1
|
Castro VO, Livi S, Sperling LE, Dos Santos MG, Merlini C. Biodegradable Electrospun Conduit with Aligned Fibers Based on Poly(lactic- co-glycolic Acid) (PLGA)/Carbon Nanotubes and Choline Bitartrate Ionic Liquid. ACS APPLIED BIO MATERIALS 2024; 7:1536-1546. [PMID: 38346264 DOI: 10.1021/acsabm.3c00980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Functionally active aligned fibers are a promising approach to enhance neuro adhesion and guide the extension of neurons for peripheral nerve regeneration. Therefore, the present study developed poly(lactic-co-glycolic acid) (PLGA)-aligned electrospun mats and investigated the synergic effect with carbon nanotubes (CNTs) and Choline Bitartrate ionic liquid (Bio-IL) on PLGA fibers. Morphology, thermal, and mechanical performances were determined as well as the hydrolytic degradation and the cytotoxicity. Results revealed that electrospun mats are composed of highly aligned fibers, and CNTs were aligned and homogeneously distributed into the fibers. Bio-IL changed thermal transition behavior, reduced glass transition temperature (Tg), and favored crystal phase formation. The mechanical properties increased in the presence of CNTs and slightly decreased in the presence of the Bio-IL. The results demonstrated a decrease in the degradation rate in the presence of CNTs, whereas the use of Bio-IL led to an increase in the degradation rate. Cytotoxicity results showed that all the electrospun mats display metabolic activity above 70%, which demonstrates that they are biocompatible. Moreover, superior biocompatibility was observed for the electrospun containing Bio-IL combined with higher amounts of CNTs, showing a high potential to be used in nerve tissue engineering.
Collapse
Affiliation(s)
- Vanessa Oliveira Castro
- Mechanical Engineering Department, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina 88040-535, Brazil
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, UMR 5223, Ingénierie des Matériaux Polymères, Villeurbanne F-69621 Cédex, France
| | - Sébastien Livi
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, UMR 5223, Ingénierie des Matériaux Polymères, Villeurbanne F-69621 Cédex, France
| | - Laura Elena Sperling
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul 90610-000, Brazil
| | - Marcelo Garrido Dos Santos
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul 90610-000, Brazil
| | - Claudia Merlini
- Materials Engineering Special Coordination, Universidade Federal de Santa Catarina (UFSC), Blumenau, Santa Catarina 89036-002, Brazil
| |
Collapse
|
2
|
Lai CSE, Leyva-Aranda V, Kong VH, Lopez-Silva TL, Farsheed AC, Cristobal CD, Swain JWR, Lee HK, Hartgerink JD. A Combined Conduit-Bioactive Hydrogel Approach for Regeneration of Transected Sciatic Nerves. ACS APPLIED BIO MATERIALS 2022; 5:10.1021/acsabm.2c00132. [PMID: 35446025 PMCID: PMC11097895 DOI: 10.1021/acsabm.2c00132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Transected peripheral nerve injury (PNI) affects the quality of life of patients, which leads to socioeconomic burden. Despite the existence of autografts and commercially available nerve guidance conduits (NGCs), the complexity of peripheral nerve regeneration requires further research in bioengineered NGCs to improve surgical outcomes. In this work, we introduce multidomain peptide (MDP) hydrogels, as intraluminal fillers, into electrospun poly(ε-caprolactone) (PCL) conduits to bridge 10 mm rat sciatic nerve defects. The efficacy of treatment groups was evaluated by electromyography and gait analysis to determine their electrical and motor recovery. We then studied the samples' histomorphometry with immunofluorescence staining and automatic axon counting/measurement software. Comparison with negative control group shows that PCL conduits filled with an anionic MDP may improve functional recovery 16 weeks postoperation, displaying higher amplitude of compound muscle action potential, greater gastrocnemius muscle weight retention, and earlier occurrence of flexion contracture. In contrast, PCL conduits filled with a cationic MDP showed the least degree of myelination and poor functional recovery. This phenomenon may be attributed to MDPs' difference in degradation time. Electrospun PCL conduits filled with an anionic MDP may become an attractive tissue engineering strategy for treating transected PNI when supplemented with other bioactive modifications.
Collapse
Affiliation(s)
- Cheuk Sun Edwin Lai
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | | | - Victoria H Kong
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Tania L Lopez-Silva
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Adam C Farsheed
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Carlo D Cristobal
- Integrative Program in Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Joseph W R Swain
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Hyun Kyoung Lee
- Integrative Program in Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas 77030, United States
- Department of Pediatrics, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, United States
| | - Jeffrey D Hartgerink
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
3
|
Liu K, Yan L, Li R, Song Z, Ding J, Liu B, Chen X. 3D Printed Personalized Nerve Guide Conduits for Precision Repair of Peripheral Nerve Defects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103875. [PMID: 35182046 PMCID: PMC9036027 DOI: 10.1002/advs.202103875] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/25/2021] [Indexed: 05/07/2023]
Abstract
The treatment of peripheral nerve defects has always been one of the most challenging clinical practices in neurosurgery. Currently, nerve autograft is the preferred treatment modality for peripheral nerve defects, while the therapy is constantly plagued by the limited donor, loss of donor function, formation of neuroma, nerve distortion or dislocation, and nerve diameter mismatch. To address these clinical issues, the emerged nerve guide conduits (NGCs) are expected to offer effective platforms to repair peripheral nerve defects, especially those with large or complex topological structures. Up to now, numerous technologies are developed for preparing diverse NGCs, such as solvent casting, gas foaming, phase separation, freeze-drying, melt molding, electrospinning, and three-dimensional (3D) printing. 3D printing shows great potential and advantages because it can quickly and accurately manufacture the required NGCs from various natural and synthetic materials. This review introduces the application of personalized 3D printed NGCs for the precision repair of peripheral nerve defects and predicts their future directions.
Collapse
Affiliation(s)
- Kai Liu
- Department of Hand and Foot SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130061P. R. China
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Lesan Yan
- Biomedical Materials and Engineering Research Center of Hubei ProvinceState Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of Technology122 Luoshi RoadWuhan430070P. R. China
| | - Ruotao Li
- Department of Hand and Foot SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130061P. R. China
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Zhiming Song
- Department of Sports MedicineThe First Hospital of Jilin University1 Xinmin StreetChangchun130061P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
- State Key Laboratory of Molecular Engineering of PolymersFudan University220 Handan RoadShanghai200433P. R. China
| | - Bin Liu
- Department of Hand and Foot SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130061P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| |
Collapse
|
4
|
Li Y, Fraser D, Mereness J, Van Hove A, Basu S, Newman M, Benoit DSW. Tissue Engineered Neurovascularization Strategies for Craniofacial Tissue Regeneration. ACS APPLIED BIO MATERIALS 2022; 5:20-39. [PMID: 35014834 PMCID: PMC9016342 DOI: 10.1021/acsabm.1c00979] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Craniofacial tissue injuries, diseases, and defects, including those within bone, dental, and periodontal tissues and salivary glands, impact an estimated 1 billion patients globally. Craniofacial tissue dysfunction significantly reduces quality of life, and successful repair of damaged tissues remains a significant challenge. Blood vessels and nerves are colocalized within craniofacial tissues and act synergistically during tissue regeneration. Therefore, the success of craniofacial regenerative approaches is predicated on successful recruitment, regeneration, or integration of both vascularization and innervation. Tissue engineering strategies have been widely used to encourage vascularization and, more recently, to improve innervation through host tissue recruitment or prevascularization/innervation of engineered tissues. However, current scaffold designs and cell or growth factor delivery approaches often fail to synergistically coordinate both vascularization and innervation to orchestrate successful tissue regeneration. Additionally, tissue engineering approaches are typically investigated separately for vascularization and innervation. Since both tissues act in concert to improve craniofacial tissue regeneration outcomes, a revised approach for development of engineered materials is required. This review aims to provide an overview of neurovascularization in craniofacial tissues and strategies to target either process thus far. Finally, key design principles are described for engineering approaches that will support both vascularization and innervation for successful craniofacial tissue regeneration.
Collapse
Affiliation(s)
- Yiming Li
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - David Fraser
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States.,Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York 14620, United States.,Translational Biomedical Sciences Program, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Jared Mereness
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States.,Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Amy Van Hove
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Sayantani Basu
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Maureen Newman
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States.,Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York 14620, United States.,Translational Biomedical Sciences Program, University of Rochester Medical Center, Rochester, New York 14642, United States.,Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York 14642, United States.,Materials Science Program, University of Rochester, Rochester, New York 14627, United States.,Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Biomedical Genetics and Center for Oral Biology, University of Rochester Medical Center, Rochester, New York 14642, United States
| |
Collapse
|
5
|
Zhang M, Li C, Zhou LP, Pi W, Zhang PX. Polymer Scaffolds for Biomedical Applications in Peripheral Nerve Reconstruction. Molecules 2021; 26:molecules26092712. [PMID: 34063072 PMCID: PMC8124340 DOI: 10.3390/molecules26092712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 11/20/2022] Open
Abstract
The nervous system is a significant part of the human body, and peripheral nerve injury caused by trauma can cause various functional disorders. When the broken end defect is large and cannot be repaired by direct suture, small gap sutures of nerve conduits can effectively replace nerve transplantation and avoid the side effect of donor area disorders. There are many choices for nerve conduits, and natural materials and synthetic polymers have their advantages. Among them, the nerve scaffold should meet the requirements of good degradability, biocompatibility, promoting axon growth, supporting axon expansion and regeneration, and higher cell adhesion. Polymer biological scaffolds can change some shortcomings of raw materials by using electrospinning filling technology and surface modification technology to make them more suitable for nerve regeneration. Therefore, polymer scaffolds have a substantial prospect in the field of biomedicine in future. This paper reviews the application of nerve conduits in the field of repairing peripheral nerve injury, and we discuss the latest progress of materials and fabrication techniques of these polymer scaffolds.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100083, China; (M.Z.); (C.L.); (W.P.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100083, China
| | - Ci Li
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100083, China; (M.Z.); (C.L.); (W.P.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100083, China
| | - Li-Ping Zhou
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China;
| | - Wei Pi
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100083, China; (M.Z.); (C.L.); (W.P.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100083, China
| | - Pei-Xun Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100083, China; (M.Z.); (C.L.); (W.P.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100083, China
- National Center for Trauma Medicine, Beijing 100083, China
- Correspondence:
| |
Collapse
|
6
|
Pinho AC, Vieira Branquinho M, Alvites RD, Fonseca AC, Caseiro AR, Santos Pedrosa S, Luís AL, Pires I, Prada J, Muratori L, Ronchi G, Geuna S, Santos JD, Maurício AC, Serra AC, Coelho JFJ. Dextran-based tube-guides for the regeneration of the rat sciatic nerve after neurotmesis injury. Biomater Sci 2020; 8:798-811. [PMID: 31904045 DOI: 10.1039/c9bm00901a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this work, dextran-based nerve tube-guides were prepared, characterized and used in a standardized animal model of neurotmesis injury. Non-porous and porous transparent tube-guides were obtained by photocrosslinking of two co-macromonomers based on dextran and poly(ε-caprolactone) (PCL). Swelling capacity of the tube-guides ranged from 40-60% with no visible constriction of their inner diameter. In vitro hydrolytic degradation tests showed that the tube-guides maintained their structural integrity up to 6 months. The in vivo performance of the tube-guides was evaluated by entubulation of the rat sciatic nerve after a neurotmesis injury, with a 10 mm-gap between the nerve stumps. The results showed that the tube-guides were able to promote the regeneration of the nerve in a similar manner to what was observed with conventional techniques (nerve graft and end-to-end suture). Stereological analysis proved that nerve regeneration occurred, and both tube-guides presented fibre diameter and g-ratio closer to healthy sciatic nerves. The histomorphometric analysis of Tibialis anterior (TA) skeletal muscle showed decreased neurogenic atrophy in the porous tube-guides treated group, presenting measurements that are similar to the uninjured control.
