1
|
Hormozi Jangi S, Khoobi A. Detection of cadmium heavy metal ions using a nanostructured green sensor in food, biological and environmental samples. Food Chem 2024; 458:140307. [PMID: 38970963 DOI: 10.1016/j.foodchem.2024.140307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
Heavy metals are one of the most important pollutants in the environment due to their toxic properties, accumulation, and indestructibility. So that when the metals enter the body of plants from natural and artificial sources, they accumulate in the organs and tissues. Therefore, in the present study, a sensitive and selective strategy is reported for the detection of cadmium(II) ions. To achieve this purpose, first sodium aluminate nanostructures were synthesized using a sol-gel method and green route. Then, using the nanostructures, a modified nanostructured sensor was designed. The characterization of the nanostructures was performed using various techniques. Next, the electrochemical behavior of the modified nanostructured electrode was investigated. The studies show the environment-friendly sensor has an enhanced voltammetric response than the unmodified sensor for cadmium(II) ions. After confirming the performance of the modified sensor, the analysis of cadmium(II) ions at the surface of the nanostructured modified electrode was investigated. Then, by differential pulse voltammetry (DPV) technique, the detection limit of cadmium(II) ions in optimal conditions was obtained at 1.10 nM with a broad dynamic linear range of 0.02-20.00 μM and 20.00-900.00 μM. Finally, the performance of the modified nanostructure sensor was investigated in food, biological and environmental samples, and acceptable results were obtained using the proposed method.
Collapse
Affiliation(s)
- Sharifeh Hormozi Jangi
- Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan 98135-674, Iran
| | - Asma Khoobi
- Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan 98135-674, Iran.
| |
Collapse
|
2
|
Chen Y, Zhou Q, Jia Z, Cheng N, Zhang S, Chen W, Wang L. Enhancing cancer immunotherapy: Nanotechnology-mediated immunotherapy overcoming immunosuppression. Acta Pharm Sin B 2024; 14:3834-3854. [PMID: 39309502 PMCID: PMC11413684 DOI: 10.1016/j.apsb.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/12/2024] [Accepted: 05/24/2024] [Indexed: 09/25/2024] Open
Abstract
Immunotherapy is an important cancer treatment method that offers hope for curing cancer patients. While immunotherapy has achieved initial success, a major obstacle to its widespread adoption is the inability to benefit the majority of patients. The success or failure of immunotherapy is closely linked to the tumor's immune microenvironment. Recently, there has been significant attention on strategies to regulate the tumor immune microenvironment in order to stimulate anti-tumor immune responses in cancer immunotherapy. The distinctive physical properties and design flexibility of nanomedicines have been extensively utilized to target immune cells (including tumor-associated macrophages (TAMs), T cells, myeloid-derived suppressor cells (MDSCs), and tumor-associated fibroblasts (TAFs)), offering promising advancements in cancer immunotherapy. In this article, we have reviewed treatment strategies aimed at targeting various immune cells to regulate the tumor immune microenvironment. The focus is on cancer immunotherapy models that are based on nanomedicines, with the goal of inducing or enhancing anti-tumor immune responses to improve immunotherapy. It is worth noting that combining cancer immunotherapy with other treatments, such as chemotherapy, radiotherapy, and photodynamic therapy, can maximize the therapeutic effects. Finally, we have identified the challenges that nanotechnology-mediated immunotherapy needs to overcome in order to design more effective nanosystems.
Collapse
Affiliation(s)
- Yunna Chen
- Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Qianqian Zhou
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Zongfang Jia
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Nuo Cheng
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Sheng Zhang
- Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Weidong Chen
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Lei Wang
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| |
Collapse
|
3
|
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang K, Xu J, Cheng Y, Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther 2024; 9:200. [PMID: 39128942 PMCID: PMC11323968 DOI: 10.1038/s41392-024-01889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 06/02/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a significant risk to human health. Nanomedicine is a new multidisciplinary field that is garnering a lot of interest and investigation. Nanomedicine shows great potential for cancer diagnosis and treatment. Specifically engineered nanoparticles can be employed as contrast agents in cancer diagnostics to enable high sensitivity and high-resolution tumor detection by imaging examinations. Novel approaches for tumor labeling and detection are also made possible by the use of nanoprobes and nanobiosensors. The achievement of targeted medication delivery in cancer therapy can be accomplished through the rational design and manufacture of nanodrug carriers. Nanoparticles have the capability to effectively transport medications or gene fragments to tumor tissues via passive or active targeting processes, thus enhancing treatment outcomes while minimizing harm to healthy tissues. Simultaneously, nanoparticles can be employed in the context of radiation sensitization and photothermal therapy to enhance the therapeutic efficacy of malignant tumors. This review presents a literature overview and summary of how nanotechnology is used in the diagnosis and treatment of malignant tumors. According to oncological diseases originating from different systems of the body and combining the pathophysiological features of cancers at different sites, we review the most recent developments in nanotechnology applications. Finally, we briefly discuss the prospects and challenges of nanotechnology in cancer.
