1
|
Toledo GL, Sangalette BS, Passerotti LC, Nascimento JDA, Shinohara AL, Oliveira ALRD, Buzalaf MAR, Rodrigues ADC. Guided neural regeneration with autologous fat grafting and oxygen hyperbaric therapy. Braz Oral Res 2021; 35:e138. [PMID: 34932667 DOI: 10.1590/1807-3107bor-2021.vol35.0138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 07/05/2021] [Indexed: 11/21/2022] Open
Abstract
The loss of continuity of the nerve structure interrupts the transmission of nerve impulses and leads to the disorganization of functional activities. Many methods, as the use of neurogenic factors, aid in the process of neural regeneration by accelerating or improving peripheral nerves neoformation. The adipose tissue is abundant in the human body, and it has presented promising results in the regeneration of peripheral nerves. We carried out a randomized controlled study in 9 months, using 45 male Wistar rats, 80 days old, and the sciatic nerve was chosen for analysis. The control animals were divided into three groups - Initial group (IG), Final group (FG), and denervated group (DG) - with seven animals each. The experimental groups, with twelve animals each, were polyethylene tube filled with fat (EGF) and polyethylene tube without filling (EGwf). All groups, except IG, were submitted to 10 sessions of hyperbaric oxygen treatment of 1h 45 min in alternating days. Functional evaluation by walking-track was assessed using the Catwalk XT® software and tissues were harvested and stained with 1% toluidine blue for histological analysis. Quantitative data were first analyzed with the Kolmogorov Smirnov normality test. Comparison between the four groups was analyzed by ANOVA followed by Tukey Test. We concluded that hyperbaric oxygen therapy had positive results on morphometric and functional parameters. However, no significant differences were found regarding the use of autologous fat graft.
Collapse
Affiliation(s)
- Gustavo Lopes Toledo
- Universidade Estadual do Norte do Paraná - UENP, Health Sciences Center, Department of Oral Maxillofacial Surgery, Jacarezinho, PR, Brazil
| | - Beatriz Sobrinho Sangalette
- Universidade de São Paulo - USP, Bauru School of Dentistry, Department of Biological Science - Anatomy, Bauru, SP, Brazil
| | | | | | - André Luis Shinohara
- Universidade de São Paulo - USP, Bauru School of Dentistry, Department of Biological Science - Anatomy, Bauru, SP, Brazil
| | | | - Marília Afonso Rabelo Buzalaf
- Universidade de São Paulo - USP, Bauru School of Dentistry, Departmente of Biological Science - Biochemistry, Bauru, SP, Brazil
| | - Antônio de Castro Rodrigues
- Universidade de São Paulo - USP, Bauru School of Dentistry, Departmente of Biological Science, Bauru, SP, Brazil
| |
Collapse
|
2
|
Bengur FB, Stoy C, Binko MA, Nerone WV, Fedor CN, Solari MG, Marra KG. Facial Nerve Repair: Bioengineering Approaches in Preclinical Models. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:364-378. [PMID: 33632013 DOI: 10.1089/ten.teb.2020.0381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Injury to the facial nerve can occur after different etiologies and range from simple transection of the branches to varying degrees of segmental loss. Management depends on the extent of injury and options include primary repair for simple transections and using autografts, allografts, or conduits for larger gaps. Tissue engineering plays an important role to create artificial materials that are able to mimic the nerve itself without extra morbidity in the patients. The use of neurotrophic factors or stem cells inside the conduits or around the repair site is being increasingly studied to enhance neural recovery to a greater extent. Preclinical studies remain the hallmark for development of these novel approaches and translation into clinical practice. This review will focus on preclinical models of repair after facial nerve injury to help researchers establish an appropriate model to quantify recovery and analyze functional outcomes. Different bioengineered materials, including conduits and nerve grafts, will be discussed based on the experimental animals that were used and the defects introduced. Future directions to extend the applications of processed nerve allografts, bioengineered conduits, and cues inside the conduits to induce neural recovery after facial nerve injury will be highlighted.
Collapse
Affiliation(s)
- Fuat Baris Bengur
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Conrad Stoy
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mary A Binko
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Wayne Vincent Nerone
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Caroline Nadia Fedor
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mario G Solari
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kacey G Marra
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Selim OA, Lakhani S, Midha S, Mosahebi A, Kalaskar DM. Three-Dimensional Engineered Peripheral Nerve: Toward a New Era of Patient-Specific Nerve Repair Solutions. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:295-335. [PMID: 33593147 DOI: 10.1089/ten.teb.2020.0355] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reconstruction of peripheral nerve injuries (PNIs) with substance loss remains challenging because of limited treatment solutions and unsatisfactory patient outcomes. Currently, nerve autografting is the first-line management choice for bridging critical-sized nerve defects. The procedure, however, is often complicated by donor site morbidity and paucity of nerve tissue, raising a quest for better alternatives. The application of other treatment surrogates, such as nerve guides, remains questionable, and it is inefficient in irreducible nerve gaps. More importantly, these strategies lack customization for personalized patient therapy, which is a significant drawback of these nerve repair options. This negatively impacts the fascicle-to-fascicle regeneration process, critical to restoring the physiological axonal pathway of the disrupted nerve. Recently, the use of additive manufacturing (AM) technologies has offered major advancements to the bioengineering solutions for PNI therapy. These techniques aim at reinstating the native nerve fascicle pathway using biomimetic approaches, thereby augmenting end-organ innervation. AM-based approaches, such as three-dimensional (3D) bioprinting, are capable of biofabricating 3D-engineered nerve graft scaffolds in a patient-specific manner with high precision. Moreover, realistic in vitro models of peripheral nerve tissues that represent the physiologically and functionally relevant environment of human organs could also be developed. However, the technology is still nascent and faces major translational hurdles. In this review, we spotlighted the clinical burden of PNIs and most up-to-date treatment to address nerve gaps. Next, a summarized illustration of the nerve ultrastructure that guides research solutions is discussed. This is followed by a contrast of the existing bioengineering strategies used to repair peripheral nerve discontinuities. In addition, we elaborated on the most recent advances in 3D printing and biofabrication applications in peripheral nerve modeling and engineering. Finally, the major challenges that limit the evolution of the field along with their possible solutions are also critically analyzed.
Collapse
Affiliation(s)
- Omar A Selim
- Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital, University College London (UCL), London, United Kingdom
| | - Saad Lakhani
- Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital, University College London (UCL), London, United Kingdom
| | - Swati Midha
- Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital, University College London (UCL), London, United Kingdom.,Department of Surgical Biotechnology, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Afshin Mosahebi
- Department of Plastic Surgery, Royal Free Hospital, University College London (UCL), London, United Kingdom
| | - Deepak M Kalaskar
- Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital, University College London (UCL), London, United Kingdom.,Department of Surgical Biotechnology, Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital, University College London (UCL), Stanmore, United Kingdom
| |
Collapse
|
4
|
Resch A, Wolf S, Mann A, Weiss T, Stetco AL, Radtke C. Co-Culturing Human Adipose Derived Stem Cells and Schwann Cells on Spider Silk-A New Approach as Prerequisite for Enhanced Nerve Regeneration. Int J Mol Sci 2018; 20:E71. [PMID: 30586946 PMCID: PMC6337114 DOI: 10.3390/ijms20010071] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/07/2018] [Accepted: 10/12/2018] [Indexed: 12/14/2022] Open
Abstract
Fast recovery is crucial for a successful nerve repair and an optimal functional outcome after peripheral nerve injury. Regarding donor site morbidity, autologous transplantation shows great limitations, which urge the need for alternative options in nerve reconstruction. Spider silk was reported as an advantageous material for cell adhesion, migration and proliferation, and its use in conduits is of great interest, especially in combination with cells to improve nerve regeneration. We here described the behavior of a co-culture of human Schwann cells and human adipose-derived stem cells (ADSCs) on spider silk as a new approach. After characterized by immunostaining ADSCs and Schwann cells were seeded in the co-culture on a spider silk scaffold and observed for 21 days. Results showed that cells were attached to the silk and aligned along the silk fibers. With further culture time, cells migrated along the silk and increased in number and formed an almost confluent cell layer. In immunostaining, results suggest that the cell layer was equally composed of ADSCs and Schwann cells. In conclusion, we showed that by providing a guiding structure for directed growth and cells to support nerve regeneration and remyelination, a valid alternative to autologous nerve grafts could have been found.