Collapse
Affiliation(s)
- Ana Catarina Pinho
- CEMMPRE, Department of Chemical Engineering, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal.
| | - Mariana Vieira Branquinho
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal and Animal Science Study Centre (CECA), University of Porto Agroenvironment, Technologies and Sciences Institute (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Rui Damásio Alvites
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal and Animal Science Study Centre (CECA), University of Porto Agroenvironment, Technologies and Sciences Institute (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Ana Clotilde Fonseca
- CEMMPRE, Department of Chemical Engineering, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal.
| | - Ana Rita Caseiro
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal and Animal Science Study Centre (CECA), University of Porto Agroenvironment, Technologies and Sciences Institute (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal and Vasco da Gama University School/Escola Universitária Vasco da Gama (EUVG), Av. José R. Sousa Fernandes 197, Campus Universitário - Bloco B, Lordemão, 3020-210 Coimbra, Portugal
| | - Sílvia Santos Pedrosa
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal and Animal Science Study Centre (CECA), University of Porto Agroenvironment, Technologies and Sciences Institute (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Ana Lúcia Luís
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal and Animal Science Study Centre (CECA), University of Porto Agroenvironment, Technologies and Sciences Institute (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Isabel Pires
- CECAV and Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - Justina Prada
- CECAV and Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - Luísa Muratori
- Neuroscience Institute of the Cavalieri Ottolenghi Foundation and Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy
| | - Giulia Ronchi
- Neuroscience Institute of the Cavalieri Ottolenghi Foundation and Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy
| | - Stefano Geuna
- CECAV and Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - José Domingos Santos
- REQUIMTE-LAQV, Department of Metallurgy and Materials, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Ana Colette Maurício
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal and Animal Science Study Centre (CECA), University of Porto Agroenvironment, Technologies and Sciences Institute (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Arménio Coimbra Serra
- CEMMPRE, Department of Chemical Engineering, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal.
| | | |
Collapse
|
7
|
Houshyar S, Bhattacharyya A, Shanks R. Peripheral Nerve Conduit: Materials and Structures. ACS Chem Neurosci 2019; 10:3349-3365. [PMID: 31273975 DOI: 10.1021/acschemneuro.9b00203] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Peripheral nerve injuries (PNIs) are the most common injury types to affect the nervous system. Restoration of nerve function after PNI is a challenging medical issue. Extended gaps in transected peripheral nerves are only repaired using autologous nerve grafting. This technique, however, in which nerve tissue is harvested from a donor site and grafted onto a recipient site in the same body, has many limitations and disadvantages. Recent studies have revealed artificial nerve conduits as a promising alternative technique to substitute autologous nerves. This Review summarizes different types of artificial nerve grafts used to repair peripheral nerve injuries. These include synthetic and natural polymers with biological factors. Then, desirable properties of nerve guides are discussed based on their functionality and effectiveness. In the final part of this Review, fabrication methods and commercially available nerve guides are described.
Collapse
Affiliation(s)
- Shadi Houshyar
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Amitava Bhattacharyya
- Nanoscience and Technology, Department of Electronics and Communication, PSG College of Technology, Coimbatore − 641004, India
| | - Robert Shanks
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
8
|
Yilmaz MS, Sahin E, Kaymaz R, Altunkaynak BZ, Akidil AO, Yanar S, Demir D, Guven M. Histological Study of The Healing of Traumatic Tympanic Membrane Perforation After Vivosorb and Epifilm Application. EAR, NOSE & THROAT JOURNAL 2019; 100:90-96. [PMID: 31155945 DOI: 10.1177/0145561319854320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Untreated traumatic tympanic membrane perforations (TMPs) may lead to permanent perforations and hearing loss. There are many materials that have been previously used for repairing the TMPs. AIMS AND OBJECTIVES The purpose of this study is to evaluate the clinical and histological effects of Vivosorb (Vv) and Epifilm on healing of TMPs in a rat model. MATERIAL AND METHODS The posterior-inferior quadrant of the tympanic membranes (TMs) in right ears of 14 rats was perforated using a 20-g needle and then the animals were randomly divided into 2 equal groups (n = 7). The perforated right TMs were treated with either Vv (Vv group) or Epifilm (Ep group). The left TMs of 7 rats were perforated in same way and allowed to close spontaneously without any topical material applications (spontaneous closure group as sham control, SC). The left tympanic membranes of the other 7 rats were not perforated and used as normal controls (NC group). On postoperative 15th day, tympanic bullas were extracted from killed rats and examined morphometrically and histopathologically. RESULTS Perforation closure rate was 85.7% (6/7) in both Vv and SC groups. Perforations of Ep group closed in 7/7 (100%) ears. The thicknesses of the perforated membranes were increased in SC and especially Vv groups. Also, connective tissue fibrosis, blood clots, and epithelial degenerations were detected in SC and Vv groups. The mean fibroblastic reaction scores of Vv, Ep, and SC groups were 2.14(+), 0.57(+), and 1.71(+) respectively, on comparison with NC group. The mean neovascularization score was 1.42(+) in Vv group, 0.14(+) in Ep group, and 0.57(+) in SC group. CONCLUSION AND SIGNIFICANCE Vivosorb and especially Epifilm can improve the healing process in traumatic TMPs and additionally, Epifilm might be more preferred for the treatment of TMPs because of causing lesser fibrosis.
Collapse
Affiliation(s)
- Mahmut Sinan Yilmaz
- Department of Otorhinolaryngology, Faculty of Medicine, 175678Sakarya University, Sakarya, Turkey
| | - Elvan Sahin
- Department of Histology and Embryology, Faculty of Medicine, 175678Sakarya University, Sakarya, Turkey
| | - Recep Kaymaz
- Otorhinolaryngology Clinic, Sarkisla State Hospital, Sarkisla, Sivas, Turkey
| | - Berrin Zuhal Altunkaynak
- Department of Histology and Embryology, Faculty of Medicine, 119714Okan University, Istanbul, Turkey
| | - Ayse Oznur Akidil
- Otorhinolaryngology Clinic, 147005Bakirkoy Dr Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Sevinc Yanar
- Department of Medical Biology, Faculty of Medicine, 64185Kocaeli University, Umuttepe, Kocaeli, Turkey
| | - Deniz Demir
- Department of Otorhinolaryngology, Faculty of Medicine, 175678Sakarya University, Sakarya, Turkey
| | - Mehmet Guven
- Department of Otorhinolaryngology, Faculty of Medicine, 175678Sakarya University, Sakarya, Turkey
| |
Collapse
|
9
|
Dixon AR, Jariwala SH, Bilis Z, Loverde JR, Pasquina PF, Alvarez LM. Bridging the gap in peripheral nerve repair with 3D printed and bioprinted conduits. Biomaterials 2018; 186:44-63. [DOI: 10.1016/j.biomaterials.2018.09.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 01/14/2023]
|
10
|
Kim SM, Lee MS, Jeon J, Lee DH, Yang K, Cho S, Han I, Yang HS. Biodegradable Nerve Guidance Conduit with Microporous and Micropatterned Poly(lactic‐
co
‐glycolic acid)‐Accelerated Sciatic Nerve Regeneration. Macromol Biosci 2018; 18:e1800290. [DOI: 10.1002/mabi.201800290] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/21/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Seong Min Kim
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative MedicineDankook University Cheonan 330–714 Republic of Korea
| | - Min Suk Lee
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative MedicineDankook University Cheonan 330–714 Republic of Korea
| | - Jin Jeon
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative MedicineDankook University Cheonan 330–714 Republic of Korea
| | - Dong Hyun Lee
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative MedicineDankook University Cheonan 330–714 Republic of Korea
| | - Kisuk Yang
- Department of BiotechnologyYonsei University Seoul 120–749 Republic of Korea
| | - Seung‐Woo Cho
- Department of BiotechnologyYonsei University Seoul 120–749 Republic of Korea
| | - Inbo Han
- Department of NeurosurgeryCHA Bundang Medical CenterCHA University Seongnam 13496 Republic of Korea
| | - Hee Seok Yang
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative MedicineDankook University Cheonan 330–714 Republic of Korea
- Department of Pharmaceutical EngineeringDankook University Cheonan 330–714 Republic of Korea
| |
Collapse
|
11
|
Yi S, Xu L, Gu X. Scaffolds for peripheral nerve repair and reconstruction. Exp Neurol 2018; 319:112761. [PMID: 29772248 DOI: 10.1016/j.expneurol.2018.05.016] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/05/2018] [Accepted: 05/13/2018] [Indexed: 12/22/2022]
Abstract
Trauma-associated peripheral nerve defect is a widespread clinical problem. Autologous nerve grafting, the current gold standard technique for the treatment of peripheral nerve injury, has many internal disadvantages. Emerging studies showed that tissue engineered nerve graft is an effective substitute to autologous nerves. Tissue engineered nerve graft is generally composed of neural scaffolds and incorporating cells and molecules. A variety of biomaterials have been used to construct neural scaffolds, the main component of tissue engineered nerve graft. Synthetic polymers (e.g. silicone, polyglycolic acid, and poly(lactic-co-glycolic acid)) and natural materials (e.g. chitosan, silk fibroin, and extracellular matrix components) are commonly used along or together to build neural scaffolds. Many other materials, including the extracellular matrix, glass fabrics, ceramics, and metallic materials, have also been used to construct neural scaffolds. These biomaterials are fabricated to create specific structures and surface features. Seeding supporting cells and/or incorporating neurotrophic factors to neural scaffolds further improve restoration effects. Preliminary studies demonstrate that clinical applications of these neural scaffolds achieve satisfactory functional recovery. Therefore, tissue engineered nerve graft provides a good alternative to autologous nerve graft and represents a promising frontier in neural tissue engineering.
