1
|
Stump B, Waxman AB. Pulmonary Arterial Hypertension and TGF-β Superfamily Signaling: Focus on Sotatercept. BioDrugs 2024; 38:743-753. [PMID: 39292393 DOI: 10.1007/s40259-024-00680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a rare and progressive disease that continues to remain highly morbid despite multiple advances in medical therapies. There remains a persistent and desperate need to identify novel methods of treating and, ideally, reversing the pathologic vasculopathy that results in PAH development and progression. Sotatercept is a first-in-class fusion protein that is believed to primarily inhibit activin signaling resulting in decreased cell proliferation and differentiation, though the exact mechanism remains uncertain. Here, we review the currently available PAH therapies, data highlighting the importance of transforming growth factor-β (TGF-β) superfamily signaling in the development of PAH, and the published and on-going clinical trials evaluating sotatercept in the treatment of PAH. We will also discuss preclinical data supporting the potential use of the fusion protein KER-012 in the inhibition of aberrant TGF-β superfamily signaling to ameliorate the obstructive vasculopathy of PAH.
Collapse
|
2
|
Hu R, Li G, Hu P, Niu H, Li W, Jiang S, Guan G, Xu Q, Liu M, Chen L. bmp10 maintains cardiac function by regulating iron homeostasis. J Genet Genomics 2024:S1673-8527(24)00263-7. [PMID: 39414074 DOI: 10.1016/j.jgg.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/18/2024]
Abstract
Heart disease remains the leading cause of death worldwide. Iron imbalance, whether deficiency or overload, contributes to heart failure. However, the molecular mechanisms governing iron homeostasis in the heart are poorly understood. Here, we demonstrate that mutation of bmp10, a heart-born morphogen crucial for embryonic heart development, results in severe anemia and cardiac hypertrophy in zebrafish. Initially, bmp10 deficiency causes cardiac iron deficiency, which later progresses to iron overload due to the dysregulated hepcidin/ferroportin axis in cardiac cells, leading to ferroptosis and heart failure. Early iron supplementation in bmp10-/- mutants rescues erythropoiesis, while iron chelation in juvenile fishes significantly alleviates cardiac hypertrophy. We further demonstrate that the interplay between HIF1α-driven hypoxic signaling and the IL6/p-STAT3 inflammatory pathways is critical for regulating cardiac iron metabolism. Our findings reveal BMP10 as a key regulator of iron homeostasis in the vertebrate heart and highlight the potential of targeting the BMP10-hepcidin-iron axis as a therapeutic strategy for iron-related cardiomyopathy.
Collapse
Affiliation(s)
- Ruiqin Hu
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China
| | - Genfang Li
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China
| | - Peng Hu
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China
| | - Hongbo Niu
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China
| | - Wenhao Li
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China
| | - Shouwen Jiang
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China
| | - Guijun Guan
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China
| | - Qianghua Xu
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, College of Marine Science, Shanghai Ocean University, Shanghai 201306, China
| | - Mingli Liu
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China
| | - Liangbiao Chen
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
3
|
DeBose-Scarlett E, Ressler AK, Gallione CJ, Sapisochin Cantis G, Friday C, Weinsheimer S, Schimmel K, Spiekerkoetter E, Kim H, Gossage JR, Faughnan ME, Marchuk DA. Somatic mutations in arteriovenous malformations in hereditary hemorrhagic telangiectasia support a bi-allelic two-hit mutation mechanism of pathogenesis. Am J Hum Genet 2024; 111:2283-2298. [PMID: 39299239 PMCID: PMC11480799 DOI: 10.1016/j.ajhg.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is an inherited disorder of vascular malformations characterized by mucocutaneous telangiectases and arteriovenous malformations (AVMs) in internal organs. HHT is caused by inheritance of a loss of function mutation in one of three genes. Although individuals with HHT are haploinsufficient for one of these genes throughout their entire body, rather than exhibiting a systemic vascular phenotype, vascular malformations occur as focal lesions in discrete anatomic locations. The inconsistency between genotype and phenotype has provoked debate over whether haploinsufficiency or a different mechanism gives rise to the vascular malformations. We previously showed that HHT-associated skin telangiectases develop by a two-hit mutation mechanism in an HHT gene. However, somatic mutations were identified in only half of the telangiectases, raising the question whether a second-hit somatic mutation is a necessary (required) event in HHT pathogenesis. Here, we show that another mechanism for the second hit is loss of heterozygosity across the chromosome bearing the germline mutation. Secondly, we investigate the two-hit mutation mechanism for internal organ AVMs, the source of much of the morbidity of HHT. Here, we identified somatic molecular genetic events in eight liver telangiectases, including point mutations and a loss of heterozygosity event. We also identified somatic mutations in one pulmonary AVM and two brain AVMs, confirming that mucocutaneous and internal organ vascular malformations undergo the same molecular mechanisms. Together, these data argue that bi-allelic loss of function in an HHT gene is a required event in the pathogenesis of HHT-associated vascular malformations.
Collapse
Affiliation(s)
- Evon DeBose-Scarlett
- Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Andrew K Ressler
- Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Carol J Gallione
- Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Gonzalo Sapisochin Cantis
- Abdominal Transplant and HPB Surgical Oncology, Toronto General Hospital and Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, ON PMB-11-175, Canada
| | | | - Shantel Weinsheimer
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Katharina Schimmel
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Stanford University, Stanford, CA 94305, USA
| | - Edda Spiekerkoetter
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Stanford University, Stanford, CA 94305, USA
| | - Helen Kim
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94110, USA
| | - James R Gossage
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Marie E Faughnan
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada; Toronto HHT Centre, St. Michael's Hospital and Li Ka Shing Knowledge Institute, Toronto, ON M5B 1W8, Canada
| | - Douglas A Marchuk
- Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
4
|
Jeong JY, Bafor AE, Freeman BH, Chen PR, Park ES, Kim E. Pathophysiology in Brain Arteriovenous Malformations: Focus on Endothelial Dysfunctions and Endothelial-to-Mesenchymal Transition. Biomedicines 2024; 12:1795. [PMID: 39200259 PMCID: PMC11351371 DOI: 10.3390/biomedicines12081795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
Brain arteriovenous malformations (bAVMs) substantially increase the risk for intracerebral hemorrhage (ICH), which is associated with significant morbidity and mortality. However, the treatment options for bAVMs are severely limited, primarily relying on invasive methods that carry their own risks for intraoperative hemorrhage or even death. Currently, there are no pharmaceutical agents shown to treat this condition, primarily due to a poor understanding of bAVM pathophysiology. For the last decade, bAVM research has made significant advances, including the identification of novel genetic mutations and relevant signaling in bAVM development. However, bAVM pathophysiology is still largely unclear. Further investigation is required to understand the detailed cellular and molecular mechanisms involved, which will enable the development of safer and more effective treatment options. Endothelial cells (ECs), the cells that line the vascular lumen, are integral to the pathogenesis of bAVMs. Understanding the fundamental role of ECs in pathological conditions is crucial to unraveling bAVM pathophysiology. This review focuses on the current knowledge of bAVM-relevant signaling pathways and dysfunctions in ECs, particularly the endothelial-to-mesenchymal transition (EndMT).
