1
|
Kapusta K, McGowan A, Banerjee S, Wang J, Kolodziejczyk W, Leszczynski J. Benchmark Investigation of SARS-CoV-2 Mutants' Immune Escape with 2B04 Murine Antibody: A Step Towards Unraveling a Larger Picture. Curr Issues Mol Biol 2024; 46:12550-12573. [PMID: 39590339 PMCID: PMC11592782 DOI: 10.3390/cimb46110745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Even though COVID-19 is no longer the primary focus of the global scientific community, its high mutation rate (nearly 30 substitutions per year) poses a threat of a potential comeback. Effective vaccines have been developed and administered to the population, ending the pandemic. Nonetheless, reinfection by newly emerging subvariants, particularly the latest JN.1 strain, remains common. The rapid mutation of this virus demands a fast response from the scientific community in case of an emergency. While the immune escape of earlier variants was extensively investigated, one still needs a comprehensive understanding of how specific mutations, especially in the newest subvariants, influence the antigenic escape of the pathogen. Here, we tested comprehensive in silico approaches to identify methods for fast and accurate prediction of antibody neutralization by various mutants. As a benchmark, we modeled the complexes of the murine antibody 2B04, which neutralizes infection by preventing the SARS-CoV-2 spike glycoprotein's association with angiotensin-converting enzyme (ACE2). Complexes with the wild-type, B.1.1.7 Alpha, and B.1.427/429 Epsilon SARS-CoV-2 variants were used as positive controls, while complexes with the B.1.351 Beta, P.1 Gamma, B.1.617.2 Delta, B.1.617.1 Kappa, BA.1 Omicron, and the newest JN.1 Omicron variants were used as decoys. Three essentially different algorithms were employed: forced placement based on a template, followed by two steps of extended molecular dynamics simulations; protein-protein docking utilizing PIPER (an FFT-based method extended for use with pairwise interaction potentials); and the AlphaFold 3.0 model for complex structure prediction. Homology modeling was used to assess the 3D structure of the newly emerged JN.1 Omicron subvariant, whose crystallographic structure is not yet available in the Protein Database. After a careful comparison of these three approaches, we were able to identify the pros and cons of each method. Protein-protein docking yielded two false-positive results, while manual placement reinforced by molecular dynamics produced one false positive and one false negative. In contrast, AlphaFold resulted in only one doubtful result and a higher overall accuracy-to-time ratio. The reasons for inaccuracies and potential pitfalls of various approaches are carefully explained. In addition to a comparative analysis of methods, some mechanisms of immune escape are elucidated herein. This provides a critical foundation for improving the predictive accuracy of vaccine efficacy against new viral subvariants, introducing accurate methodologies, and pinpointing potential challenges.
Collapse
Affiliation(s)
- Karina Kapusta
- Department of Chemistry and Physics, Tougaloo College, Tougaloo, MS 39174, USA
| | - Allyson McGowan
- Department of Chemistry and Physics, Tougaloo College, Tougaloo, MS 39174, USA
| | - Santanu Banerjee
- Department of Chemistry and Physics, Tougaloo College, Tougaloo, MS 39174, USA
| | - Jing Wang
- Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA
| | - Wojciech Kolodziejczyk
- Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA
| | - Jerzy Leszczynski
- Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA
| |
Collapse
|
2
|
Nong C, Wu Z, Yang C, Xu W, Luo L, Zhou J, Shen L, Chen Y, Yuan Y, Hu G. Cdc42 improve SARS-CoV-2 spike protein-induced cellular senescence through activating of Wnt/β-Catenin signaling pathway. Front Cell Infect Microbiol 2024; 14:1449423. [PMID: 39559701 PMCID: PMC11570593 DOI: 10.3389/fcimb.2024.1449423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/11/2024] [Indexed: 11/20/2024] Open
Abstract