Collapse
Affiliation(s)
- Bilan Wang
- Department of Pharmacy, Evidence-based Pharmacy Center, Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Shiqi Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Teng
- Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China
| | - Junli Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haoyuan Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yezhen Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kaiyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
4
|
Hu K, Yin W, Bai Y, Zhang J, Yin J, Zhu Q, Mu Y. CRISPR-Based Biosensors for Medical Diagnosis: Readout from Detector-Dependence Detection Toward Naked Eye Detection. BIOSENSORS 2024; 14:367. [PMID: 39194596 DOI: 10.3390/bios14080367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
The detection of biomarkers (such as DNA, RNA, and protein) plays a vital role in medical diagnosis. The CRISPR-based biosensors utilize the CRISPR/Cas system for biometric recognition of targets and use biosensor strategy to read out biological signals without the employment of professional operations. Consequently, the CRISPR-based biosensors demonstrate great potential for the detection of biomarkers with high sensitivity and specificity. However, the signal readout still relies on specialized detectors, limiting its application in on-site detection for medical diagnosis. In this review, we summarize the principles and advances of the CRISPR-based biosensors with a focus on medical diagnosis. Then, we review the advantages and progress of CRISPR-based naked eye biosensors, which can realize diagnosis without additional detectors for signal readout. Finally, we discuss the challenges and further prospects for the development of CRISPR-based biosensors.
Collapse
Affiliation(s)
- Kai Hu
- State Key Laboratory of Industrial Control Technology, Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
| | - Weihong Yin
- State Key Laboratory of Industrial Control Technology, Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
| | - Yunhan Bai
- State Key Laboratory of Industrial Control Technology, Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
| | - Jiarui Zhang
- State Key Laboratory of Industrial Control Technology, Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
| | - Juxin Yin
- Academy of Edge Intelligence, Hangzhou City University, Hangzhou 310015, China
| | - Qiangyuan Zhu
- State Key Laboratory of Industrial Control Technology, Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
| | - Ying Mu
- State Key Laboratory of Industrial Control Technology, Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
5
|
Liu X, Wang Q, Li J, Diao Z, Hou J, Huo D, Hou C. Simultaneous Detection of Micro-RNAs by a Disposable Biosensor via the Click Chemistry Connection Strategy. Anal Chem 2024; 96:10577-10585. [PMID: 38887964 DOI: 10.1021/acs.analchem.4c01120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Simultaneous detection of multiple breast cancer-associated miRNAs significantly raises the accuracy and reliability of early diagnosis. In this work, disposable carbon fiber paper serves as the biosensing interface, linking DNA probes via click chemistry to efficiently capture targets and signals efficiently. DNA probes have multiple recognition domains that trigger a cascade reaction through the helper probes and targets, resulting in two signals output. The signals are centrally encapsulated in the pore of the MIL-88(Fe)-NH2. The signal carriers are directed by signal probes to the recognition domains that correspond to the DNA probes. The biosensor is selective and stable, and it can quantify miRNA-21 and miRNA-155 simultaneously with detection limits of 0.64 and 0.54 fmol/L, respectively. Furthermore, it demonstrates satisfactory performance in tests conducted with normal human serum and cell lysate. Overall, this method makes a satisfactory exploration to realize an inexpensive and sensitive biosensor for multiple biomarkers.