Collapse
Affiliation(s)
| | | | | | | | | | - Eunhee Kim
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.Y.J.); (A.E.B.); (B.H.F.); (P.R.C.); (E.S.P.)
| |
Collapse
|
5
|
Lotsios NS, Keskinidou C, Dimopoulou I, Kotanidou A, Langleben D, Orfanos SE, Vassiliou AG. Effects of Modulating BMP9, BMPR2, and AQP1 on BMP Signaling in Human Pulmonary Microvascular Endothelial Cells. Int J Mol Sci 2024; 25:8043. [PMID: 39125626 PMCID: PMC11311989 DOI: 10.3390/ijms25158043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a chronic disease characterized by a progressive increase in mean pulmonary arterial pressure. Mutations in the BMPR2 and AQP1 genes have been described in familial PAH. The bone morphogenetic proteins BMP9 and BMP10 bind with high affinity to BMPR2. Administration of BMP9 has been proposed as a potential therapeutic strategy against PAH, although recent conflicting evidence dispute the effect of such a practice. Considering the involvement of the above molecules in PAH onset, progression, and therapeutic value, we examined the effects of modulation of BMP9, BMPR2, and AQP1 on BMP9, BMP10, BMPR2, AQP1, and TGFB1 expression in human pulmonary microvascular endothelial cells in vitro. Our results demonstrated that silencing the BMPR2 gene resulted in increased expression of its two main ligands, namely BMP9 and BMP10. Exogenous administration of BMP9 caused the return of BMP10 to basal levels, while it restored the decreased AQP1 protein levels and the decreased TGFB1 mRNA and protein expression levels caused by BMPR2 silencing. Moreover, AQP1 gene silencing also resulted in increased expression of BMP9 and BMP10. Our results might possibly imply that the effect of exogenously administered BMP9 on molecules participating in the BMP signaling pathway could depend on the expression levels of BMPR2. Taken together, these results may provide insight into the highly complex interactions of the BMP signaling pathway.
Collapse
Affiliation(s)
- Nikolaos S. Lotsios
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (N.S.L.); (C.K.); (I.D.); (A.K.)
| | - Chrysi Keskinidou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (N.S.L.); (C.K.); (I.D.); (A.K.)
| | - Ioanna Dimopoulou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (N.S.L.); (C.K.); (I.D.); (A.K.)
| | - Anastasia Kotanidou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (N.S.L.); (C.K.); (I.D.); (A.K.)
| | - David Langleben
- Center for Pulmonary Vascular Disease, Azrieli Heart Center and Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada;
| | - Stylianos E. Orfanos
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (N.S.L.); (C.K.); (I.D.); (A.K.)
| | - Alice G. Vassiliou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (N.S.L.); (C.K.); (I.D.); (A.K.)
| |
Collapse
|
6
|
Li W, Quigley K. Bone morphogenetic protein signalling in pulmonary arterial hypertension: revisiting the BMPRII connection. Biochem Soc Trans 2024; 52:1515-1528. [PMID: 38716930 PMCID: PMC11346422 DOI: 10.1042/bst20231547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 06/27/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a rare and life-threatening vascular disorder, characterised by abnormal remodelling of the pulmonary vessels and elevated pulmonary artery pressure, leading to right ventricular hypertrophy and right-sided heart failure. The importance of bone morphogenetic protein (BMP) signalling in the pathogenesis of PAH is demonstrated by human genetic studies. Many PAH risk genes are involved in the BMP signalling pathway and are highly expressed or preferentially act on vascular endothelial cells. Endothelial dysfunction is recognised as an initial trigger for PAH, and endothelial BMP signalling plays a crucial role in the maintenance of endothelial integrity. BMPR2 is the most prevalent PAH gene, found in over 80% of heritable cases. As BMPRII protein is the major type II receptor for a large family of BMP ligands and expressed ubiquitously in many tissues, dysregulated BMP signalling in other cells may also contribute to PAH pathobiology. Sotatercept, which contains the extracellular domain of another transforming growth factor-β family type II receptor ActRIIA fused to immunoglobin Fc domain, was recently approved by the FDA as a treatment for PAH. Neither its target cells nor its mechanism of action is fully understood. This review will revisit BMPRII function and its extracellular regulation, summarise how dysregulated BMP signalling in endothelial cells and smooth muscle cells may contribute to PAH pathogenesis, and discuss how novel therapeutics targeting the extracellular regulation of BMP signalling, such as BMP9 and Sotatercept, can be related to restoring BMPRII function.
