f displayed the ability to prevent bacterial biofilm formation at low and high temperatures. The mechanistic exploration revealed that OBMB-6f could significantly disintegrate bacterial membranes, markedly facilitate intracellular ROS generation, and efficiently intercalate into DNA. These results provided a profound insight into BMB against multidrug-resistant bacterial infections in the livestock industry.
Collapse
Affiliation(s)
- Hang Sun
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhen-Zhen Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ponmani Jeyakkumar
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhong-Lin Zang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Bo Fang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
23
|
Strongly Bactericidal All-Oral β-Lactam Combinations for the Treatment of Mycobacterium abscessus Lung Disease. Antimicrob Agents Chemother 2022; 66:e0079022. [PMID: 36047786 PMCID: PMC9487536 DOI: 10.1128/aac.00790-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Bioactive forms of oral β-lactams were screened in vitro against Mycobacterium abscessus with and without the bioactive form of the oral β-lactamase inhibitor avibactam ARX1796. Sulopenem was equally active without avibactam, while tebipenem, cefuroxime, and amoxicillin required avibactam for optimal activity. Systematic pairwise combination of the four β-lactams revealed strong bactericidal synergy for each of sulopenem, tebipenem, and cefuroxime combined with amoxicillin in the presence of avibactam. These all-oral β-lactam combinations warrant clinical evaluation.
Collapse
|
24
|
Activity of Tricyclic Pyrrolopyrimidine Gyrase B Inhibitor against Mycobacterium abscessus. Antimicrob Agents Chemother 2022; 66:e0066922. [PMID: 36005813 PMCID: PMC9487482 DOI: 10.1128/aac.00669-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tricyclic pyrrolopyrimidines (TPPs) are a new class of antibacterials inhibiting the ATPase of DNA gyrase. TPP8, a representative of this class, is active against Mycobacterium abscessus in vitro. Spontaneous TPP8 resistance mutations mapped to the ATPase domain of M. abscessus DNA gyrase, and the compound inhibited DNA supercoiling activity of recombinant M. abscessus enzyme. Further profiling of TPP8 in macrophage and mouse infection studies demonstrated proof-of-concept activity against M. abscessus ex vivo and in vivo.
Collapse
|
25
|
Dartois V, Dick T. Drug development challenges in nontuberculous mycobacterial lung disease: TB to the rescue. J Exp Med 2022; 219:e20220445. [PMID: 35543723 PMCID: PMC9098649 DOI: 10.1084/jem.20220445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Nontuberculous mycobacterial pulmonary disease (NTM-PD) is treated with multiple repurposed drugs. Chemotherapy is long and often toxic, includes parenteral drugs, and suffers from poor cure rates. There is an urgent need for more efficacious, tolerated, and oral antibiotics optimized towards the treatment of NTM-PD, adapted to the spectrum of disease. In contrast to the empty NTM pipeline, drug development for the related tuberculosis lung disease has experienced a renaissance. Here, we argue that applying lessons learned from tuberculosis will facilitate the discovery of curative oral regimens for NTM-PD.
Collapse
Affiliation(s)
- Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ
- Department of Microbiology and Immunology, Georgetown University, Washington, DC
| |
Collapse
|
26
|
Addison W, Frederickson M, Coyne AG, Abell C. Potential therapeutic targets from Mycobacterium abscessus ( Mab): recently reported efforts towards the discovery of novel antibacterial agents to treat Mab infections. RSC Med Chem 2022; 13:392-404. [PMID: 35647542 PMCID: PMC9020770 DOI: 10.1039/d1md00359c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/09/2022] [Indexed: 11/21/2022] Open
Abstract
Mycobacterium abscessus (Mab) are rapidly growing mycobacteria that cause severe and persistent infections in both skin and lung tissues. Treatment regimens involve the extended usage of complex combinations of drugs, often leading to severe adverse side effects, particularly in immunocompromised patients. Current macrolide therapies are gradually proving to be less effective, largely due to emergence of antibiotic resistance; there is therefore an increasing need for the discovery of new antibacterials that are active against Mab. This review highlights recent research centred upon a number of potential therapeutic targets from Mab (Ag85C, ClpC1, GyrB, MmpL3 and TrmD), and discusses the various approaches used to discover small molecule inhibitors, in the search for future antibiotics for the treatment of Mab infections.
