1
|
Mackay DJG, Gazdagh G, Monk D, Brioude F, Giabicani E, Krzyzewska IM, Kalish JM, Maas SM, Kagami M, Beygo J, Kahre T, Tenorio-Castano J, Ambrozaitytė L, Burnytė B, Cerrato F, Davies JH, Ferrero GB, Fjodorova O, Manero-Azua A, Pereda A, Russo S, Tannorella P, Temple KI, Õunap K, Riccio A, de Nanclares GP, Maher ER, Lapunzina P, Netchine I, Eggermann T, Bliek J, Tümer Z. Multi-locus imprinting disturbance (MLID): interim joint statement for clinical and molecular diagnosis. Clin Epigenetics 2024; 16:99. [PMID: 39090763 PMCID: PMC11295890 DOI: 10.1186/s13148-024-01713-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Imprinting disorders are rare diseases resulting from altered expression of imprinted genes, which exhibit parent-of-origin-specific expression patterns regulated through differential DNA methylation. A subgroup of patients with imprinting disorders have DNA methylation changes at multiple imprinted loci, a condition referred to as multi-locus imprinting disturbance (MLID). MLID is recognised in most but not all imprinting disorders and is also found in individuals with atypical clinical features; the presence of MLID often alters the management or prognosis of the affected person. Some cases of MLID are caused by trans-acting genetic variants, frequently not in the patients but their mothers, which have counselling implications. There is currently no consensus on the definition of MLID, clinical indications prompting testing, molecular procedures and methods for epigenetic and genetic diagnosis, recommendations for laboratory reporting, considerations for counselling, and implications for prognosis and management. The purpose of this study is thus to cover this unmet need. METHODS A comprehensive literature search was conducted resulting in identification of more than 100 articles which formed the basis of discussions by two working groups focusing on clinical diagnosis (n = 12 members) and molecular testing (n = 19 members). Following eight months of preparations and regular online discussions, the experts from 11 countries compiled the preliminary documentation and determined the questions to be addressed during a face-to-face meeting which was held with the attendance of the experts together with four representatives of patient advocacy organisations. RESULTS In light of available evidence and expert consensus, we formulated 16 propositions and 8 recommendations as interim guidance for the clinical and molecular diagnosis of MLID. CONCLUSIONS MLID is a molecular designation, and for patients with MLID and atypical phenotypes, we propose the alternative term multi-locus imprinting syndrome. Due to the intrinsic variability of MLID, the guidelines underscore the importance of involving experts from various fields to ensure a confident approach to diagnosis, counselling, and care. The authors advocate for global, collaborative efforts in both basic and translational research to tackle numerous crucial questions that currently lack answers, and suggest reconvening within the next 3-5 years to evaluate the research advancements and update this guidance as needed.
Collapse
Affiliation(s)
| | - Gabriella Gazdagh
- Faculty of Medicine, University of Southampton, Southampton, UK
- Wessex Clinical Genetics Service, Princess Anne Hospital, University Hospital Southampton NHS Trust, Southampton, UK
| | - David Monk
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Frederic Brioude
- Centre de Recherche Saint Antoine, Endocrinologie Moléculaire et Pathologies d'empreinte, INSERMSorbonne Université, Hôpital Armand TrousseauAPHP, 75012, Paris, France
| | - Eloise Giabicani
- Centre de Recherche Saint Antoine, Endocrinologie Moléculaire et Pathologies d'empreinte, INSERMSorbonne Université, Hôpital Armand TrousseauAPHP, 75012, Paris, France
| | - Izabela M Krzyzewska
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jennifer M Kalish
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Departments of Pediatrics and Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Saskia M Maas
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Jasmin Beygo
- Institut Für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Tiina Kahre
- Department of Laboratory Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Jair Tenorio-Castano