Collapse
Affiliation(s)
- Wei Li
- VPD Heart and Lung Research Institute, Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0BB, U.K
| | - Kate Quigley
- VPD Heart and Lung Research Institute, Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0BB, U.K
| |
Collapse
|
7
|
Wang X, Sun H, Yu H, Du B, Fan Q, Jia B, Zhang Z. Bone morphogenetic protein 10, a rising star in the field of diabetes and cardiovascular disease. J Cell Mol Med 2024; 28:e18324. [PMID: 38760897 PMCID: PMC11101671 DOI: 10.1111/jcmm.18324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/12/2023] [Accepted: 04/03/2024] [Indexed: 05/20/2024] Open
Abstract
Early research suggested that bone morphogenetic protein 10 (BMP10) is primarily involved in cardiac development and congenital heart disease processes. BMP10 is a newly identified cardiac-specific protein. In recent years, reports have emphasized the effects of BMP10 on myocardial apoptosis, fibrosis and immune response, as well as its synergistic effects with BMP9 in vascular endothelium and role in endothelial dysfunction. We believe that concentrating on this aspect of the study will enhance our knowledge of the pathogenesis of diabetes and the cardiovascular field. However, there have been no reports of any reviews discussing the role of BMP10 in diabetes and cardiovascular disease. In addition, the exact pathogenesis of diabetic cardiomyopathy is not fully understood, including myocardial energy metabolism disorders, microvascular changes, abnormal apoptosis of cardiomyocytes, collagen structural changes and myocardial fibrosis, all of which cause cardiac function impairment directly or indirectly and interact with one another. This review summarizes the research results of BMP10 in cardiac development, endothelial function and cardiovascular disease in an effort to generate new ideas for future research into diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Xueyin Wang
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Department of Endocrinology and Metabology, The Third Affiliated Hospital of Shandong First Medical UniversityJinanChina
- Department of Endocrinology and MetabologyThe Third Affiliated Hospital of Shandong First Medical UniversityJinanChina
- Department of Endocrinology and MetabolismAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Helin Sun
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Department of Endocrinology and Metabology, The Third Affiliated Hospital of Shandong First Medical UniversityJinanChina
- Department of Endocrinology and MetabologyThe Third Affiliated Hospital of Shandong First Medical UniversityJinanChina
| | - Haomiao Yu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Department of Endocrinology and Metabology, The Third Affiliated Hospital of Shandong First Medical UniversityJinanChina
- Department of Endocrinology and MetabologyThe Third Affiliated Hospital of Shandong First Medical UniversityJinanChina
| | - Bingyu Du
- Teaching and Research Section of Internal Medicine, College of MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Qi Fan
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Department of Endocrinology and Metabology, The Third Affiliated Hospital of Shandong First Medical UniversityJinanChina
- Department of Endocrinology and MetabologyThe Third Affiliated Hospital of Shandong First Medical UniversityJinanChina
| | - Baoxue Jia
- Department of Endocrinology and MetabologyThe Third Affiliated Hospital of Shandong First Medical UniversityJinanChina
| | - Zhongwen Zhang
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Department of Endocrinology and Metabology, The Third Affiliated Hospital of Shandong First Medical UniversityJinanChina
- Department of Endocrinology and MetabologyThe Third Affiliated Hospital of Shandong First Medical UniversityJinanChina
- Department of Endocrinology and MetabolismAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| |
Collapse
|
8
|
Wang MT, Weng KP, Chang SK, Huang WC, Chen LW. Hemodynamic and Clinical Profiles of Pulmonary Arterial Hypertension Patients with GDF2 and BMPR2 Variants. Int J Mol Sci 2024; 25:2734. [PMID: 38473983 DOI: 10.3390/ijms25052734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Asians have a higher carrier rate of pulmonary arterial hypertension (PAH)-related genetic variants than Caucasians do. This study aimed to identify PAH-related genetic variants using whole exome sequencing (WES) in Asian idiopathic and heritable PAH cohorts. A WES library was constructed, and candidate variants were further validated by polymerase chain reaction and Sanger sequencing in the PAH cohort. In a total of 69 patients, the highest incidence of variants was found in the BMPR2, ATP13A3, and GDF2 genes. Regarding the BMPR2 gene variants, there were two nonsense variants (c.994C>T, p. Arg332*; c.1750C>T, p. Arg584*), one missense variant (c.1478C>T, p. Thr493Ile), and one novel in-frame deletion variant (c.877_888del, p. Leu293_Ser296del). Regarding the GDF2 variants, there was one likely pathogenic nonsense variant (c.259C>T, p. Gln87*) and two missense variants (c.1207G>A, p. Val403Ile; c.38T>C, p. Leu13Pro). The BMPR2 and GDF2 variant subgroups had worse hemodynamics. Moreover, the GDF2 variant patients were younger and had a significantly lower GDF2 value (135.6 ± 36.2 pg/mL, p = 0.002) in comparison to the value in the non-BMPR2/non-GDF2 mutant group (267.8 ± 185.8 pg/mL). The BMPR2 variant carriers had worse hemodynamics compared to the patients with the non-BMPR2/non-GDF2 mutant group. Moreover, there was a significantly lower GDF2 value in the GDF2 variant carriers compared to the control group. GDF2 may be a protective or corrected modifier in certain genetic backgrounds.
Collapse
Affiliation(s)
- Mei-Tzu Wang
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Ken-Pen Weng
- Congenital Structural Heart Disease Center, Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | | | - Wei-Chun Huang
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Physical Therapy, Fooyin University, Kaohsiung 813, Taiwan
| | - Lee-Wei Chen
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 813, Taiwan
| |
Collapse
|
9
|
Al Tabosh T, Al Tarrass M, Tourvieilhe L, Guilhem A, Dupuis-Girod S, Bailly S. Hereditary hemorrhagic telangiectasia: from signaling insights to therapeutic advances. J Clin Invest 2024; 134:e176379. [PMID: 38357927 PMCID: PMC10866657 DOI: 10.1172/jci176379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Hereditary hemorrhagic telangiectsia (HHT) is an inherited vascular disorder with highly variable expressivity, affecting up to 1 in 5,000 individuals. This disease is characterized by small arteriovenous malformations (AVMs) in mucocutaneous areas (telangiectases) and larger visceral AVMs in the lungs, liver, and brain. HHT is caused by loss-of-function mutations in the BMP9-10/ENG/ALK1/SMAD4 signaling pathway. This Review presents up-to-date insights on this mutated signaling pathway and its crosstalk with proangiogenic pathways, in particular the VEGF pathway, that has allowed the repurposing of new drugs for HHT treatment. However, despite the substantial benefits of these new treatments in terms of alleviating symptom severity, this not-so-uncommon bleeding disorder still currently lacks any FDA- or European Medicines Agency-approved (EMA-approved) therapies.