Collapse
Affiliation(s)
- Xiaofang Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
| | - Qun Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
| | - Jiawei Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
| | - Zhan Diao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
| | - Jingzhou Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
- Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, Chongqing 401331, P. R. China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
- Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
6
|
Gharehaghaji ZH, Khalilzadeh B, Yousefi H, Mohammad-Rezaei R. An electrochemical immunosensor based on MXene-GQD/AuNPs for the detection of trace amounts of CA-125 as specific tracer of ovarian cancer. Mikrochim Acta 2024; 191:418. [PMID: 38914884 DOI: 10.1007/s00604-024-06469-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/26/2024] [Indexed: 06/26/2024]
Abstract
An electrochemical immunoassay system was developed to detect CA-125 using a glassy carbon electrode (GCE) modified with MXene, graphene quantum dots (GQDs), and gold nanoparticles (AuNPs). The combined MXene-GQD/AuNPs modification displayed advantageous electrochemical properties due to the synergistic effects of MXene, GQDs, and AuNPs. The MXene-GQD composite in the modified layer provided strong mechanical properties and a large specific surface area. Furthermore, the presence of AuNPs significantly improved conductivity and facilitated the binding of anti-CA-125 on the modified GCE, thereby enhancing sensitivity. Various analytical techniques such as FE-SEM and EDS were utilized to investigate the structural and morphological characteristics as well as the elemental composition. The performance of the developed immunosensor was assessed using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), square wave voltammetry (SWV), and differential pulse voltammetry (DPV). Under optimized conditions in a working potential range of -0.2 to 0.6 V (vs. Ag/AgCl), the sensitivity, linear range (LR), limit of detection (LOD), and correlation coefficient (R2) were determined to be 315.250 µA pU.mL-1/cm2, 0.1 to 1 nU/mL, 0.075 nU/mL, and 0.9855, respectively. The detection of CA-125 in real samples was investigated using the developed immunoassay platform, demonstrating satisfactory results including excellent selectivity and reproducibility.
Collapse
Affiliation(s)
- Zahra Hosseinchi Gharehaghaji
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hadi Yousefi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Rahim Mohammad-Rezaei
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.
| |
Collapse
|
7
|
Nasrollahpour H, Mirzaie A, Sharifi M, Rezabakhsh A, Khalilzadeh B, Rahbarghazi R, Yousefi H, Klionsky DJ. Biosensors; a novel concept in real-time detection of autophagy. Biosens Bioelectron 2024; 254:116204. [PMID: 38507929 DOI: 10.1016/j.bios.2024.116204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 02/23/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Autophagy is an early-stage response with self-degradation properties against several insulting conditions. To date, the critical role of autophagy has been well-documented in physiological and pathological conditions. This process involves various signaling and functional biomolecules, which are involved in different steps of the autophagic response. During recent decades, a range of biochemical analyses, chemical assays, and varied imaging techniques have been used for monitoring this pathway. Due to the complexity and dynamic aspects of autophagy, the application of the conventional methodology for following autophagic progression is frequently associated with a mistake in discrimination between a complete and incomplete autophagic response. Biosensors provide a de novo platform for precise and accurate analysis of target molecules in different biological settings. It has been suggested that these devices are applicable for real-time monitoring and highly sensitive detection of autophagy effectors. In this review article, we focus on cutting-edge biosensing technologies associated with autophagy detection.
Collapse
Affiliation(s)
| | - Arezoo Mirzaie
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Sharifi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cellular Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hadi Yousefi
- Department of Applied Cellular Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
8
|
Tkachenko A. Hemocompatibility studies in nanotoxicology: Hemolysis or eryptosis? (A review). Toxicol In Vitro 2024; 98:105814. [PMID: 38582230 DOI: 10.1016/j.tiv.2024.105814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/13/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Hemocompatibility evaluation is an important step in nanotoxicological studies. It is generally accepted that nanomaterials promote lysis of erythrocytes, blood clotting, alter phagocytosis, and upregulate pro-inflammatory cytokines. However, there are no standardized guidelines for testing nanomaterials hemocompatibility despite the fact that nanomaterials enter the bloodstream and interact with blood cells. In this review, the current knowledge on the ability of nanomaterials to induce distinct cell death modalities of erythrocytes is highlighted primarily focusing on hemolysis and eryptosis. This review aims to summarize the molecular mechanisms underlying erythrotoxicity of nanomaterials and critically compare the sensitivity and efficiency of hemolysis or eryptosis assays for nanomaterials blood compatibility testing. The list of eryptosis-inducing nanomaterials is growing, but it is still difficult to generalize how physico-chemical properties of nanoparticles affect eryptosis degree and molecular mechanisms involved. Thus, another aim of this review is to raise the awareness of eryptosis as a nanotoxicological tool to encourage the corresponding studies. It is worthwhile to consider adding eryptosis to in vitro nanomaterials hemocompatibility testing protocols and guidelines.