Collapse
Affiliation(s)
- William Addison
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Martyn Frederickson
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Anthony G Coyne
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Chris Abell
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
27
|
Belardinelli JM, Li W, Martin KH, Zeiler MJ, Lian E, Avanzi C, Wiersma CJ, Nguyen TV, Angala B, de Moura VCN, Jones V, Borlee BR, Melander C, Jackson M. 2-Aminoimidazoles Inhibit Mycobacterium abscessus Biofilms in a Zinc-Dependent Manner. Int J Mol Sci 2022; 23:ijms23062950. [PMID: 35328372 PMCID: PMC8951752 DOI: 10.3390/ijms23062950] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 02/04/2023] Open
Abstract
Biofilm growth is thought to be a significant obstacle to the successful treatment of Mycobacterium abscessus infections. A search for agents capable of inhibiting M. abscessus biofilms led to our interest in 2-aminoimidazoles and related scaffolds, which have proven to display antibiofilm properties against a number of Gram-negative and Gram-positive bacteria, including Mycobacterium tuberculosis and Mycobacterium smegmatis. The screening of a library of 30 compounds led to the identification of a compound, AB-2-29, which inhibits the formation of M. abscessus biofilms with an IC50 (the concentration required to inhibit 50% of biofilm formation) in the range of 12.5 to 25 μM. Interestingly, AB-2-29 appears to chelate zinc, and its antibiofilm activity is potentiated by the addition of zinc to the culture medium. Preliminary mechanistic studies indicate that AB-2-29 acts through a distinct mechanism from those reported to date for 2-aminoimidazole compounds.
Collapse
Affiliation(s)
- Juan M. Belardinelli
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.M.B.); (W.L.); (E.L.); (C.A.); (C.J.W.); (B.A.); (V.C.N.d.M.); (V.J.)
| | - Wei Li
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.M.B.); (W.L.); (E.L.); (C.A.); (C.J.W.); (B.A.); (V.C.N.d.M.); (V.J.)
| | - Kevin H. Martin
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (K.H.M.); (B.R.B.)
| | - Michael J. Zeiler
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (M.J.Z.); (C.M.)
| | - Elena Lian
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.M.B.); (W.L.); (E.L.); (C.A.); (C.J.W.); (B.A.); (V.C.N.d.M.); (V.J.)
| | - Charlotte Avanzi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.M.B.); (W.L.); (E.L.); (C.A.); (C.J.W.); (B.A.); (V.C.N.d.M.); (V.J.)
| | - Crystal J. Wiersma
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.M.B.); (W.L.); (E.L.); (C.A.); (C.J.W.); (B.A.); (V.C.N.d.M.); (V.J.)
| | - Tuan Vu Nguyen
- Department of Chemistry, North Carolina State University, Raleigh, NC 27607, USA;
| | - Bhanupriya Angala
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.M.B.); (W.L.); (E.L.); (C.A.); (C.J.W.); (B.A.); (V.C.N.d.M.); (V.J.)
| | - Vinicius C. N. de Moura
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.M.B.); (W.L.); (E.L.); (C.A.); (C.J.W.); (B.A.); (V.C.N.d.M.); (V.J.)
| | - Victoria Jones
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.M.B.); (W.L.); (E.L.); (C.A.); (C.J.W.); (B.A.); (V.C.N.d.M.); (V.J.)
| | - Bradley R. Borlee
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (K.H.M.); (B.R.B.)
| | - Christian Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (M.J.Z.); (C.M.)
- Department of Chemistry, North Carolina State University, Raleigh, NC 27607, USA;
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.M.B.); (W.L.); (E.L.); (C.A.); (C.J.W.); (B.A.); (V.C.N.d.M.); (V.J.)
- Correspondence: ; Tel.: +1-(970)-491-3582
| |
Collapse
|
28
|
Kyhoiesh HAK, Al-Adilee KJ. Synthesis, spectral characterization and biological activities of Ag(I), Pt(IV) and Au(III) complexes with novel azo dye ligand (N, N, O) derived from 2-amino-6-methoxy benzothiazole. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02072-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Schmalstig AA, Zorn KM, Murci S, Robinson A, Savina S, Komarova E, Makarov V, Braunstein M, Ekins S. Mycobacterium abscessus drug discovery using machine learning. Tuberculosis (Edinb) 2022; 132:102168. [PMID: 35077930 PMCID: PMC8855326 DOI: 10.1016/j.tube.2022.102168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/30/2021] [Accepted: 01/14/2022] [Indexed: 01/22/2023]
Abstract
The prevalence of infections by nontuberculous mycobacteria is increasing, having surpassed tuberculosis in the United States and much of the developed world. Nontuberculous mycobacteria occur naturally in the environment and are a significant problem for patients with underlying lung diseases such as bronchiectasis, chronic obstructive pulmonary disease, and cystic fibrosis. Current treatment regimens are lengthy, complicated, toxic and they are often unsuccessful as seen by disease recurrence. Mycobacterium abscessus is one of the most commonly encountered organisms in nontuberculous mycobacteria disease and it is the most difficult to eradicate. There is currently no systematically proven regimen that is effective for treating M. abscessus infections. Our approach to drug discovery integrates machine learning, medicinal chemistry and in vitro testing and has been previously applied to Mycobacterium tuberculosis. We have now identified several novel 1-(phenylsulfonyl)-1H-benzimidazol-2-amines that have weak activity on M. abscessus in vitro but may represent a starting point for future further medicinal chemistry optimization. We also address limitations still to be overcome with the machine learning approach for M. abscessus.