Collapse
Affiliation(s)
- Tala Al Tabosh
- Biosanté Unit U1292, Grenoble Alpes University, INSERM, CEA, Grenoble, France
| | - Mohammad Al Tarrass
- Biosanté Unit U1292, Grenoble Alpes University, INSERM, CEA, Grenoble, France
| | - Laura Tourvieilhe
- Hospices Civils de Lyon, National HHT Reference Center and Genetics Department, Femme-Mère-Enfants Hospital, Bron, France
| | - Alexandre Guilhem
- Hospices Civils de Lyon, National HHT Reference Center and Genetics Department, Femme-Mère-Enfants Hospital, Bron, France
- TAI-IT Autoimmunité Unit RIGHT-UMR1098, Burgundy University, INSERM, EFS-BFC, Besancon, France
| | - Sophie Dupuis-Girod
- Biosanté Unit U1292, Grenoble Alpes University, INSERM, CEA, Grenoble, France
- Hospices Civils de Lyon, National HHT Reference Center and Genetics Department, Femme-Mère-Enfants Hospital, Bron, France
| | - Sabine Bailly
- Biosanté Unit U1292, Grenoble Alpes University, INSERM, CEA, Grenoble, France
| |
Collapse
|
10
|
Welch CL, Aldred MA, Balachandar S, Dooijes D, Eichstaedt CA, Gräf S, Houweling AC, Machado RD, Pandya D, Prapa M, Shaukat M, Southgate L, Tenorio-Castano J, Chung WK. Defining the clinical validity of genes reported to cause pulmonary arterial hypertension. Genet Med 2023; 25:100925. [PMID: 37422716 PMCID: PMC10766870 DOI: 10.1016/j.gim.2023.100925] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023] Open
Abstract
PURPOSE Pulmonary arterial hypertension (PAH) is a rare, progressive vasculopathy with significant cardiopulmonary morbidity and mortality. Genetic testing is currently recommended for adults diagnosed with heritable, idiopathic, anorexigen-, hereditary hemorrhagic telangiectasia-, and congenital heart disease-associated PAH, PAH with overt features of venous/capillary involvement, and all children diagnosed with PAH. Variants in at least 27 genes have putative evidence for PAH causality. Rigorous assessment of the evidence is needed to inform genetic testing. METHODS An international panel of experts in PAH applied a semi-quantitative scoring system developed by the NIH Clinical Genome Resource to classify the relative strength of evidence supporting PAH gene-disease relationships based on genetic and experimental evidence. RESULTS Twelve genes (BMPR2, ACVRL1, ATP13A3, CAV1, EIF2AK4, ENG, GDF2, KCNK3, KDR, SMAD9, SOX17, and TBX4) were classified as having definitive evidence and 3 genes (ABCC8, GGCX, and TET2) with moderate evidence. Six genes (AQP1, BMP10, FBLN2, KLF2, KLK1, and PDGFD) were classified as having limited evidence for causal effects of variants. TOPBP1 was classified as having no known PAH relationship. Five genes (BMPR1A, BMPR1B, NOTCH3, SMAD1, and SMAD4) were disputed because of a paucity of genetic evidence over time. CONCLUSION We recommend that genetic testing includes all genes with definitive evidence and that caution be taken in the interpretation of variants identified in genes with moderate or limited evidence. Genes with no known evidence for PAH or disputed genes should not be included in genetic testing.
Collapse
Affiliation(s)
- Carrie L Welch
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Micheala A Aldred
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, IN
| | - Srimmitha Balachandar
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, IN
| | - Dennis Dooijes
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Christina A Eichstaedt
- Center for Pulmonary Hypertension, Thoraxklinik-Heidelberg gGmbH, at Heidelberg University Hospital and Translational Lung Research Center, German Center for Lung Research, Heidelberg, Germany; Laboratory for Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Stefan Gräf
- NIHR BioResource for Translational Research - Rare Diseases, Department of Haemotology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom; Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Arjan C Houweling
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Rajiv D Machado
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Divya Pandya
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Matina Prapa
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom; St. George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Memoona Shaukat
- Center for Pulmonary Hypertension, Thoraxklinik-Heidelberg gGmbH, at Heidelberg University Hospital and Translational Lung Research Center, German Center for Lung Research, Heidelberg, Germany; Laboratory for Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Laura Southgate
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Jair Tenorio-Castano
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IDiPAZ, Universidad Autonoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; ITHACA, European Reference Network, Brussels, Belgium
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY; Department of Medicine, Columbia University Irving Medical Center, New York, NY.
| |
Collapse
|
11
|
Rossi E, Bernabeu C. Novel vascular roles of human endoglin in pathophysiology. J Thromb Haemost 2023; 21:2327-2338. [PMID: 37315795 DOI: 10.1016/j.jtha.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/19/2023] [Accepted: 06/02/2023] [Indexed: 06/16/2023]
Abstract
Endoglin, alias CD105, is a human membrane glycoprotein highly expressed in vascular endothelial cells. It is involved in angiogenesis and angiogenesis-related diseases, including the rare vascular pathology known as hereditary hemorrhagic telangiectasia type 1. Although endoglin acts as an accessory receptor for members of the transforming growth factor-β family, in recent years, emerging evidence has shown a novel functional role for this protein beyond the transforming growth factor-β system. In fact, endoglin has been found to be an integrin counterreceptor involved in endothelial cell adhesion processes during pathological inflammatory conditions and primary hemostasis. Furthermore, a circulating form of endoglin, also named as soluble endoglin, whose levels are abnormally increased in different pathological conditions, such as preeclampsia, seems to act as an antagonist of membrane-bound endoglin and as a competitor of the fibrinogen-integrin interaction in platelet-dependent thrombus formation. These studies suggest that membrane-bound endoglin and circulating endoglin are important components involved in vascular homeostasis and hemostasis.
Collapse
Affiliation(s)
- Elisa Rossi
- Université Paris Cité, INSERM U1140, Innovative Therapies in Haemostasis, Paris, France.
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
12
|
Upton PD, Dunmore BJ, Li W, Morrell NW. An emerging class of new therapeutics targeting TGF, Activin, and BMP ligands in pulmonary arterial hypertension. Dev Dyn 2023; 252:327-342. [PMID: 35434863 PMCID: PMC10952790 DOI: 10.1002/dvdy.478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/21/2022] [Accepted: 04/07/2022] [Indexed: 11/10/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is an often fatal condition, the primary pathology of which involves loss of pulmonary vascular perfusion due to progressive aberrant vessel remodeling. The reduced capacity of the pulmonary circulation places increasing strain on the right ventricle of the heart, leading to death by heart failure. Currently, licensed therapies are primarily vasodilators, which have increased the median post-diagnosis life expectancy from 2.8 to 7 years. Although this represents a substantial improvement, the search continues for transformative therapeutics that reverse established disease. The genetics of human PAH heavily implicates reduced endothelial bone morphogenetic protein (BMP) signaling as a causal role for the disease pathobiology. Recent approaches have focused on directly enhancing BMP signaling or removing the inhibitory influence of pathways that repress BMP signaling. In this critical commentary, we review the evidence underpinning the development of two approaches: BMP-based agonists and inhibition of activin/GDF signaling. We also address the key considerations and questions that remain regarding these approaches.