Collapse
Affiliation(s)
- Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 25250 Vestec, Czech Republic.
| |
Collapse
|
9
|
Fateh ST, Aghaii AH, Aminzade Z, Shahriari E, Roohpour N, Koosha F, Dezfuli AS. Inorganic nanoparticle-cored dendrimers for biomedical applications: A review. Heliyon 2024; 10:e29726. [PMID: 38694058 PMCID: PMC11061704 DOI: 10.1016/j.heliyon.2024.e29726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
Hybrid nanostructures exhibit a synergistic combination of features derived from their individual components, showcasing novel characteristics resulting from their distinctive structure and chemical/physical properties. Surface modifiers play a pivotal role in shaping INPs' primary attributes, influencing their physicochemical properties, stability, and functional applications. Among these modifiers, dendrimers have gained attention as highly effective multifunctional agents for INPs, owing to their unique structural qualities, dendritic effects, and physicochemical properties. Dendrimers can be seamlessly integrated with diverse inorganic nanostructures, including metal NPs, carbon nanostructures, silica NPs, and QDs. Two viable approaches to achieving this integration involve either growing or grafting dendrimers, resulting in inorganic nanostructure-cored dendrimers. The initial step involves functionalizing the nanostructures' surface, followed by the generation of dendrimers through stepwise growth or attachment of pre-synthesized dendrimer branches. This hybridization imparts superior qualities to the resulting structure, including biocompatibility, solubility, high cargo loading capacity, and substantial functionalization potential. Combining the unique properties of dendrimers with those of the inorganic nanostructure cores creates a multifunctional system suitable for diverse applications such as theranostics, bio-sensing, component isolation, chemotherapy, and cargo-carrying applications. This review summarizes the recent developments, with a specific focus on the last five years, within the realm of dendrimers. It delves into their role as modifiers of INPs and explores the potential applications of INP-cored dendrimers in the biomedical applications.
Collapse
Affiliation(s)
- Sepand Tehrani Fateh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Ronash Technology Pars Company(AMINBIC), Tehran, Iran
| | - Amir Hossein Aghaii
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
- Ronash Technology Pars Company(AMINBIC), Tehran, Iran
| | - Zahra Aminzade
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Shahriari
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | - Fereshteh Koosha
- Department of Radiology Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
10
|
Dezhakam E, Tavakkol M, Kafili T, Nozohouri E, Naseri A, Khalilzadeh B, Rahbarghazi R. Electrochemical and optical (bio)sensors for analysis of antibiotic residuals. Food Chem 2024; 439:138145. [PMID: 38091787 DOI: 10.1016/j.foodchem.2023.138145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/31/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024]
Abstract
Antibiotic residuals in foods may lead to crucial health and safety issues in the human body. Rapid and in-time analysis of antibiotics using simple and sensitive techniques is in high demand. Among the most commonly applicable modalities, chromatography-based techniques like HPLC and LC-MS, along with immunological approaches, particularly ELISA have been exampled in the analysis of antibiotics. Despite being highly sensitive, these methods are considerably time-consuming, thus the presence of skilled personnel and costly equipment is essential. Nanomaterial-based (bio)sensors, however, are de novo analytical equipment with some beneficial characteristics, such as simplicity, low price, on-site, high accuracy, and sensitivity for the detection of analytes. This review aimed to collect the latest developments in NM-based sensors and biosensors for the observation of highly used antibiotics like Vancomycin (Van), Linezolid (Lin), and Clindamycin (Clin). The current challenges and developmental perspectives are also debated in detail for future research directions.