Introduction SARS-CoV-2 infection drove senescent cells and the senescence-associated phenotypes were reported playing roles in disease progression, which contributes to severe COVID-19 and related sequelae. Cdc42 is involved in the regulation of cellular senescence. This study, aimed to investigate the mechanism of the SARS-CoV-2 spike protein regulating cellular senescence through Cdc42. Methods K18-hACE2 mice were infected with SARS-CoV-2 Omicron BA.4 or stimulated with spike protein through the airway, the senescent cells and Cdc42 expression in lung tissue were detected. Overexpression of spike protein or exogenous incubation of spike protein was used to simulate the induction of cellular senescence by spike protein. Mechanistic insights into the role of Cdc42 were mainly explored using Western Blot and qRT-PCR. Results Spike protein, SARS-CoV-2 infection related, accelerates cell aging by upregulating Cdc42 expression, which furtherly activated the Wnt/β-catenin signaling pathway. Conversely, treatment with ML141 in animal models, a Cdc42 inhibitor, reduced cellular senescence and ameliorated lung injury and inflammation. These results suggest that the upregulation of Cdc42 by the SARS-CoV-2 spike protein induces cellular senescence and enhances β-catenin nuclear translocation. Discussion This study provides insights into the mechanisms underlying cellular senescence induced by the SARS-CoV-2 spike protein, offering potential strategies to mitigate the inflammatory response and complications associated with COVID-19 in both the acute and long-term phases.
Collapse
Affiliation(s)
- Chunmei Nong
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Respiratory and Critical Care Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, China
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory and Critical Care Medicine, Dongguan, Guangdong, China
| | - Zhenzhen Wu
- Department of Respiratory and Critical Care Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Chan Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Linyi Luo
- Intensive Care Unit, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Jianping Zhou
- Department of Thoracic Surgery, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Lihan Shen
- Intensive Care Unit, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Yinghua Chen
- Dongguan People’s Hospital Biobank, Clinical Research Center, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yaoqin Yuan
- Intensive Care Unit, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Guodong Hu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Respiratory and Critical Care Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, China
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory and Critical Care Medicine, Dongguan, Guangdong, China
| |
Collapse
|
3
|
Sultan Khan M, Shakya M, Kumar Verma C, Mukherjee R. Identification of highly conserved surface-exposed peptides of spike protein for multiepitope vaccine design against emerging omicron variants: An immunoinformatic approach. Hum Immunol 2024; 85:111117. [PMID: 39276411 DOI: 10.1016/j.humimm.2024.111117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
The COVID-19 pandemic, originating in Wuhan in 2019, was caused by SARS-CoV-2, leading to significant global fatalities. Despite the development of vaccines, the virus mutates, creating variants that evade vaccine-induced immunity. To address SARS-CoV-2's evolving nature, a multiepitope vaccine was developed using immunoinformatics approach, specifically targeting the Omicron variant's spike protein. This vaccine includes six CD8 + and eleven CD4 + epitopes selected for their immunogenicity, non-toxicity, and significant conservation among former Variants of Concern (VOCs) and Variants of Interest (VOIs), such as Alpha, Beta, Gamma, Delta, Lambda, Mu, R1, and Zeta, as well as current Variants Under Monitoring (VUMs) like XBB.1.5, XBB.1.16, EG.5, BA.2.86, and JN.1. Notably, certain epitopes like ELLHAPATV and PYRVVVLSFELLHAP were fully conserved across all tested variants in the spike protein's receptor binding domain (RBD). Others, such as NATRFASVYAWNRKR, were fully conserved in all former VOCs and VOIs and 93.33 % in current VUMs, while ERDISTEIYQAGNKP was entirely conserved in current VUMs within the RBD region. The study went on to model, refine, and validate the vaccine prototype's tertiary structure. Docking experiments and molecular dynamic simulations revealed robust and stable interactions with Toll-like receptor 4. Cloning and codon optimization confirmed successful expression in E. coli. Subsequently, the immunological reaction of the multiepitope vaccine demonstrated that the three-time administration of the prototype significantly enhanced the antibody response while decreasing the number of antigens. The designed vaccine's epitopes showed significant combined global population coverage of 100 % with 89.75 % for CD8 + and 99.98 % for CD4 + epitopes and conservation across SARS-CoV-2 variants especially in current monitoring omicron subvariants, supporting its broader applicability and potential efficacy. Although, this promising vaccine candidate needs to undergo clinical trials to determine its effectiveness in neutralising SARS-CoV-2.