Collapse
Affiliation(s)
- Paul D. Upton
- Department of MedicineUniversity of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth HospitalsCambridgeUK
| | - Benjamin J. Dunmore
- Department of MedicineUniversity of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth HospitalsCambridgeUK
| | - Wei Li
- Department of MedicineUniversity of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth HospitalsCambridgeUK
| | - Nicholas W. Morrell
- Department of MedicineUniversity of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth HospitalsCambridgeUK
| |
Collapse
|
13
|
Ma L, Peng X, Gong Q. A GDF2 missense mutation potentially involved in the pathogenesis of hereditary hemorrhagic telangiectasia: a case report. J Int Med Res 2023; 51:3000605231159545. [PMID: 36891821 PMCID: PMC10009034 DOI: 10.1177/03000605231159545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant vascular disease. ENG and ACVRL1 gene variants account for up to 96% of all cases, while the remaining cases are caused by SMAD4 or GDF2 variants, or by currently undiscovered mutations in coding or non-coding regions. Here, we report a 47-year-old man who presented with duodenal bulb bleeding and chronic anemia. Physical examination also revealed bleeding from the skin and gingiva. His parents were cousins and one brother and one sister died in infancy from anemia and bleeding. Head computed tomography angiography (CTA) revealed a complete fetal posterior cerebral artery located in the left side, and pulmonary CTA showed pulmonary arterial hypertension. The patient was diagnosed with HHT. Peripheral blood was collected for whole-exome sequencing. Sequencing revealed a mutation in the GDF2 gene, which encodes bone morphogenetic protein-9 (BMP-9). The detected variant, c.352A > T(p.Ile118Phe), was predicted to be a neutral polymorphism; however, the patient's plasma BMP-9 levels were greatly reduced; we predicted that this might be caused by the GDF2 variant and might be involved in the HHT pathogenesis. Further research in cell lines and animal models is needed to verify the correlation between this GDF2 variant and the pathogenesis of HHT.
Collapse
Affiliation(s)
- Le Ma
- Department of Hematology, Southwest Hospital, First Affiliated Hospital of the Army Medical University, Chongqing 400038, China
| | - Xi Peng
- Department of Hematology, Southwest Hospital, First Affiliated Hospital of the Army Medical University, Chongqing 400038, China
| | - Qiang Gong
- Department of Hematology, Southwest Hospital, First Affiliated Hospital of the Army Medical University, Chongqing 400038, China
| |
Collapse
|
14
|
Dunmore BJ, Upton PD, Auckland K, Samanta RJ, Lyons PA, Smith KGC, Gräf S, Summers C, Morrell NW. Reduced circulating BMP9 and pBMP10 in hospitalized COVID-19 patients. Pulm Circ 2023; 13:e12192. [PMID: 36721385 PMCID: PMC9881210 DOI: 10.1002/pul2.12192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/20/2023] Open
Abstract
Similar to other causes of acute respiratory distress syndrome, coronavirus disease 2019 (COVID-19) is characterized by the aberrant expression of vascular injury biomarkers. We present the first report that circulating plasma bone morphogenetic proteins (BMPs), BMP9 and pBMP10, involved in vascular protection, are reduced in hospitalized patients with COVID-19.
Collapse
Affiliation(s)
- Benjamin J Dunmore
- Heart and Lung Research Institute University of Cambridge Cambridge UK.,Department of Medicine University of Cambridge School of Clinical Medicine Cambridge UK
| | - Paul D Upton
- Heart and Lung Research Institute University of Cambridge Cambridge UK.,Department of Medicine University of Cambridge School of Clinical Medicine Cambridge UK
| | - Kate Auckland
- Heart and Lung Research Institute University of Cambridge Cambridge UK.,Department of Medicine University of Cambridge School of Clinical Medicine Cambridge UK
| | - Romit J Samanta
- Heart and Lung Research Institute University of Cambridge Cambridge UK.,Department of Medicine University of Cambridge School of Clinical Medicine Cambridge UK.,Cambridge University Hospitals and Royal Papworth Hospital NHS Foundation Trust Cambridge UK
| | | | | | - Paul A Lyons
- Department of Medicine University of Cambridge School of Clinical Medicine Cambridge UK.,Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre University of Cambridge Cambridge UK
| | - Kenneth G C Smith
- Department of Medicine University of Cambridge School of Clinical Medicine Cambridge UK.,Cambridge University Hospitals and Royal Papworth Hospital NHS Foundation Trust Cambridge UK.,NIHR BioResource for Translational Research Cambridge University Hospitals NHS Foundation Trust Cambridge UK.,Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre University of Cambridge Cambridge UK
| | - Stefan Gräf
- Heart and Lung Research Institute University of Cambridge Cambridge UK.,Department of Medicine University of Cambridge School of Clinical Medicine Cambridge UK
| | - Charlotte Summers
- Heart and Lung Research Institute University of Cambridge Cambridge UK.,Department of Medicine University of Cambridge School of Clinical Medicine Cambridge UK.,Cambridge University Hospitals and Royal Papworth Hospital NHS Foundation Trust Cambridge UK
| | - Nicholas W Morrell
- Heart and Lung Research Institute University of Cambridge Cambridge UK.,Department of Medicine University of Cambridge School of Clinical Medicine Cambridge UK.,Cambridge University Hospitals and Royal Papworth Hospital NHS Foundation Trust Cambridge UK
| |
Collapse
|
15
|
Postma AV, Rapp CK, Knoflach K, Volk AE, Lemke JR, Ackermann M, Regamey N, Latzin P, Celant L, Jansen SM, Bogaard HJ, Ilgun A, Alders M, van Spaendonck-Zwarts KY, Jonigk D, Klein C, Gräf S, Kubisch C, Houweling AC, Griese M. Biallelic variants in the calpain regulatory subunit CAPNS1 cause pulmonary arterial hypertension. GENETICS IN MEDICINE OPEN 2023; 1:100811. [PMID: 38230350 PMCID: PMC10790724 DOI: 10.1016/j.gimo.2023.100811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 01/18/2024]
Abstract
Purpose The aim of this study was to identify the monogenic cause of pulmonary arterial hypertension (PAH), a multifactorial and often fatal disease, in 2 unrelated consanguine families. Methods We performed exome sequencing and validated variant pathogenicity by whole-blood RNA and protein expression analysis in both families. Further RNA sequencing of preserved lung tissue was performed to investigate the consequences on selected genes that are involved in angiogenesis, proliferation, and apoptosis. Results We identified 2 rare biallelic variants in CAPNS1, encoding the regulatory subunit of calpain. The variants cosegregated with PAH in the families. Both variants lead to loss of function (LoF), which is demonstrated by aberrant splicing resulting in the complete absence of the CAPNS1 protein in affected patients. No other LoF CAPNS1 variant was identified in the genome data of more than 1000 patients with unresolved PAH. Conclusion The calpain holoenzyme was previously linked to pulmonary vascular development and progression of PAH in patients. We demonstrated that biallelic LoF variants in CAPNS1 can cause idiopathic PAH by the complete absence of CAPNS1 protein. Screening of this gene in patients who are affected by PAH, especially with suspected autosomal recessive inheritance, should be considered.