Collapse
Affiliation(s)
- Ehsan Dezhakam
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mohammad Tavakkol
- School of Chemistry, University College of Science, University of Tehran, Tehran, Iran
| | - Taha Kafili
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Ehsan Nozohouri
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Abdolhosein Naseri
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Balal Khalilzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
O’Brien C, Khor CK, Ardalan S, Ignaszak A. Multiplex electrochemical sensing platforms for the detection of breast cancer biomarkers. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 6:1360510. [PMID: 38425422 PMCID: PMC10902167 DOI: 10.3389/fmedt.2024.1360510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Herein, advancements in electroanalytical devices for the simultaneous detection of diverse breast cancer (BC) markers are demonstrated. This article identifies several important areas of exploration for electrochemical diagnostics and highlights important factors that are pivotal for the successful deployment of novel bioanalytical devices. We have highlighted that the limits of detection (LOD) reported for the multiplex electrochemical biosensor can surpass the sensitivity displayed by current clinical standards such as ELISA, FISH, and PCR. HER-2; a breast cancer marker characterised by increased metastatic potential, more aggressive development, and poor clinical outcomes; can be sensed with a LOD of 0.5 ng/ml using electrochemical multiplex platforms, which falls within the range of that measured by ELISA (from picogram/ml to nanogram/ml). Electrochemical multiplex biosensors are reported with detection limits of 0.53 ng/ml and 0.21 U/ml for MUC-1 and CA 15-3, respectively, or 5.8 × 10-3 U/ml for CA 15-3 alone. The sensitivity of electrochemical assays is improved when compared to conventional analysis of MUC-1 protein which is detected at 11-12 ng/ml, and ≤30 U/ml for CA 15-3 in the current clinical blood tests. The LOD for micro-ribonucleic acid (miRNA) biomarkers analyzed by electrochemical multiplex assays were all notedly superior at 9.79 × 10-16 M, 3.58 × 10-15 M, and 2.54 × 10-16 M for miRNA-155, miRNA-21, and miRNA-16, respectively. The dogma in miRNA testing is the qRT-PCR method, which reports ranges in the ng/ml level for the same miRNAs. Breast cancer exosomes, which are being explored as a new frontier of biosensing, have been detected electrochemically with an LOD of 103-108 particles/mL and can exceed detection limits seen by the tracking and analysis of nanoparticles (∼ 107 particles/ml), flow cytometry, Western blotting and ELISA, etc. A range of concentration at 78-5,000 pg/ml for RANKL and 16-1,000 pg/ml for TNF is reported for ELISA assay while LOD values of 2.6 and 3.0 pg/ml for RANKL and TNF, respectively, are demonstrated by the electrochemical dual immunoassay platform. Finally, EGFR and VEGF markers can be quantified at much lower concentrations (0.01 and 0.005 pg/ml for EGFR and VEGF, respectively) as compared to their ELISA assays (EGRF at 0.31-20 ng/ml and VEGF at 31.3-2,000 pg/ml). In this study we hope to answer several questions: (1) Are the limits of detection (LODs) reported for multiplex electrochemical biosensors of clinical relevance and how do they compare to well-established methods like ELISA, FISH, or PCR? (2) Can a single sensor electrode be used for the detection of multiple markers from one blood drop? (3) What mechanism of electrochemical biosensing is the most promising, and what technological advancements are needed to utilize these devices for multiplex POC detection? (4) Can nanotechnology advance the sensitive and selective diagnostics of multiple BC biomarkers? (5) Are there preferred receptors (antibody, nucleic acid or their combinations) and preferred biosensor designs (complementary methods, sandwich-type protocols, antibody/aptamer concept, label-free protocol)? (6) Why are we still without FDA-approved electrochemical multiplex devices for BC screening?