Collapse
Affiliation(s)
- Sheng Yi
- Key laboratory of neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Lai Xu
- Key laboratory of neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xiaosong Gu
- Key laboratory of neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
12
|
Use of Vascularized Sural Nerve Grafts for Sciatic Nerve Reconstruction After Malignant Bone and Soft Tissue Tumor Resection in the Lower Legs. Ann Plast Surg 2018; 80:379-383. [PMID: 29389699 DOI: 10.1097/sap.0000000000001315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Vascularized nerve grafting is normally associated with a good outcome, but can be difficult to use for nerve reconstruction in patients with long defects of the sciatic nerve given the graft thickness. We report 3 cases of large defect sciatic nerve reconstruction using the bilateral sural nerves of the lower legs harvested together with the fascia and lesser saphenous vein to form a vascularized flap. METHODS The subjects were 3 patients who required the reconstruction of a 10-cm or longer segment of the sciatic nerve. Priority was given to restoring sensation in the plantar region such that reconstruction of the sensory nerves corresponding to the tibial region. RESULTS Two patients were followed up for long term. There was some persistent perceptual deficit in the foot, minimal protective sensation had been achieved. CONCLUSIONS We were able to selectively reconstruct the sensory nerves to achieve sensation in the soles of the feet by using sural nerve grafts from both legs. As the prognosis for the underlying condition in cases necessitating this procedure is often poor, the costs and benefits of reconstruction should always be weighed carefully for each individual patient.
Collapse
|
13
|
Lee EJ, Huh BK, Kim SN, Lee JY, Park CG, Mikos AG, Choy YB. Application of Materials as Medical Devices with Localized Drug Delivery Capabilities for Enhanced Wound Repair. PROGRESS IN MATERIALS SCIENCE 2017; 89:392-410. [PMID: 29129946 PMCID: PMC5679315 DOI: 10.1016/j.pmatsci.2017.06.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The plentiful assortment of natural and synthetic materials can be leveraged to accommodate diverse wound types, as well as different stages of the healing process. An ideal material is envisioned to promote tissue repair with minimal inconvenience for patients. Traditional materials employed in the clinical setting often invoke secondary complications, such as infection, pain, foreign body reaction, and chronic inflammation. This review surveys the repertoire of surgical sutures, wound dressings, surgical glues, orthopedic fixation devices and bone fillers with drug eluting capabilities. It highlights the various techniques developed to effectively incorporate drugs into the selected material or blend of materials for both soft and hard tissue repair. The mechanical and chemical attributes of the resultant materials are also discussed, along with their biological outcomes in vitro and/or in vivo. Perspectives and challenges regarding future research endeavors are also delineated for next-generation wound repair materials.
Collapse
Affiliation(s)
- Esther J. Lee
- Department of Bioengineering, Rice University, MS 142, P.O. Box 1892, Houston, Texas, 77251-1892, USA
| | - Beom Kang Huh
- Interdisciplinary Program for Bioengineering, Seoul National University College of Engineering, Seoul, Republic of Korea
| | - Se Na Kim
- Interdisciplinary Program for Bioengineering, Seoul National University College of Engineering, Seoul, Republic of Korea
| | - Jae Yeon Lee
- Interdisciplinary Program for Bioengineering, Seoul National University College of Engineering, Seoul, Republic of Korea
| | - Chun Gwon Park
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Antonios G. Mikos
- Department of Bioengineering, Rice University, MS 142, P.O. Box 1892, Houston, Texas, 77251-1892, USA
- Department of Chemical and Biomolecular Engineering, Rice University, MS 362, P.O. Box 1892, Houston, Texas, 77251-1892, USA
| | - Young Bin Choy
- Interdisciplinary Program for Bioengineering, Seoul National University College of Engineering, Seoul, Republic of Korea
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
14
|
Jiang W, Tian Q, Vuong T, Shashaty M, Gopez C, Sanders T, Liu H. Comparison Study on Four Biodegradable Polymer Coatings for Controlling Magnesium Degradation and Human Endothelial Cell Adhesion and Spreading. ACS Biomater Sci Eng 2017; 3:936-950. [DOI: 10.1021/acsbiomaterials.7b00215] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
| | | | | | | | - Chris Gopez
- Narco College, 2001 Third Street, Norco, California 92860, United States
| | | | | |
Collapse
|
15
|
Costa Serrão de Araújo G, Couto Neto B, Harley Santos Botelho R, Carpi Malta M. Clinical Evaluation After Peripheral Nerve Repair With Caprolactone Neurotube. Hand (N Y) 2017; 12:168-174. [PMID: 28344529 PMCID: PMC5349409 DOI: 10.1177/1558944716643277] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Background: Peripheral nerve injuries with substance loss are challenges to surgeons because direct suture repair may result in malfunction due to nerve suture tension. Autologous nerve grafts are alternatives for treating those lesions; however, harvesting grafts adds morbidity at donor sites. Synthetic substitutes are options to bridge the gaps in these situations. The caprolactone neurotubes are used to assist nerve regeneration, but the literature lacks studies that evaluate their results. Methods: This research was designed to clinically evaluate patients undergoing repair of peripheral nerves with that conduit. We described results of 12 case series consisting of operations with Neurolac®. All nerves severed were sensory and had small gaps (ie, less than 25 mm). Subjective and objective clinical evaluations were performed and registered. Results: Physical examination by monofilament testing and 2-point discrimination showed results rated as good or excellent. However, the patients had complaints regarding sensory changes. Conclusions: Synthetic bioabsorbable guides for nerve repair are promising. The caprolactone conduits were demonstrated to be a safe option treatment and with a simple technique. Although in our study there were some operative complications, they were in line with previous descriptions in the literature. This case series added information about the treatment prognosis, but a higher evidence level study is necessary for decision making.
Collapse
Affiliation(s)
- Gabriel Costa Serrão de Araújo
- Universidade Federal Fluminense, Niterói, Brazil,Instituto Nacional de Traumatologia e Ortopedia, Rio de Janeiro, Brazil,Gabriel Costa Serrão de Araújo, Hospital Universitário Antônio Pedro, Rua Marques de Paraná, 303-Centro, Niterói, Rio de Janeiro, CEP 24033-900, Brazil.
| | - Bernardo Couto Neto
- Universidade Federal Fluminense, Niterói, Brazil,Universidade do Estado do Rio de Janeiro, Brazil
| | - Renato Harley Santos Botelho
- Instituto Nacional de Traumatologia e Ortopedia, Rio de Janeiro, Brazil,Universidade do Estado do Rio de Janeiro, Brazil
| | | |
Collapse
|
16
|
Ribeiro J, Caseiro AR, Pereira T, Armada-da-Silva PA, Pires I, Prada J, Amorim I, Leal Reis I, Amado S, Santos JD, Bompasso S, Raimondo S, Varejão ASP, Geuna S, Luís AL, Maurício AC. Evaluation of PVA biodegradable electric conductive membranes for nerve regeneration in axonotmesis injuries: the rat sciatic nerve animal model. J Biomed Mater Res A 2017; 105:1267-1280. [PMID: 28078802 DOI: 10.1002/jbm.a.35998] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/13/2016] [Accepted: 01/05/2017] [Indexed: 11/06/2022]
Abstract
The therapeutic effect of three polyvinyl alcohol (PVA) membranes loaded with electrically conductive materials - carbon nanotubes (PVA-CNTs) and polypyrrole (PVA-PPy) - were tested in vivo for neuro-muscular regeneration after an axonotmesis injury in the rat sciatic nerve. The membranes electrical conductivity measured was 1.5 ± 0.5 × 10-6 S/m, 579 ± 0.6 × 10-6 S/m, and 1837.5 ± 0.7 × 10-6 S/m, respectively. At week-12, a residual motor and nociceptive deficit were present in all treated groups, but at week-12, a better recovery to normal gait pattern of the PVA-CNTs and PVA-PPy treated groups was observed. Morphometrical analysis demonstrated that PVA-CNTs group presented higher myelin thickness and lower g-ratio. The tibialis anterior muscle, in the PVA-PPy and PVA-CNTs groups showed a 9% and 19% increase of average fiber size area and a 5% and 10% increase of the "minimal Feret's diameter," respectively. No inflammation, degeneration, fibrosis or necrosis were detected in lung, liver, kidneys, spleen, and regional lymph nodes and absence of carbon deposits was confirmed with Von Kossa and Masson-Fontana stains. In conclusion, the membranes of PVA-CNTs and PVA-PPy are biocompatible and have electrical conductivity. The higher electrical conductivity measured in PVA-CNTs membrane might be responsible for the positive results on maturation of myelinated fibers. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1267-1280, 2017.
Collapse
Affiliation(s)
- Jorge Ribeiro
- Departmento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, Porto, 4050-313, Portugal.,Sub-inidade de Cirurgia Experimental e Medicina Regenerativa, Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal.,UPVET, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, Porto, 4050-313, Portugal
| | - Ana Rita Caseiro
- Departmento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, Porto, 4050-313, Portugal.,Sub-inidade de Cirurgia Experimental e Medicina Regenerativa, Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal.,CEMUC, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, Porto, 4200-465, Portugal
| | - Tiago Pereira
- Departmento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, Porto, 4050-313, Portugal.,Sub-inidade de Cirurgia Experimental e Medicina Regenerativa, Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal
| | - Paulo Alexandre Armada-da-Silva
- Faculdade de Motricidade Humana (FMH), Universidade de Lisboa (ULisboa), Estrada da Costa, 1499-002, Dafundo, Cruz Quebrada, Portugal.,CIPER-FMH: Centro Interdisciplinar de Estudo de Performance Humana, Faculdade de Motricidade Humana (FMH), Universidade de Lisboa (ULisboa), Estrada da Costa, 1499-002, Cruz Quebrada - Dafundo, Portugal
| | - Isabel Pires
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.,CECAV, Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, Vila Real, 5000-801, Portugal
| | - Justina Prada
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.,CECAV, Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, Vila Real, 5000-801, Portugal
| | - Irina Amorim
- Departmento de Patologia e de Imunologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, Porto, 4050-313, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto (UP), Rua Alfredo Allen, Porto, 4200-135, Portugal
| | - Inês Leal Reis
- Departmento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, Porto, 4050-313, Portugal.,Sub-inidade de Cirurgia Experimental e Medicina Regenerativa, Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal
| | - Sandra Amado
- Instituto Politécnico de Leiria, UIS-IPL: Unidade de Investigação em Saúde da Escola Superior de Saúde de Leiria, Portugal.,CDrsp - Centre for Rapid and Sustainable Product Development, Rua de Portugal 2430-028, Marinha, Grande, Portugal
| | - José Domingos Santos
- CEMUC, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, Porto, 4200-465, Portugal
| | - Simone Bompasso
- Department of Clinical and Biological Sciences, University of Turin, Turin, 10126, Italy.,Neuroscience Institute of the Cavalieri Ottolenghi Foundation (NICO), Azienda Ospedaliero-Universitaria San Luigi Gonzaga, Regione Gonzole 10, Orbassano, 10043, Turin, Italy
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences, University of Turin, Turin, 10126, Italy.,Neuroscience Institute of the Cavalieri Ottolenghi Foundation (NICO), Azienda Ospedaliero-Universitaria San Luigi Gonzaga, Regione Gonzole 10, Orbassano, 10043, Turin, Italy
| | - Artur Severo Proença Varejão
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.,CECAV, Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, Vila Real, 5000-801, Portugal
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, University of Turin, Turin, 10126, Italy.,Neuroscience Institute of the Cavalieri Ottolenghi Foundation (NICO), Azienda Ospedaliero-Universitaria San Luigi Gonzaga, Regione Gonzole 10, Orbassano, 10043, Turin, Italy
| | - Ana Lúcia Luís
- Departmento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, Porto, 4050-313, Portugal.,Sub-inidade de Cirurgia Experimental e Medicina Regenerativa, Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal.,UPVET, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, Porto, 4050-313, Portugal
| | - Ana Colette Maurício
- Departmento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, Porto, 4050-313, Portugal.,Sub-inidade de Cirurgia Experimental e Medicina Regenerativa, Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal
| |
Collapse
|
17
|
Peng SW, Li CW, Chiu IM, Wang GJ. Nerve guidance conduit with a hybrid structure of a PLGA microfibrous bundle wrapped in a micro/nanostructured membrane. Int J Nanomedicine 2017; 12:421-432. [PMID: 28138239 PMCID: PMC5238773 DOI: 10.2147/ijn.s122017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nerve repair in tissue engineering involves the precise construction of a scaffold to guide nerve cell regeneration in the desired direction. However, improvements are needed to facilitate the cell migration/growth rate of nerves in the center of a nerve conduit. In this paper, we propose a nerve guidance conduit with a hybrid structure comprising a microfibrous poly(lactic-co-glycolic acid) (PLGA) bundle wrapped in a micro/nanostructured PLGA membrane. We applied sequential fabrication processes, including photolithography, nano-electroforming, and polydimethylsiloxane casting to manufacture master molds for the repeated production of the PLGA subelements. After demolding it from the master molds, we rolled the microfibrous membrane into a bundle and then wrapped it in the micro/nanostructured membrane to form a nerve-guiding conduit. We used KT98/F1B-GFP cells to estimate the migration rate and guidance ability of the fabricated nerve conduit and found that both elements increased the migration rate 1.6-fold compared with a flat PLGA membrane. We also found that 90% of the cells in the hybrid nano/microstructured membrane grew in the direction of the designed patterns. After 3 days of culturing, the interior of the nerve conduit was filled with cells, and the microfiber bundle was also surrounded by cells. Our conduit cell culture results also demonstrate that the proposed micro/nanohybrid and microfibrous structures can retain their shapes. The proposed hybrid-structured conduit demonstrates a high capability for guiding nerve cells and promoting cell migration, and, as such, is feasible for use in clinical applications.