Collapse
Affiliation(s)
- Mohd Sultan Khan
- Department of Mathematics, Bioinformatics and Computer Applications, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh 462003, India.
| | - Madhvi Shakya
- Department of Mathematics, Bioinformatics and Computer Applications, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh 462003, India.
| | - Chandan Kumar Verma
- Department of Mathematics, Bioinformatics and Computer Applications, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh 462003, India.
| | - Rudraksh Mukherjee
- Department of Mathematics, Bioinformatics and Computer Applications, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh 462003, India.
| |
Collapse
|
4
|
Joseph J, Baby HM, Quintero JR, Kenney D, Mebratu YA, Bhatia E, Shah P, Swain K, Lee D, Kaur S, Li XL, Mwangi J, Snapper O, Nair R, Agus E, Ranganathan S, Kage J, Gao J, Luo JN, Yu A, Park D, Douam F, Tesfaigzi Y, Karp JM, Joshi N. Toward a Radically Simple Multi-Modal Nasal Spray for Preventing Respiratory Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406348. [PMID: 39318086 DOI: 10.1002/adma.202406348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/18/2024] [Indexed: 09/26/2024]
Abstract
Nasal sprays for pre-exposure prophylaxis against respiratory infections show limited protection (20-70%), largely due to their single mechanism of action-either neutralizing pathogens or blocking their entry at the nasal lining, and a failure to maximize the capture of respiratory droplets, allowing them to potentially rebound and reach deeper airways. This report introduces the Pathogen Capture and Neutralizing Spray (PCANS), which utilizes a multi-modal approach to enhance efficacy. PCANS coats the nasal cavity, capturing large respiratory droplets from the air, and serving as a physical barrier against a broad spectrum of viruses and bacteria, while rapidly neutralizing them with over 99.99% effectiveness. The formulation consists of excipients identified from the FDA's Inactive Ingredient Database and Generally Recognized as Safe list to maximize efficacy for each step in the multi-modal approach. PCANS demonstrates nasal retention for up to 8 hours in mice. In a severe Influenza A mouse model, a single pre-exposure dose of PCANS leads to a >99.99% reduction in lung viral titer and ensures 100% survival, compared to 0% in the control group. PCANS suppresses pathological manifestations and offers protection for at least 4 hours. This data suggest PCANS as a promising daily-use prophylactic against respiratory infections.