Collapse
Affiliation(s)
- Alan A. Schmalstig
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, North Carolina, 27599, USA
| | - Kimberley M. Zorn
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive Lab 3510, Raleigh, North Carolina, 27606, USA
| | - Sebastian Murci
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, North Carolina, 27599, USA
| | - Andrew Robinson
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, North Carolina, 27599, USA
| | - Svetlana Savina
- Research Center of Biotechnology RAS, Moscow, 119071, Russia
| | - Elena Komarova
- Research Center of Biotechnology RAS, Moscow, 119071, Russia
| | - Vadim Makarov
- Research Center of Biotechnology RAS, Moscow, 119071, Russia
| | - Miriam Braunstein
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, North Carolina, 27599, USA
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive Lab 3510, Raleigh, North Carolina, 27606, USA.,Corresponding author: Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive Lab 3510, Raleigh, North Carolina, 27606, USA.
| |
Collapse
|
30
|
Recent advancements and developments in search of anti-tuberculosis agents: A quinquennial update and future directions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131473] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Abstract
Cyclohexyl-griselimycin is a preclinical candidate for use against tuberculosis (TB). Here, we show that this oral cyclodepsipeptide is also active against the intrinsically drug-resistant nontuberculous mycobacterium Mycobacterium abscessusin vitro and in a mouse model of infection. This adds a novel advanced lead compound to the M. abscessus drug pipeline and supports a strategy of screening chemical matter generated in TB drug discovery efforts to fast-track the discovery of novel antibiotics against M. abscessus.
Collapse
|
32
|
The Antimalarial Mefloquine Shows Activity against Mycobacterium abscessus, Inhibiting Mycolic Acid Metabolism. Int J Mol Sci 2021; 22:ijms22168533. [PMID: 34445239 PMCID: PMC8395226 DOI: 10.3390/ijms22168533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 11/17/2022] Open
Abstract
Some nontuberculous mycobacteria (NTM) are considered opportunistic pathogens. Nevertheless, NTM infections are increasing worldwide, becoming a major public health threat. Furthermore, there is no current specific drugs to treat these infections, and the recommended regimens generally lack efficacy, emphasizing the need for novel antibacterial compounds. In this paper, we focused on the essential mycolic acids transporter MmpL3, which is a well-characterized target of several antimycobacterial agents, to identify new compounds active against Mycobacterium abscessus (Mab). From the crystal structure of MmpL3 in complex with known inhibitors, through an in silico approach, we developed a pharmacophore that was used as a three-dimensional filter to identify new putative MmpL3 ligands within databases of known drugs. Among the prioritized compounds, mefloquine showed appreciable activity against Mab (MIC = 16 μg/mL). The compound was confirmed to interfere with mycolic acids biosynthesis, and proved to also be active against other NTMs, including drug-resistant clinical isolates. Importantly, mefloquine is a well-known antimalarial agent, opening the possibility of repurposing an already approved drug, which is a useful strategy to reduce the time and cost of disclosing novel drug candidates.
Collapse
|
33
|
Abstract
New, more-effective drugs for the treatment of lung disease caused by nontuberculous mycobacteria (NTM) are needed. Among NTM opportunistic pathogens, Mycobacterium abscessus is the most difficult to cure and intrinsically multidrug resistant. In a whole-cell screen of a compound collection active against Mycobacterium tuberculosis, we previously identified the piperidine-4-carboxamide (P4C) MMV688844 (844) as a hit against M. abscessus. Here, we identified a more potent analog of 844 and showed that both the parent and improved analog retain activity against strains representing all three subspecies of the M. abscessus complex. Furthermore, P4Cs showed bactericidal and antibiofilm activity. Spontaneous resistance against the P4Cs emerged at a frequency of 10−8/CFU and mapped to gyrA and gyrB encoding the subunits of DNA gyrase. Biochemical studies with recombinant M. abscessus DNA gyrase showed that P4Cs inhibit the wild-type enzyme but not the P4C-resistant mutant. P4C-resistant strains showed limited cross-resistance to the fluoroquinolone moxifloxacin, which is in clinical use for the treatment of macrolide-resistant M. abscessus disease, and no cross-resistance to the benzimidazole SPR719, a novel DNA gyrase inhibitor in clinical development for the treatment of mycobacterial diseases. Analyses of P4Cs in recA promoter-based DNA damage reporter strains showed induction of recA promoter activity in the wild type but not in the P4C-resistant mutant background. This indicates that P4Cs, similar to fluoroquinolones, cause DNA gyrase-mediated DNA damage. Together, our results show that P4Cs present a novel class of mycobacterial DNA gyrase inhibitors with attractive antimicrobial activities against the M. abscessus complex.