Collapse
Affiliation(s)
| | | | - Ing-Ming Chiu
- PhD Program in Tissue Engineering and Regenerative Medicine, National Chung-Hsing University, Taichung
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Gou-Jen Wang
- Graduate Institute of Biomedical Engineering
- Department of Mechanical Engineering
- PhD Program in Tissue Engineering and Regenerative Medicine, National Chung-Hsing University, Taichung
| |
Collapse
|
18
|
Lin F, Wang X, Wang Y, Yang Y, Li Y. Preparation and biocompatibility of electrospinning PDLLA/β-TCP/collagen for peripheral nerve regeneration. RSC Adv 2017. [DOI: 10.1039/c7ra05966c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A unique nerve conduit composed of poly(d,l-lactic acid) (PDLLA), β-tricalcium phosphate (β-TCP) and collagen was prepared by electrospinning for the first time.
Collapse
Affiliation(s)
- Fei Lin
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
- Biomedical Materials and Engineering Research Centre of Hubei Province
| | - Xinyu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
- Biomedical Materials and Engineering Research Centre of Hubei Province
| | - Yiyu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
- Biomedical Materials and Engineering Research Centre of Hubei Province
| | - Yushi Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
- Biomedical Materials and Engineering Research Centre of Hubei Province
| | - Yi Li
- Institute of Textiles and Clothing
- The Hong Kong Polytechnic University
- Hong Kong
- P. R. China
| |
Collapse
|
19
|
Pinho AC, Fonseca AC, Serra AC, Santos JD, Coelho JFJ. Peripheral Nerve Regeneration: Current Status and New Strategies Using Polymeric Materials. Adv Healthc Mater 2016; 5:2732-2744. [PMID: 27600578 DOI: 10.1002/adhm.201600236] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Indexed: 12/16/2022]
Abstract
Experiments concerning peripheral nerve regeneration have been reported since the end of the 19th century. The need to implement an effective surgical procedure in terms of functional recovery has resulted in the appearance of several approaches to solve this problem. Nerve autograft was the first approach studied and is still considered the gold standard. Since autografts require donor harvesting, other strategies involving the use of natural materials have also been studied. Nevertheless, the results were not very encouraging and attention has moved towards the use of nerve conduits made from polymers, whose properties can be easily tailored and which allow the nerve conduit to be easily processed into a variety of shapes and forms. Some of these materials are already approved by the US Food and Drug Administration (FDA), as is presented here. Furthermore, polymers with conductive properties have very recently been subject to intensive study in this field, since it is believed that such properties have a positive influence in the regeneration of the new axons. This manuscript intends to give a global view of the mechanisms involved in peripheral nerve regeneration and the main strategies used to recover motor and sensorial function of injured nerves.
Collapse
Affiliation(s)
- Ana C. Pinho
- CEMUC Department of Chemical Engineering; University of Coimbra; Rua Sílvio Lima-Pólo II 3030-790 Coimbra Portugal
| | - Ana C. Fonseca
- CEMUC Department of Chemical Engineering; University of Coimbra; Rua Sílvio Lima-Pólo II 3030-790 Coimbra Portugal
| | - Arménio C. Serra
- CEMUC Department of Chemical Engineering; University of Coimbra; Rua Sílvio Lima-Pólo II 3030-790 Coimbra Portugal
| | - José D. Santos
- CEMUC Department of Metallurgical and Materials Engineering; University of Porto; Rua Dr Roberto Frias 4200-465 Porto Portugal
| | - Jorge F. J. Coelho
- CEMUC Department of Chemical Engineering; University of Coimbra; Rua Sílvio Lima-Pólo II 3030-790 Coimbra Portugal
| |
Collapse
|
20
|
Advances in peripheral nervous system regenerative therapeutic strategies: A biomaterials approach. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 65:425-32. [DOI: 10.1016/j.msec.2016.04.048] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 02/20/2016] [Accepted: 04/14/2016] [Indexed: 01/02/2023]
|
21
|
Smink AM, de Haan BJ, Paredes-Juarez GA, Wolters AHG, Kuipers J, Giepmans BNG, Schwab L, Engelse MA, van Apeldoorn AA, de Koning E, Faas MM, de Vos P. Selection of polymers for application in scaffolds applicable for human pancreatic islet transplantation. ACTA ACUST UNITED AC 2016; 11:035006. [PMID: 27173149 DOI: 10.1088/1748-6041/11/3/035006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The liver is currently the site for transplantation of islets in humans. This is not optimal for islets, but alternative sites in humans are not available. Polymeric scaffolds in surgically accessible areas are a solution. As human donors are rare, the polymers should not interfere with functional survival of human-islets. We applied a novel platform to test the adequacy of polymers for application in scaffolds for human-islet transplantation. Viability, functionality, and immune parameters were included to test poly(D,L-lactide-co-ε-caprolactone) (PDLLCL), poly(ethylene oxide terephthalate)/polybutylene terephthalate (PEOT/PBT) block copolymer, and polysulfone. The type of polymer influenced the functional survival of human islets. In islets cultured on PDLLCL the glucagon-producing α-cells and insulin-producing β-cells contained more hormone granules than in islets in contact with PEOT/PBT or polysulfone. This was studied with ultrastructural analysis by electron microscopy (nanotomy) during 7 d of culture. PDLLCL was also associated with statistically significant lower release of double-stranded DNA (dsDNA, a so called danger-associate molecular pattern (DAMP)) from islets on PDLLCL when compared to the other polymers. DAMPs support undesired immune responses. Hydrophilicity of the polymers did not influence dsDNA release. Islets on PDLLCL also showed less cellular outgrowth. These outgrowing cells were mainly fibroblast and some β-cells undergoing epithelial to mesenchymal cell transition. None of the polymers influenced the glucose-stimulated insulin secretion. As PDLLCL was associated with less release of DAMPs, it is a promising candidate for creating a scaffold for human islets. Our study demonstrates that for sensitive, rare cadaveric donor tissue such as pancreatic islets it might be necessary to first select materials that do not influence functionality before proposing the biomaterial for in vivo application. Our presented platform may facilitate this selection of biomaterials.
Collapse
Affiliation(s)
- Alexandra M Smink
- Department of Pathology and Medical Biology, Section of Immunoendocrinology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, EA11, 9700 GZ, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Li BB, Yin YX, Yan QJ, Wang XY, Li SP. A novel bioactive nerve conduit for the repair of peripheral nerve injury. Neural Regen Res 2016; 11:150-5. [PMID: 26981105 PMCID: PMC4774210 DOI: 10.4103/1673-5374.175062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The use of a nerve conduit provides an opportunity to regulate cytokines, growth factors and neurotrophins in peripheral nerve regeneration and avoid autograft defects. We constructed a poly-D-L-lactide (PDLLA)-based nerve conduit that was modified using poly{(lactic acid)-co-[(glycolic acid)-alt-(L-lysine)]} and β-tricalcium phosphate. The effectiveness of this bioactive PDLLA-based nerve conduit was compared to that of PDLLA-only conduit in the nerve regeneration following a 10-mm sciatic nerve injury in rats. We observed the nerve morphology in the early period of regeneration, 35 days post injury, using hematoxylin-eosin and methylene blue staining. Compared with the PDLLA conduit, the nerve fibers in the PDLLA-based bioactive nerve conduit were thicker and more regular in size. Muscle fibers in the soleus muscle had greater diameters in the PDLLA bioactive group than in the PDLLA only group. The PDLLA-based bioactive nerve conduit is a promising strategy for repair after sciatic nerve injury.
Collapse
Affiliation(s)
- Bin-Bin Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei Province, China; Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, Hubei Province, China
| | - Yi-Xia Yin
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei Province, China; Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, Hubei Province, China
| | - Qiong-Jiao Yan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei Province, China; Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, Hubei Province, China
| | - Xin-Yu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei Province, China; Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, Hubei Province, China
| | - Shi-Pu Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei Province, China; Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, Hubei Province, China
| |
Collapse
|
23
|
Neuromuscular Regeneration: Perspective on the Application of Mesenchymal Stem Cells and Their Secretion Products. Stem Cells Int 2016; 2016:9756973. [PMID: 26880998 PMCID: PMC4736584 DOI: 10.1155/2016/9756973] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/12/2015] [Accepted: 11/16/2015] [Indexed: 02/08/2023] Open
Abstract
Mesenchymal stem cells are posing as a promising character in the most recent therapeutic strategies and, since their discovery, extensive knowledge on their features and functions has been gained. In recent years, innovative sources have been disclosed in alternative to the bone marrow, conveying their associated ethical concerns and ease of harvest, such as the umbilical cord tissue and the dental pulp. These are also amenable of cryopreservation and thawing for desired purposes, in benefit of the donor itself or other patients in pressing need. These sources present promising possibilities in becoming useful cell sources for therapeutic applications in the forthcoming years. Effective and potential applications of these cellular-based strategies for the regeneration of peripheral nerve are overviewed, documenting recent advances and identified issues for this research area in the near future. Finally, besides the differentiation capacities attributed to mesenchymal stem cells, advances in the recognition of their effective mode of action in the regenerative theatre have led to a new area of interest: the mesenchymal stem cells' secretome. The paracrine modulatory pathway appears to be a major mechanism by which these are beneficial to nerve regeneration and comprehension on the specific growth factors, cytokine, and extracellular molecules secretion profiles is therefore of great interest.
