1
|
Alkhonezan M, Alkhonezan S, Al‐Jaroudi D. Perrault syndrome: a forgotten presentation for infertile women. Clin Case Rep 2024; 12:e9522. [PMID: 39498437 PMCID: PMC11532627 DOI: 10.1002/ccr3.9522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 11/07/2024] Open
Abstract
Key clinical message Perrault syndrome (PRLTS) is an uncommon hereditary condition distinguished by ovarian failure in females and sensorineural hearing loss. Infertility can be the presenting problem for a serious disease. History and physical examination is very essential among infertile couples. Abstract Perrault syndrome (PRLTS) is an uncommon hereditary condition distinguished by ovarian failure in females and sensorineural hearing loss. This case presentation describes a 22-year-old female from Saudi Arabia with PRLTS. The patient presented with progressive bilateral hearing loss since childhood, impacting her academic achievement. Additionally, she experienced amenorrhea since the age of 18 years, with previous investigations showing no hormonal imbalances. Other laboratory tests, including bone mineral density, kidney and liver function, electrolytes, and lipid profile, showed mostly normal results, except for a slightly abnormal lipid profile with low high-density lipoprotein and high low-density lipoprotein levels. This case highlights the challenges faced by individuals with PRLTS, specifically progressive hearing loss and gonadal dysfunction, leading to infertility. Further evaluation and management are warranted to address the patient's hearing impairment and fertility concerns, with a multidisciplinary approach involving audiology, endocrinology, and reproductive medicine.
Collapse
Affiliation(s)
- Manal Alkhonezan
- College of Medicine Imam Mohammad Ibn Saud Islamic UniversityRiyadhSaudi Arabia
| | - Shahad Alkhonezan
- College of Medicine Imam Mohammad Ibn Saud Islamic UniversityRiyadhSaudi Arabia
| | - Dania Al‐Jaroudi
- Department of Obstetrics and Gynecology, King Fahad Medical CityRiyadh Second Health ClusterRiyadhSaudi Arabia
- Reproductive Endocrine and Infertility Medicine Department, King Fahad Medical CityRiyadh Second Health ClusterRiyadhSaudi Arabia
| |
Collapse
|
2
|
Iqbal M, Jamal A, Ahmed RA. The Perrault Syndrome Mystery: A Case Report on Its Diagnosis in a 26-Year-Old Female. Cureus 2024; 16:e70648. [PMID: 39483604 PMCID: PMC11527394 DOI: 10.7759/cureus.70648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Perrault syndrome (PRLTS) is a rare autosomal recessive disorder characterized by sensorineural hearing loss in both sexes and ovarian dysfunction in females with a 46, XX karyotype. Due to its rarity and diagnostic challenges, herein we report on a 26-year-old woman who presented with secondary amenorrhea, congenital deafness in one ear, and progressive hearing loss in the other. Physical examination showed poorly developed breasts and normal external genitalia. Lab tests revealed high follicle-stimulating hormone (FSH) levels, indicating ovarian failure. Imaging revealed a small uterus and streak ovaries without follicular activity. Initially misdiagnosed with various overlapping syndromes such as Turner, Turner mosaic, and Swyer syndromes, she was started on oral contraceptive pills which induced menstruation and minimal breast development but caused mood swings and depression, leading to inconsistent use. Later, karyotyping revealed a normal 46,XX karyotype, shrouding the case in mystery. A few years later, after additional investigations, her hearing loss and reproductive disruptions were connected, and she was diagnosed with PRLTS. The absence of neurological symptoms suggests type I PRLTS. This case underscores the diagnostic challenges of PRLTS and highlights the importance of genetic testing for accurate diagnosis. It also emphasizes the need for a multidisciplinary approach and further research to improve understanding and management of this rare condition.
Collapse
Affiliation(s)
- Mahwish Iqbal
- Department of Obstetrics and Gynecology, Naseem Jeddah Medical Center, Jeddah, SAU
| | - Ayesha Jamal
- Department of General Medicine and Surgery, Batterjee Medical College for Science and Technology, Jeddah, SAU
| | - Ruqayyah A Ahmed
- Department of General Medicine and Surgery, Batterjee Medical College for Science and Technology, Jeddah, SAU
| |
Collapse
|
3
|
Li Q, Sun S, Zuo B, Lian C, Tang W, Xu H, Lu W. Novel Clinical Manifestation and Favorable Treatment Outcome of Cochlear Implant in a Chinese Family With Likely Pathogenic Variant of the P2RX2 Gene. Am J Med Genet A 2024:e63877. [PMID: 39258340 DOI: 10.1002/ajmg.a.63877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
The rapid development and clinical application of sequencing technologies enable the genetic diagnosis of inherited deafness. P2RX2, as the gene responsible for autosomal dominant non-syndromic deafness-41 (DFNA41), has been proven to be essential for life-long normal hearing and for the protection of noise-induced hearing loss (NIHL). Our present study reports a missense variant in the P2RX2 gene (c.178G > T (p.V60L)), for the second time worldwide, in a five-generation kindred living in Henan, China. Despite carrying the same variant, the affected members in this family appear to present with earlier-onset hearing loss and poorer hearing compared to the original DFNA41 families. In addition, this study supplements some content that was not covered in previous reports. We quantitatively evaluated the pain perception ability of some members using the Pain Vision PS-2100 system, and further found an interesting clinical manifestation, that is, hyperalgesia, in heterozygotes for P2RX2 p.V60L. The cochlear implant (CI) was also provided for the proband of profound deafness, resulting in satisfactory clinical outcomes. Finally, we carried out a systematic review of recently published articles on the P2RX2 gene, which is beneficial for better understanding the role of the P2RX2 gene in the auditory system and the pathogenic mechanisms in sensorineural hearing loss (SNHL).