Collapse
Affiliation(s)
- John Joseph
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Helna Mary Baby
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Joselyn Rojas Quintero
- Harvard Medical School, Boston, MA, 02115, USA
- Division of Pulmonology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Devin Kenney
- National Emerging Infectious Diseases Laboratories, Department of Microbiology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Yohannes A Mebratu
- Harvard Medical School, Boston, MA, 02115, USA
- Division of Pulmonology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Eshant Bhatia
- Indian Institute of Technology, Mumbai, 400076, India
| | - Purna Shah
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Kabir Swain
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Dongtak Lee
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Shahdeep Kaur
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Xiang-Ling Li
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - John Mwangi
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Olivia Snapper
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Remya Nair
- Harvard Medical School, Boston, MA, 02115, USA
| | - Eli Agus
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Sruthi Ranganathan
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Julian Kage
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Jingjing Gao
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - James N Luo
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Anthony Yu
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Dongsung Park
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Florian Douam
- National Emerging Infectious Diseases Laboratories, Department of Microbiology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Yohannes Tesfaigzi
- Harvard Medical School, Boston, MA, 02115, USA
- Division of Pulmonology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Jeffrey M Karp
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute, Cambridge, MA, 02142, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Nitin Joshi
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
5
|
Chang TY, Li CJ, Chao TL, Chang SY, Chang SC. Design of the conserved epitope peptide of SARS-CoV-2 spike protein as the broad-spectrum COVID-19 vaccine. Appl Microbiol Biotechnol 2024; 108:486. [PMID: 39412657 PMCID: PMC11485143 DOI: 10.1007/s00253-024-13331-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Our previous study has found that monoclonal antibodies targeting a conserved epitope peptide spanning from residues 1144 to 1156 of SARS-CoV-2 spike (S) protein, namely S(1144-1156), can broadly neutralize all of the prevalent SARS-CoV-2 strains, including the wild type, Alpha, Epsilon, Delta, and Gamma variants. In the study, S(1144-1156) was conjugated with bovine serum albumin (BSA) and formulated with Montanide ISA 51 adjuvant for inoculation in BALB/c mice to study its potential as a vaccine candidate. Results showed that the titers of S protein-specific IgGs and the neutralizing antibodies in mouse sera against various SARS-CoV-2 variants, including the Omicron sublineages, were largely induced along with three doses of immunization. The significant release of IFN-γ and IL-2 was also observed by ELISpot assays through stimulating vaccinated mouse splenocytes with the S(1144-1156) peptide. Furthermore, the vaccination of the S(1143-1157)- and S(1142-1158)-EGFP fusion proteins can elicit more SARS-CoV-2 neutralizing antibodies in mouse sera than the S(1144-1156)-EGFP fusion protein. Interestingly, the antisera collected from mice inoculated with the S(1144-1156) peptide vaccine exhibited better efficacy for neutralizing Omicron BA.2.86 and JN.1 subvariants than Omicron BA.1, BA.2, and XBB subvariants. Since the amino acid sequences of the S(1144-1156) are highly conserved among various SARS-CoV-2 variants, the immunogen containing the S(1144-1156) core epitope can be designed as a broadly effective COVID-19 vaccine. KEY POINTS: • Inoculation of mice with the S(1144-1156) peptide vaccine can induce bnAbs against various SARS-CoV-2 variants. • The S(1144-1156) peptide stimulated significant release of IFN-γ and IL-2 in vaccinated mouse splenocytes. • The S(1143-1157) and S(1142-1158) peptide vaccines can elicit more SARS-CoV-2 nAbs in mice.
Collapse
Affiliation(s)
- Ting-Yu Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Chia-Jung Li
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Tai-Ling Chao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan.
- Department of Laboratory Medicine, College of Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, 100, Taiwan.
| | - Shih-Chung Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan.
- Center of Biotechnology, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
6
|
Huo H, Wang J, Li C, Xiao S, Wang H, Ge J, Zhong G, Wen Z, Wang C, Lang Q, Chen L, Wang Z, Wang J, Wang X, He X, Guan Y, Shuai L, Bu Z. Safety and immunogenicity of a SARS-CoV-2 mRNA vaccine (SYS6006) in minks, cats, blue foxes, and raccoon dogs. Front Cell Infect Microbiol 2024; 14:1468775. [PMID: 39364147 PMCID: PMC11446887 DOI: 10.3389/fcimb.2024.1468775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/27/2024] [Indexed: 10/05/2024] Open
Abstract
Minks, cats, and some other species of carnivores are susceptible of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and have a high risk of transmitting SARS-CoV-2 to humans. The development of animal vaccines can be an effective measure to protect animals against SARS-CoV-2 and reduce the potential risk of human infection. We previously developed a messenger ribonucleic acid (mRNA) vaccine SYS6006 that has been proven to be an efficient coronavirus disease 2019 (COVID-19) vaccine widely used in humans. Here, we further evaluated the safety and immunogenicity of SYS6006 as an animal COVID-19 vaccine candidate for SARS-CoV-2 susceptible animals or wild animals. SYS6006 was safe and immunogenic in mice and completely protected mice against mouse-adapted SARS-CoV-2 infection in the upper and lower respiratory tracts. SYS6006 was able to induce neutralizing antibodies against the SARS-CoV-2 wild-type, Delta, and Omicron BA.2 strain on day 7 after prime immunization, and two doses of immunization could enhance the neutralizing antibody responses and produce long-lasting potent antibodies for more than 8 months in minks and cats, blue foxes, and raccoon dogs, while all immunized animals had no abnormal clinical signs during immunization. These results provided here warrant further development of this safe and efficacious mRNA vaccine platform against animal COVID-19.