Collapse
|
24
|
Qu X, Cao Y, Chen C, Die X, Kang Q. A poly(lactide-co-glycolide) film loaded with abundant bone morphogenetic protein-2: A substrate-promoting osteoblast attachment, proliferation, and differentiation in bone tissue engineering. J Biomed Mater Res A 2015; 103:2786-96. [PMID: 25847124 DOI: 10.1002/jbm.a.35379] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/11/2014] [Accepted: 12/01/2014] [Indexed: 12/25/2022]
Affiliation(s)
- Xiangyang Qu
- Ministry of Education Key Laboratory of Child Development and Disorders; The Children's Hospital of Chongqing Medical University; Chongqing 400014 China
- Key Laboratory of Pediatrics in Chongqing; Chongqing 400014 China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders; Chongqing 400014 China
| | - Yujiang Cao
- Ministry of Education Key Laboratory of Child Development and Disorders; The Children's Hospital of Chongqing Medical University; Chongqing 400014 China
- Key Laboratory of Pediatrics in Chongqing; Chongqing 400014 China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders; Chongqing 400014 China
| | - Cong Chen
- Ministry of Education Key Laboratory of Child Development and Disorders; The Children's Hospital of Chongqing Medical University; Chongqing 400014 China
- Key Laboratory of Pediatrics in Chongqing; Chongqing 400014 China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders; Chongqing 400014 China
- Chongqing Stem Cell Therapy Engineering Technical Center; Chongqing 400014 China
| | - Xiaohong Die
- Ministry of Education Key Laboratory of Child Development and Disorders; The Children's Hospital of Chongqing Medical University; Chongqing 400014 China
- Key Laboratory of Pediatrics in Chongqing; Chongqing 400014 China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders; Chongqing 400014 China
- Chongqing Stem Cell Therapy Engineering Technical Center; Chongqing 400014 China
| | - Quan Kang
- Ministry of Education Key Laboratory of Child Development and Disorders; The Children's Hospital of Chongqing Medical University; Chongqing 400014 China
- Key Laboratory of Pediatrics in Chongqing; Chongqing 400014 China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders; Chongqing 400014 China
- Chongqing Stem Cell Therapy Engineering Technical Center; Chongqing 400014 China
| |
Collapse
|
25
|
Gärtner A, Pereira T, Simões MJ, Armada-da-Silva PA, França ML, Sousa R, Bompasso S, Raimondo S, Shirosaki Y, Nakamura Y, Hayakawa S, Osakah A, Porto B, Luís AL, Varejão AS, Maurício AC. Use of hybrid chitosan membranes and human mesenchymal stem cells from the Wharton jelly of umbilical cord for promoting nerve regeneration in an axonotmesis rat model. Neural Regen Res 2014; 7:2247-58. [PMID: 25538746 PMCID: PMC4268725 DOI: 10.3969/j.issn.1673-5374.2012.29.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 07/10/2012] [Indexed: 12/11/2022] Open
Abstract
Many studies have been dedicated to the development of scaffolds for improving post-traumatic nerve regeneration. The goal of this study was to assess the effect on nerve regeneration, associating a hybrid chitosan membrane with non-differentiated human mesenchymal stem cells isolated from Wharton's jelly of umbilical cord, in peripheral nerve reconstruction after crush injury. Chromosome analysis on human mesenchymal stem cell line from Wharton's jelly was carried out and no structural alterations were found in metaphase. Chitosan membranes were previously tested in vitro, to assess their ability in supporting human mesenchymal stem cell survival, expansion, and differentiation. For the in vivo testing, Sasco Sprague adult rats were divided in 4 groups of 6 or 7 animals each: Group 1, sciatic axonotmesis injury without any other intervention (Group 1-Crush); Group 2, the axonotmesis lesion of 3 mm was infiltrated with a suspension of 1 250–1 500 human mesenchymal stem cells (total volume of 50 μL) (Group 2-CrushCell); Group 3, axonotmesis lesion of 3 mm was enwrapped with a chitosan type III membrane covered with a monolayer of non-differentiated human mesenchymal stem cells (Group 3-CrushChitIIICell) and Group 4, axonotmesis lesion of 3 mm was enwrapped with a chitosan type III membrane (Group 4-CrushChitIII). Motor and sensory functional recovery was evaluated throughout a healing period of 12 weeks using sciatic functional index, static sciatic index, extensor postural thrust, and withdrawal reflex latency. Stereological analysis was carried out on regenerated nerve fibers. Results showed that infiltration of human mesenchymal stem cells, or the combination of chitosan membrane enwrapment and human mesenchymal stem cell enrichment after nerve crush injury provide a slight advantage to post-traumatic nerve regeneration. Results obtained with chitosan type III membrane alone confirmed that they significantly improve post-traumatic axonal regrowth and may represent a very promising clinical tool in peripheral nerve reconstructive surgery. Yet, umbilical cord human mesenchymal stem cells, that can be expanded in culture and induced to form several different types of cells, may prove, in future experiments, to be a new source of cells for cell therapy, including targets such as peripheral nerve and muscle.
Collapse
Affiliation(s)
- Andrea Gärtner
- Animal Science and Study Centre / Food and Agrarian Sciences and Technologies Institute, Porto University, 4099-003 Porto, Portugal ; Institute of Biomedical Sciences Abel Salazar, Veterinary Clinics Department, Porto University, Porto 4099-003, Portugal
| | - Tiago Pereira
- Animal Science and Study Centre / Food and Agrarian Sciences and Technologies Institute, Porto University, 4099-003 Porto, Portugal ; Institute of Biomedical Sciences Abel Salazar, Veterinary Clinics Department, Porto University, Porto 4099-003, Portugal
| | - Maria João Simões
- Animal Science and Study Centre / Food and Agrarian Sciences and Technologies Institute, Porto University, 4099-003 Porto, Portugal ; Institute of Biomedical Sciences Abel Salazar, Veterinary Clinics Department, Porto University, Porto 4099-003, Portugal
| | - Paulo As Armada-da-Silva
- Faculty of Human Kinetics, Technical University of Lisbon, Cruz Quebrada - Dafundo, 1499-002, Portugal
| | - Miguel L França
- Animal Science and Study Centre / Food and Agrarian Sciences and Technologies Institute, Porto University, 4099-003 Porto, Portugal ; Institute of Biomedical Sciences Abel Salazar, Veterinary Clinics Department, Porto University, Porto 4099-003, Portugal
| | - Rosa Sousa
- Institute of Biomedical Sciences Abel Salazar, Cytogenetic Department, Porto University, Porto 4099-003, Portugal
| | - Simone Bompasso
- Neuroscience Institute of the Cavalieri Ottolenghi Foundation, Orbassano 10043, Turin, Italy ; Department of Clinical and Biological Sciences, University of Turin, Orbassano 10010, Turin, Italy
| | - Stefania Raimondo
- Neuroscience Institute of the Cavalieri Ottolenghi Foundation, Orbassano 10043, Turin, Italy ; Department of Clinical and Biological Sciences, University of Turin, Orbassano 10010, Turin, Italy
| | - Yuki Shirosaki
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Yuri Nakamura
- Faculty of Engineering, Okayama University, Okayama 700-8530, Japan
| | - Satoshi Hayakawa
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Akiyoshi Osakah
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Beatriz Porto
- Institute of Biomedical Sciences Abel Salazar, Cytogenetic Department, Porto University, Porto 4099-003, Portugal
| | - Ana Lúcia Luís
- Animal Science and Study Centre / Food and Agrarian Sciences and Technologies Institute, Porto University, 4099-003 Porto, Portugal ; Institute of Biomedical Sciences Abel Salazar, Veterinary Clinics Department, Porto University, Porto 4099-003, Portugal
| | - Artur Sp Varejão
- Department of Veterinary Sciences, Research Centre in Sports, Health and Human Development, University of Trás-os-Montes and Alto Douro, Vila Real 5001-801, Portugal
| | - Ana Colette Maurício
- Animal Science and Study Centre / Food and Agrarian Sciences and Technologies Institute, Porto University, 4099-003 Porto, Portugal ; Institute of Biomedical Sciences Abel Salazar, Veterinary Clinics Department, Porto University, Porto 4099-003, Portugal
| |
Collapse
|
26
|
Promoting nerve regeneration in a neurotmesis rat model using poly(DL-lactide-ε-caprolactone) membranes and mesenchymal stem cells from the Wharton's jelly: in vitro and in vivo analysis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:302659. [PMID: 25121094 PMCID: PMC4119891 DOI: 10.1155/2014/302659] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/27/2014] [Accepted: 05/29/2014] [Indexed: 12/17/2022]
Abstract
In peripheral nerves MSCs can modulate Wallerian degeneration and the overall regenerative response by acting through paracrine mechanisms directly on regenerating axons or upon the nerve-supporting Schwann cells. In the present study, the effect of human MSCs from Wharton's jelly (HMSCs), differentiated into neuroglial-like cells associated to poly (DL-lactide-ε-caprolactone) membrane, on nerve regeneration, was evaluated in the neurotmesis injury rat sciatic nerve model. Results in vitro showed successful differentiation of HMSCs into neuroglial-like cells, characterized by expression of specific neuroglial markers confirmed by immunocytochemistry and by RT-PCR and qPCR targeting specific genes expressed. In vivo testing evaluated during the healing period of 20 weeks, showed no evident positive effect of HMSCs or neuroglial-like cell enrichment at the sciatic nerve repair site on most of the functional and nerve morphometric predictors of nerve regeneration although the nociception function was almost normal. EPT on the other hand, recovered significantly better after HMSCs enriched membrane employment, to values of residual functional impairment compared to other treated groups. When the neurotmesis injury can be surgically reconstructed with an end-to-end suture or by grafting, the addition of a PLC membrane associated with HMSCs seems to bring significant advantage, especially concerning the motor function recovery.