Collapse
Affiliation(s)
- Alex V. Postma
- Department of Medical Biology, Amsterdam University Medical Centre, Amsterdam, The Netherlands
- Department of Human Genetics, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Christina K. Rapp
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, LMU Klinikum, Ludwig Maximilians University of Munich, German Center for Lung Research (DZL), Munich, Germany
| | - Katrin Knoflach
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, LMU Klinikum, Ludwig Maximilians University of Munich, German Center for Lung Research (DZL), Munich, Germany
| | - Alexander E. Volk
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes R. Lemke
- Institute of Human Genetics, Leipzig University Medical Center, Leipzig, Germany
- Center for Rare Diseases, Leipzig University Medical Center, Leipzig, Germany
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Centre, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nicolas Regamey
- Division of Paediatric Pulmonology, Children’s Hospital, Lucerne Cantonal Hospital, Lucerne, Switzerland
| | - Philipp Latzin
- Division of Paediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| | - Lucas Celant
- Department of Pulmonary Medicine, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Samara M.A. Jansen
- Department of Pulmonary Medicine, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Harm J. Bogaard
- Department of Pulmonary Medicine, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Aho Ilgun
- Department of Human Genetics, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Mariëlle Alders
- Department of Human Genetics, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | | | - Danny Jonigk
- Institute of Pathology, Medizinische Hochschule Hannover, Hanover, Germany
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, LMU Klinikum, Ludwig Maximilians University of Munich, German Center for Lung Research (DZL), Munich, Germany
| | - Stefan Gräf
- Department of Medicine, University of Cambridge, Heart and Lung Research Institute, Cambridge, United Kingdom
- NIHR BioResource for Translational Research–Rare Diseases, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Christian Kubisch
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arjan C. Houweling
- Department of Human Genetics, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Matthias Griese
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, LMU Klinikum, Ludwig Maximilians University of Munich, German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
16
|
Upton P, Richards S, Bates A, Niederhoffer KY, Morrell NW, Christian S. A rare homozygous missense GDF2 (BMP9) mutation causing PAH in siblings: Does BMP10 status contribute? Am J Med Genet A 2023; 191:228-233. [PMID: 36259599 PMCID: PMC10092753 DOI: 10.1002/ajmg.a.62996] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 12/14/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a disease characterized by pathological remodeling of the pulmonary vasculature causing elevated pulmonary artery pressures and ultimately, right ventricular failure from chronic pressure overload. Heterozygous pathogenic GDF2 (encoding bone morphogenetic protein 9 (BMP9)) variants account for some (>1%) adult PAH cases. Only three pediatric PAH cases, harboring homozygous or compound heterozygous variants, are reported to date. Ultra-rare pathogenic GDF2 variants are reported in hereditary hemorrhagic telangiectasia and overlapping disorders characterized by telangiectasias and arteriovenous malformations (AVMs). Here, we present two siblings with PAH homozygous for a GDF2 mutation that impairs BMP9 proprotein processing and reduces growth factor domain availability. We confirm an absence of measurable plasma BMP9 whereas BMP10 levels are detectable and serum-dependent endothelial BMP activity is evident. This contrasts with the absence of activity which we reported in two children with homozygous pathogenic GDF2 nonsense variants, one with PAH and one with pulmonary AVMs, both with telangiectasias, suggesting loss of BMP10 and endothelial BMP activity in the latter may precipitate telangiectasia development. An absence of phenotype in related heterozygous GDF2 variant carriers suggests incomplete penetrance in PAH and AVM-related diseases, indicating that additional somatic and/or genetic modifiers may be necessary for disease precipitation.
Collapse
Affiliation(s)
- Paul Upton
- Department of Medicine, Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Susan Richards
- Pediatric Pulmonary Hypertension Service, Stollery Children's Hospital, Edmonton, Alberta, Canada
| | - Angela Bates
- Pediatric Pulmonary Hypertension Service, Stollery Children's Hospital, Edmonton, Alberta, Canada.,Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Karen Y Niederhoffer
- Department of Medical Genetics, University of Alberta Hospital, Edmonton, Alberta, Canada
| | - Nicholas W Morrell
- Department of Medicine, Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Susan Christian
- Pediatric Pulmonary Hypertension Service, Stollery Children's Hospital, Edmonton, Alberta, Canada
| |
Collapse
|
17
|
Ruiz-Llorente L, Ruiz-Rodríguez MJ, Savini C, González-Muñoz T, Riveiro-Falkenbach E, Rodríguez-Peralto JL, Peinado H, Bernabeu C. Correlation Between Endoglin and Malignant Phenotype in Human Melanoma Cells: Analysis of hsa-mir-214 and hsa-mir-370 in Cells and Their Extracellular Vesicles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1408:253-272. [PMID: 37093432 DOI: 10.1007/978-3-031-26163-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Endoglin (CD105) is an auxiliary receptor of transforming growth factor (TGF)-β family members that is expressed in human melanomas. It is heterogeneously expressed by primary and metastatic melanoma cells, and endoglin targeting as a therapeutic strategy for melanoma tumors is currently been explored. However, its involvement in tumor development and malignancy is not fully understood. Here, we find that endoglin expression correlates with malignancy of primary melanomas and cultured melanoma cell lines. Next, we have analyzed the effect of ectopic endoglin expression on two miRNAs (hsa-mir-214 and hsa-mir-370), both involved in melanoma tumor progression and endoglin regulation. We show that compared with control cells, overexpression of endoglin in the WM-164 melanoma cell line induces; (i) a significant increase of hsa-mir-214 levels in small extracellular vesicles (EVs) as well as an increased trend in cells; and (ii) significantly lower levels of hsa-mir-370 in the EVs fractions, whereas no significant differences were found in cells. As hsa-mir-214 and hsa-mir-370 are not just involved in melanoma tumor progression, but they can also target endoglin-expressing endothelial cells in the tumor vasculature, these results suggest a complex and differential regulatory mechanism involving the intracellular and extracellular signaling of hsa-mir-214 and hsa-mir-370 in melanoma development and progression.