Collapse
Affiliation(s)
- Annika Resch
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria.
- Experimental Laboratory of the Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria.
| | - Sonja Wolf
- Experimental Laboratory of the Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria.
| | - Anda Mann
- Experimental Laboratory of the Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria.
| | - Tamara Weiss
- Experimental Laboratory of the Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria.
| | - Alexandra-Larissa Stetco
- Experimental Laboratory of the Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria.
| | - Christine Radtke
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria.
- Experimental Laboratory of the Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria.
| |
Collapse
|
5
|
Gontika I, Katsimpoulas M, Antoniou E, Kostakis A, Stavropoulos-Giokas C, Michalopoulos E. Decellularized Human Umbilical Artery Used as Nerve Conduit. Bioengineering (Basel) 2018; 5:bioengineering5040100. [PMID: 30469361 PMCID: PMC6315692 DOI: 10.3390/bioengineering5040100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/08/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
Treatment of injuries to peripheral nerves after a segmental defect is one of the most challenging surgical problems. Despite advancements in microsurgical techniques, complete recovery of nerve function after repair has not been achieved. The purpose of this study was to evaluate the use of the decellularized human umbilical artery (hUA) as nerve guidance conduit. A segmental peripheral nerve injury was created in 24 Sprague–Dawley rats. The animals were organized into two experimental groups with different forms of repair: decellularized hUA (n = 12), and autologous nerve graft (n = 12). Sciatic faction index and gastrocnemius muscle values were calculated for functional recovery evaluation. Nerve morphometry was used to analyze nerve regeneration. Results showed that decellularized hUAs after implantation were rich in nerve fibers and characterized by improved Sciatic Functional index (SFI) values. Decellularized hUA may support elongation and bridging of the 10 mm nerve gap.
Collapse
Affiliation(s)
- Ioanna Gontika
- Hellenic Cord Blood Bank, Biomedical Research Foudation Academy of Athens, 4 Soranou Ephessiou Street, 11527 Athens, Greece.
| | - Michalis Katsimpoulas
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Street, 11527 Athens, Greece.
| | - Efstathios Antoniou
- Second Department of Propaedeutic Surgery, University of Athens, Medical School, "Laiko" General Hospital 17 Agios Thomas Street, 11527 Athens, Greece.
| | - Alkiviadis Kostakis
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Street, 11527 Athens, Greece.
| | - Catherine Stavropoulos-Giokas
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Street, 11527 Athens, Greece.
| | - Efstathios Michalopoulos
- Hellenic Cord Blood Bank, Biomedical Research Foudation Academy of Athens, 4 Soranou Ephessiou Street, 11527 Athens, Greece.
| |
Collapse
|
6
|
Ebrahimi M, Ai J, Biazar E, Ebrahimi-Barough S, Khojasteh A, Yazdankhah M, Sharifi S, Ai A, Heidari-Keshel S. In vivo assessment of a nanofibrous silk tube as nerve guide for sciatic nerve regeneration. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:394-401. [DOI: 10.1080/21691401.2018.1426593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Maryam Ebrahimi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Esmaeil Biazar
- Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Khojasteh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meysam Yazdankhah
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Siavash Sharifi
- Department of Veterinary Surgery and Radiology, Faculty of Veterinary Medicine, Sharekord University, Sharekord, Iran
| | - Arman Ai
- Medical Faculty, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Heidari-Keshel
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Batioglu-Karaaltin A, Karaaltin MV, Oztel ON, Ovali E, Sener BM, Adatepe T, Yigit O, Bozkurt E, Baydar SY, Bagirova M, Uzun N, Allahverdiyev A. Human olfactory stem cells for injured facial nerve reconstruction in a rat model. Head Neck 2016; 38 Suppl 1:E2011-20. [PMID: 26829770 DOI: 10.1002/hed.24371] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The purpose of this study was to show the efficacy of olfactory stem cells for injured facial nerve reconstruction in a rat model. METHODS Olfactory stem cells were isolated from the olfactory mucosa of human participants. A 2-mm excision was performed on the right facial nerve of all rats. Reconstruction was performed with a conduit in group 1 (n = 9); a conduit and phosphate-buffered saline in group 2 (n = 9); and a conduit and labeled olfactory stem cell in group 3 (n = 9). Rats were followed for whisker movements and electroneuronography (ENoG) analyses. RESULTS The whisker-movement scores for group 3 were significantly different from other groups (p < .001). ENoG showed that the amplitude values for group 3 were significantly different from group 1 and group 2 (p = .030; p < .001). Group 3 showed marked olfactory stem cell under a fluorescence microscope. CONCLUSION This study suggests that olfactory stem cells may be used as a potent cellular therapy for accelerating the regeneration of peripheral nerve injuries. © 2016 Wiley Periodicals, Inc. Head Neck 38: E2011-E2020, 2016.
Collapse
Affiliation(s)
- Aysegul Batioglu-Karaaltin
- Department of Otolaryngology, Head and Neck Surgery, Istanbul University Cerrahpasa Medicine Faculty, Istanbul, Turkey
| | - Mehmet Veli Karaaltin
- Department of Plastic and Reconstructive Surgery, Acibadem University Medicine Faculty, Istanbul, Turkey
| | - Olga Nehir Oztel
- Bioengineering Department, Yildiz Technical University, Faculty of Chemistry and Metallurgical Engineering, Istanbul, Turkey
| | | | - Belit Merve Sener
- Department of Otolaryngology, Head and Neck Surgery, Istanbul Education and Research Hospital, Istanbul, Turkey
| | - Turgut Adatepe
- EMG Laboratories, Istanbul Education and Research Hospital, Istanbul, Turkey
| | - Ozgur Yigit
- Department of Otolaryngology, Head and Neck Surgery, Istanbul Education and Research Hospital, Istanbul, Turkey
| | - Erol Bozkurt
- Department of Pathology, Istanbul Education and Research Hospital, Istanbul, Turkey
| | - Serap Yesilkir Baydar
- Bioengineering Department, Yildiz Technical University, Faculty of Chemistry and Metallurgical Engineering, Istanbul, Turkey
| | - Melahat Bagirova
- Bioengineering Department, Yildiz Technical University, Faculty of Chemistry and Metallurgical Engineering, Istanbul, Turkey
| | - Nurten Uzun
- Department of Neurology, Istanbul University Cerrahpasa Medicine Faculty, Istanbul, Turkey
| | - Adil Allahverdiyev
- Bioengineering Department, Yildiz Technical University, Faculty of Chemistry and Metallurgical Engineering, Istanbul, Turkey
| |
Collapse
|
8
|
Ameri Bafghi R, Biazar E. Development of oriented nanofibrous silk guide for repair of nerve defects. INT J POLYM MATER PO 2015. [DOI: 10.1080/00914037.2015.1074907] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Ahmed FJ, Junior GMR, Shinohara AL, De Souza Melo CG, Buchaim RL, Andreo JC, De Castro Rodrigues A. Comparison of results obtained with standard and inside out vein graft techniques and their implication on neurotrophin expression in repair of nerve defect: an experimental study. Microsurgery 2015; 35:227-234. [PMID: 25445241 DOI: 10.1002/micr.22355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 11/03/2014] [Accepted: 11/07/2014] [Indexed: 08/12/2024]
Abstract
Standard vein graft (SVG) and inside out vein graft (IOVG) techniques to promote peripheral nerve regeneration have been widely studied since last two decades. In this experimental study, we attempted to compare these two techniques and analyze the differences in the expression of the neurotrophins during peripheral nerve regeneration. Thirty-six male Wistar rats were used in this sciatic nerve transection model and were divided into two experimental groups (SVG and IOVG) and one sham operated control group. An overall defect of 10 mm was made in the sciatic nerve of the animals in the experimental groups. Each group consisted of two time intervals of 6 and 12 weeks (n = 6). After each experimental interval, sciatic functional index (SFI) along with area and diameter of the axons and fibers of each group were calculated. Muscle mass measurements were also evaluated to see any functional recovery in the groups. Expression of neurotrophins in the graft and distal stump were analyzed with the help of RT-PCR. SFI obtained from walking track analysis showed poor motor recovery in the experimental groups during both time intervals. No significant differences in the histological, morphometric (P > 0.05), and muscle mass measurements (P > 0.05) between the two experimental groups were observed. Analysis of RT-PCR data exhibited an increase in the expression of NT-3 with time in both the grafts (6 weeks 0.428 ± 0.392, 12 weeks 1.089 ± 0.455, P < 0.05) and distal stump (6 weeks 0.411 ± 0.306, 12 weeks 0.807 ± 0.303, P < 0.05) of the SVG group. The study concludes that there is no substantial difference in the nerve regeneration ability between both the techniques. Also, the difference in the level of NT-3 between SVG and IOVG suggests a distinct regulation of NT-3 in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Farooque Jamaluddin Ahmed