Collapse
|
34
|
Wang G, Tang J, Feng J, Dong W, Huo X, Lu H, Wang C, Lu W, Wang X, Chen H, Tan C. Activity of Oritavancin and Its Synergy with Other Antibiotics against Mycobacterium abscessus Infection In Vitro and In Vivo. Int J Mol Sci 2021; 22:ijms22126346. [PMID: 34198513 PMCID: PMC8231898 DOI: 10.3390/ijms22126346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Pulmonary disease caused by Mycobacterium abscessus (M. abscessus) spreads around the world, and this disease is extremely difficult to treat due to intrinsic and acquired resistance of the pathogen to many approved antibiotics. M. abscessus is regarded as one of the most drug-resistant mycobacteria, with very limited therapeutic options. Methods: Whole-cell growth inhibition assays was performed to screen and identify novel inhibitors. The IC50 of the target compounds were tested against THP-1 cells was determined to calculate the selectivity index, and then time–kill kinetics assay was performed against M. abscessus. Subsequently, the synergy of oritavancin with other antibiotics was evaluated by using checkerboard method. Finally, in vivo efficacy was determined in an immunosuppressive murine model simulating M. abscessus infection. Results: We have identified oritavancin as a potential agent against M. abscessus. Oritavancin exhibited time-concentration dependent bactericidal activity against M. abscessus and it also displayed synergy with clarithromycin, tigecycline, cefoxitin, moxifloxacin, and meropenem in vitro. Additionally, oritavancin had bactericidal effect on intracellular M. abscessus. Oritavancin significantly reduced bacterial load in lung when it was used alone or in combination with cefoxitin and meropenem. Conclusions: Our in vitro and in vivo assay results indicated that oritavancin may be a viable treatment option against M. abscessus infection.
Collapse
Affiliation(s)
- Gaoyan Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (G.W.); (J.T.); (J.F.); (W.D.); (X.H.); (H.L.); (C.W.); (W.L.); (X.W.); (H.C.)
| | - Jia Tang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (G.W.); (J.T.); (J.F.); (W.D.); (X.H.); (H.L.); (C.W.); (W.L.); (X.W.); (H.C.)
| | - Jiajia Feng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (G.W.); (J.T.); (J.F.); (W.D.); (X.H.); (H.L.); (C.W.); (W.L.); (X.W.); (H.C.)
| | - Wenqi Dong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (G.W.); (J.T.); (J.F.); (W.D.); (X.H.); (H.L.); (C.W.); (W.L.); (X.W.); (H.C.)
| | - Xinyu Huo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (G.W.); (J.T.); (J.F.); (W.D.); (X.H.); (H.L.); (C.W.); (W.L.); (X.W.); (H.C.)
| | - Hao Lu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (G.W.); (J.T.); (J.F.); (W.D.); (X.H.); (H.L.); (C.W.); (W.L.); (X.W.); (H.C.)
| | - Chenchen Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (G.W.); (J.T.); (J.F.); (W.D.); (X.H.); (H.L.); (C.W.); (W.L.); (X.W.); (H.C.)
| | - Wenjia Lu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (G.W.); (J.T.); (J.F.); (W.D.); (X.H.); (H.L.); (C.W.); (W.L.); (X.W.); (H.C.)
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (G.W.); (J.T.); (J.F.); (W.D.); (X.H.); (H.L.); (C.W.); (W.L.); (X.W.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (G.W.); (J.T.); (J.F.); (W.D.); (X.H.); (H.L.); (C.W.); (W.L.); (X.W.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan 430070, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (G.W.); (J.T.); (J.F.); (W.D.); (X.H.); (H.L.); (C.W.); (W.L.); (X.W.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan 430070, China
- Correspondence: ; Tel.: +86-027-8728-7170
| |
Collapse
|