Collapse
Affiliation(s)
- Connor O’Brien
- Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Chun Keat Khor
- Department of Chemistry, University of New Brunswick, Fredericton, NB, Canada
| | - Sina Ardalan
- Department of Chemistry, University of New Brunswick, Fredericton, NB, Canada
| | - Anna Ignaszak
- Department of Chemistry, University of New Brunswick, Fredericton, NB, Canada
| |
Collapse
|
12
|
Messina M, Maugeri L, Spoto G, Puccio R, Ruggieri M, Petralia S. Fully Integrated Point-of-Care Platform for the Self-Monitoring of Phenylalanine in Finger-Prick Blood. ACS Sens 2023; 8:4152-4160. [PMID: 37890867 PMCID: PMC10683505 DOI: 10.1021/acssensors.3c01384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/21/2023] [Indexed: 10/29/2023]
Abstract
Development of point-of-care platforms combining reliability and ease of use is a challenge for the evolution of sensing in healthcare technologies. Here, we report the development and testing of a fully integrated enzymatic colorimetric assay for the sensing of phenylalanine in blood samples from phenylketonuria patients. The platform works with a customized mobile app for data acquisition and visualization and comprises an electronic system and a disposable sensor. The sensing approach is based on specific enzymatic phenylalanine recognition, and the optical transduction method is based on in situ gold nanostructure formation. The phenylketonuria (PKU) smart sensor platform is conceived to perform self-monitoring on phenylalanine levels and real-time therapy tuning, thanks to the direct connection with clinicians. Validation of the technologies with a population of patients affected by PKU, together with the concurrent validation of the platform through centralized laboratories, has confirmed the good analytical performances in terms of sensitivity and specificity, robustness, and utility for phenylalanine sensing. The self-monitoring of phenylalanine for the daily identification of abnormal health conditions could facilitate rapid therapy tuning, improving the wellness of PKU patients.
Collapse
Affiliation(s)
- Maria
Anna Messina
- Expanded
Newborn Screening Laboratory, A.O.U Policlinico
“G. Rodolico—San Marco”, 95125 Catania, Italy
| | - Ludovica Maugeri
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
| | | | | | - Martino Ruggieri
- Expanded
Newborn Screening Laboratory, A.O.U Policlinico
“G. Rodolico—San Marco”, 95125 Catania, Italy
- Unit
of Clinical Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, 95125 Catania, Italy
| | - Salvatore Petralia
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
- CNR-Institute
of Biomolecular Chemistry, 95126 Catania, Italy
| |
Collapse
|
13
|
Zhang Y, Sun C, Duan Y, Cheng S, Hu W. Carbon dots-functionalized extended gate organic field effect transistor-based biosensors for low abundance proteins. NANOSCALE 2023; 15:16458-16465. [PMID: 37791597 DOI: 10.1039/d3nr03405d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Organic field effect transistors have emerged as promising platforms for biosensing applications. However, the challenge lies in optimizing functionalization strategies for the sensing interface, enabling the simultaneous detection of low abundance proteins while maintaining device performance. Here, we designed a carbon dots-functionalized extended gate organic field effect transistor. Leveraging the advantages of facile synthesis, tunable modification, small particle size, and cost-effectiveness of carbon dots, we implemented their integration onto the electrode surface. Through harnessing the covalent interactions of functional groups on the surface of carbon dots, we achieved effective immobilization of low abundance proteins without compromising device performance. Consequently, this biosensor exhibits a remarkably low limit of detection of 2.7 pg mL-1 and demonstrates high selectivity for the carcinoembryonic antigen. These findings highlight the superior capabilities of carbon dots in enhancing biosensor performance and emphasize their potential for early cancer detection.
Collapse
Affiliation(s)
- Yanmin Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences School of Science, Tianjin University, Tianjin 300072, China
| | - Chenfang Sun
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Life and Health Intelligent Research Insitute, Tianjin University of Technology, Tianjin 300384, China
| | - Yuchen Duan
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences School of Science, Tianjin University, Tianjin 300072, China
| | - Shanshan Cheng
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences School of Science, Tianjin University, Tianjin 300072, China
| | - Wenping Hu
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences School of Science, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institution of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
14
|
Li J, Fu R, Guo X, Pan Z, Xie J. Acupuncture improves immunity and fatigue after chemotherapy in breast cancer patients by inhibiting the Leptin/AMPK signaling pathway. Support Care Cancer 2023; 31:506. [PMID: 37542585 PMCID: PMC10404187 DOI: 10.1007/s00520-023-07967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/24/2023] [Indexed: 08/07/2023]
Abstract
OBJECTIVE Acupuncture has become a popular complementary treatment in oncology. This study is based on RNA-Seq transcriptome sequencing technology to investigate the molecular mechanisms underlying the effect of acupuncture-mediated regulation of the Leptin/AMPK signaling pathway on mitochondrial dysfunction-induced fatigue in breast cancer patients after chemotherapy. METHODS Peripheral blood samples from 10 patients with post-operative chemotherapy for breast cancer were selected for transcriptome sequencing to screen the key molecular pathways involved in fatigue after chemotherapy in breast cancer patients. Besides, peripheral blood samples were collected from 138 post-operative chemotherapy patients with breast cancer to study the composite fatigue and quality of life scores. Flow cytometry was used to detect T lymphocyte subsets in peripheral blood-specific immune cells. In addition, a blood cell analyzer was used to measure peripheral blood leukocyte counts, and MSP-PCR was used to detect mitochondrial DNA mutations in peripheral blood leukocytes. RESULTS Transcriptome bioinformatics analysis screened 147 up-regulated mRNAs and 160 down-regulated mRNAs. Leptin protein was confirmed as the key factor. Leptin was significantly higher in the peripheral blood of breast cancer patients who developed fatigue after chemotherapy. Acupuncture treatment effectively improved post-chemotherapy fatigue and immune status in breast cancer patients, suppressed the expression of Leptin/AMPK signaling pathway-related factor and leukocyte counts, and significantly reduced the rate of mitochondrial DNA mutations in peripheral blood leukocytes. CONCLUSION The Leptin/AMPK signaling pathway may be the key molecular pathway affecting the occurrence of fatigue after chemotherapy in breast cancer patients. Leptin may improve post-chemotherapy fatigue in breast cancer patients by activating AMPK phosphorylation and alleviating mitochondrial functional impairment.