- Department of Biological Sciences, Anatomy, Bauru School of Dentistry, University of Sao Paulo, Bauru, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
10
|
Wang X, Pan M, Wen J, Tang Y, Hamilton AD, Li Y, Qian C, Liu Z, Wu W, Guo J. A novel artificial nerve graft for repairing long-distance sciatic nerve defects: a self-assembling peptide nanofiber scaffold-containing poly(lactic-co-glycolic acid) conduit. Neural Regen Res 2015; 9:2132-41. [PMID: 25657734 PMCID: PMC4316446 DOI: 10.4103/1673-5374.147944] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2014] [Indexed: 01/20/2023] Open
Abstract
In this study, we developed a novel artificial nerve graft termed self-assembling peptide nanofiber scaffold (SAPNS)-containing poly(lactic-co-glycolic acid) (PLGA) conduit (SPC) and used it to bridge a 10-mm-long sciatic nerve defect in the rat. Retrograde tracing, behavioral testing and histomorphometric analyses showed that compared with the empty PLGA conduit implantation group, the SPC implantation group had a larger number of growing and extending axons, a markedly increased diameter of regenerated axons and a greater thickness of the myelin sheath in the conduit. Furthermore, there was an increase in the size of the neuromuscular junction and myofiber diameter in the target muscle. These findings suggest that the novel artificial SPC nerve graft can promote axonal regeneration and remyelination in the transected peripheral nerve and can be used for repairing peripheral nerve injury.
Collapse
Affiliation(s)
- Xianghai Wang
- Department of Histology and Embryology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Mengjie Pan
- Department of Histology and Embryology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jinkun Wen
- Department of Histology and Embryology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yinjuan Tang
- Department of Histology and Embryology, Xiangnan University, Chenzhou, Hunan Province, China
| | - Audra D Hamilton
- Department of Neurology, Vanderbilt University, Nashville, TN, USA
| | - Yuanyuan Li
- Department of Histology and Embryology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Changhui Qian
- Department of Histology and Embryology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhongying Liu
- Department of Histology and Embryology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Wutian Wu
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, Guangzhou, Guangdong Province, China ; GHM Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Jiasong Guo
- Department of Histology and Embryology, Southern Medical University, Guangzhou, Guangdong Province, China ; Key Laboratory of Tissue Construction and Detection of Guangdong Province, Guangzhou, Guangdong Province, China ; Institute of Bone Biology, Academy of Orthopedics, Guangzhou, Guangdong Province, China
| |
Collapse
|
11
|
Fairbairn NG, Meppelink AM, Ng-Glazier J, Randolph MA, Winograd JM. Augmenting peripheral nerve regeneration using stem cells: A review of current opinion. World J Stem Cells 2015; 7:11-26. [PMID: 25621102 PMCID: PMC4300921 DOI: 10.4252/wjsc.v7.i1.11] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/18/2014] [Accepted: 10/27/2014] [Indexed: 02/06/2023] Open
Abstract
Outcomes following peripheral nerve injury remain frustratingly poor. The reasons for this are multifactorial, although maintaining a growth permissive environment in the distal nerve stump following repair is arguably the most important. The optimal environment for axonal regeneration relies on the synthesis and release of many biochemical mediators that are temporally and spatially regulated with a high level of incompletely understood complexity. The Schwann cell (SC) has emerged as a key player in this process. Prolonged periods of distal nerve stump denervation, characteristic of large gaps and proximal injuries, have been associated with a reduction in SC number and ability to support regenerating axons. Cell based therapy offers a potential therapy for the improvement of outcomes following peripheral nerve reconstruction. Stem cells have the potential to increase the number of SCs and prolong their ability to support regeneration. They may also have the ability to rescue and replenish populations of chromatolytic and apoptotic neurons following axotomy. Finally, they can be used in non-physiologic ways to preserve injured tissues such as denervated muscle while neuronal ingrowth has not yet occurred. Aside from stem cell type, careful consideration must be given to differentiation status, how stem cells are supported following transplantation and how they will be delivered to the site of injury. It is the aim of this article to review current opinions on the strategies of stem cell based therapy for the augmentation of peripheral nerve regeneration.
Collapse
|
12
|
Plasticity of mesenchymal stem cells from mouse bone marrow in the presence of conditioned medium of the facial nerve and fibroblast growth factor-2. ScientificWorldJournal 2015; 2014:457380. [PMID: 25614888 PMCID: PMC4295612 DOI: 10.1155/2014/457380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 12/07/2014] [Indexed: 11/18/2022] Open
Abstract
A number of evidences show the influence of the growth of injured nerve fibers in peripheral nervous system as well as potential implant stem cells (SCs). The SCs implementation in the clinical field is promising and the understanding of proliferation and differentiation is essential. This study aimed to evaluate the plasticity of mesenchymal SCs from bone marrow of mice in the presence of culture medium conditioned with facial nerve explants and fibroblast growth factor-2 (FGF-2). The growth and morphology were assessed for over 72 hours. Quantitative phenotypic analysis was taken from the immunocytochemistry for glial fibrillary acidic protein (GFAP), protein OX-42 (OX-42), protein associated with microtubule MAP-2 (MAP-2), protein β-tubulin III (β-tubulin III), neuronal nuclear protein (NeuN), and neurofilament 200 (NF-200). Cells cultured with conditioned medium alone or combined with FGF-2 showed morphological features apparently similar at certain times to neurons and glia and a significant proliferative activity in groups 2 and 4. Cells cultivated only with conditioned medium acquired a glial phenotype. Cells cultured with FGF-2 and conditioned medium expressed GFAP, OX-42, MAP-2, β-tubulin III, NeuN, and NF-200. This study improves our understanding of the plasticity of mesenchymal cells and allows the search for better techniques with SCs.
Collapse
|
13
|
Intramuscular injection of bone marrow mesenchymal stem cells with small gap neurorrhaphy for peripheral nerve repair. Neurosci Lett 2015; 585:119-25. [DOI: 10.1016/j.neulet.2014.11.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 11/25/2014] [Accepted: 11/26/2014] [Indexed: 12/16/2022]
|
14
|
Rat sciatic nerve reconstruction across a 30 mm defect bridged by an oriented porous PHBV tube with Schwann cell as artificial nerve graft. ASAIO J 2014; 60:224-33. [PMID: 24399063 PMCID: PMC3942346 DOI: 10.1097/mat.0000000000000044] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
An oriented poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nerve conduit has been used to evaluate its efficiency based on the promotion of peripheral nerve regeneration in rats. The oriented porous micropatterned artificial nerve conduit was designed onto the micropatterned silicon wafers, and then their surfaces were modified with oxygen plasma to increase cell adhesion. The designed conduits were investigated by cell culture analyses with Schwann cells (SCs). The conduits were implanted into a 30 mm gap in sciatic nerves of rats. Four months after surgery, the regenerated nerves were monitored and evaluated by macroscopic assessments and histology and behavioral analyses. Results of cellular analyses showed suitable properties of designed conduit for nerve regeneration. The results demonstrated that in the polymeric graft with SCs, the rat sciatic nerve trunk had been reconstructed with restoration of nerve continuity and formatted nerve fibers with myelination. Histological results demonstrated the presence of Schwann and glial cells in regenerated nerves. Functional recovery such as walking, swimming, and recovery of nociceptive function was illustrated for all the grafts especially conduits with SCs. This study proves the feasibility of the artificial nerve graft filled with SCs for peripheral nerve regeneration by bridging a longer defect in an animal model.