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- Institute of Medical and Molecular Genetics, INGEMM-Idipaz, Madrid, Spain
| | - Laima Ambrozaitytė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Birutė Burnytė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Flavia Cerrato
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università Degli Studi Della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Justin H Davies
- Faculty of Medicine, University of Southampton, Southampton, UK
- Regional Centre for Paediatric Endocrinology, Faculty of Medicine, Southampton Children's Hospital, University of Southampton, Southampton, UK
| | - Giovanni Battista Ferrero
- Department of Clinical and Biological Science, School of Medicine, Centre for Hemoglobinopathies, AOU San Luigi Gonzaga, University of Turin, Turin, Italy
| | - Olga Fjodorova
- Department of Laboratory Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Africa Manero-Azua
- Rare Diseases Research Group, Molecular (Epi)Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital-Txagorritxu, Vitoria-Gasteiz, Araba, Spain
| | - Arrate Pereda
- Rare Diseases Research Group, Molecular (Epi)Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital-Txagorritxu, Vitoria-Gasteiz, Araba, Spain
| | - Silvia Russo
- IRCCS Research Laboratory of Medical Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano, Milan, Italy
| | - Pierpaola Tannorella
- IRCCS Research Laboratory of Medical Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano, Milan, Italy
| | - Karen I Temple
- Faculty of Medicine, University of Southampton, Southampton, UK
- Wessex Clinical Genetics Service, Princess Anne Hospital, University Hospital Southampton NHS Trust, Southampton, UK
| | - Katrin Õunap
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Andrea Riccio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università Degli Studi Della Campania "Luigi Vanvitelli", Caserta, Italy
- Institute of Genetics and Biophysics (IGB),"Adriano Buzzati-Traverso", Consiglio Nazionale Delle Ricerche (CNR), Naples, Italy
| | - Guiomar Perez de Nanclares
- Rare Diseases Research Group, Molecular (Epi)Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital-Txagorritxu, Vitoria-Gasteiz, Araba, Spain
| | - Eamonn R Maher
- Aston Medical School, Aston University, Birmingham, UK
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Pablo Lapunzina
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- Institute of Medical and Molecular Genetics, INGEMM-Idipaz, Madrid, Spain
| | - Irène Netchine
- Centre de Recherche Saint Antoine, Endocrinologie Moléculaire et Pathologies d'empreinte, INSERMSorbonne Université, Hôpital Armand TrousseauAPHP, 75012, Paris, France
| | - Thomas Eggermann
- Institute for Human Genetics and Genome Medicine. Faculty of Medicine, RWTH University Aachen, Aachen, Germany
| | - Jet Bliek
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Zeynep Tümer
- Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Elefante P, Spedicati B, Faletra F, Pignata L, Cerrato F, Riccio A, Barbi E, Memo L, Travan L. Beckwith-Wiedemann syndrome and twinning: case report and brief review of literature. Ital J Pediatr 2023; 49:127. [PMID: 37749604 PMCID: PMC10521437 DOI: 10.1186/s13052-023-01530-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 09/11/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Beckwith-Wiedemann syndrome (BWS, OMIM #130,650) is a pediatric overgrowth disorder involving a predisposition to tumor development. Although the clinical management of affected patients is well established, it is less clear how to handle with the cases of siblings of affected patients, since the prevalence of the condition in twins (1:1000) is ten times higher than in singletones (1:10000). CASE PRESENTATION We report the case of a premature twin patient who during her follow-up develops a clinical phenotype compatible with BWS, genetically confirmed in blood. However, the methylation alteration characteristic of the condition was also found in the almost phenotypically normal sibling, making it challening her management. CONCLUSION Through our case report we highlight how the diagnosis of BWS can be made without any prenatal suspicion and we propose a review of the literature on how to manage siblings of affected patients in twinning situation.