Collapse
Affiliation(s)
- Qiang Li
- Department of Otorhinolaryngology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuping Sun
- Department of Otorhinolaryngology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Zuo
- Department of Otorhinolaryngology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chengyu Lian
- Precision Medicine Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wenxue Tang
- Precision Medicine Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- The Research and Application Center of Precision Medicine, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongen Xu
- Precision Medicine Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- The Research and Application Center of Precision Medicine, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Lu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Idyahia A, Redouan S, Amalou G, Charoute H, Harmak H, Bonnet C, Petit C, Benrahma H, Barakat A. Exome sequencing reveals pathogenic mutations in the LARS2 and HSD17B4 genes associated with Perrault syndrome and D-bifunctional protein deficiency in Moroccan families. Mol Biol Rep 2024; 51:850. [PMID: 39052101 DOI: 10.1007/s11033-024-09740-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Syndromic hearing loss (SHL) is characterized by hearing impairment accompanied by other clinical manifestations, reaching over 400 syndromes. Early and accurate diagnosis is essential to understand the progression of hearing loss and associated systemic complications. METHODS AND RESULTS In this study, we investigated the genetic etiology of sensorineural hearing loss in three Moroccan patients using whole exome sequencing (WES). The results revealed in two families Perrault syndrome caused by LARS2, p. Asn153His; p. Thr629Met compound heterozygous variants in two siblings in one family; and p. Thr522Asn, a homozygous variant in two sisters in another. The patient in the third family was diagnosed with D-bifunctional protein deficiency (D-BPD), linked to compound heterozygous mutations p. Asn457Tyr and p. Val643Argfs*5 in HSD17B4. Molecular dynamic simulation results showed that Val643Argfs*5 does not prevent HSD17B4 protein from binding to the PEX5 receptor, but further studies are recommended to verify its effect on HSD17B4 protein functionality. CONCLUSION These results highlight the effectiveness of WES in identifying pathogenic mutations involved in heterogeneous disorders and the usefulness of bioinformatics in predicting their effects on protein structure.
Collapse
Affiliation(s)
- Assia Idyahia
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, 1 Place Louis Pasteur, Casablanca, 20360, Morocco
- Interdisciplinary Laboratory of Biotechnology and Health, Mohammed VI Higher Institute of Biosciences and Biotechnology, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Salaheddine Redouan
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, 1 Place Louis Pasteur, Casablanca, 20360, Morocco
| | - Ghita Amalou
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, 1 Place Louis Pasteur, Casablanca, 20360, Morocco
| | - Hicham Charoute
- Research unit of epidemiology, biostatistics and bioinformatics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Houda Harmak
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, 1 Place Louis Pasteur, Casablanca, 20360, Morocco
| | - Crystel Bonnet
- Université Paris Cité, Institut Pasteur, AP-HP, Inserm, Fondation pour l'Audition, Institut de l'Audition, IHU reConnect, Paris, F-75012, France
| | - Christine Petit
- Université Paris Cité, Institut Pasteur, AP-HP, Inserm, Fondation pour l'Audition, Institut de l'Audition, IHU reConnect, Paris, F-75012, France
- Collège de France, Paris, F-75005, France
| | - Houda Benrahma
- Interdisciplinary Laboratory of Biotechnology and Health, Mohammed VI Higher Institute of Biosciences and Biotechnology, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Abdelhamid Barakat
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, 1 Place Louis Pasteur, Casablanca, 20360, Morocco.
| |
Collapse
|
5
|
Domínguez-Ruiz M, Olarte M, Onecha E, García-Vaquero I, Gelvez N, López G, Villamar M, Morín M, Moreno-Pelayo MA, Morales-Angulo C, Polo R, Tamayo ML, del Castillo I. Novel Cases of Non-Syndromic Hearing Impairment Caused by Pathogenic Variants in Genes Encoding Mitochondrial Aminoacyl-tRNA Synthetases. Genes (Basel) 2024; 15:951. [PMID: 39062730 PMCID: PMC11276111 DOI: 10.3390/genes15070951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Dysfunction of some mitochondrial aminoacyl-tRNA synthetases (encoded by the KARS1, HARS2, LARS2 and NARS2 genes) results in a great variety of phenotypes ranging from non-syndromic hearing impairment (NSHI) to very complex syndromes, with a predominance of neurological signs. The diversity of roles that are played by these moonlighting enzymes and the fact that most pathogenic variants are missense and affect different domains of these proteins in diverse compound heterozygous combinations make it difficult to establish genotype-phenotype correlations. We used a targeted gene-sequencing panel to investigate the presence of pathogenic variants in those four genes in cohorts of 175 Spanish and 18 Colombian familial cases with non-DFNB1 autosomal recessive NSHI. Disease-associated variants were found in five cases. Five mutations were novel as follows: c.766C>T in KARS1, c.475C>T, c.728A>C and c.1012G>A in HARS2, and c.795A>G in LARS2. We provide audiograms from patients at different ages to document the evolution of the hearing loss, which is mostly prelingual and progresses from moderate/severe to profound, the middle frequencies being more severely affected. No additional clinical sign was observed in any affected subject. Our results confirm the involvement of KARS1 in DFNB89 NSHI, for which until now there was limited evidence.