Collapse
Affiliation(s)
- Hong Huo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- National High Containment Laboratory for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jinming Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chan Li
- CSPC Zhongqi Pharmaceutical Technology (Shijiazhuang) Co., Ltd., CSPC Pharmaceutical Group Co., Ltd., Shijiazhuang, Hebei, China
| | - Shuang Xiao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Han Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jinying Ge
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Gongxun Zhong
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- National High Containment Laboratory for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhiyuan Wen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- National High Containment Laboratory for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chong Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- National High Containment Laboratory for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qiaoling Lang
- CSPC Zhongqi Pharmaceutical Technology (Shijiazhuang) Co., Ltd., CSPC Pharmaceutical Group Co., Ltd., Shijiazhuang, Hebei, China
| | - Lili Chen
- CSPC Zhongqi Pharmaceutical Technology (Shijiazhuang) Co., Ltd., CSPC Pharmaceutical Group Co., Ltd., Shijiazhuang, Hebei, China
| | - Zilong Wang
- CSPC Zhongqi Pharmaceutical Technology (Shijiazhuang) Co., Ltd., CSPC Pharmaceutical Group Co., Ltd., Shijiazhuang, Hebei, China
| | - Jinliang Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- National High Containment Laboratory for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xijun Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xijun He
- National High Containment Laboratory for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuntao Guan
- National High Containment Laboratory for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lei Shuai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- National High Containment Laboratory for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhigao Bu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- National High Containment Laboratory for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Faraji N, Zeinali T, Joukar F, Aleali MS, Eslami N, Shenagari M, Mansour-Ghanaei F. Mutational dynamics of SARS-CoV-2: Impact on future COVID-19 vaccine strategies. Heliyon 2024; 10:e30208. [PMID: 38707429 PMCID: PMC11066641 DOI: 10.1016/j.heliyon.2024.e30208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024] Open
Abstract
The rapid emergence of multiple strains of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has sparked profound concerns regarding the ongoing evolution of the virus and its potential impact on global health. Classified by the World Health Organization (WHO) as variants of concern (VOC), these strains exhibit heightened transmissibility and pathogenicity, posing significant challenges to existing vaccine strategies. Despite widespread vaccination efforts, the continual evolution of SARS-CoV-2 variants presents a formidable obstacle to achieving herd immunity. Of particular concern is the coronavirus spike (S) protein, a pivotal viral surface protein crucial for host cell entry and infectivity. Mutations within the S protein have been shown to enhance transmissibility and confer resistance to antibody-mediated neutralization, undermining the efficacy of traditional vaccine platforms. Moreover, the S protein undergoes rapid molecular evolution under selective immune pressure, leading to the emergence of diverse variants with distinct mutation profiles. This review underscores the urgent need for vigilance and adaptation in vaccine development efforts to combat the evolving landscape of SARS-CoV-2 mutations and ensure the long-term effectiveness of global immunization campaigns.