Collapse
Affiliation(s)
- Pierandrea Elefante
- Department of Medicine, Surgery, and Health Sciences, University of Trieste, Via dell’Istria 65/1, Trieste, 34137 Italy
| | - Beatrice Spedicati
- Department of Medicine, Surgery, and Health Sciences, University of Trieste, Via dell’Istria 65/1, Trieste, 34137 Italy
| | - Flavio Faletra
- Medical Genetics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Laura Pignata
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Flavia Cerrato
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Andrea Riccio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
- Institute of Genetics and Biophysics (IGB) “Adriano Buzzati-Traverso”, Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Egidio Barbi
- Department of Medicine, Surgery, and Health Sciences, University of Trieste, Via dell’Istria 65/1, Trieste, 34137 Italy
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Luigi Memo
- Clinical Genetics, Department of Pediatrics, Ospedale San Bortolo, Vicenza, Italy
| | - Laura Travan
- Neonatal Intensive Care Unit, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| |
Collapse
|
3
|
Ma GC, Chen TH, Wu WJ, Lee DJ, Lin WH, Chen M. Proposal for Practical Approach in Prenatal Diagnosis of Beckwith–Wiedemann Syndrome and Review of the Literature. Diagnostics (Basel) 2022; 12:diagnostics12071709. [PMID: 35885613 PMCID: PMC9315620 DOI: 10.3390/diagnostics12071709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 01/08/2023] Open
Abstract
Background: Beckwith–Wiedemann syndrome (BWS) is a phenotypically and genetically heterogeneous disorder associated with epigenetic/genetic aberrations on chromosome 11p15.4p15.5. There is no consensus criterion for prenatal diagnosis of BWS. Methods: Three BWS patients with their clinical histories, prenatal ultrasonographic features, and results of molecular diagnosis were presented. Likewise, by incorporating the findings of our cases and literature review, the phenotypic spectrum and genotype–phenotype correlations of fetal BWS were summarized, and a practical approach in prenatal diagnosis of BWS was proposed. Results: A total of 166 BWS cases with prenatal features were included for analysis. Common fetal features include abdominal wall defects (42.8%), polyhydramnios (33.1%), and macrosomia (32.5%). Molecular pathologies include methylation changes in imprinting control region 1 and 2 (ICR1 and ICR2), paternal uniparental disomy of chromosome 11p15.5, copy number change involving 11p15, etc. Some genotype–phenotype correlations were observed. However, the broad phenotypic spectrum but limited features manifested by affected fetuses rendering ultrasonographic diagnosis not easy. Conclusions: Molecular tests are used for prenatal diagnosis of BWS suspected by ultrasonography. Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) is recommended as the first-line molecular tool because it simultaneously detects ICR1/ICR2 methylation statuses and copy numbers that solve the majority of clinical cases in the prenatal scenario.
Collapse
Affiliation(s)
- Gwo-Chin Ma
- Department of Genomic Medicine and Center for Medical Genetics, Changhua Christian Hospital, Changhua 50046, Taiwan; (G.-C.M.); (W.-J.W.)
- Research Department, Changhua Christian Hospital, Changhua 50006, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan
| | - Tze-Ho Chen
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua 50006, Taiwan;
| | - Wan-Ju Wu
- Department of Genomic Medicine and Center for Medical Genetics, Changhua Christian Hospital, Changhua 50046, Taiwan; (G.-C.M.); (W.-J.W.)
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua 50006, Taiwan;
| | - Dong-Jay Lee
- Research Department, Changhua Christian Hospital, Changhua 50006, Taiwan;
| | - Wen-Hsiang Lin
- Welgene Biotechnology Company, Nangang Business Park, Taipei 11560, Taiwan;
| | - Ming Chen
- Department of Genomic Medicine and Center for Medical Genetics, Changhua Christian Hospital, Changhua 50046, Taiwan; (G.-C.M.); (W.-J.W.)