Collapse
Affiliation(s)
- María Domínguez-Ruiz
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28034 Madrid, Spain
| | - Margarita Olarte
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Esther Onecha
- Servicio de Genética, Hospital Universitario Marqués de Valdecilla, IDIVAL, 39008 Santander, Spain
| | - Irene García-Vaquero
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
- Programa de Doctorado en Biología, Escuela de Doctorado de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Nancy Gelvez
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Greizy López
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Manuela Villamar
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28034 Madrid, Spain
| | - Matías Morín
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28034 Madrid, Spain
| | - Miguel A. Moreno-Pelayo
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28034 Madrid, Spain
| | - Carmelo Morales-Angulo
- Servicio de Otorrinolaringología, Hospital Universitario Marqués de Valdecilla, IDIVAL, 39008 Santander, Spain
- Facultad de Medicina, Universidad de Cantabria, 39005 Santander, Spain
| | - Rubén Polo
- Servicio de Otorrinolaringología, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Martha L. Tamayo
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Ignacio del Castillo
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28034 Madrid, Spain
| |
Collapse
|
6
|
Zhang H, Gao J, Wang H, Liu M, Lu S, Xu H, Tang W, Zheng G. Novel likely pathogenic variant in the EYA1 gene causing Branchio oto renal syndrome and the exploration of pathogenic mechanisms. BMC Med Genomics 2024; 17:89. [PMID: 38627775 PMCID: PMC11020176 DOI: 10.1186/s12920-024-01858-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/29/2024] [Indexed: 04/19/2024] Open
Abstract
OBJECTIVE Branchio-oto-renal syndrome (BOR, OMIM#113,650) is a rare autosomal dominant disorder that presents with a variety of symptoms, including hearing loss (sensorineural, conductive, or mixed), structural abnormalities affecting the outer, middle, and inner ear, branchial fistulas or cysts, as well as renal abnormalities.This study aims to identify the pathogenic variants by performing genetic testing on a family with Branchio-oto-renal /Branchio-otic (BO, OMIM#602,588) syndrome using whole-exome sequencing, and to explore possible pathogenic mechanisms. METHODS The family spans 4 generations and consists of 9 individuals, including 4 affected by the BOR/BO syndrome. Phenotypic information, including ear malformation and branchial cleft, was collected from family members. Audiological, temporal bone imaging, and renal ultrasound examinations were also performed. Whole-exome sequencing was conducted to identify candidate pathogenic variants and explore the underlying molecular etiology of BOR/BO syndrome by minigene experiments. RESULTS Intra-familial variability was observed in the clinical phenotypes of BOR/BO syndrome in this family. The severity and nature of hearing loss varied in family members, with mixed or sensorineural hearing loss. The proband, in particular, had profound sensorineural hearing loss on the left and moderate conductive hearing loss on the right. Additionally, the proband exhibited developmental delay, and her mother experienced renal failure during pregnancy and terminated the pregnancy prematurely. Genetic testing revealed a novel heterozygous variant NM_000503.6: c.639 + 3 A > C in the EYA1 gene in affected family members. In vitro minigene experiments demonstrated its effect on splicing. According to the American College of Medical Genetics (ACMG) guidelines, this variant was classified as likely pathogenic. CONCLUSION This study highlights the phenotypic heterogeneity within the same family, reports the occurrence of renal failure and adverse pregnancy outcomes in a female patient at reproductive age with BOR syndrome, and enriches the mutational spectrum of pathogenic variants in the EYA1 gene.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, 710000, Xi'an, China
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Affiliated Hospital of Zhengzhou University, 450014, Zhengzhou, China
| | - Jian Gao
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, 450052, Zhengzhou, China
| | - Hanjun Wang
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, 450052, Zhengzhou, China
| | - Mengli Liu
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, 450052, Zhengzhou, China
| | - Shuangshuang Lu
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, 450052, Zhengzhou, China
| | - Hongen Xu
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, 450052, Zhengzhou, China
| | - Wenxue Tang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Affiliated Hospital of Zhengzhou University, 450014, Zhengzhou, China
| | - Guoxi Zheng
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, 710000, Xi'an, China.
| |
Collapse
|
7
|
Özkan Kart P, Sahin Y, Yildiz N, Cebi AH, Esenulku G, Cansu A. A Homozygous Missense Variant in HSD17B4 Identified in Two Different Families. Mol Syndromol 2024; 15:143-148. [PMID: 38585549 PMCID: PMC10996346 DOI: 10.1159/000534785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/23/2023] [Indexed: 04/09/2024] Open
Abstract
Background Perrault syndrome is an inherited disorder with clinical findings that differ according to sex. It is characterized by a variable age of onset and sensorineural hearing loss in both sexes, as well as ovarian dysfunction in females with a 46,XX karyotype. Although it is a rare autosomal recessive syndrome, with approximately 100 affected individuals reported in the literature, it shows both genotypic and phenotypic variations. Mutations in the HSD17B4 gene have been identified as one of the genetic causes of Perrault syndrome. Case Presentation A female case and a male case from two different unrelated families with a new variant in the HSD17B4 gene, which were not previously described in the literature and were accompanied by hearing loss, skeletal anomalies, and neurological symptoms, were presented. Conclusion We defined Perrault syndrome cases in Turkey caused by a novel mutation in HSD17B4. Whole-exome sequencing is a useful diagnostic technique with varying clinical results due to genetic and phenotypic heterogeneity.