Collapse
|
27
|
Challenges for nerve repair using chitosan-siloxane hybrid porous scaffolds. BIOMED RESEARCH INTERNATIONAL 2014; 2014:153808. [PMID: 25054129 PMCID: PMC4087280 DOI: 10.1155/2014/153808] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/29/2014] [Accepted: 05/31/2014] [Indexed: 01/02/2023]
Abstract
The treatment of peripheral nerve injuries remains one of the greatest challenges of neurosurgery, as functional recover is rarely satisfactory in these patients. Recently, biodegradable nerve guides have shown great potential for enhancing nerve regeneration. A major advantage of these nerve guides is that no foreign material remains after the device has fulfilled its task, which spares a second surgical intervention. Recently, we studied peripheral nerve regeneration using chitosan-γ-glycidoxypropyltrimethoxysilane (chitosan-GPTMS) porous hybrid membranes. In our studies, these porous membranes significantly improved nerve fiber regeneration and functional recovery in rat models of axonotmetic and neurotmetic sciatic nerve injuries. In particular, the number of regenerated myelinated nerve fibers and myelin thickness were significantly higher in rat treated with chitosan porous hybrid membranes, whether or not they were used in combination with mesenchymal stem cells isolated from the Wharton's jelly of the umbilical cord. In this review, we describe our findings on the use of chitosan-GPTMS hybrids for nerve regeneration.
Collapse
|
28
|
Ribeiro J, Gartner A, Pereira T, Gomes R, Lopes MA, Gonçalves C, Varejão A, Luís AL, Maurício AC. Perspectives of employing mesenchymal stem cells from the Wharton's jelly of the umbilical cord for peripheral nerve repair. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 108:79-120. [PMID: 24083432 DOI: 10.1016/b978-0-12-410499-0.00004-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mesenchymal stem cells (MSCs) from Wharton's jelly present high plasticity and low immunogenicity, turning them into a desirable form of cell therapy for the injured nervous system. Their isolation, expansion, and characterization have been performed from cryopreserved umbilical cord tissue. Great concern has been dedicated to the collection, preservation, and transport protocols of the umbilical cord after the parturition to the laboratory in order to obtain samples with higher number of viable MSCs without microbiological contamination. Different biomaterials like chitosan-silicate hybrid, collagen, PLGA90:10, poly(DL-lactide-ɛ-caprolactone), and poly(vinyl alcohol) loaded with electrical conductive materials, associated to MSCs have also been tested in the rat sciatic nerve in axonotmesis and neurotmesis lesions. The in vitro studies of the scaffolds included citocompatibility evaluation of the biomaterials used and cell characterization by imunocytochemistry, karyotype analysis, differentiation capacity into neuroglial-like cells, and flow cytometry. The regeneration process follow-up has been performed by functional analysis and the repaired nerves processed for stereological studies permitted the morphologic regeneration evaluation. The MSCs from Wharton's jelly delivered through tested biomaterials should be regarded a potentially valuable tool to improve clinical outcome especially after trauma to sensory nerves. In addition, these cells represent a noncontroversial source of primitive mesenchymal progenitor cells, which can be harvested after birth, cryogenically stored, thawed, and expanded for therapeutic uses. The importance of a longitudinal study concerning tissue engineering of the peripheral nerve, which includes a multidisciplinary team able to develop biomaterials associated to cell therapies, to perform preclinical trials concerning animal welfare and the appropriate animal model is here enhanced.
Collapse
Affiliation(s)
- Jorge Ribeiro
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal; Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA), Universidade do Porto (UP), Porto, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hinüber C, Chwalek K, Pan-Montojo FJ, Nitschke M, Vogel R, Brünig H, Heinrich G, Werner C. Hierarchically structured nerve guidance channels based on poly-3-hydroxybutyrate enhance oriented axonal outgrowth. Acta Biomater 2014; 10:2086-95. [PMID: 24406197 DOI: 10.1016/j.actbio.2013.12.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/07/2013] [Accepted: 12/26/2013] [Indexed: 01/19/2023]
Abstract
Traumatic peripheral nerve lesions can cause local anesthesia, paralysis and loss of autonomic control. Reconstruction using engineered nerve guidance conduits (NGCs) is rarely successful due to the sub-optimal characteristics of the conduits. To address the demands of clinical practice, we developed a hierarchically structured NGC from slowly resorbing poly(3-hydroxybutyric acid) (P3HB). The NGC consists of a permeable single-lumen tube and melt-spun fibrillar lumen fillers. Permeable tubes were constructed from P3HB/poly(ɛ-caprolactone) (PCL) blends or poly(3-hydroxybutyric acid-co-4-hydroxybutyric acid) (P(3HB-co-4HB)). Polyvinylpyrrolidone was used as a porogen in solvent-free thermoplastic processing, followed by selective polymer leaching. All tested material compositions showed hydrolytic degradation after 16weeks in phosphate buffered saline, whereas P3HB/PCL tubes maintained mechanical strength compared to (P(3HB-co-4HB)). The porous scaffolds allowed diffusion of large molecules (∼70kDa). In vitro studies demonstrated that mouse fibroblasts survived and proliferated inside closed porous tubes. An in vitro model of axonal regeneration using dorsal root ganglia and sympathetic cervical ganglia demonstrated that the NGCs successfully supported neuron survival and neurite outgrowth. The introduction of fibrillar lumen fillers promoted oriented neurite growth and coating with extracellular matrix proteins further increased ganglia attachment and cell migration. In this study we show that P3HB-based NGCs scaffolds have potential in long gap peripheral nerve repair strategies.
Collapse
Affiliation(s)
- C Hinüber
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany; Technische Universität Dresden, Institute of Material Science, Helmholtzstrasse 7, 01069 Dresden, Germany.
| | - K Chwalek
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
| | - F J Pan-Montojo
- Technische Universität Dresden, Institute of Anatomy/University Hospital Carl Gustav Carus, Fetscherstr. 74, 01307 Dresden, Germany
| | - M Nitschke
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
| | - R Vogel
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
| | - H Brünig
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
| | - G Heinrich
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany; Technische Universität Dresden, Institute of Material Science, Helmholtzstrasse 7, 01069 Dresden, Germany
| | - C Werner
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany; Technische Universität Dresden, Center for Regenerative Therapies Dresden, Tatzberg 47, 01187 Dresden, Germany
| |
Collapse
|
30
|
Carriel V, Alaminos M, Garzón I, Campos A, Cornelissen M. Tissue engineering of the peripheral nervous system. Expert Rev Neurother 2014; 14:301-18. [DOI: 10.1586/14737175.2014.887444] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Zhu G, Lou W. Regeneration of facial nerve defects with xenogeneic acellular nerve grafts in a rat model. Head Neck 2013; 36:481-6. [PMID: 23729307 DOI: 10.1002/hed.23321] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Because of ease of harvest and low immunogenicity, xenogeneic acellular nerve graft (XANG) may be an alternative to autologous nerve to repair facial nerve defects. METHODS Facial nerve defects of Wistar rats were repaired by XANG, and nerve gap regeneration was investigated by electrophysiological test, horseradish peroxidase (HRP) retrograde tracing and histomorphometric analysis, as compared to autograft. RESULTS Twenty weeks after the grafting, electrophysiology showed that whisker pad muscles responded to the electrical stimuli given at the site proximal to the transplantation in 2 groups. Some HRP-labeled facial motorneurons were located on the facial nucleus of the operated side, and an abundance of myelinated axons were found at the middle of the grafts and obvious motor endplates in the target muscles in 2 groups, although they were inferior to the contralateral side in numbers. CONCLUSION XANG represents an alternative approach for the reconstruction of peripheral facial nerve defects.
Collapse
Affiliation(s)
- Guochen Zhu
- Department of Otolaryngology, Wuxi Second People's Hospital, Affiliated with Nanjing Medical University, Wuxi, Jiangsu, China
| | | |
Collapse
|
32
|
Geuna S, Gnavi S, Perroteau I, Tos P, Battiston B. Tissue Engineering and Peripheral Nerve Reconstruction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 108:35-57. [DOI: 10.1016/b978-0-12-410499-0.00002-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Gärtner A, Pereira T, Alves MG, Armada-da-Silva PAS, Amorim I, Gomes R, Ribeiro J, França ML, Lopes C, Carvalho RA, Socorro S, Oliveira PF, Porto B, Sousa R, Bombaci A, Ronchi G, Fregnan F, Varejão ASP, Luís AL, Geuna S, Maurício AC. Use of poly(DL-lactide-ε-caprolactone) membranes and mesenchymal stem cells from the Wharton's jelly of the umbilical cord for promoting nerve regeneration in axonotmesis: in vitro and in vivo analysis. Differentiation 2012; 84:355-65. [PMID: 23142731 DOI: 10.1016/j.diff.2012.10.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/22/2012] [Accepted: 10/09/2012] [Indexed: 02/08/2023]
Abstract
Cellular systems implanted into an injured nerve may produce growth factors or extracellular matrix molecules, modulate the inflammatory process and eventually improve nerve regeneration. In the present study, we evaluated the therapeutic value of human umbilical cord matrix MSCs (HMSCs) on rat sciatic nerve after axonotmesis injury associated to Vivosorb® membrane. During HMSCs expansion and differentiation in neuroglial-like cells, the culture medium was collected at 48, 72 and 96 h for nuclear magnetic resonance (NMR) analysis in order to evaluate the metabolic profile. To correlate the HMSCs ability to differentiate and survival capacity in the presence of the Vivosorb® membrane, the [Ca(2+)]i of undifferentiated HMSCs or neuroglial-differentiated HMSCs was determined by the epifluorescence technique using the Fura-2AM probe. The Vivosorb® membrane proved to be adequate and used as scaffold associated with undifferentiated HMSCs or neuroglial-differentiated HMSCs. In vivo testing was carried out in adult rats where a sciatic nerve axonotmesis injury was treated with undifferentiated HMSCs or neuroglial differentiated HMSCs with or without the Vivosorb® membrane. Motor and sensory functional recovery was evaluated throughout a healing period of 12 weeks using sciatic functional index (SFI), extensor postural thrust (EPT), and withdrawal reflex latency (WRL). Stereological analysis was carried out on regenerated nerve fibers. In vitro investigation showed the formation of typical neuroglial cells after differentiation, which were positively stained for the typical specific neuroglial markers such as the GFAP, the GAP-43 and NeuN. NMR showed clear evidence that HMSCs expansion is glycolysis-dependent but their differentiation requires the switch of the metabolic profile to oxidative metabolism. In vivo studies showed enhanced recovery of motor and sensory function in animals treated with transplanted undifferentiated and differentiated HMSCs that was accompanied by an increase in myelin sheath. Taken together, HMSC from the umbilical cord Wharton jelly might be useful for improving the clinical outcome after peripheral nerve lesion.
Collapse
Affiliation(s)
- A Gärtner
- Institute of Biomedical Sciences Abel Salazar, Porto University, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
FDA approved guidance conduits and wraps for peripheral nerve injury: a review of materials and efficacy. Injury 2012; 43:553-72. [PMID: 21269624 DOI: 10.1016/j.injury.2010.12.030] [Citation(s) in RCA: 488] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 12/27/2010] [Indexed: 02/02/2023]
Abstract
Several nerve guidance conduits (NGCs) and nerve protectant wraps are approved by the US Food and Drug Administration (FDA) for clinical use in peripheral nerve repair. These devices cover a wide range of natural and synthetic materials, which may or may not be resorbable. This review consolidates the data pertaining to all FDA approved materials into a single reference, which emphasizes material composition alongside pre-clinical and clinical safety and efficacy (where possible). This article also summarizes the key advantages and limitations for each material as noted in the literature (with respect to the indication considered). In this context, this review provides a comprehensive reference for clinicians which may facilitate optimal material/device selection for peripheral nerve repair. For materials scientists, this review highlights predicate devices and evaluation methodologies, offering an insight into current deficiencies associated with state-of-the-art materials and may help direct new technology developments and evaluation methodologies thereof.