- Research Department, Changhua Christian Hospital, Changhua 50006, Taiwan;
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua 50006, Taiwan;
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 10041, Taiwan
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei 10041, Taiwan
- Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Biomedical Science, Da-Yeh University, Changhua 51591, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- Correspondence: or ; Tel.: +886-4722-5121 (ext. 2323)
| |
Collapse
|
4
|
Molecular Basis of Beckwith–Wiedemann Syndrome Spectrum with Associated Tumors and Consequences for Clinical Practice. Cancers (Basel) 2022; 14:cancers14133083. [PMID: 35804856 PMCID: PMC9265096 DOI: 10.3390/cancers14133083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Beckwith–Wiedemann syndrome (BWS, OMIM 130650) is an inborn overgrowth disorder caused by molecular alterations in chromosome 11p15.5. These molecular changes affect so-called imprinted genes, i.e., genes which underlie a complex regulation which is linked to the parental origin of the gene copy. Thus, either the maternal gene copy is expressed or the paternal, but this balanced regulation is prone to disturbances. In fact, different types of molecular variants have been identified in BWS, resulting in a variable phenotype; thus, it was consented that the syndromic entity was extended to the Beckwith–Wiedemann spectrum (BWSp). Some molecular subgroups of BWSp are associated with an increased embryonic tumor risk and have different likelihoods for specific tumors. Therefore, the precise determination of the molecular subgroup is needed for precise monitoring and treatment, but the molecular diagnostic procedure has several limitations and challenges which have to be considered. Abstract Beckwith–Wiedemann syndrome (BWS, OMIM 130650) is a congenital imprinting condition with a heterogenous clinical presentation of overgrowth and an increased childhood cancer risk (mainly nephroblastoma, hepatoblastoma or neuroblastoma). Due to the varying clinical presentation encompassing classical, clinical BWS without a molecular diagnosis and BWS-related phenotypes with an 11p15.5 molecular anomaly, the syndromic entity was extended to the Beckwith–Wiedemann spectrum (BWSp). The tumor risk of up to 30% depends on the molecular subtype of BWSp with causative genetic or epigenetic alterations in the chromosomal region 11p15.5. The molecular diagnosis of BWSp can be challenging for several reasons, including the range of causative molecular mechanisms which are frequently mosaic. The molecular basis of tumor formation appears to relate to stalled cellular differentiation in certain organs that predisposes persisting embryonic cells to accumulate additional molecular defects, which then results in a range of embryonal tumors. The molecular subtype of BWSp not only influences the overall risk of neoplasia, but also the likelihood of specific embryonal tumors.
Collapse
|
5
|
Preferential X Chromosome Inactivation as a Mechanism to Explain Female Preponderance in Myasthenia Gravis. Genes (Basel) 2022; 13:genes13040696. [PMID: 35456502 PMCID: PMC9031138 DOI: 10.3390/genes13040696] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/04/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
Myasthenia gravis (MG) is a neuromuscular autoimmune disease characterized by prevalence in young women (3:1). Several mechanisms proposed as explanations for gender bias, including skewed X chromosome inactivation (XCI) and dosage or sex hormones, are often involved in the development of autoimmunity. The skewed XCI pattern can lead to an unbalanced expression of some X-linked genes, as observed in several autoimmune disorders characterized by female predominance. No data are yet available regarding XCI and MG. We hypothesize that the preferential XCI pattern may contribute to the female bias observed in the onset of MG, especially among younger women. XCI analysis was performed on blood samples of 284 women between the ages of 20 and 82. XCI was tested using the Human Androgen Receptor Assay (HUMARA). XCI patterns were classified as random (XCI < 75%) and preferential (XCI ≥ 75%). In 121 informative patients, the frequency of skewed XCI patterns was 47%, significantly higher than in healthy controls (17%; p ≤ 0.00001). Interestingly, the phenomenon was observed mainly in younger patients (<45 years; p ≤ 0.00001). Furthermore, considering the XCI pattern and the other clinical characteristics of patients, no significant differences were found. In conclusion, we observed preferential XCI in MG female patients, suggesting its potential role in the aetiology of MG, as observed in other autoimmune diseases in women.
Collapse
|
6
|
Duffy KA, Getz KD, Hathaway ER, Byrne ME, MacFarland SP, Kalish JM. Characteristics Associated with Tumor Development in Individuals Diagnosed with Beckwith-Wiedemann Spectrum: Novel Tumor-(epi)Genotype-Phenotype Associations in the BWSp Population. Genes (Basel) 2021; 12:genes12111839. [PMID: 34828445 PMCID: PMC8621885 DOI: 10.3390/genes12111839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 01/14/2023] Open
Abstract
Beckwith–Wiedemann Spectrum (BWSp) is the most common epigenetic childhood cancer predisposition disorder. BWSp is caused by (epi)genetic changes affecting the BWS critical region on chromosome 11p15. Clinically, BWSp represents complex molecular and phenotypic heterogeneity resulting in a range of presentations from Classic BWS to milder features. The previously reported tumor risk based on Classic BWS cohorts is 8–10% and routine tumor screening has been recommended. This work investigated the tumor risk and correlation with phenotype within a cohort of patients from Classic BWS to BWSp using a mixed-methods approach to explore phenotype and epigenotype profiles associated with tumor development through statistical analyses with post-hoc retrospective case series review. We demonstrated that tumor risk across BWSp differs from Classic BWS and that certain phenotypic features are associated with specific epigenetic causes; nephromegaly and/or hyperinsulinism appear associated with cancer in some patients. We also demonstrated that prenatal and perinatal factors that are not currently part of the BWSp classification may factor into tumor risk. Additionally, blood testing results are not necessarily synonymous with tissue testing results. Together, it appears that the current understanding from Classic BWS of (epi)genetics and phenotype correlations with tumors is not represented in the BWSp. Further study is needed in this complex population.