Collapse
Affiliation(s)
- Pınar Özkan Kart
- Department of Pediatric Neurology, Faculty of Medicine, Farabi Hospital, Karadeniz Technical University, Trabzon, Turkey
| | - Yavuz Sahin
- Medical Geneticist, Genoks Genetic Laboratory, Ankara, Turkey
| | - Nihal Yildiz
- Department of Pediatric Neurology, Faculty of Medicine, Farabi Hospital, Karadeniz Technical University, Trabzon, Turkey
| | - Alper Han Cebi
- Department of Genetics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Gulnur Esenulku
- Department of Pediatric Neurology, Faculty of Medicine, Farabi Hospital, Karadeniz Technical University, Trabzon, Turkey
| | - Ali Cansu
- Department of Pediatric Neurology, Faculty of Medicine, Farabi Hospital, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
8
|
Bayanova M, Abilova A, Nauryzbayeva A, Turarbekova Z. Delayed Diagnosis of Perrault Syndrome: A Rare Genetic Disorder. Case Rep Med 2024; 2024:5319443. [PMID: 38249302 PMCID: PMC10798831 DOI: 10.1155/2024/5319443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Perrault syndrome (PRLTS) is a rare autosomal recessive disorder which is associated with pathogenic variants in HSD17B4, HARS2, CLPP, LARS2, GGPS1, RMND1, TWNK, ERAL1, and PRORP genes. The disease is characterized by sensorineural hearing loss, sometimes with neurological signs, including progressive sensory and motor peripheral neuropathy, cerebellar ataxia, mild mental retardation, and ovarian dysgenesis in females. In this article, we report a case of a child diagnosed with spastic diplegic cerebral palsy. Determination of the segregation status of the parents of a proband with a rare compound heterozygote in the gene HSD17B4 will help the genetic counselling for the prognosis of Perrault syndrome in the family.
Collapse
Affiliation(s)
- Mirgul Bayanova
- “University Medical Center” Corporate Fund, Kerey, Zhanibek Khandar Str. 5/1, Astana, Kazakhstan
| | - Aigerim Abilova
- “University Medical Center” Corporate Fund, Kerey, Zhanibek Khandar Str. 5/1, Astana, Kazakhstan
| | - Alisa Nauryzbayeva
- “University Medical Center” Corporate Fund, Kerey, Zhanibek Khandar Str. 5/1, Astana, Kazakhstan
| | - Zhibek Turarbekova
- “University Medical Center” Corporate Fund, Kerey, Zhanibek Khandar Str. 5/1, Astana, Kazakhstan
| |
Collapse
|
9
|
Guo C, Xiao Y, Gu J, Zhao P, Hu Z, Zheng J, Hua R, Hai Z, Su J, Zhang JV, Yeung WSB, Wang T. ClpP/ClpX deficiency impairs mitochondrial functions and mTORC1 signaling during spermatogenesis. Commun Biol 2023; 6:1012. [PMID: 37798322 PMCID: PMC10556007 DOI: 10.1038/s42003-023-05372-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023] Open
Abstract
Caseinolytic protease proteolytic subunit (ClpP) and caseinolytic protease X (ClpX) are mitochondrial matrix peptidases that activate mitochondrial unfolded protein response to maintain protein homeostasis in the mitochondria. However, the role of ClpP and ClpX in spermatogenesis remains largely unknown. In this study, we demonstrated the importance of ClpP/ClpX for meiosis and spermatogenesis with two conditional knockout (cKO) mouse models. We found that ClpP/ClpX deficiency reduced mitochondrial functions and quantity in spermatocytes, affected energy supply during meiosis and attenuated zygotene-pachytene transformation of the male germ cells. The dysregulated spermatocytes finally underwent apoptosis resulting in decreased testicular size and vacuolar structures within the seminiferous tubules. We found mTORC1 pathway was over-activated after deletion of ClpP/ClpX in spermatocytes. Long-term inhibition of the mTORC1 signaling via rapamycin treatment in vivo partially rescue spermatogenesis. The data reveal the critical roles of ClpP and ClpX in regulating meiosis and spermatogenesis.
Collapse
Affiliation(s)
- Chenxi Guo
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China.
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Yuan Xiao
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Jingkai Gu
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Peikun Zhao
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Zhe Hu
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Jiahuan Zheng
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Renwu Hua
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhuo Hai
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Jiaping Su
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Jian V Zhang
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen, 518055, China
| | - William S B Yeung
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Tianren Wang
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China.
| |
Collapse
|
10
|
Zeng B, Xu H, Yu Y, Li S, Tian Y, Li T, Yang Z, Wang H, Wang G, Chang M, Tang W. Increased diagnostic yield in a cohort of hearing loss families using a comprehensive stepwise strategy of molecular testing. Front Genet 2022; 13:1057293. [PMID: 36568381 PMCID: PMC9768221 DOI: 10.3389/fgene.2022.1057293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Hearing loss is one of the most common sensory disorders in humans. This study proposes a stepwise strategy of deafness gene detection using multiplex PCR combined with high-throughput sequencing, Sanger sequencing, multiplex ligation-dependent probe amplification (MLPA), and whole-exome sequencing (WES) to explore its application in molecular diagnosis of hearing loss families. A total of 152 families with hearing loss were included in this study, the highest overall diagnosis rate was 73% (111/152). The diagnosis rate of multiplex PCR combined with high-throughput sequencing was 52.6% (80/152). One families was diagnosed by Sanger sequencing of GJB2 exon 1. Two families were diagnosed by MLPA analysis of the STRC gene. The diagnosis rate with additional contribution from WES was 18.4% (28/152). We identified 21 novel variants from 15 deafness genes by WES. Combining WES and deep clinical phenotyping, we diagnosed 11 patients with syndromic hearing loss (SHL). This study demonstrated improved diagnostic yield in a cohort of hearing loss families and confirmed the advantages of a stepwise strategy in the molecular diagnosis of hearing loss.