Collapse
|
35
|
Time-dependent evaluation of mechanical properties and in vitro cytocompatibility of experimental composite-based nerve guidance conduits. J Mech Behav Biomed Mater 2011; 4:1266-74. [DOI: 10.1016/j.jmbbm.2011.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 04/11/2011] [Accepted: 04/15/2011] [Indexed: 11/19/2022]
|
36
|
Hsieh SC, Tang CM, Huang WT, Hsieh LL, Lu CM, Chang CJ, Hsu SH. Comparison between two different methods of immobilizing NGF in poly(DL-lactic acid-co-glycolic acid) conduit for peripheral nerve regeneration by EDC/NHS/MES and genipin. J Biomed Mater Res A 2011; 99:576-85. [PMID: 21953828 DOI: 10.1002/jbm.a.33157] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 02/28/2011] [Accepted: 04/29/2011] [Indexed: 11/08/2022]
Abstract
For surface modification and nerve regeneration, chitosan, followed by nerve growth factor (NGF), was immobilized onto the interior surface of poly (lactic acit-co-glycolic) conduits, using EDC/NHS/MES system (EDCs) and genipin (GP). Four new conduits were, therefore, obtained and named by immobilizing order-EDCs/EDCs, GP/EDCs, EDCs/GP, and GP/GP groups. The immobilized methods used were evaluated and compared, respectively. The researchers found that the EDCs- and GP-cross-linked chitosan displayed higher hydrophilic than pure poly (DL-lactic acid-co-glycolic acid) (PLGA) in water contact angle experiment, which meant the cell compatibility was improved by the modification. Scanning electron microscopic observations revealed that the GP-cross-linking of chitosan greatly improved cell compatibility while cultured rat PC12 cells were flatter and more spindle-shaped than EDCs-cross-linked chitosan. The results concerning the GP-cross-linked chitosan revealed significant proliferation of the seeded cells relative to pure PLGA films, as determined by counting cells and MTT assay. The NGF was released from the modified conduits in two separate periods--an initial burst in 5 days and then slow release from day 10 to day 40. The GP/EDCs group had the highest NGF value among all groups after the 5th day. Finally, the controlled-release conduits were used to bridge a 10 mm rat sciatic nerve defect. Six weeks following implantation, morphological analysis revealed the highest numbers of myelinated axons in the midconduit and distal regenerated nerve in GP/EDCs group. Therefore, the results confirm that GP/EDCs groups with good cell compatibility and effective release of NGF can considerably improve peripheral nerve regeneration.
Collapse
Affiliation(s)
- Shu-Chih Hsieh
- Department of Chemical Engineering, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
37
|
Nectow AR, Marra KG, Kaplan DL. Biomaterials for the development of peripheral nerve guidance conduits. TISSUE ENGINEERING PART B-REVIEWS 2011; 18:40-50. [PMID: 21812591 DOI: 10.1089/ten.teb.2011.0240] [Citation(s) in RCA: 262] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Currently, surgical treatments for peripheral nerve injury are less than satisfactory. The gold standard of treatment for peripheral nerve gaps >5 mm is the autologous nerve graft; however, this treatment is associated with a variety of clinical complications, such as donor site morbidity, limited availability, nerve site mismatch, and the formation of neuromas. Despite many recent advances in the field, clinical studies implementing the use of artificial nerve guides have yielded results that are yet to surpass those of autografts. Thus, the development of a nerve guidance conduit, which could match the effectiveness of the autologous nerve graft, would be beneficial to the field of peripheral nerve surgery. Design strategies to improve surgical outcomes have included the development of biopolymers and synthetic polymers as primary scaffolds with tailored mechanical and physical properties, luminal "fillers" such as laminin and fibronectin as secondary internal scaffolds, surface micropatterning, stem cell inclusion, and controlled release of neurotrophic factors. The current article highlights approaches to peripheral nerve repair through a channel or conduit, implementing chemical and physical growth and guidance cues to direct that repair process.
Collapse
Affiliation(s)
- Alexander R Nectow
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | | | | |
Collapse
|
38
|
Perspectives in regeneration and tissue engineering of peripheral nerves. Ann Anat 2011; 193:334-40. [DOI: 10.1016/j.aanat.2011.03.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 03/04/2011] [Accepted: 03/07/2011] [Indexed: 12/13/2022]
|
39
|
Kehoe S, Zhang XF, Boyd D. Composition-property relationships for an experimental composite nerve guidance conduit: evaluating cytotoxicity and initial tensile strength. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:945-959. [PMID: 21369711 DOI: 10.1007/s10856-011-4263-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 02/18/2011] [Indexed: 05/30/2023]
Abstract
The objective of this work was to examine the main (individual), combined (interaction) and second-order (quadratic) effects of: (i) poly(D,L-lactide-co-glycolide) (PLGA), (ii) F127, and (iii) a zinc-silicate based bioactive glass, on the cytotoxicity and ultimate tensile strength of an experimental nerve guidance conduit (NGC). The experimental plan was carried out according to a Box-Behnken design matrix. The effects of each compositional factor were quantified using response surface methodology (RSM) techniques. Linear and quadratic polynomial equations were developed to examine cytotoxicity (after incubation at 3, 7 and 28 days) and initial ultimate tensile strength (UTS(0)). Multiple regression analyses showed that the developed models yielded a good prediction for each response examined. It was observed that the beneficial effects of PLGA and bioactive glass on controlling cytotoxicity appeared greater than that of F127. Furthermore, the experimental conduits (with the exception of CNGC-I and CNGC-K) generally showed superior cytocompatibility when compared with the comparable literature for the clinically used nerve guidance conduit Neurolac(®). In this investigation, optimal compositions for cell viability were obtained for the following composition: PLGA = 18.89 wt%/F127 = 0.52 wt%/glass = 12.71 wt%. The optimization of composition with respect to ultimate tensile strength was also established (desired UTS(0) being based on the properties of the control device Neurolac(®) whose UTS is c.20 MPa). The desired UTS(0) of ≤ 20 MPa was found for the composition: PLGA = 18.63 wt%/F127 = 0.77 wt%/glass = 5.54 wt%. A UTS(0) ≤ 30 MPa was recorded for the composition: PLGA = 18.34 wt%/F127 = 0.62 wt%/glass = 9.83 wt%, such tensile strengths are comparable to, reported values for Neurolac(®). Examination of the composition-property relationships with respect to combining cell viability and UTS(0) indicated preferred compositions in the range 17.97-19.90 wt% PLGA, 0.16-1.13 wt% F127 and between 5.54 and ≤ 20 wt% glass. This research demonstrates the value of a design of experiments approach for the design of novel nerve guidance conduits, and shows that the materials examined may have potential for the repair of peripheral nerve discontinuities.
Collapse
Affiliation(s)
- S Kehoe
- Department of Applied Oral Sciences, Dalhousie University, 5981 University Ave, Halifax, NS B3H 4R2, Canada.
| | | | | |
Collapse
|
40
|
Hernández-Cortés P, Garrido J, Cámara M, Ravassa FO. Failed digital nerve reconstruction by foreign body reaction to Neurolac nerve conduit. Microsurgery 2011; 30:414-6. [PMID: 20017202 DOI: 10.1002/micr.20730] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Liu JJ, Wang CY, Wang JG, Ruan HJ, Fan CY. Peripheral nerve regeneration using composite poly(lactic acid-caprolactone)/nerve growth factor conduits prepared by coaxial electrospinning. J Biomed Mater Res A 2010; 96:13-20. [PMID: 20949481 DOI: 10.1002/jbm.a.32946] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 07/28/2010] [Accepted: 07/29/2010] [Indexed: 11/06/2022]
Abstract
Many neurotrophic factors have been shown to promote neurite outgrowth by improving the microenvironment that is required for nerve regeneration. However, the delivery of these bioactive agents to the nerve injury site, as well as effective and local release, remains a challenging problem. We have developed a novel composite nerve conduit comprised of poly(lactic acid-caprolactone) (P(LLA-CL)) and nerve growth factor (NGF). This was developed from core-shell structured biodegradable nanofibers, which were fabricated by coaxial electrospinning of P(LLA-CL) for the shell and bovine serum albumin (BSA) or BSA/NGF for the core. In rats, gaps of 10-mm long sciatic nerves were bridged using an autograft, an empty P(LLA-CL) conduit, a NGF injection P(LLA-CL) conduit, a P(LLA-CL)/NGF composite conduit, respectively. Regenerated nerve fibers were harvested and morphological and functional evaluation of nerve regeneration was performed at 12 weeks postsurgery. Although partial biodegradation and small cracks in the conduits were observed, the conduit outlines remained intact for 12 weeks after surgery. Based on functional and histological observations, the number and arrangement of regenerated nerve fibers, myelination, and nerve function reconstruction was similar in the P(LLA-CL)/NGF conduit group to that of the nerve autograft group (p > 0.05), but was significantly greater to the empty P(LLA-CL) and injection NGF P(LLA-CL) conduit groups (both p < 0.05). Therefore, the composite P(LLA-CL)/NGF conduit, which exhibited favorable mechanical properties and biocompatibility, could effectively promote sciatic nerve regeneration in rats.
Collapse
Affiliation(s)
- Jun-Jian Liu
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | | | | | | | | |
Collapse
|
42
|
Al Helou M, Anjum N, Guedeau-Boudeville MA, Rosticher M, Mourchid A. Structure and mechanical properties of polylactide copolymer microspheres and capsules. POLYMER 2010. [DOI: 10.1016/j.polymer.2010.09.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
43
|
Koh HS, Yong T, Teo WE, Chan CK, Puhaindran ME, Tan TC, Lim A, Lim BH, Ramakrishna S. In vivo study of novel nanofibrous intra-luminal guidance channels to promote nerve regeneration. J Neural Eng 2010; 7:046003. [PMID: 20551511 DOI: 10.1088/1741-2560/7/4/046003] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A novel nanofibrous construct for promoting peripheral nerve repair was fabricated and tested in a rat sciatic nerve defect model. The conduit is made out of bilayered nanofibrous membranes with the nanofibers longitudinally aligned in the lumen and randomly oriented on the outer surface. The intra-luminal guidance channel is made out of aligned nanofibrous yarns. In addition, biomolecules such as laminin and nerve growth factor were incorporated in the nanofibrous nerve construct to determine their efficacy in in vivo nerve regeneration. Muscle reinnervation, withdrawal reflex latency, histological, axon density and electrophysiology tests were carried out to compare the efficacy of nanofibrous constructs with an autograft. Our study showed mixed results when comparing the artificial constructs with an autograft. In some cases, the nanofibrous conduit with aligned nanofibrous yarn as an intra-luminal guidance channel performs better than the autograft in muscle reinnervation and withdrawal reflex latency tests. However, the axon density count is highest in the autograft at mid-graft. Functional recovery was improved with the use of the nerve construct which suggested that this nerve implant has the potential for clinical usage in reconstructing peripheral nerve defects.