Collapse
Affiliation(s)
- Jinxia Li
- Department of Acupuncture, Huzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang, People's Republic of China
| | - Ruiyang Fu
- Department of Acupuncture, Huzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang, People's Republic of China
| | - Xiaoqing Guo
- Department of Acupuncture, Huzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang, People's Republic of China
| | - Zhongqiang Pan
- Department of Acupuncture, Huzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang, People's Republic of China
| | - Jingjun Xie
- Department of Rehabilitation Medicine, The First People's Hospital of Huzhou, No. 158, Guangchang Hou Road, Huzhou, 313000, Zhejiang, People's Republic of China.
| |
Collapse
|
15
|
Pourasl MH, Vahedi A, Tajalli H, Khalilzadeh B, Bayat F. Liquid crystal-assisted optical biosensor for early-stage diagnosis of mammary glands using HER-2. Sci Rep 2023; 13:6847. [PMID: 37100835 PMCID: PMC10133346 DOI: 10.1038/s41598-023-31668-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/15/2023] [Indexed: 04/28/2023] Open
Abstract
Breast cancer (BC) is one of the most commonly diagnosed cancers and the second leading cause of cancer mortality among women around the world. The purpose of this study is to present a non-labeled liquid crystal (LC) biosensor, based on the inherent feature of nematic LCs, for the evaluation of BC using the human epidermal growth factor receptor-2 (HER-2) biomarker. The mechanism of this sensing is supported by surface modification with dimethyloctadecyl [3-(trimethoxysilyl) propyl] ammonium chloride (DMOAP) encouraging the long alkyl chains that induce a homeotropic orientation of the LC molecules at the interface. To enhance the binding efficacy of more HER-2 antibody (Ab) on LC aligning agents, a simple ultraviolet radiation-assisted method was also used to increase functional groups on the DMOAP coated slides, thereby improving binding affinity and efficiency onto HER-2 Abs. The designed biosensor makes use of the specific binding of HER-2 protein to HER-2 Ab and disruption of the orientation of LCs. This orientation change leads to a transition of the optical appearance from dark to birefringent, enabling the detection of HER-2. This novel biosensor exhibits a linear optical response to HER-2 concentration in the wide dynamic range of 10-6-102 ng/mL, with an ultra-low detection limit of 1 fg/mL. As a proof of concept, the designed LC biosensor was successfully investigated for the quantification of HER-2 protein in patients suffering from BC. Owing to the sensitivity, selectivity, and label-free detection, this biosensor may amplify the application of LC-based biosensors for the detection of most types of cancers.
Collapse
Affiliation(s)
- Mehri H Pourasl
- Department of Physics, Tabriz Branch, Islamic Azad University, Tabriz, Iran
- Biophotonic Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Ali Vahedi
- Department of Physics, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Habib Tajalli
- Department of Physics, Tabriz Branch, Islamic Azad University, Tabriz, Iran
- Biophotonic Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center (SCRC), Tabriz University of Medical Sciences, Tabriz, 51664-14766, Iran.
| | - Farzaneh Bayat
- Department of Physics, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|