Collapse
|
15
|
Lu C, Meng D, Cao J, Xiao Z, Cui Y, Fan J, Cui X, Chen B, Yao Y, Zhang Z, Ma J, Pan J, Dai J. Collagen scaffolds combined with collagen‐binding ciliary neurotrophic factor facilitate facial nerve repair in mini‐pigs. J Biomed Mater Res A 2014; 103:1669-76. [DOI: 10.1002/jbm.a.35305] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/28/2014] [Accepted: 07/31/2014] [Indexed: 01/22/2023]
Affiliation(s)
- Chao Lu
- Department of VIP Service, School of StomatologyCapital Medical University Beijing10050 China
| | - Danqing Meng
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun Beijing100190 China
- Graduate SchoolChinese Academy of Sciences Beijing100190 China
| | - Jiani Cao
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun Beijing100190 China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun Beijing100190 China
| | - Yi Cui
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun Beijing100190 China
- Reproductive and Genetic Center of National Research Institute for Family Planning Beijing100081 China
| | - Jingya Fan
- Department of VIP Service, School of StomatologyCapital Medical University Beijing10050 China
| | - Xiaolong Cui
- Graduate SchoolChinese Academy of Sciences Beijing100190 China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun Beijing100190 China
| | - Yao Yao
- Department of VIP Service, School of StomatologyCapital Medical University Beijing10050 China
| | - Zhen Zhang
- Department of VIP Service, School of StomatologyCapital Medical University Beijing10050 China
| | - Jinling Ma
- Department of VIP Service, School of StomatologyCapital Medical University Beijing10050 China
| | - Juli Pan
- Department of VIP Service, School of StomatologyCapital Medical University Beijing10050 China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun Beijing100190 China
| |
Collapse
|
16
|
Inside-out autologous vein grafts fail to restore erectile function in a rat model of cavernous nerve crush injury after nerve-sparing prostatectomy. Int J Impot Res 2014; 27:59-62. [PMID: 25078050 DOI: 10.1038/ijir.2014.32] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 05/01/2014] [Accepted: 07/01/2014] [Indexed: 11/08/2022]
Abstract
Some autologous tissues can restore erectile function (EF) in rats after a resection of the cavernous nerve (CN). However, a cavernous nerve crush injury (CNCI) better reproduces ED occurring after a nerve-sparing radical prostatectomy (RP). The aim was to evaluate the effect on EF of an autologous vein graft after CNCI, compared with an artificial conduit. Five groups of rats were studied: those with CN exposure, exposure+vein, crush, crush+guide and crush+vein. Four weeks after surgery, the EF of rats was assessed by electrical stimulation of the CNs. The intracavernous pressure (ICP) and mean arterial pressure (MAP) were monitored during stimulations at various frequencies. The main outcome, that is, the rigidity of the erections, was defined as the ICP/MAP ratio. At 10 Hz, the ICP/MAP ratios were 41.8%, 34.7%, 20.9%, 33.9% and 20.5%, respectively. The EF was significantly lower in rats if the CNCI was treated with a vein graft instead of an artificial guide. Contrary to cases of CN resection, autologous vein grafts did not improve EF after CNCI. In terms of clinical use, the study suggests to limit an eventual use of autologous vein grafts to non-nerve-sparing RPs.
Collapse
|
17
|
Biazar E, Keshel SH, Sahebalzamani A, Heidari M. Design of Oriented Porous PHBV Scaffold as a Neural Guide. INT J POLYM MATER PO 2014. [DOI: 10.1080/00914037.2013.879446] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Functional effect of local administration of glial derived neurotrophic factor combined with inside-out artery graft on sciatic nerve regeneration in rat. Int J Surg 2014; 12:457-63. [DOI: 10.1016/j.ijsu.2014.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 01/29/2014] [Accepted: 03/28/2014] [Indexed: 11/19/2022]
|
19
|
Mohammadi R, Vahabzadeh B, Amini K. Sciatic nerve regeneration induced by transplantation of in vitro bone marrow stromal cells into an inside-out artery graft in rat. J Craniomaxillofac Surg 2014; 42:1389-96. [PMID: 24942097 DOI: 10.1016/j.jcms.2014.03.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 02/14/2014] [Accepted: 03/25/2014] [Indexed: 01/15/2023] Open
Abstract
Traumatic injury to peripheral nerves results in considerable motor and sensory disability. Several research groups have tried to improve the regeneration of traumatized nerves by invention of favorable microsurgery. Effect of undifferentiated bone marrow stromal cells (BMSCs) combined with artery graft on peripheral nerve regeneration was studied using a rat sciatic nerve regeneration model. A 10-mm sciatic nerve defect was bridged using an artery graft (IOAG) filled with undifferentiated BMSCs (2 × 10(7) cells/mL). In control group, the graft was filled with phosphated buffer saline alone. The regenerated fibers were studied 4, 8 and 12 weeks after surgery. Assessment of nerve regeneration was based on behavioral, functional (Walking Track Analysis), electrophysiological, histomorphometric and immuohistochemical (Schwann cell detection by S-100 expression) criteria. The behavioral, functional and electrophysiological studies confirmed significant recovery of regenerated axons in IOAG/BMSC group (P < 0.05). Quantitative morphometric analyses of regenerated fibers showed the number and diameter of myelinated fibers in IOAG/BMSC group were significantly higher than in the control group (P < 0.05). This demonstrates the potential of using undifferentiated BMSCs combined with artery graft in peripheral nerve regeneration without limitations of donor-site morbidity associated with isolation of Schwann cells. It is also cost saving due to reduction in interval from tissue collection until cell injection, simplicity of laboratory procedures compared to differentiated BMSCs and may have clinical implications for the surgical management of patients after facial nerve transection.
Collapse
Affiliation(s)
- Rahim Mohammadi
- Department of Clinical Science, Faculty of Veterinary Medicine, Urmia University, Nazloo Road, Urmia 57153 1177, Iran.
| | - Behnam Vahabzadeh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Salmas Road, Urmia 3737, Iran
| | - Keyvan Amini
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada
| |
Collapse
|
20
|
Biazar E, Keshel SH. Gelatin-Modified Nanofibrous PHBV Tube as Artificial Nerve Graft for Rat Sciatic Nerve Regeneration. INT J POLYM MATER PO 2014. [DOI: 10.1080/00914037.2013.845187] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Euler de Souza Lucena E, Guzen FP, Lopes de Paiva Cavalcanti JR, Galvão Barboza CA, Silva do Nascimento Júnior E, Cavalcante JDS. Experimental considerations concerning the use of stem cells and tissue engineering for facial nerve regeneration: a systematic review. J Oral Maxillofac Surg 2013; 72:1001-12. [PMID: 24480768 DOI: 10.1016/j.joms.2013.11.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 11/05/2013] [Accepted: 11/07/2013] [Indexed: 02/07/2023]
Abstract
PURPOSE Peripheral nerve trauma results in functional loss in the innervated organ, and recovery without surgical intervention is rare. Many surgical techniques can be used for repair in experimental models. The authors investigated the source and delivery method of stem cells in experimental outcomes, seeking to clarify whether stem cells must be differentiated in the injured facial nerve and improve the regenerative process. MATERIALS AND METHODS The following key terms were used: nervous regeneration, nerve regeneration, facial nerve regeneration, stem cells, embryonic stem cells, fetal stem cells, adult stem cells, facial nerve, facial nerve trauma, and facial nerve traumatism. The search was restricted to experimental studies that applied stem cell therapy and tissue engineering for nerve repair. RESULTS Eight studies meeting the inclusion criteria were reviewed. Different sources of stem and precursor cells were explored (bone marrow mesenchymal stem cells, adipose-derived stem cells, dental pulp cells, and neural stem cells) for their potential application in the scenario of facial nerve injuries. Different material conduits (vases, collagen, and polyglycolic acid) were used as bridges. Immunochemistry and electrophysiology are the principal methods for analyzing regenerative effects. Although recent studies have shown that stem cells can act as a promising bridge for nerve repair, considerable optimization of these therapies will be required for their potential to be realized in a clinical setting. CONCLUSION Based on these studies, the use of stem cells derived from different sources presents promising results related to facial nerve regeneration and produces effective functional results. The use of tubes also optimizes nerve repair, thus promoting greater myelination and axonal growth of peripheral nerves.