Collapse
Affiliation(s)
- Niloofar Faraji
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Tahereh Zeinali
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Farahnaz Joukar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Maryam Sadat Aleali
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Narges Eslami
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Shenagari
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fariborz Mansour-Ghanaei
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
8
|
Yarovaya OI, Filimonov AS, Baev DS, Borisevich SS, Zaykovskaya AV, Chirkova VY, Marenina MK, Meshkova YV, Belenkaya SV, Shcherbakov DN, Gureev MA, Luzina OA, Pyankov OV, Salakhutdinov NF, Khvostov MV. The Potential of Usnic-Acid-Based Thiazolo-Thiophenes as Inhibitors of the Main Protease of SARS-CoV-2 Viruses. Viruses 2024; 16:215. [PMID: 38399993 PMCID: PMC10893357 DOI: 10.3390/v16020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Although the COVID-19 pandemic caused by SARS-CoV-2 viruses is officially over, the search for new effective agents with activity against a wide range of coronaviruses is still an important task for medical chemists and virologists. We synthesized a series of thiazolo-thiophenes based on (+)- and (-)-usnic acid and studied their ability to inhibit the main protease of SARS-CoV-2. Substances containing unsubstituted thiophene groups or methyl- or bromo-substituted thiophene moieties showed moderate activity. Derivatives containing nitro substituents in the thiophene heterocycle-just as pure (+)- and (-)-usnic acids-showed no anti-3CLpro activity. Kinetic parameters of the most active compound, (+)-3e, were investigated, and molecular modeling of the possible interaction of the new thiazolo-thiophenes with the active site of the main protease was carried out. We evaluated the binding energies of the ligand and protein in a ligand-protein complex. Active compound (+)-3e was found to bind with minimum free energy; the binding of inactive compound (+)-3g is characterized by higher values of minimum free energy; the positioning of pure (+)-usnic acid proved to be unstable and is accompanied by the formation of intermolecular contacts with many amino acids of the catalytic binding site. Thus, the molecular dynamics results were consistent with the experimental data. In an in vitro antiviral assay against six strains (Wuhan, Delta, and four Omicron sublineages) of SARS-CoV-2, (+)-3e demonstrated pronounced antiviral activity against all the strains.
Collapse
Affiliation(s)
- Olga I. Yarovaya
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (A.S.F.); (D.S.B.); (M.K.M.); (Y.V.M.); (S.V.B.); (D.N.S.); (O.A.L.); (N.F.S.); (M.V.K.)
| | - Aleksandr S. Filimonov
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (A.S.F.); (D.S.B.); (M.K.M.); (Y.V.M.); (S.V.B.); (D.N.S.); (O.A.L.); (N.F.S.); (M.V.K.)
| | - Dmitriy S. Baev
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (A.S.F.); (D.S.B.); (M.K.M.); (Y.V.M.); (S.V.B.); (D.N.S.); (O.A.L.); (N.F.S.); (M.V.K.)
- Synchrotron Radiation Facility SKIF, G.K. Boreskov Institute of Catalysis SB RAS, 630559 Koltsovo, Russia;
| | - Sophia S. Borisevich
- Synchrotron Radiation Facility SKIF, G.K. Boreskov Institute of Catalysis SB RAS, 630559 Koltsovo, Russia;
- Laboratory of Chemical Physics, Ufa Institute of Chemistry, Ufa Federal Research Centre, 450078 Ufa, Russia
| | - Anna V. Zaykovskaya
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (A.V.Z.); (O.V.P.)
| | - Varvara Yu. Chirkova
- Institute of Biology and Biotechnology, Altay State University, 656049 Barnaul, Russia;
| | - Mariya K. Marenina
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (A.S.F.); (D.S.B.); (M.K.M.); (Y.V.M.); (S.V.B.); (D.N.S.); (O.A.L.); (N.F.S.); (M.V.K.)
| | - Yulia V. Meshkova
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (A.S.F.); (D.S.B.); (M.K.M.); (Y.V.M.); (S.V.B.); (D.N.S.); (O.A.L.); (N.F.S.); (M.V.K.)
| | - Svetlana V. Belenkaya
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (A.S.F.); (D.S.B.); (M.K.M.); (Y.V.M.); (S.V.B.); (D.N.S.); (O.A.L.); (N.F.S.); (M.V.K.)