Collapse
Affiliation(s)
- H S Koh
- NUS Graduate School for Integrative Sciences & Engineering, National University of Singapore, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kropf N, Krishnan K, Chao M, Schweitzer M, Rosenberg Z, Russell SM. Sciatic nerve injury model in the axolotl: functional, electrophysiological, and radiographic outcomes. J Neurosurg 2010; 112:880-9. [PMID: 19764825 DOI: 10.3171/2008.10.jns08222] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The 2 aims of this study were as follows: 1) to establish outcome measures of nerve regeneration in an axolotl model of peripheral nerve injury; and 2) to define the timing and completeness of reinnervation in the axolotl following different types of sciatic nerve injury. METHODS The sciatic nerves in 36 axolotls were exposed bilaterally in 3 groups containing 12 animals each: Group 1, left side sham, right side crush; Group 2, left side sham, right side nerve resected and proximal stump buried; and Group 3 left side cut and sutured, right side cut and sutured with tibial and peroneal divisions reversed. Outcome measures included the following: 1) an axolotl sciatic functional index (ASFI) derived from video swim analysis; 2) motor latencies; and 3) MR imaging evaluation of nerve and muscle edema. RESULTS For crush injuries, the ASFI returned to baseline by 2 weeks, as did MR imaging parameters and motor latencies. For buried nerves, the ASFI returned to 20% below baseline by 8 weeks, with motor evoked potentials present. On MR imaging, nerve edema peaked at 3 days postintervention and gradually normalized over 12 weeks, whereas muscle denervation was present until a gradual decrease was seen between 4 and 12 weeks. For cut nerves, the ASFI returned to 20% below baseline by Week 4, where it plateaued. Motor evoked potentials were observed at 2-4 weeks, but with an increased latency until Week 6, and MR imaging analysis revealed muscle denervation for 4 weeks. CONCLUSIONS Multiple outcome measures in which an axolotl model of peripheral nerve injury is used have been established. Based on historical controls, recovery after nerve injury appears to occur earlier and is more complete than in rodents. Further investigation using this model as a successful "blueprint" for nerve regeneration in humans is warranted.
Collapse
Affiliation(s)
- Nina Kropf
- Department of Plastic and Reconstructive Surgery, Vienna General Hospital, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
45
|
Krych AJ, Rooney GE, Chen B, Schermerhorn TC, Ameenuddin S, Gross L, Moore MJ, Currier BL, Spinner RJ, Friedman JA, Yaszemski MJ, Windebank AJ. Relationship between scaffold channel diameter and number of regenerating axons in the transected rat spinal cord. Acta Biomater 2009; 5:2551-9. [PMID: 19409869 PMCID: PMC2731813 DOI: 10.1016/j.actbio.2009.03.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 01/20/2009] [Accepted: 03/20/2009] [Indexed: 12/17/2022]
Abstract
Regeneration of endogenous axons through a Schwann cell (SC)-seeded scaffold implant has been demonstrated in the transected rat spinal cord. The formation of a cellular lining in the scaffold channel may limit the degree of axonal regeneration. Spinal cords of adult rats were transected and implanted with the SC-loaded polylactic co-glycollic acid (PLGA) scaffold implants containing seven parallel-aligned channels, either 450mum (n=19) or 660microm in diameter (n=14). Animals were sacrificed after 1, 2 and 3months. Immunohistochemistry for neurofilament expression was performed. The cross-sectional area of fibrous tissue and regenerative core was calculated. We found that the 450microm scaffolds had significantly greater axon fibers per channel at the 1month (186+/-37) and 3month (78+/-11) endpoints than the 660microm scaffolds (90+/-19 and 40+/-6, respectively) (p=0.0164 and 0.0149, respectively). The difference in the area of fibrous rim between the 450 and 660microm channels was most pronounced at the 1month endpoint, at 28,046+/-6551 and 58,633+/-7063microm(2), respectively (p=0.0105). Our study suggests that fabricating scaffolds with smaller diameter channels promotes greater regeneration over larger diameter channels. Axonal regeneration was reduced in the larger channels due to the generation of a large fibrous rim. Optimization of this scaffold environment establishes a platform for future studies of the effects of cell types, trophic factors or pharmacological agents on the regenerative capacity of the injured spinal cord.
Collapse
Affiliation(s)
- Aaron J Krych
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wang GJ, Lin YC, Li CW, Hsueh CC, Hsu SH, Hung HS. Fabrication of orderly nanostructured PLGA scaffolds using anodic aluminum oxide templates. Biomed Microdevices 2009; 11:843-50. [DOI: 10.1007/s10544-009-9301-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Luís AL, Rodrigues JM, Geuna S, Amado S, Shirosaki Y, Lee JM, Fregnan F, Lopes MA, Veloso AP, Ferreira AJ, Santos JD, Armada-Da-silva PAS, Varejão ASP, Maurício AC. Use of PLGA 90:10 scaffolds enriched with in vitro-differentiated neural cells for repairing rat sciatic nerve defects. Tissue Eng Part A 2009; 14:979-93. [PMID: 18447635 DOI: 10.1089/ten.tea.2007.0273] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) nerve tube guides, made of a novel proportion (90:10) of the two polymers, poly(L-lactide): poly(glycolide) and covered with a neural cell line differentiated in vitro, were tested in vivo for promoting nerve regeneration across a 10-mm gap of the rat sciatic nerve. Before in vivo testing, the PLGA 90:10 tubes were tested in vitro for water uptake and mass loss and compared with collagen sheets. The water uptake of the PLGA tubes was lower, and the mass loss was more rapid and higher than those of the collagen sheets when immersed in phosphate-buffered saline (PBS) solution. The pH values of immersing PBS did not change after soaking the collagen sheets and showed to be around 7.4. On the other hand, the pH values of PBS after soaking PLGA tubes decreased gradually during 10 days reaching values around 3.5. For the in vivo testing, 22 Sasco Sprague adult rats were divided into four groups--group 1: gap not reconstructed; group 2: gap reconstructed using an autologous nerve graft; group 3: gap reconstructed with PLGA 90:10 tube guides; group 4: gap reconstructed with PLGA 90:10 tube guides covered with neural cells differentiated in vitro. Motor and sensory functional recovery was evaluated throughout a healing period of 20 weeks using sciatic functional index, static sciatic index, extensor postural thrust, withdrawal reflex latency, and ankle kinematics. Stereological analysis was carried out on regenerated nerve fibers. Both motor and sensory functions improved significantly in the three experimental nerve repair groups, although the rate and extent of recovery was significantly higher in the group where the gap was reconstructed using the autologous graft. The presence of neural cells covering the inside of the PLGA tube guides did not make any difference in the functional recovery. By contrast, morphometric analysis showed that the introduction of N1E-115 cells inside PLGA 90:10 tube guides led to a significant lower number and size of regenerated nerve fibers, suggesting thus that this approach is not adequate for promoting peripheral nerve repair. Further studies are warranted to assess the role of other cellular systems as a foreseeable therapeutic strategy in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Ana L Luís
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA), Universidade do Porto, Vairão, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Luís AL, Rodrigues JM, Geuna S, Amado S, Simões MJ, Fregnan F, Ferreira AJ, Veloso AP, Armada-da-Silva PAS, Varejão ASP, Maurício AC. Neural cell transplantation effects on sciatic nerve regeneration after a standardized crush injury in the rat. Microsurgery 2009; 28:458-70. [PMID: 18623156 DOI: 10.1002/micr.20524] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The goal of the present study was to assess whether in vitro-differentiated N1E-115 cells supported by a collagen membrane would enhance rat sciatic nerve regeneration after a crush injury. To set up an appropriate experimental model for investigating the effects of neural cell transplantation, we have recently described the sequence of functional and morphologic changes occurring after a standardized sciatic nerve crush injury with a nonserrated clamp. Functional recovery was evaluated using the sciatic functional index, the static sciatic index, the extensor postural thrust, the withdrawal reflex latency, and ankle kinematics. In addition, histomorphometric analysis was carried out on regenerated nerve fibers by means of the 2D-disector method. Based on the results of the EPT and of some of the ankle locomotor kinematic parameters analyzed, the hypothesis that N1E-115 cells may enhance nerve regeneration is partially supported although histomorphometry disclosed no significant difference in nerve fiber regeneration between the different experimental groups. Therefore, results suggest that enrichment of equine type III collagen membrane with the N1E-115 cellular system in the rat sciatic nerve crush model may support recovery, at least in terms of motor function. The discrepancy between functional and morphological results also suggests that the combined use of functional and morphological analysis should be recommended for an overall assessment of recovery in nerve regeneration studies.
Collapse
Affiliation(s)
- A L Luís
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA), Universidade do Porto, Campus Agrário de Vairão, Rua P. Armando Quintas, Vairão, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Chiono V, Tonda-Turo C, Ciardelli G. Chapter 9: Artificial scaffolds for peripheral nerve reconstruction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 87:173-98. [PMID: 19682638 DOI: 10.1016/s0074-7742(09)87009-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Posttraumatic peripheral nerve repair is one of the major challenges in restorative medicine and microsurgery. Despite the recent progresses in the field of tissue engineering, functional recovery after severe nerve lesions is generally partial and unsatisfactory. Autograft is still the best method to treat peripheral nerve lesions, although it has several drawbacks and does not allow complete functional recovery. Full recovery of nerve functionality could ideally be achieved by proper guiding axon regeneration toward the original target tissues, through the use of purposely engineered artificial nerve guidance channels (NGCs). In the last decade, artificial NGCs have been produced using a variety of both natural and synthetic, biodegradable and nonbiodegradable polymers. Several techniques have been developed to obtain porous and nonporous NGCs and to realize and incorporate bioactive fillers for NGCs. Some of the developed products have been approved for clinical applications. Many other NGC typologies have been object of interest and are currently under investigation. The current trend of nerve tissue engineering is the realization of biomimetic NGCs, providing chemotactic, topological, and haptotactic signalling to cells, respectively by surface functionalization with cell binding domains, the use of internal-oriented matrices/fibres and the sustained release of neurotrophic factors. The present contribution provides a balanced integration of the most recent achievements of tissue engineering in the field of peripheral nerve repair. By an accurate evaluation of the status of research, the review delineates the most promising directions to which research should address for consistent progress in the field of peripheral nerve repair.
Collapse
Affiliation(s)
- Valeria Chiono
- Department of Mechanics, Politecnico di Torino, Torino, Italy
| | | | | |
Collapse
|
50
|
Canan S, Bozkurt HH, Acar M, Vlamings R, Aktas A, Sahin B, Temel Y, Kaplan S. An efficient stereological sampling approach for quantitative assessment of nerve regeneration. Neuropathol Appl Neurobiol 2008; 34:638-49. [DOI: 10.1111/j.1365-2990.2008.00938.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|