Collapse
Affiliation(s)
- Eudes Euler de Souza Lucena
- Assistant Professor, Laboratory of Experimental Neurology, Health Science Center, State University of Rio Grande do Norte, Mossoró, RN, Brazil.
| | - Fausto Pierdoná Guzen
- Adjunct Professor, Laboratory of Experimental Neurology, Health Science Center, State University of Rio Grande do Norte, Mossoró, RN, Brazil
| | | | - Carlos Augusto Galvão Barboza
- Associate Professor, Department of Morphology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Expedito Silva do Nascimento Júnior
- Adjunct Professor, Laboratory of Neuroanatomy, Department of Morphology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Jeferson de Sousa Cavalcante
- Associate Professor, Laboratory of Neuroanatomy, Department of Morphology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
22
|
Chitosan–Cross-Linked Nanofibrous PHBV Nerve Guide for Rat Sciatic Nerve Regeneration Across a Defect Bridge. ASAIO J 2013; 59:651-9. [DOI: 10.1097/mat.0b013e3182a79151] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
23
|
Effect of local administration of insulin-like growth factor I combined with inside-out artery graft on peripheral nerve regeneration. Injury 2013; 44:1295-301. [PMID: 23747124 DOI: 10.1016/j.injury.2013.04.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/09/2013] [Accepted: 04/14/2013] [Indexed: 02/02/2023]
Abstract
The objective was to assess the effect of topically administered insulin-like growth factor (IGF I) on peripheral nerve regeneration and functional recovery. Eighty male healthy white Wistar rats were divided into four experimental groups (n=20), randomly: in transected group (TC), the left sciatic nerve was transected and stumps were fixed in the adjacent muscle. In treatment group, defect was bridged using an inside-out artery graft (IOAG/IGF) filled with 10 μL IGF I (100 ng/kg). In artery graft group (IOAG), the graft was filled with phosphate-buffered saline alone. In sham-operated group (SHAM), sciatic nerve was exposed and manipulated. Each group was subdivided into five subgroups of five animals each and regenerated nerve fibres were studied 4, 8, 12 and 16 weeks after surgery. Behavioural testing, sciatic nerve functional study, gastrocnemius muscle mass and morphometric indices confirmed faster recovery of regenerated axons in IOAG/IGF than IOAG group (P<0.05). In immunohistochemistry, location of reactions to S-100 in IOAG/IGF was clearly more positive than that in IOAG group. When loaded in an artery graft, IGF I accelerated and improved functional recovery and morphometric indices of sciatic nerve.
Collapse
|
24
|
Biazar E, Keshel SH, Pouya M. Efficacy of nanofibrous conduits in repair of long-segment sciatic nerve defects. Neural Regen Res 2013; 8:2501-9. [PMID: 25206560 PMCID: PMC4145933 DOI: 10.3969/j.issn.1673-5374.2013.27.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 07/16/2013] [Indexed: 01/03/2023] Open
Abstract
Our previous studies have histomorphologically confirmed that nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) conduit can be used to repair 30-mm-long sciatic nerve defects. However, the repair effects on rat behaviors remain poorly understood. In this study, we used nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) conduit and autologous sciatic nerve to bridge 30-mm-long rat sciatic nerve gaps. Within 4 months after surgery, rat sciatic nerve functional recovery was evaluated per month by behavioral analyses, including toe out angle, toe spread analysis, walking track analysis, extensor postural thrust, swimming test, open-field analysis and nociceptive function. Results showed that rat sciatic nerve functional recovery was similar after nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) conduit and autologous nerve grafting. These findings suggest that nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) conduit is suitable in use for repair of long-segment sciatic nerve defects.
Collapse
Affiliation(s)
- Esmaeil Biazar
- Department of Biomaterial Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Saeed Heidari Keshel
- Student Research Committee, Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Pouya
- Faculty of Medical Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| |
Collapse
|
25
|
Biazar E, Heidari Keshel S. Development of chitosan-crosslinked nanofibrous PHBV guide for repair of nerve defects. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2013; 42:385-91. [DOI: 10.3109/21691401.2013.832686] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Mohammadi R, Mehrtash M, Nikonam N, Mehrtash M, Amini K. Ketoprofen combined with artery graft entubulization improves functional recovery of transected peripheral nerves. J Craniomaxillofac Surg 2013; 42:2076-81. [PMID: 23932540 DOI: 10.1016/j.jcms.2013.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/28/2013] [Accepted: 05/28/2013] [Indexed: 10/26/2022] Open
Abstract
The objective was to assess the local effect of ketoprofen on sciatic nerve regeneration and functional recovery. Eighty healthy male white Wistar rats were randomized into four experimental groups of 20 animals each: In the transected group (TC), the left sciatic nerve was transected and nerve cut ends were fixed in the adjacent muscle. In the treatment group the defect was bridged using an artery graft (AG/Keto) filled with 10 microliter ketoprofen (0.1 mg/kg). In the artery graft group (AG), the graft was filled with phosphated-buffer saline alone. In the sham-operated group (SHAM), the sciatic nerve was exposed and manipulated. Each group was subdivided into four subgroups of five animals each and regenerated nerve fibres were studied at 4, 8, 12 and 16 weeks post operation. Behavioural testing, sciatic nerve functional study, gastrocnemius muscle mass and morphometric indices showed earlier regeneration of axons in AG/Keto than in AG group (p < 0.05). Immunohistochemical study clearly showed more positive location of reactions to S-100 in AG/Keto than in AG group. When loaded in an artery graft, ketoprofen improved functional recovery and morphometric indices of the sciatic nerve. Local usage of this easily accessible therapeutic medicine is cost saving and avoids the problems associated with systemic administration.
Collapse
Affiliation(s)
- Rahim Mohammadi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia University, Nazloo Road, Urmia 57153 1177, Iran; Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran.
| | - Moein Mehrtash
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia University, Nazloo Road, Urmia 57153 1177, Iran
| | - Nima Nikonam
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Moied Mehrtash
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Keyvan Amini
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada
| |
Collapse
|
27
|
Bhattacharyya TK, Thomas JR. Comparison of Staining Methods for Resin-Embedded Peripheral Nerve. J Histotechnol 2013. [DOI: 10.1179/his.2004.27.3.161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
28
|
Salomone R, Bento RF, Costa HJZR, Azzi-Nogueira D, Ovando PC, Da-Silva CF, Zanatta DB, Strauss BE, Haddad LA. Bone marrow stem cells in facial nerve regeneration from isolated stumps. Muscle Nerve 2013; 48:423-9. [PMID: 23824709 DOI: 10.1002/mus.23768] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2012] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Severe lesions in the facial nerve may have extensive axonal loss and leave isolated stumps that impose technical difficulties for nerve grafting. METHODS We evaluated bone marrow stem cells (BMSC) in a silicone conduit for rat facial nerve regeneration from isolated stumps. Group A utilized empty silicone tubes; in groups B-D, the tube was filled with acellular gel; and, in groups C and D, undifferentiated BMSC (uBMSC) or Schwann-like cells differentiated from BMSC (dBMSC) were added, respectively. Compound muscle action potentials (CMAPs) were measured, and histology was evaluated. RESULTS Groups C and D had the highest CMAP amplitudes. Group C had shorter CMAP durations than groups A, B, and D. Distal axonal number and density were increased in group C compared with groups A and B. CONCLUSIONS Regeneration of the facial nerve was improved by both uBMSC and dBMSC in rats, yet uBMSC was associated with superior functional results.