Collapse
Affiliation(s)
- Beiping Zeng
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China,National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, China
| | - Hongen Xu
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China,The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanan Yu
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Siqi Li
- Department of Physiology and Neurobiology, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Yongan Tian
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Tiandong Li
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zengguang Yang
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Haili Wang
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, China
| | - Guangke Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Mingxiu Chang
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, China,*Correspondence: Mingxiu Chang, ; Wenxue Tang,
| | - Wenxue Tang
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China,*Correspondence: Mingxiu Chang, ; Wenxue Tang,
| |
Collapse
|
11
|
Zuo B, Xu H, Pan Z, Mao L, Feng H, Zeng B, Tang W, Lu W. A likely pathogenic POLD1 variant associated with mandibular hypoplasia, deafness, progeroid features, and lipodystrophy syndrome in a Chinese patient. BMC Med Genomics 2022; 15:220. [PMID: 36280868 PMCID: PMC9590123 DOI: 10.1186/s12920-022-01374-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background Mandibular hypoplasia, deafness, progeroid features, and lipodystrophy syndrome (MDPL; OMIM# 615381) is a rare autosomal dominant disorder, with only a few reported cases worldwide. Herein, we describe the clinical features and underlying molecular etiology of MDPL syndrome in an 8-year-old Chinese patient. Methods We performed otological, endocrine, ultrasound, and radiological examinations, as well as genetic testing. Additionally, the literature concerning MDPL was reviewed to do a retrospective analysis of the pathogenesis, genotype–phenotype correlation, and clinical management. Results The proband was diagnosed with MDPL, presenting with mandibular hypoplasia, a characteristic facial appearance, lipodystrophy, and sensorineural hearing loss (SNHL). Whole-exome sequencing and bioinformatics analysis revealed a de novo missense variant in the POLD1 gene, NM_002691.4:c.3185A>G (NP_002682.2:p.(Gln1062Arg)). The retrospective analysis showed wide variation in the MDPL phenotype, but the most frequent features included mandibular hypoplasia, characteristic facial appearance, lipodystrophy, and SNHL. Conclusions This study supplements the mutational spectrum of POLD1. The genetic analysis contributes to the diagnosis of syndromic deafness, and it has a vital role in clinical management and future genetic consultation.
Collapse
Affiliation(s)
- Bin Zuo
- grid.412633.10000 0004 1799 0733Department of Otorhinolaryngology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jian-she Road, Zhengzhou, 450052 China
| | - Hongen Xu
- grid.207374.50000 0001 2189 3846Precision Medicine Center, Academy of Medical Science, Zhengzhou University, No. 40 Daxuebei Road, Zhengzhou, 450052 China ,grid.452842.d0000 0004 8512 7544The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jing-ba Road, Zhengzhou, 450014 China
| | - Zhaoyu Pan
- grid.412633.10000 0004 1799 0733Department of Otorhinolaryngology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jian-she Road, Zhengzhou, 450052 China
| | - Lu Mao
- grid.207374.50000 0001 2189 3846Precision Medicine Center, Academy of Medical Science, Zhengzhou University, No. 40 Daxuebei Road, Zhengzhou, 450052 China
| | - Haifeng Feng
- grid.412633.10000 0004 1799 0733Department of Otorhinolaryngology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jian-she Road, Zhengzhou, 450052 China
| | - Beiping Zeng
- grid.207374.50000 0001 2189 3846Precision Medicine Center, Academy of Medical Science, Zhengzhou University, No. 40 Daxuebei Road, Zhengzhou, 450052 China
| | - Wenxue Tang
- grid.452842.d0000 0004 8512 7544The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jing-ba Road, Zhengzhou, 450014 China ,grid.207374.50000 0001 2189 3846Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, No. 40 Daxuebei Road, Zhengzhou, 450052 China
| | - Wei Lu
- grid.412633.10000 0004 1799 0733Department of Otorhinolaryngology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jian-she Road, Zhengzhou, 450052 China
| |
Collapse
|
12
|
The Bacterial ClpXP-ClpB Family Is Enriched with RNA-Binding Protein Complexes. Cells 2022; 11:cells11152370. [PMID: 35954215 PMCID: PMC9368063 DOI: 10.3390/cells11152370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
In the matrix of bacteria/mitochondria/chloroplasts, Lon acts as the degradation machine for soluble proteins. In stress periods, however, proteostasis and survival depend on the strongly conserved Clp/Hsp100 family. Currently, the targets of ATP-powered unfoldases/disaggregases ClpB and ClpX and of peptidase ClpP heptameric rings are still unclear. Trapping experiments and proteome profiling in multiple organisms triggered confusion, so we analyzed the consistency of ClpP-trap targets in bacteria. We also provide meta-analyses of protein interactions in humans, to elucidate where Clp family members are enriched. Furthermore, meta-analyses of mouse complexomics are provided. Genotype–phenotype correlations confirmed our concept. Trapping, proteome, and complexome data retrieved consistent coaccumulation of CLPXP with GFM1 and TUFM orthologs. CLPX shows broad interaction selectivity encompassing mitochondrial translation elongation, RNA granules, and nucleoids. CLPB preferentially attaches to mitochondrial RNA granules and translation initiation components; CLPP is enriched with them all and associates with release/recycling factors. Mutations in CLPP cause Perrault syndrome, with phenotypes similar to defects in mtDNA/mtRNA. Thus, we propose that CLPB and CLPXP are crucial to counteract misfolded insoluble protein assemblies that contain nucleotides. This insight is relevant to improve ClpP-modulating drugs that block bacterial growth and for the treatment of human infertility, deafness, and neurodegeneration.