Collapse
Affiliation(s)
- Kelly A. Duffy
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (K.A.D.); (E.R.H.); (M.E.B.)
| | - Kelly D. Getz
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, Philadelphia, PA 19104, USA;
- Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA 19104, USA;
| | - Evan R. Hathaway
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (K.A.D.); (E.R.H.); (M.E.B.)
| | - Mallory E. Byrne
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (K.A.D.); (E.R.H.); (M.E.B.)
| | - Suzanne P. MacFarland
- Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA 19104, USA;
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jennifer M. Kalish
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (K.A.D.); (E.R.H.); (M.E.B.)
- Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA 19104, USA;
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Correspondence: ; Tel.: +1-215-590-1278
| |
Collapse
|
7
|
Duffy KA, Hathaway ER, Klein SD, Ganguly A, Kalish JM. Epigenetic mosaicism and cell burden in Beckwith-Wiedemann Syndrome due to loss of methylation at imprinting control region 2. Cold Spring Harb Mol Case Stud 2021; 7:mcs.a006115. [PMID: 34697083 PMCID: PMC8751414 DOI: 10.1101/mcs.a006115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022] Open
Abstract
Beckwith–Wiedemann syndrome (BWS) is a rare overgrowth disorder caused by epigenetic alterations on Chromosome 11p15.5. Most molecular changes are sporadic and are thought to occur in a mosaic pattern. Thereby, the distribution of affected cells differs between tissues for each individual, which can complicate genotype–phenotype correlations. In two of the BWS molecular subtypes, tissue mosaicism has been demonstrated; however, mosaicism has not been specifically studied in the most common cause of BWS, loss of methylation (LOM) at KCNQ1OT1:TSS differentially methylated region (DMR) imprinting center 2 (IC2) LOM. The increased prevalence of twinning associated with the IC2 LOM subtype and the discordant phenotypes between the twins previously led to the proposal of diffused epigenetic mosaicism, leading to asymmetric distribution of affected cells during embryonic development. In this study, we evaluated the level of methylation detected in 64 samples collected from 30 individuals with IC2 LOM. We demonstrate that the IC2 LOM defect can occur in mosaic and nonmosaic patterns, and tissues from the same individual can show variable patterns, which suggests that this asymmetric distribution occurs during development. We further suggest that the clinical phenotype in individuals with BWS IC2 LOM is correlated with the epigenetic burden of affected cells in each tissue type. This series is the first report to demonstrate tissue mosaicism within the IC2 LOM epigenotype, and consideration of this mosaicism is necessary to understanding the pathogenesis of BWS.