Collapse
Affiliation(s)
- Raquel Salomone
- Department of Otorhinolaryngology, University of São Paulo Medical School, Avenida Dr. Enéas de Carvalho Aguiar, 155-6° andar, Bloco 6, CEP 05403-000, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The theory of chemotaxis has been widely accepted, but its mechanisms are disputed. Chemotactic growth of peripheral nerves may be tissue, topographic and end-organ specific. Recent studies indicated that peripheral nerve regeneration lacks topographic specificity, but whether it has end-organ specificity is disputed. Chemotaxis in nerve regeneration is affected by the distance between stumps, volume, and neurotrophic support, as well as the structure of distal nerve stumps. It can be applied to achieve precise repair of nerves and complete recovery of end organ function. Small gap sleeve bridging technique, which is based on this theory shows promising effects but it is still challenging to find the perfect combination of nerve conduits, cells and neurotrophic factors to put it intoits best use. In this paper, we made a comprehensive review of mechanisms, effect factors and applications of chemotaxis.
Collapse
|
30
|
Mohammadi R, Hirsaee MA, Amini K. Improvement of functional recovery of transected peripheral nerve by means of artery grafts filled with diclofenac. Int J Surg 2013; 11:259-64. [DOI: 10.1016/j.ijsu.2013.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 12/09/2012] [Accepted: 01/17/2013] [Indexed: 10/27/2022]
|
31
|
Biazar E, Heidari Keshel S. A nanofibrous PHBV tube with Schwann cell as artificial nerve graft contributing to Rat sciatic nerve regeneration across a 30-mm defect bridge. ACTA ACUST UNITED AC 2013; 20:41-9. [DOI: 10.3109/15419061.2013.774378] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
Transplantation of uncultured omental adipose-derived stromal vascular fraction improves sciatic nerve regeneration and functional recovery through inside-out vein graft in rats. J Trauma Acute Care Surg 2012; 72:390-6. [DOI: 10.1097/ta.0b013e31821181dd] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
33
|
Mohammadi R, Azizi S, Delirezh N, Hobbenaghi R, Amini K, Malekkhetabi P. The use of undifferentiated bone marrow stromal cells for sciatic nerve regeneration in rats. Int J Oral Maxillofac Surg 2011; 41:650-6. [PMID: 22154576 DOI: 10.1016/j.ijom.2011.10.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/22/2011] [Accepted: 10/27/2011] [Indexed: 12/17/2022]
Abstract
In recent years, cell transplantation has become a focus of attention and reliable outcomes have been achieved in regeneration of the sciatic nerve. The effect of undifferentiated bone marrow stromal cells (BMSCs) on peripheral nerve regeneration was studied using a rat sciatic nerve regeneration model. A 10-mm sciatic nerve defect was bridged using an inside-out vein graft (IOVG) filled with undifferentiated BMSCs (2 × 10(7)cells/ml). In the control group, the vein was filled with phosphate buffer saline alone. The regenerated fibres were studied 4, 8 and 12 weeks after surgery. Assessment of nerve regeneration was based on functional (walking track analysis), histomorphometric and immunohistochemical (Schwann cell detection by S100 expression) criteria. The functional study confirmed significant recovery of regenerated axons in the IOVG/BMSC group (P<0.05). Quantitative morphometric analyses of regenerated fibres showed the number and diameter of myelinated fibres in the IOVG/BMSC group were significantly higher than in the control group (P<0.05). This demonstrates the potential for using undifferentiated BMSCs in peripheral nerve regeneration without the limitations of donor-site morbidity associated with isolation of Schwann cells. It also reduces costs because the interval between tissue collection and cell injection is reduced and the laboratory procedures are simpler compared to undifferentiated BMSCs.
Collapse
Affiliation(s)
- R Mohammadi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | | | | | | | | | | |
Collapse
|
34
|
Sun F, Zhou K, Mi WJ, Qiu JH. Combined use of decellularized allogeneic artery conduits with autologous transdifferentiated adipose-derived stem cells for facial nerve regeneration in rats. Biomaterials 2011; 32:8118-28. [PMID: 21816463 DOI: 10.1016/j.biomaterials.2011.07.031] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 07/11/2011] [Indexed: 12/12/2022]
Abstract
Natural biological conduits containing seed cells have been widely used as an alternative strategy for nerve gap reconstruction to replace traditional nerve autograft techniques. The purpose of this study was to investigate the effects of a decellularized allogeneic artery conduit containing autologous transdifferentiated adipose-derived stem cells (dADSCs) on an 8-mm facial nerve branch lesion in a rat model. After 8 weeks, functional evaluation of vibrissae movements and electrophysiological assessment, retrograde labeling of facial motoneurons and morphological analysis of regenerated nerves were performed to assess nerve regeneration. The transected nerves reconstructed with dADSC-seeded artery conduits achieved satisfying regenerative outcomes associated with morphological and functional improvements which approached those achieved with Schwann cell (SC)-seeded artery conduits, and superior to those achieved with artery conduits alone or ADSC-seeded artery conduits, but inferior to those achieved with nerve autografts. Besides, numerous transplanted PKH26-labeled dADSCs maintained their acquired SC-phenotype and myelin sheath-forming capacity inside decellularized artery conduits and were involved in the process of axonal regeneration and remyelination. Collectively, our combined use of decellularized allogeneic artery conduits with autologous dADSCs certainly showed beneficial effects on nerve regeneration and functional restoration, and thus represents an alternative approach for the reconstruction of peripheral facial nerve defects.
Collapse
Affiliation(s)
- Fei Sun
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | | | | | | |
Collapse
|
35
|
Sun F, Zhou K, Mi WJ, Qiu JH. Repair of facial nerve defects with decellularized artery allografts containing autologous adipose-derived stem cells in a rat model. Neurosci Lett 2011; 499:104-8. [PMID: 21651959 DOI: 10.1016/j.neulet.2011.05.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 04/26/2011] [Accepted: 05/16/2011] [Indexed: 12/15/2022]
Abstract
The purpose of this study was to investigate the effects of a decellularized artery allograft containing autologous adipose-derived stem cells (ADSCs) on an 8-mm facial nerve branch lesion in a rat model. At 8 weeks postoperatively, functional evaluation of unilateral vibrissae movements, morphological analysis of regenerated nerve segments and retrograde labeling of facial motoneurons were all analyzed. Better regenerative outcomes associated with functional improvement, great axonal growth, and improved target reinnervation were achieved in the artery-ADSCs group (2), whereas the cut nerves sutured with artery conduits alone (group 1) achieved inferior restoration. Furthermore, transected nerves repaired with nerve autografts (group 3) resulted in significant recovery of whisking, maturation of myelinated fibers and increased number of labeled facial neurons, and the latter two parameters were significantly different from those of group 2. Collectively, though our combined use of a decellularized artery allograft with autologous ADSCs achieved regenerative outcomes inferior to a nerve autograft, it certainly showed a beneficial effect on promoting nerve regeneration and thus represents an alternative approach for the reconstruction of peripheral facial nerve defects.
Collapse
Affiliation(s)
- Fei Sun
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | |
Collapse
|
36
|
Jeon WJ, Kang JW, Park JH, Suh DH, Bae JH, Hong JY, Park JW. Clinical application of inside-out vein grafts for the treatment of sensory nerve segmental defect. Microsurgery 2011; 31:268-73; discussion 274-5. [PMID: 21557305 DOI: 10.1002/micr.20850] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 10/05/2010] [Indexed: 01/28/2023]
Abstract
PURPOSE The gold standard for the treatment of segmental nerve defect is an autogenous nerve graft. However, donor site morbidity is an inevitable complication. We substituted an autogenous nerve graft with an inside-out vein graft for the treatment of segmental sensory nerve defect and the clinical results were evaluated retrospectively. PATIENTS AND METHODS Eleven patients of sensory nerve defects have undertaken inside-out vein grafts for the recovery of sensation. The involved nerves were digital nerves in three cases, peroneal nerves in two cases, saphenous nerve in two cases, and superficial radial nerves in four cases. The average length of defects was 2.71 cm (1-6 cm). Donor veins were harvested 4 mm longer than nerve defects and everted to promote nerve regeneration. Patients' objective satisfactions and two-point discriminations were determined, the Semmes-Weinstein monofilament test was performed, and British Medical Council sensory functional scores were evaluated. RESULTS Sensory functional scores recovered to over S3 in all cases. No donor site morbidity was caused by vein harvesting, and all patients achieved satisfactory results with protective sensation at involved sites. CONCLUSION The inside-out vein graft offers a good surgical alternative to an autogenous nerve graft for the reconstruction of sensory nerve defects without donor site morbidity.