Collapse
|
13
|
Feng H, Xu H, Chen B, Sun S, Zhai R, Zeng B, Tang W, Lu W. Genetic and Phenotypic Variability in Chinese Patients With Branchio-Oto-Renal or Branchio-Oto Syndrome. Front Genet 2021; 12:765433. [PMID: 34868248 PMCID: PMC8634836 DOI: 10.3389/fgene.2021.765433] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/30/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Branchio-oto-renal syndrome (BOR) and branchio-oto syndrome (BOS) are rare autosomal dominant disorders defined by varying combinations of branchial, otic, and renal anomalies. Here, we characterized the clinical features and genetic etiology of BOR/BOS in several Chinese families and then explored the genotypes and phenotypes of BOR/BOS-related genes, as well as the outcomes of auditory rehabilitation in different modalities. Materials and Methods: Probands and all affected family members underwent detailed clinical examinations. Their DNA was subjected to whole-exome sequencing to explore the underlying molecular etiology of BOR/BOS; candidate variants were validated using Sanger sequencing and interpreted in accordance with the American College of Medical Genetics guidelines. In addition, a literature review concerning EYA1 and SIX1 alterations was performed to explore the genotypes and phenotypes of BOR/BOS-related genes. Results: Genetic testing identified the novel deletion (c.1425delC, p(Asp476Thrfs*4); NM_000,503.6), a nonsense variant (c.889C > T, p(Arg297*)), and two splicing variants in the EYA1 gene (c.1050+1G > T and c.1140+1G > A); it also identified one novel missense variant in the SIX1 gene (c.316G > A, p(Val106Met); NM_005,982.4). All cases exhibited a degree of phenotypic variability between or within families. Middle ear surgeries for improving bone-conduction component hearing loss had unsuccessful outcomes; cochlear implantation (CI) contributed to hearing gains. Conclusion: This is the first report of BOR/BOS caused by the SIX1 variant in China. Our findings increase the numbers of known EYA1 and SIX1 variants. They also emphasize the usefulness of genetic testing in the diagnosis and prevention of BOR/BOS while demonstrating that CI for auditory rehabilitation is a feasible option in some BOR/BOS patients.
Collapse
Affiliation(s)
- Haifeng Feng
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongen Xu
- Center for Applied Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Bei Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuping Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rongqun Zhai
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Beiping Zeng
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Wenxue Tang
- Center for Applied Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China.,Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wei Lu
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
A Rare Case of Perrault Syndrome with Auditory Neuropathy Spectrum Disorder: Cochlear Implantation Treatment and Literature Review. Audiol Res 2021; 11:609-617. [PMID: 34842607 PMCID: PMC8628573 DOI: 10.3390/audiolres11040055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/12/2021] [Accepted: 11/09/2021] [Indexed: 01/10/2023] Open
Abstract
Perrault syndrome (PRLTS) is a rare autosomal recessive disorder characterised by ovarian failure in females and sensorineural hearing loss (SNHL) in both genders. In the present paper we describe a child affected by PRLTS3, due to CLPP homozygous mutations, presenting auditory neuropathy spectrum disorder (ANSD) with bilateral progressive SNHL. This is the first case reported in the literature of an ANSD in PRLTS3. CLPP is a nuclear encoded mitochondrial protease directed at the mitochondrial matrix. It is encoded on chromosome 19. This protease participates in mitochondrial protein quality control by degrading misfolded or damaged proteins, thus maintaining the normal metabolic function of the cell. In PRLTS3, the peptidase activity of CLPP is suppressed. Neurological impairments involved in PRLTS3 suggest that the pathogenic mutations in CLPP might trigger a mitochondrial dysfunction. A comprehensive description of the clinical and audiological presentation, as well as the issues related to cochlear implant (CI) procedure and the results, are addressed and discussed. A brief review of the literature on this topic is also provided.
Collapse
|
15
|
Huang S, Zhao G, Wu J, Li K, Wang Q, Fu Y, Zhang H, Bi Q, Li X, Wang W, Guo C, Zhang D, Wu L, Li X, Xu H, Han M, Wang X, Lei C, Qiu X, Li Y, Li J, Dai P, Yuan Y. Gene4HL: An Integrated Genetic Database for Hearing Loss. Front Genet 2021; 12:773009. [PMID: 34733322 PMCID: PMC8558372 DOI: 10.3389/fgene.2021.773009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/28/2021] [Indexed: 11/18/2022] Open
Abstract
Hearing loss (HL) is one of the most common disabilities in the world. In industrialized countries, HL occurs in 1–2/1,000 newborns, and approximately 60% of HL is caused by genetic factors. Next generation sequencing (NGS) has been widely used to identify many candidate genes and variants in patients with HL, but the data are scattered in multitudinous studies. It is a challenge for scientists, clinicians, and biologists to easily obtain and analyze HL genes and variant data from these studies. Thus, we developed a one-stop database of HL-related genes and variants, Gene4HL (http://www.genemed.tech/gene4hl/), making it easy to catalog, search, browse and analyze the genetic data. Gene4HL integrates the detailed genetic and clinical data of 326 HL-related genes from 1,608 published studies, along with 62 popular genetic data sources to provide comprehensive knowledge of candidate genes and variants associated with HL. Additionally, Gene4HL supports the users to analyze their own genetic engineering network data, performs comprehensive annotation, and prioritizes candidate genes and variations using custom parameters. Thus, Gene4HL can help users explain the function of HL genes and the clinical significance of variants by correlating the genotypes and phenotypes in humans.