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (A.V.Z.); (O.V.P.)
| | - Dmitriy N. Shcherbakov
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (A.S.F.); (D.S.B.); (M.K.M.); (Y.V.M.); (S.V.B.); (D.N.S.); (O.A.L.); (N.F.S.); (M.V.K.)
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (A.V.Z.); (O.V.P.)
- Institute of Biology and Biotechnology, Altay State University, 656049 Barnaul, Russia;
| | - Maxim A. Gureev
- Laboratory of Bio- and Cheminformatics, St. Petersburg School of Physics, Mathematics and Computer Science, HSE University, 194100 St. Peterburg, Russia;
| | - Olga A. Luzina
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (A.S.F.); (D.S.B.); (M.K.M.); (Y.V.M.); (S.V.B.); (D.N.S.); (O.A.L.); (N.F.S.); (M.V.K.)
| | - Oleg V. Pyankov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (A.V.Z.); (O.V.P.)
| | - Nariman F. Salakhutdinov
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (A.S.F.); (D.S.B.); (M.K.M.); (Y.V.M.); (S.V.B.); (D.N.S.); (O.A.L.); (N.F.S.); (M.V.K.)
| | - Mikhail V. Khvostov
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (A.S.F.); (D.S.B.); (M.K.M.); (Y.V.M.); (S.V.B.); (D.N.S.); (O.A.L.); (N.F.S.); (M.V.K.)
| |
Collapse
|
9
|
Abreu C, Ortega C, Olivero-Deibe N, Carrión F, Gaete-Argel A, Valiente-Echeverría F, Soto-Rifo R, Milan Bonotto R, Marcello A, Pantano S. Customizably designed multibodies neutralize SARS-CoV-2 in a variant-insensitive manner. Front Immunol 2023; 14:1226880. [PMID: 37638023 PMCID: PMC10447908 DOI: 10.3389/fimmu.2023.1226880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/20/2023] [Indexed: 08/29/2023] Open
Abstract
The COVID-19 pandemic evolves constantly, requiring adaptable solutions to combat emerging SARS-CoV-2 variants. To address this, we created a pentameric scaffold based on a mammalian protein, which can be customized with up to 10 protein binding modules. This molecular scaffold spans roughly 20 nm and can simultaneously neutralize SARS-CoV-2 Spike proteins from one or multiple viral particles. Using only two different modules targeting the Spike's RBD domain, this construct outcompetes human antibodies from vaccinated individuals' serum and blocks in vitro cell attachment and pseudotyped virus entry. Additionally, the multibodies inhibit viral replication at low picomolar concentrations, regardless of the variant. This customizable multibody can be easily produced in procaryote systems, providing a new avenue for therapeutic development and detection devices, and contributing to preparedness against rapidly evolving pathogens.
Collapse
Affiliation(s)
| | | | | | | | - Aracelly Gaete-Argel
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Fernando Valiente-Echeverría
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Ricardo Soto-Rifo
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Rafaela Milan Bonotto
- Laboratory of Molecular Virology, The International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Alessandro Marcello
- Laboratory of Molecular Virology, The International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | | |
Collapse
|
10
|
Lin M, Zeng X, Duan Y, Yang Z, Ma Y, Yang H, Yang X, Liu X. Molecular mechanism of ensitrelvir inhibiting SARS-CoV-2 main protease and its variants. Commun Biol 2023; 6:694. [PMID: 37407698 DOI: 10.1038/s42003-023-05071-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023] Open
Abstract
SARS-CoV-2 poses an unprecedented threat to the world as the causative agent of the COVID-19 pandemic. Among a handful of therapeutics developed for the prevention and treatment of SARS-CoV-2 infection, ensitrelvir is the first noncovalent and nonpeptide oral inhibitor targeting the main protease (Mpro) of SARS-CoV-2, which recently received emergency regulatory approval in Japan. Here we determined a 1.8-Å structure of Mpro in complex with ensitrelvir, which revealed that ensitrelvir targets the substrate-binding pocket of Mpro, specifically recognizing its S1, S2, and S1' subsites. Further, our comprehensive biochemical and structural data have demonstrated that even though ensitrelvir and nirmatrelvir (an FDA-approved drug) belong to different types of Mpro inhibitors, both of them remain to be effective against Mpros from all five SARS-CoV-2 variants of concern, suggesting Mpro is a bona fide broad-spectrum target. The molecular mechanisms uncovered in this study provide basis for future inhibitor design.