Collapse
Affiliation(s)
- Lidia Ruiz-Llorente
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain.
- Biochemistry and Molecular Biology Unit, Department of System Biology, School of Medicine and Health Sciences, University of Alcalá, 28871, Alcalá de Henares, Madrid, Spain.
| | - María Jesús Ruiz-Rodríguez
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029, Madrid, Spain
| | - Claudia Savini
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Teresa González-Muñoz
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Erica Riveiro-Falkenbach
- Department of Pathology, Instituto i+12, Hospital Universitario 12 de Octubre, 28041, Madrid, Spain
| | - José L Rodríguez-Peralto
- Department of Pathology, Instituto i+12, Hospital Universitario 12 de Octubre, 28041, Madrid, Spain
| | - Héctor Peinado
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
| |
Collapse
|
18
|
Taha F, Southgate L. Molecular genetics of pulmonary hypertension in children. Curr Opin Genet Dev 2022; 75:101936. [PMID: 35772304 PMCID: PMC9763127 DOI: 10.1016/j.gde.2022.101936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/20/2022] [Accepted: 05/19/2022] [Indexed: 12/24/2022]
Abstract
Until recently, the molecular aetiology of paediatric pulmonary hypertension (PH) was relatively poorly understood. While the TGF-β/BMP pathway was recognised as central to disease progression, genetic analyses in children were largely confined to targeted screening of risk genes in small cohorts, with clinical management extrapolated from adult data. In recent years, next-generation sequencing has highlighted notable differences in the genetic architecture underlying childhood-onset cases, with a higher genetic burden in children partly explained by comorbidities such as congenital heart disease. Here, we review recent genetic advances in paediatric PH and highlight important risk factors such as dysregulation of the transcription factors SOX17 and TBX4. Given the poorer prognosis in paediatric cases, molecular diagnosis offers a vital tool to enhance clinical care of children with PH.
Collapse
Affiliation(s)
- Fatima Taha
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| | - Laura Southgate
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK.
| |
Collapse
|
19
|
Kaufman CS, McDonald J, Balch H, Whitehead K. Pulmonary Arteriovenous Malformations: What the Interventional Radiologist Should Know. Semin Intervent Radiol 2022; 39:261-270. [PMID: 36062221 PMCID: PMC9433162 DOI: 10.1055/s-0042-1751260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Pulmonary arteriovenous malformations (PAVMs) are abnormal connections between the pulmonary artery and pulmonary vein bypassing the normal capillary bed causing a right-to-left shunt. The majority (80-90%) of PAVMs are associated with hereditary hemorrhagic telangiectasia (HHT). PAVMs may be asymptomatic or present with symptoms of hypoxia, shortness of breath, migraines, sequelae of paradoxical embolization, or rupture. Transcatheter embolization has become the standard of care. This article will review the clinical presentation, workup, genetics, imaging findings, embolization, complications, and follow-up for patients with PAVMs.
Collapse
Affiliation(s)
- Claire S. Kaufman
- Dotter Department of Interventional Radiology, Pacific Northwest HHT Center of Excellence, Oregon Health & Sciences University, Portland, Oregon
| | - Jamie McDonald
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Heather Balch
- HHT Center of Excellence, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Kevin Whitehead
- HHT Center of Excellence, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, Utah
| |
Collapse
|
20
|
Aldred MA, Morrell NW, Guignabert C. New Mutations and Pathogenesis of Pulmonary Hypertension: Progress and Puzzles in Disease Pathogenesis. Circ Res 2022; 130:1365-1381. [PMID: 35482831 PMCID: PMC9897592 DOI: 10.1161/circresaha.122.320084] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a complex multifactorial disease with poor prognosis characterized by functional and structural alterations of the pulmonary circulation causing marked increase in pulmonary vascular resistance, ultimately leading to right heart failure and death. Mutations in the gene encoding BMPRII-a receptor for the TGF-β (transforming growth factor-beta) superfamily-account for over 70% of families with PAH and ≈20% of sporadic cases. In recent years, however, less common or rare mutations in other genes have been identified. This review will consider how these newly discovered PAH genes could help to provide a better understanding of the molecular and cellular bases of the maintenance of the pulmonary vascular integrity, as well as their role in the PAH pathogenesis underlying occlusion of arterioles in the lung. We will also discuss how insights into the genetic contributions of these new PAH-related genes may open up new therapeutic targets for this, currently incurable, cardiopulmonary disorder.