Collapse
Affiliation(s)
- Shasha Huang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Guihu Zhao
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,Center for Medical Genetics & Hunan Key Laboratory, School of Life Sciences, Central South University, Changsha, China
| | - Jie Wu
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Kuokuo Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,Center for Medical Genetics & Hunan Key Laboratory, School of Life Sciences, Central South University, Changsha, China
| | - Qiuquan Wang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Ying Fu
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Honglei Zhang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Qingling Bi
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Xiaohong Li
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Weiqian Wang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Chang Guo
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Dejun Zhang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Lihua Wu
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Xiaoge Li
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Huiyan Xu
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Mingyu Han
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Xin Wang
- Angen Gene Medicine Technology Co., Ltd., Beijing, China
| | - Chen Lei
- Angen Gene Medicine Technology Co., Ltd., Beijing, China
| | - Xiaofang Qiu
- Angen Gene Medicine Technology Co., Ltd., Beijing, China
| | - Yang Li
- Angen Gene Medicine Technology Co., Ltd., Beijing, China
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,Center for Medical Genetics & Hunan Key Laboratory, School of Life Sciences, Central South University, Changsha, China
| | - Pu Dai
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Yongyi Yuan
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| |
Collapse
|
16
|
Zhang S, Xu H, Tian Y, Liu D, Hou X, Zeng B, Chen B, Liu H, Li R, Li X, Zuo B, Tang R, Tang W. High Genetic Heterogeneity in Chinese Patients With Waardenburg Syndrome Revealed by Next-Generation Sequencing. Front Genet 2021; 12:643546. [PMID: 34149797 PMCID: PMC8212959 DOI: 10.3389/fgene.2021.643546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/23/2021] [Indexed: 01/08/2023] Open
Abstract
Objective This study aimed to explore the genetic causes of probands who were diagnosed with Waardenburg syndrome (WS) or congenital sensorineural hearing loss. Methods A detailed physical and audiological examinations were carried out to make an accurate diagnosis of 14 patients from seven unrelated families. We performed whole-exome sequencing in probands to detect the potential genetic causes and further validated them by Sanger sequencing in the probands and their family members. Results The genetic causes for all 14 patients with WS or congenital sensorineural hearing loss were identified. A total of seven heterozygous variants including c.1459C > T, c.123del, and c.959-409_1173+3402del of PAX3 gene (NM_181459.4), c.198_262del and c.529_556del of SOX10 gene (NM_006941.4), and c.731G > A and c.970dup of MITF gene (NM_000248.3) were found for the first time. Of these mutations, we had confirmed two (c.1459C > T and c.970dup) are de novo by Sanger sequencing of variants in the probands and their parents. Conclusion We revealed a total of seven novel mutations in PAX3, SOX10, and MITF, which underlie the pathogenesis of WS. The clinical and genetic characterization of these families with WS elucidated high heterogeneity in Chinese patients with WS. This study expands the database of PAX3, SOX10, and MITF mutations and improves our understanding of the causes of WS.
Collapse
Affiliation(s)
- Sen Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hongen Xu
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China.,The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongan Tian
- BGI College, Zhengzhou University, Zhengzhou, China
| | - Danhua Liu
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinyue Hou
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Beiping Zeng
- BGI College, Zhengzhou University, Zhengzhou, China
| | - Bei Chen
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huanfei Liu
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Ruijun Li
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Xiaohua Li
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Zuo
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ryan Tang
- Johns Hopkins University, Maryland, MD, United States
| | - Wenxue Tang
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China.,The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Auditory Neuropathy Spectrum Disorder (ANSD)-Clinical Characteristics and Pathogenic Variant Analysis of Three Nonsyndromic Deafness Families. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8843539. [PMID: 33426078 PMCID: PMC7772035 DOI: 10.1155/2020/8843539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/23/2020] [Accepted: 12/12/2020] [Indexed: 12/15/2022]
Abstract
Objective To analyze the phenotypic features and pathogenic variants of three unrelated families presenting with nonsyndromic auditory neuropathy spectrum disorder (ANSD). Methods Three recruited families that were affected by congenital deafness were clinically evaluated, including a detailed family history and audiological and radiological examination. The peripheral blood of all patients and their parents was collected for DNA extraction, and then, the exonic and flanking regions were enriched and sequenced using targeted capture and high-throughput sequencing technology. Bioinformatics analyses and the Sanger sequencing were carried out to screen and validate candidate pathogenic variants. The pathogenicity of candidate variants was evaluated by an approach that was based on the standards and guidelines for interpreting genetic variants as proposed by the American College of Medical Genetics and Genomics (ACMG). Results Four patients in three families were diagnosed as nonsyndromic ANSD, and all exhibited OTOF gene mutations. Among them, two individuals in family 1 (i.e., fam 1-II-2 and fam 1-II-3) carried homozygous variants c.[2688del];[2688del] (NM_194248.3). Two individuals from family 2 (fam 2-II-1) and family 3 (fam 3-II-4) carried compound heterozygous variants c.[4960G>A];[1469C>G] and c.[2675A>G];[2977_2978del], respectively. Conclusions Three unrelated pedigrees with ANSD were caused by pathogenic variants in the OTOF gene. Five mutations were found and included c.2688del, c.2675A>G, c.2977_2978del, c.4960G>A, and c.1469C>G, of which the first two are novel and expanded mutational spectrum of the OTOF gene, thus having important implications for genetic counseling of the family.