Collapse
|
8
|
Clinical and Molecular Diagnosis of Beckwith-Wiedemann Syndrome with Single- or Multi-Locus Imprinting Disturbance. Int J Mol Sci 2021; 22:ijms22073445. [PMID: 33810554 PMCID: PMC8036922 DOI: 10.3390/ijms22073445] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/22/2022] Open
Abstract
Beckwith-Wiedemann syndrome (BWS) is a clinically and genetically heterogeneous overgrowth disease. BWS is caused by (epi)genetic defects at the 11p15 chromosomal region, which harbors two clusters of imprinted genes, IGF2/H19 and CDKN1C/KCNQ1OT1, regulated by differential methylation of imprinting control regions, H19/IGF2:IG DMR and KCNQ1OT1:TSS DMR, respectively. A subset of BWS patients show multi-locus imprinting disturbances (MLID), with methylation defects extended to other imprinted genes in addition to the disease-specific locus. Specific (epi)genotype-phenotype correlations have been defined in order to help clinicians in the classification of patients and referring them to a timely diagnosis and a tailored follow-up. However, specific phenotypic correlations have not been identified among MLID patients, thus causing a debate on the usefulness of multi-locus testing in clinical diagnosis. Finally, the high incidence of BWS monozygotic twins with discordant phenotypes, the high frequency of BWS among babies conceived by assisted reproductive technologies, and the female prevalence among BWS-MLID cases provide new insights into the timing of imprint establishment during embryo development. In this review, we provide an overview on the clinical and molecular diagnosis of single- and multi-locus BWS in pre- and post-natal settings, and a comprehensive analysis of the literature in order to define possible (epi)genotype-phenotype correlations in MLID patients.
Collapse
|
9
|
Fontana L, Bedeschi MF, Cagnoli GA, Costanza J, Persico N, Gangi S, Porro M, Ajmone PF, Colapietro P, Santaniello C, Crippa M, Sirchia SM, Miozzo M, Tabano S. (Epi)genetic profiling of extraembryonic and postnatal tissues from female monozygotic twins discordant for Beckwith-Wiedemann syndrome. Mol Genet Genomic Med 2020; 8:e1386. [PMID: 32627967 PMCID: PMC7507324 DOI: 10.1002/mgg3.1386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 12/19/2022] Open
Abstract
Background Beckwith–Wiedemann syndrome (BWS) is an overgrowth disorder caused by defects at the 11p15.5 imprinted region. Many cases of female monozygotic (MZ) twins discordant for BWS have been reported, but no definitive conclusions have been drawn regarding the link between epigenetic defects, twinning process, and gender. Here, we report a comprehensive characterization and follow‐up of female MZ twins discordant for BWS. Methods Methylation pattern at 11p15.5 and multilocus methylation disturbance (MLID) profiling were performed by pyrosequencing and MassARRAY in placental/umbilical cord samples and postnatal tissues. Whole‐exome sequencing was carried out to identify MLID causative mutations. X‐chromosome inactivation (XCI) was determined by HUMARA test. Results Both twins share KCNQ1OT1:TSS‐DMR loss of methylation (LOM) and MLID in blood and the epigenetic defect remained stable in the healthy twin over time. KCNQ1OT1:TSS‐DMRLOM was nonhomogeneously distributed in placental samples and the twins showed the same severely skewed XCI pattern. No MLID‐causative mutations were identified. Conclusion This is the first report on BWS‐discordant twins with methylation analyses extended to extraembryonic tissues. The results suggest that caution is required when attempting prenatal diagnosis in similar cases. Although the causative mechanism underlying LOM remains undiscovered, the XCI pattern and mosaic LOM suggest that both twinning and LOM/MLID occurred after XCI commitment.
Collapse
Affiliation(s)
- Laura Fontana
- Medical Genetics, Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milano, Italy.,Research Laboratories Coordination Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Maria F Bedeschi
- Medical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Giulia A Cagnoli
- Medical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Jole Costanza
- Research Laboratories Coordination Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Nicola Persico
- Obstetrics and Gynecology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.,Department of ClinicalSciences and Community Health, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Silvana Gangi
- NICU, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Matteo Porro
- Pediatric Physical Medicine & Rehabilitation Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Paola F Ajmone
- Child and AdolescentNeuropsychiatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Patrizia Colapietro
- Medical Genetics, Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milano, Italy.,Research Laboratories Coordination Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Carlo Santaniello
- Research Laboratories Coordination Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Milena Crippa
- Medical Cytogenetics& Human Molecular Genetics, Istituto Auxologico Italiano-IRCCS, Milano, Italy
| | - Silvia M Sirchia
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| | - Monica Miozzo
- Medical Genetics, Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milano, Italy.,Research Laboratories Coordination Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Silvia Tabano
- Medical Genetics, Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milano, Italy.,Laboratory of Medical Genetics, Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|