Collapse
Affiliation(s)
- Micheala A Aldred
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nicholas W Morrell
- University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth Hospitals, Cambridge, UK
| | - Christophe Guignabert
- INSERM UMR_S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France,Université Paris-Saclay, Faculté de Médecine, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
21
|
Balachandar S, Graves TJ, Shimonty A, Kerr K, Kilner J, Xiao S, Slade R, Sroya M, Alikian M, Curetean E, Thomas E, McConnell VPM, McKee S, Boardman-Pretty F, Devereau A, Fowler TA, Caulfield MJ, Alton EW, Ferguson T, Redhead J, McKnight AJ, Thomas GA, Aldred MA, Shovlin CL. Identification and validation of a novel pathogenic variant in GDF2 (BMP9) responsible for hereditary hemorrhagic telangiectasia and pulmonary arteriovenous malformations. Am J Med Genet A 2022; 188:959-964. [PMID: 34904380 PMCID: PMC9939255 DOI: 10.1002/ajmg.a.62584] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/02/2021] [Indexed: 01/14/2023]
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant multisystemic vascular dysplasia, characterized by arteriovenous malformations (AVMs), mucocutaneous telangiectasia and nosebleeds. HHT is caused by a heterozygous null allele in ACVRL1, ENG, or SMAD4, which encode proteins mediating bone morphogenetic protein (BMP) signaling. Several missense and stop-gain variants identified in GDF2 (encoding BMP9) have been reported to cause a vascular anomaly syndrome similar to HHT, however none of these patients met diagnostic criteria for HHT. HHT families from UK NHS Genomic Medicine Centres were recruited to the Genomics England 100,000 Genomes Project. Whole genome sequencing and tiering protocols identified a novel, heterozygous GDF2 sequence variant in all three affected members of one HHT family who had previously screened negative for ACVRL1, ENG, and SMAD4. All three had nosebleeds and typical HHT telangiectasia, and the proband also had severe pulmonary AVMs from childhood. In vitro studies showed the mutant construct expressed the proprotein but lacked active mature BMP9 dimer, suggesting the mutation disrupts correct cleavage of the protein. Plasma BMP9 levels in the patients were significantly lower than controls. In conclusion, we propose that this heterozygous GDF2 variant is a rare cause of HHT associated with pulmonary AVMs.
Collapse
Affiliation(s)
- Srimmitha Balachandar
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tamara J. Graves
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Anika Shimonty
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Katie Kerr
- School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, UK
| | - Jill Kilner
- School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, UK
| | - Sihao Xiao
- National Heart and Lung Institute, Imperial College London, London, UK,Genomics England Respiratory Clinical Interpretation Partnership (GeCIP), London, UK
| | - Richard Slade
- National Heart and Lung Institute, Imperial College London, London, UK,Genomics England Respiratory Clinical Interpretation Partnership (GeCIP), London, UK
| | - Manveer Sroya
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Mary Alikian
- Genomics England Respiratory Clinical Interpretation Partnership (GeCIP), London, UK,West London Genomic Medicine Centre, Imperial College Healthcare NHS Trust, London, UK
| | - Emanuel Curetean
- West London Genomic Medicine Centre, Imperial College Healthcare NHS Trust, London, UK
| | - Ellen Thomas
- West London Genomic Medicine Centre, Imperial College Healthcare NHS Trust, London, UK,Genomics England, London, UK
| | | | - Shane McKee
- Regional Genetics Service, Belfast Health and Social Care Trust, Belfast, UK
| | | | | | - Tom A. Fowler
- Genomics England, London, UK,William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Mark J. Caulfield
- Genomics England, London, UK,William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Eric W. Alton
- National Heart and Lung Institute, Imperial College London, London, UK,Genomics England Respiratory Clinical Interpretation Partnership (GeCIP), London, UK
| | - Teena Ferguson
- West London Genomic Medicine Centre, Imperial College Healthcare NHS Trust, London, UK
| | - Julian Redhead
- West London Genomic Medicine Centre, Imperial College Healthcare NHS Trust, London, UK
| | - Amy J. McKnight
- School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, UK,Genomics England Respiratory Clinical Interpretation Partnership (GeCIP), London, UK
| | | | | | - Micheala A. Aldred
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA,Genomics England Respiratory Clinical Interpretation Partnership (GeCIP), London, UK
| | - Claire L. Shovlin
- National Heart and Lung Institute, Imperial College London, London, UK,Genomics England Respiratory Clinical Interpretation Partnership (GeCIP), London, UK,West London Genomic Medicine Centre, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
22
|
Kulikauskas MR, X S, Bautch VL. The versatility and paradox of BMP signaling in endothelial cell behaviors and blood vessel function. Cell Mol Life Sci 2022; 79:77. [PMID: 35044529 PMCID: PMC8770421 DOI: 10.1007/s00018-021-04033-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/20/2021] [Accepted: 11/09/2021] [Indexed: 12/15/2022]
Abstract
Blood vessels expand via sprouting angiogenesis, and this process involves numerous endothelial cell behaviors, such as collective migration, proliferation, cell–cell junction rearrangements, and anastomosis and lumen formation. Subsequently, blood vessels remodel to form a hierarchical network that circulates blood and delivers oxygen and nutrients to tissue. During this time, endothelial cells become quiescent and form a barrier between blood and tissues that regulates transport of liquids and solutes. Bone morphogenetic protein (BMP) signaling regulates both proangiogenic and homeostatic endothelial cell behaviors as blood vessels form and mature. Almost 30 years ago, human pedigrees linked BMP signaling to diseases associated with blood vessel hemorrhage and shunts, and recent work greatly expanded our knowledge of the players and the effects of vascular BMP signaling. Despite these gains, there remain paradoxes and questions, especially with respect to how and where the different and opposing BMP signaling outputs are regulated. This review examines endothelial cell BMP signaling in vitro and in vivo and discusses the paradox of BMP signals that both destabilize and stabilize endothelial cell behaviors.
Collapse
Affiliation(s)
- Molly R Kulikauskas
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Shaka X
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Victoria L Bautch
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
23
|
Expanding the Evidence of a Semi-Dominant Inheritance in GDF2 Associated with Pulmonary Arterial Hypertension. Cells 2021; 10:cells10113178. [PMID: 34831401 PMCID: PMC8624726 DOI: 10.3390/cells10113178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 01/29/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) sometimes co-exists with hereditary hemorrhagic telangiectasia (HHT). Despite being clinically diagnosable according to Curaçao criteria, HHT can be difficult to diagnose due to its clinically heterogenicity and highly overlapping with PAH. Genetic analysis of the associated genes ACVRL1, ENG, SMAD4 and GDF2 can help to confirm or discard the presumptive diagnosis. As part of the clinical routine and to establish a genetic diagnosis, we have analyzed a cohort of patients with PAH and overlapping HHT features through a customized Next Generation Sequencing (NGS) panel of 21 genes, designed and validated in-house. We detected a homozygous missense variant in GDF2 in a pediatric patient diagnosed with PAH associated with HHT and a missense variant along with a heterozygous deletion in another idiopathic PAH patient (compound heterozygous inheritance). In order to establish variant segregation, we analyzed all available family members. In both cases, parents were carriers for the variants, but neither was affected. Our results expand the clinical spectrum and the inheritance pattern associated with GDF2 pathogenic variants suggesting incomplete penetrance and/or variability of expressivity with a semi-dominant pattern of inheritance.
Collapse
|