Collapse
Affiliation(s)
- Woo Joo Jeon
- Department of Orthopaedic Surgery, College of Medicine, Korea University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
37
|
Ding F, Wu J, Yang Y, Hu W, Zhu Q, Tang X, Liu J, Gu X. Use of tissue-engineered nerve grafts consisting of a chitosan/poly(lactic-co-glycolic acid)-based scaffold included with bone marrow mesenchymal cells for bridging 50-mm dog sciatic nerve gaps. Tissue Eng Part A 2010; 16:3779-90. [PMID: 20666610 DOI: 10.1089/ten.tea.2010.0299] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Bone marrow mesenchymal cells (MSCs) have attracted increasing research interest due to their possible use as support cells for nerve tissue-engineering approaches. We developed a novel design of tissue-engineered nerve grafts consisting of a chitosan/poly(lactic-co-glycolic acid) (PLGA)-based neural scaffold included with autologous MSCs. The graft was used as an alternative to nerve autografts for bridging 50-mm-long gaps in dog sciatic nerve, and the repair outcome at 6 months after nerve grafting was evaluated by a combination of electrophysiological assessment, FluoroGold retrograde tracing, and histological investigation to regenerated nerve tissue and reinnervated target muscle. The experimental results indicated that introduction of autologous MSCs to the chitosan/PLGA-based neural scaffold promoted sciatic nerve regeneration and functional recovery, demonstrating significant efficacy that was, to a certain degree, close to that by nerve autografting, a gold standard for treating large peripheral nerve gaps, and better than that by grafting with the chitosan/PLGA-based scaffold alone.
Collapse
Affiliation(s)
- Fei Ding
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Souza FID, Zumiotti AV, Silva CFD. Neuregulinas 1-alfa e 1-beta na regeneração de nervos periféricos. ACTA ORTOPEDICA BRASILEIRA 2010. [DOI: 10.1590/s1413-78522010000500003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJETIVO: Avaliar o efeito das neuregulinas 1-alfa e 1-beta na regeneração de nervos ciáticos de camundongos C57BL/6J, adultos, machos, através da técnica de tubulização. MÉTODOS: Utilizaram-se 18 animais, divididos em 3 grupos, implantando-se prótese de polietileno em falhas de 4,0 mm no nervo ciático esquerdo: grupo 1 contendo apenas colágeno purificado (Vitrogen®); grupo 2, colágeno associado a neuregulina 1-alfa; grupo 3 com colágeno e neuregulina 1-beta. O grupo controle foi formado por 6 segmentos de nervos ciáticos direitos. Após 4 semanas, os animais foram sacrificados; extraiu-se segmento do ponto médio do nervo regenerado no interior das próteses, padronizaram-se cortes histológicos e confecção das lâminas para análise histomorfométrica. Confrontaram-se os resultados estatisticamente. RESULTADOS: Os animais tratados com neuregulinas tiveram maior número de axônios mielinizados, com diferença estatisticamente significante quando comparados ao grupo colágeno. Não houve diferença estatística entre os grupos de neuregulinas 1-alfa e 1-beta. CONCLUSÃO: a adição de neuregulinas proporcionou aumento significativo do número de fibras mielinizadas.
Collapse
|
39
|
Jiang B, Zhang P, Zhang D, Fu Z, Yin X, Zhang H. Study on Small Gap Sleeve Bridging Peripheral Nerve Injury. ACTA ACUST UNITED AC 2009; 34:55-74. [PMID: 16519404 DOI: 10.1080/10731190500430149] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Epineurium or perineurium neurorrhaphy to recover the nerve continuity was the choice of peripheral nerve mutilation. The nerve selective regeneration theory was put forth by Cajal et al. As this theory was gradually accepted, many researchers had focused on it and its possible application. Our labs had centered on the small gap sleeve bridging fields for about 30 years, using autogeneic vein, artery and biogradable chitin conduits. Our goal was to improve the nerve regeneration effect by means of nerve selective regeneration theory and degradable biomaterials. This serial experiment was to confirm the possibilities of using conduit small gap sleeve bridging to substitute the traditional epineurium neurorrhaphy.
Collapse
Affiliation(s)
- Baoguo Jiang
- Department of Trauma and Orthopeadics, People's Hospital, Peking University, Beijing, China.
| | | | | | | | | | | |
Collapse
|
40
|
Crouzier T, McClendon T, Tosun Z, McFetridge PS. Inverted human umbilical arteries with tunable wall thicknesses for nerve regeneration. J Biomed Mater Res A 2009; 89:818-28. [DOI: 10.1002/jbm.a.32103] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
41
|
Yan H, Zhang F, Chen MB, Lineaweaver WC. Chapter 10 Conduit Luminal Additives for Peripheral Nerve Repair. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 87:199-225. [DOI: 10.1016/s0074-7742(09)87010-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
42
|
Herbert PE, Morgan MF, Berton I, Lechler RI, Dorling A, Williams G, Warrens AN. A pig allograft model of antibody-mediated rejection. Transpl Immunol 2008; 19:167-72. [PMID: 18621532 DOI: 10.1016/j.trim.2008.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 05/07/2008] [Indexed: 11/30/2022]
Abstract
Allograft rejection caused by antibodies in sensitised individuals remains a real problem in human allotransplantation. There would be value in a simple model of this process to evaluate the mechanisms involved in antibody-mediated damage and the development of accommodation, as well as the impact of potential interventions. We have thus developed a novel large animal model of this process using an allosensitisation system. Two inbred lines of miniature pigs that carry different major histocompatibility antigen haplotypes were used. Pigs of one line were sensitised by the sequential subcutaneous injection of major histocompatibility antigen-mismatched allogeneic peripheral blood mononuclear cells derived from the other inbred line. We demonstrated that this generated high titres of allospecific antibodies. We then transplanted carotid arteries from donors syngeneic to the priming cells into the sensitised animals. After 48 h these vessels showed a profound mononuclear cell inflammatory infiltrate in both intima and media, fibrin deposition, and luminal compromise with thrombus and antibody deposition. The mean endothelial surface affected by this process was 59.2%. No such pathology was seen in any of the controls. This model is technically simple to perform with few post-operative complications. It provides proof-of-principle of a model of antibody-mediated rejection which will be of potential value in elucidating the mechanisms underlying the process and the efficacy of interventions to prevent or treat it.
Collapse
Affiliation(s)
- Paul E Herbert
- Department of Immunology, Imperial College London, Hammersmith Campus, Ducane Road, London W12 0HS, UK
| | | | | | | | | | | | | |
Collapse
|
43
|
Tang J, Wang XM, Hu J, Luo E, Qi MC. Autogenous standard versus inside-out vein graft to repair facial nerve in rabbits. Chin J Traumatol 2008; 11:104-9. [PMID: 18377714 DOI: 10.1016/s1008-1275(08)60022-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE To evaluate autogenous vein grafts and inside-out vein grafts as conduits for the defects repair in the rabbit facial nerves. METHODS The 10 mm segments of buccal division of facial nerve were transected for 48 rabbits in this study. Then the gaps were immediately repaired by autogenous vein grafts or inside-out vein grafts in different groups. All the animals underwent the whisker movement test and electrophysiologic test during the following 16 weeks at different time points postoperatively. Subsequently, the histological examination was performed to observe the facial nerve regeneration morphologically. RESULTS At 8 weeks after operation, the facial nerve regeneration has significant difference between the experimental group and the control group in electrophysiologic test and histological observation. However, at the end of this study, 16 weeks after operation, there was no significant difference between inside-out vein grafts and standard vein grafts in enhancing peripheral nerve regeneration. CONCLUSION This study suggest that both kinds of vein grafts play positive roles in facial nerve regeneration after being repaired immediately, but the autogenous inside-out vein grafts might accelerate and facilitate axonal regeneration as compared with control.