Collapse
Affiliation(s)
- Mengmeng Lin
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xudong Zeng
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yinkai Duan
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zinan Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yuanyuan Ma
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Xiang Liu
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
| |
Collapse
|
11
|
Saldivar-Espinoza B, Garcia-Segura P, Novau-Ferré N, Macip G, Martínez R, Puigbò P, Cereto-Massagué A, Pujadas G, Garcia-Vallve S. The Mutational Landscape of SARS-CoV-2. Int J Mol Sci 2023; 24:ijms24109072. [PMID: 37240420 DOI: 10.3390/ijms24109072] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Mutation research is crucial for detecting and treating SARS-CoV-2 and developing vaccines. Using over 5,300,000 sequences from SARS-CoV-2 genomes and custom Python programs, we analyzed the mutational landscape of SARS-CoV-2. Although almost every nucleotide in the SARS-CoV-2 genome has mutated at some time, the substantial differences in the frequency and regularity of mutations warrant further examination. C>U mutations are the most common. They are found in the largest number of variants, pangolin lineages, and countries, which indicates that they are a driving force behind the evolution of SARS-CoV-2. Not all SARS-CoV-2 genes have mutated in the same way. Fewer non-synonymous single nucleotide variations are found in genes that encode proteins with a critical role in virus replication than in genes with ancillary roles. Some genes, such as spike (S) and nucleocapsid (N), show more non-synonymous mutations than others. Although the prevalence of mutations in the target regions of COVID-19 diagnostic RT-qPCR tests is generally low, in some cases, such as for some primers that bind to the N gene, it is significant. Therefore, ongoing monitoring of SARS-CoV-2 mutations is crucial. The SARS-CoV-2 Mutation Portal provides access to a database of SARS-CoV-2 mutations.
Collapse
Affiliation(s)
- Bryan Saldivar-Espinoza
- Departament de Bioquímica i Biotecnologia, Research Group in Cheminformatics & Nutrition, Campus de Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Pol Garcia-Segura
- Departament de Bioquímica i Biotecnologia, Research Group in Cheminformatics & Nutrition, Campus de Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Nil Novau-Ferré
- Departament de Bioquímica i Biotecnologia, Research Group in Cheminformatics & Nutrition, Campus de Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Guillem Macip
- Departament de Bioquímica i Biotecnologia, Research Group in Cheminformatics & Nutrition, Campus de Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | | | - Pere Puigbò
- Department of Biology, University of Turku, 20500 Turku, Finland
- Department of Biochemistry and Biotechnology, Rovira i Virgili University, 43007 Tarragona, Spain
- Eurecat, Technology Centre of Catalonia, Unit of Nutrition and Health, 43204 Reus, Spain
| | - Adrià Cereto-Massagué
- EURECAT Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), 43204 Reus, Spain
| | - Gerard Pujadas
- Departament de Bioquímica i Biotecnologia, Research Group in Cheminformatics & Nutrition, Campus de Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Santiago Garcia-Vallve
- Departament de Bioquímica i Biotecnologia, Research Group in Cheminformatics & Nutrition, Campus de Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| |
Collapse
|