Collapse
|
18
|
Pan Z, Xu H, Chen B, Tian Y, Zhang L, Zhang S, Liu D, Liu H, Li R, Hu X, Guan J, Tang W, Lu W. Treacher Collins syndrome: Clinical report and retrospective analysis of Chinese patients. Mol Genet Genomic Med 2020; 9:e1573. [PMID: 33332773 PMCID: PMC8077114 DOI: 10.1002/mgg3.1573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 01/07/2023] Open
Abstract
Background Treacher Collins syndrome‐1 (TCS1; OMIM# 154500) is a rare autosomal dominant disease that is defined by congenital craniofacial dysplasia. Here, we report four sporadic and one familial case of TCS1 in Chinese patients with clinical features presenting as hypoplasia of the zygomatic complex and mandible, downslanting palpebral fissures, coloboma of the lower eyelids, and conductive hearing loss. Materials and Methods Audiological, radiological, and physical examinations were performed. Targeted next‐generation sequencing (NGS) was performed to examine the genetics of this disease in five probands, and Sanger sequencing was used to confirm the identified variants. A literature review discusses the pathogenesis, treatment, and prevention of TCS1. Results We identified a novel insertion of c.939_940insA (p.Gly314Argfs*35; NM_001135243.1), a novel deletion of c.1766delC (p.Pro589Leufs*7), two previously reported insertions of c.1999_2000insC (p.Arg667Profs*31) and c.4218_4219insG (p.Ser1407Valfs*23), and one previously reported deletion of c.4369_4373delAAGAA (p.Lys1457Glufs*12) in the TCOF1 gene. All five cases exhibited a degree of interfamilial and intrafamilial phenotypic variability. A review of the literature revealed no clear evidence of a genotype–phenotype correlation in TCS1. Conclusion Our results expand the variant spectrum of TCOF1 and highlight that NGS is essential for the diagnosis of TCS and that genetic counseling is beneficial for guiding prevention.
Collapse
Affiliation(s)
- Zhaoyu Pan
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongen Xu
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China.,Center for Applied Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bei Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongan Tian
- BGI College, Zhengzhou University, Zhengzhou, China.,Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Linlin Zhang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sen Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Danhua Liu
- Center for Applied Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huanfei Liu
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Ruijun Li
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Xinxin Hu
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Jingyuan Guan
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Wenxue Tang
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China.,Center for Applied Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wei Lu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Oziębło D, Pazik J, Stępniak I, Skarżyński H, Ołdak M. Two Novel Pathogenic Variants Confirm RMND1 Causative Role in Perrault Syndrome with Renal Involvement. Genes (Basel) 2020; 11:E1060. [PMID: 32911714 PMCID: PMC7564844 DOI: 10.3390/genes11091060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/16/2022] Open
Abstract
RMND1 (required for meiotic nuclear division 1 homolog) pathogenic variants are known to cause combined oxidative phosphorylation deficiency (COXPD11), a severe multisystem disorder. In one patient, a homozygous RMND1 pathogenic variant, with an established role in COXPD11, was associated with a Perrault-like syndrome. We performed a thorough clinical investigation and applied a targeted multigene hearing loss panel to reveal the cause of hearing loss, ovarian dysfunction (two cardinal features of Perrault syndrome) and chronic kidney disease in two adult female siblings. Two compound heterozygous missense variants, c.583G>A (p.Gly195Arg) and c.818A>C (p.Tyr273Ser), not previously associated with disease, were identified in RMND1 in both patients, and their segregation with disease was confirmed in family members. The patients have no neurological or intellectual impairment, and nephrological evaluation predicts a benign course of kidney disease. Our study presents the mildest, so far reported, RMND1-related phenotype and delivers the first independent confirmation that RMND1 is causally involved in the development of Perrault syndrome with renal involvement. This highlights the importance of including RMND1 to the list of Perrault syndrome causative factors and provides new insight into the clinical manifestation of RMND1 deficiency.
Collapse
Affiliation(s)
- Dominika Oziębło
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 02-042 Warsaw, Poland; (D.O.); (I.S.)
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Joanna Pazik
- Department of Transplantation Medicine, Nephrology and Internal Diseases, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Iwona Stępniak
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 02-042 Warsaw, Poland; (D.O.); (I.S.)
| | - Henryk Skarżyński
- Oto-Rhino-Laryngology Surgery Clinic, Institute of Physiology and Pathology of Hearing, 02-042 Warsaw, Poland;
| | - Monika Ołdak
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 02-042 Warsaw, Poland; (D.O.); (I.S.)
| |
Collapse
|
20
|
Pan Z, Xu H, Tian Y, Liu D, Liu H, Li R, Dou Q, Zuo B, Zhai R, Tang W, Lu W. Perrault syndrome: Clinical report and retrospective analysis. Mol Genet Genomic Med 2020; 8:e1445. [PMID: 32767731 PMCID: PMC7549576 DOI: 10.1002/mgg3.1445] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/09/2020] [Accepted: 07/17/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Perrault syndrome (PRLTS4; OMIM# 615300) is a rare autosomal recessive disorder and only a few cases have been reported worldwide. We report a Chinese female characterized by sensorineural hearing loss and premature ovarian insufficiency. METHODS We evaluated audiological, endocrine, and ultrasound examinations and examined the genetic causes using whole-exome sequencing. We reviewed the literature to discuss the pathogenesis, genotype-phenotype correlation, treatment, and prevention of PRLTS4. RESULTS Bioinformatic analysis revealed compound heterozygous mutations in the LARS2 gene, c.880G>A (p.Glu294Lys), and c.2108T>C (p.Ile703Thr) which is a novel missense mutation, co-segregated in this family. Taken together, the patient was clinically diagnosed as PRLTS4. The literature review showed that the phenotype for PRLTS4 varies widely, but the sensorineural hearing loss, increased gonadotropin levels, and amenorrhea occurred frequently. All reported mutations are highly conserved in mammals based on conservation analysis, and there is a mutation hotspot for PRLTS4. CONCLUSION This study expanded the mutation spectrum of LARS2 and is the first report of PRLTS4 in a Chinese family. Genetic testing plays an important role in early diagnosis of syndromic deafness and clinical genetic evaluation is essential to guide prevention.
Collapse
Affiliation(s)
- Zhaoyu Pan
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongen Xu
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Yongan Tian
- BGI College, Zhengzhou University, Zhengzhou, China.,Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Danhua Liu
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Huanfei Liu
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Ruijun Li
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Qian Dou
- Reproductive Medical Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Zuo
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rongqun Zhai
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenxue Tang
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China.,Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Lu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|