Collapse
Affiliation(s)
- Jie Tang
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu 610041, China
| | | | | | | | | |
Collapse
|
44
|
Vein Grafts Used as Nerve Conduits for Obstetrical Brachial Plexus Palsy Reconstruction. Plast Reconstr Surg 2007; 120:1930-1941. [DOI: 10.1097/01.prs.0000287391.12943.00] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
45
|
Yang Y, Chen X, Ding F, Zhang P, Liu J, Gu X. Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro. Biomaterials 2007; 28:1643-52. [PMID: 17188747 DOI: 10.1016/j.biomaterials.2006.12.004] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 12/01/2006] [Indexed: 01/04/2023]
Abstract
Silk-based materials have been used in the field of bone or ligament tissue engineering. In order to explore the feasibility of using purified silk fibroin to construct artificial nerve grafts, it is necessary to evaluate the biocompatibility of silk fibroin material with peripheral nerve tissues and cells. We cultured rat dorsal root ganglia (DRG) on the substrate made up of silk fibroin fibers and observed the cell outgrowth from DRG during culture by using light and electron microscopy coupled with immunocytochemistry. On the other hand, we cultured Schwann cells from rat sciatic nerves in the silk fibroin extract fluid and examined the changes of Schwann cells after different times of culture. The results of light microscopy, MTT test and cell cycle analysis showed that Schwann cells cultured in the silk fibroin extract fluid showed no significant difference in their morphology, cell viability and proliferation as compared to that in plain L15 medium. Furthermore, no significant difference was found in expression of the factors secreted by Schwann cells, such as nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and S-100, between Schwann cells cultured in the silk fibroin extraction fluid and in plain L15 medium by the aid of immunocytochemistry, RT-PCR and Western analysis. Collectively, these data indicate that silk fibroin has good biocompatibility with DRG and is also beneficial to the survival of Schwann cells without exerting any significant cytotoxic effects on their phenotype or functions, thus providing an experimental foundation for the development of silk fibroin as a candidate material for nerve tissue engineering applications.
Collapse
Affiliation(s)
- Yumin Yang
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, 19 Qixiu Road, Jiangsu Province 226001, PR China
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
The use of nerve conduits as an alternative for nerve grafting has a long experimental and clinical history. Luminal fillers, factors introduced into these nerve conduits, were later developed to enhance the nerve regeneration through conduits. Though many luminal fillers have been reported to improve nerve regeneration, their use has not been subjected to systematic review. This review categorizes the types of fillers used, the conduits associated with fillers, and the reported performance of luminal fillers in conduits to present a preference list for the most effective fillers to use over specific distances of nerve defect.
Collapse
Affiliation(s)
- Michael B Chen
- Division of Plastic Surgery, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | |
Collapse
|
47
|
|
48
|
Desouches C, Alluin O, Mutaftschiev N, Dousset E, Magalon G, Boucraut J, Feron F, Decherchi P. La réparation nerveuse périphérique : 30 siècles de recherche. Rev Neurol (Paris) 2005; 161:1045-59. [PMID: 16288170 DOI: 10.1016/s0035-3787(05)85172-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Nerve injury compromises sensory and motor functions. Techniques of peripheral nerve repair are based on our knowledge regarding regeneration. Microsurgical techniques introduced in the late 1950s and widely developed for the past 20 years have improved repairs. However, functional recovery following a peripheral mixed nerve injury is still incomplete. STATE OF ART Good motor and sensory function after nerve injury depends on the reinnervation of the motor end plates and sensory receptors. Nerve regeneration does not begin if the cell body has not survived the initial injury or if it is unable to initiate regeneration. The regenerated axons must reach and reinnervate the appropriate target end-organs in a timely fashion. Recovery of motor function requires a critical number of motor axons reinnervating the muscle fibers. Sensory recovery is possible if the delay in reinnervation is short. Many additional factors influence the success of nerve repair or reconstruction. The timing of the repair, the level of injury, the extent of the zone of injury, the technical skill of the surgeon, and the method of repair and reconstruction contribute to the functional outcome after nerve injury. CONCLUSION This review presents the recent advances in understanding of neural regeneration and their application to the management of primary repairs and nerve gaps.
Collapse
Affiliation(s)
- C Desouches
- Service de Chirurgie de la Main, Chirurgie Plastique et Réparatrice des Membres, Assistance Publique, Hôpitaux de Marseille, Hôpital de la Conception, Marseille
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Wang X, Hu W, Cao Y, Yao J, Wu J, Gu X. Dog sciatic nerve regeneration across a 30-mm defect bridged by a chitosan/PGA artificial nerve graft. Brain 2005; 128:1897-910. [PMID: 15872018 DOI: 10.1093/brain/awh517] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have developed a dual-component artificial nerve graft comprising an outer microporous conduit of chitosan and internal oriented filaments of polyglycolic acid (PGA). The novel graft was used for bridging sciatic nerve across a 30-mm defect in six Beagle dogs, which were used as a chitosan/PGA graft group. The other Beagle dogs were divided into an autograft group (n = 6) as the positive control and a non-grafted group (n = 5) as the negative control. All animals of three groups were monitored for changes in their appearance and locomotion activities after surgery. Their posture and gait were recorded regularly with the aid of photographs and videotapes for each dog. Six months post-operatively, a combination of electrophysiological examination, FluoroGold retrograde tracing, histological assessment including light microscopy and transmission electron microscopy, immunohistochemistry as well as morphometric analyses to both regenerated nerves and target muscles was utilized to investigate the nerve repair effects of our artificial nerve graft. The results demonstrated that, in the chitosan/PGA graft group, the dog sciatic nerve trunk had been reconstructed with restoration of nerve continuity and functional recovery, and its target skeletal muscle had been re-innervated, improving locomotion activities of the operated limb. This study proves the feasibility of the chitosan/PGA artificial nerve graft for peripheral nerve regeneration by bridging a longer defect in a large animal model.
Collapse
Affiliation(s)
- Xiaodong Wang
- Key Laboratory of Neuroregeneration, Nantong University, Nantong City, Jiangsu, People's Republic of China
| | | | | | | | | | | |
Collapse
|
50
|
Gravvanis AI, Tsoutsos DA, Tagaris GA, Papalois AE, Patralexis CG, Iconomou TG, Panayotou PN, Ioannovich JD. Beneficial effect of nerve growth factor-7S on peripheral nerve regeneration through inside-out vein grafts: An experimental study. Microsurgery 2004; 24:408-15. [PMID: 15378588 DOI: 10.1002/micr.20055] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This study investigated the effect of local administration of nerve growth factor-7S (NGF-7S) on the axonal regrowth of mixed peripheral nerves through inside-out vein grafts. Sixty male Wistar rats were randomized into two groups (n = 30). A defect 12 mm long in the right sciatic nerve was created and repaired with an inside-out vein graft from the right jugular vein. NGF-7S (group A) or phosphate-buffered saline (group B; control) was locally administered daily during the first 3 weeks. Walking-track analysis and electrophysiological and histological-morphometric studies were carried out 4, 6, 8, 10, and 12 weeks postoperatively (subgroups a, b, c, d, and e, respectively, n = 6 each). Data analysis showed that 1) the recovery of motor function, as measured by walk pattern analysis and evoked muscle action potential, and 2) the orientation, number, myelin thickness, and diameter of myelinated fibers were better in the NGF-7S than in the control group. These findings present strong evidence of the beneficial effect of NGF-7S on peripheral nerve regeneration through inside-out vein grafts.
Collapse
Affiliation(s)
- Andreas I Gravvanis
- Department of Plastic Surgery-Microsurgery and Burns Center, General State Hospital of Athens G. Gennimatas, 15343 Athens, Greece.
| | | | | | | | | | | | | | | |
Collapse
|