1
|
Swiderski K, Naim T, Trieu J, Chee A, Herold MJ, Kueh AJ, Goodman CA, Gregorevic P, Lynch GS. Dystrophin S3059 phosphorylation partially attenuates denervation atrophy in mouse tibialis anterior muscles. Physiol Rep 2024; 12:e16145. [PMID: 39001580 PMCID: PMC11245571 DOI: 10.14814/phy2.16145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
The dystrophin protein has well-characterized roles in force transmission and maintaining membrane integrity during muscle contraction. Studies have reported decreased expression of dystrophin in atrophying muscles during wasting conditions, and that restoration of dystrophin can attenuate atrophy, suggesting a role in maintaining muscle mass. Phosphorylation of S3059 within the cysteine-rich region of dystrophin enhances binding between dystrophin and β-dystroglycan, and mimicking phosphorylation at this site by site-directed mutagenesis attenuates myotube atrophy in vitro. To determine whether dystrophin phosphorylation can attenuate muscle wasting in vivo, CRISPR-Cas9 was used to generate mice with whole body mutations of S3059 to either alanine (DmdS3059A) or glutamate (DmdS3059E), to mimic a loss of, or constitutive phosphorylation of S3059, on all endogenous dystrophin isoforms, respectively. Sciatic nerve transection was performed on these mice to determine whether phosphorylation of dystrophin S3059 could attenuate denervation atrophy. At 14 days post denervation, atrophy of tibialis anterior (TA) but not gastrocnemius or soleus muscles, was partially attenuated in DmdS3059E mice relative to WT mice. Attenuation of atrophy was associated with increased expression of β-dystroglycan in TA muscles of DmdS3059E mice. Dystrophin S3059 phosphorylation can partially attenuate denervation-induced atrophy, but may have more significant impact in less severe modes of muscle wasting.
Collapse
Affiliation(s)
- Kristy Swiderski
- Department of Anatomy and Physiology, Centre for Muscle ResearchThe University of MelbourneMelbourneVictoriaAustralia
| | - Timur Naim
- Department of Anatomy and Physiology, Centre for Muscle ResearchThe University of MelbourneMelbourneVictoriaAustralia
| | - Jennifer Trieu
- Department of Anatomy and Physiology, Centre for Muscle ResearchThe University of MelbourneMelbourneVictoriaAustralia
| | - Annabel Chee
- Department of Anatomy and Physiology, Centre for Muscle ResearchThe University of MelbourneMelbourneVictoriaAustralia
| | - Marco J. Herold
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
- Olivia Newton‐John Cancer Research InstituteHeidelbergVictoriaAustralia
- School of Cancer MedicineLa Trobe UniversityHeidelbergVictoriaAustralia
| | - Andrew J. Kueh
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
- Olivia Newton‐John Cancer Research InstituteHeidelbergVictoriaAustralia
- School of Cancer MedicineLa Trobe UniversityHeidelbergVictoriaAustralia
| | - Craig A. Goodman
- Department of Anatomy and Physiology, Centre for Muscle ResearchThe University of MelbourneMelbourneVictoriaAustralia
| | - Paul Gregorevic
- Department of Anatomy and Physiology, Centre for Muscle ResearchThe University of MelbourneMelbourneVictoriaAustralia
| | - Gordon S. Lynch
- Department of Anatomy and Physiology, Centre for Muscle ResearchThe University of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
2
|
DOK7 Promotes NMJ Regeneration After Nerve Injury. Mol Neurobiol 2023; 60:1453-1464. [PMID: 36464749 DOI: 10.1007/s12035-022-03143-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/17/2022] [Indexed: 12/11/2022]
Abstract
Motor function recovery from injury requires the regeneration of not only muscle fibers, but also the neuromuscular junction-the synapse between motor nerve terminals and muscle fibers. However, unlike muscle regeneration which has been extensively studied, little is known about the molecular mechanisms of NMJ regeneration. Recognizing the critical role of agrin-LRP4-MuSK signaling in NMJ formation and maintenance, we investigated whether increasing MuSK activity promotes NMJ regeneration. To this end, we evaluated the effect of DOK7, a protein that stimulates MuSK, on NMJ regeneration. Reinnervation, AChR cluster density, and endplate area were improved, and fragmentation was reduced in the AAV9-DOK7-GFP-injected muscles compared with muscles injected with AAV9-GFP. These results demonstrated expedited NMJ regeneration associated with increased DOK7 expression and support the hypothesis that increasing agrin signaling benefits motor function recovery after injury. Our findings propose a potentially new therapeutic strategy for functional recovery after muscle and nerve injury, i.e., promoting NMJ regeneration by increasing agrin signaling.
Collapse
|
3
|
Rabey KN, Satkunam L, Webber CA, Hocking JC. Isolated fatty infiltration of the gastrocnemius medial head, a cadaveric case study. HUMAN PATHOLOGY: CASE REPORTS 2021. [DOI: 10.1016/j.ehpc.2021.200480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
4
|
|
5
|
Shin KJ, Yoo JY, Lee JY, Gil YC, Kim JN, Koh KS, Song WC. Anatomical study of the nerve regeneration after selective neurectomy in the rabbit: clinical application for esthetic calf reduction. Anat Cell Biol 2016; 48:268-74. [PMID: 26770878 PMCID: PMC4701701 DOI: 10.5115/acb.2015.48.4.268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/02/2015] [Accepted: 12/02/2015] [Indexed: 11/27/2022] Open
Abstract
The purposes of this study were therefore to characterize the degeneration and regeneration of nerves to the calf muscles after selective neurectomy, both macroscopically and microscopically, and to determine the incidence of such regeneration in a rabbit model. Seventy four New Zealand white rabbits were used. Selective neurectomy to the triceps surae muscles was performed, and the muscles were subsequently harvested and weighed 1-4 months postneurectomy. The gastrocnemius muscles were stained with Sihler's solution to enable the macroscopic observation of any nerve regeneration that may have occurred subsequent to neurectomy. The change in triceps surae muscle weight was measured along the time course of the experiment. After neurectomy, nerve degeneration was followed by regeneration in all cases. The weight of the triceps surae muscle decreased dramatically between completion of the neurectomy and 1 month postneurectomy, but increased thereafter. The nerve branches were weakly stained with Sihler's solution until 2 months postneurectomy, and then strongly stained after 3 months. The number of myelinated axons was decreased at 2 month after neurectomy compared to nonneurectomized controls, but then gradually increased thereafter. Although there are currently no reports on the incidence of recovery after calf reduction, it may be a very common occurrence in the clinical field based on our findings. The findings of this study provide fundamental anatomical and surgical information to aid planning and practice in calf-reduction surgery.
Collapse
Affiliation(s)
- Kang-Jae Shin
- Department of Anatomy, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Ja-Young Yoo
- Department of Anatomy, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Ju-Young Lee
- Department of Anatomy, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Young-Chun Gil
- Department of Anatomy, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Jeong-Nam Kim
- Department of Biomedical Laboratory Science, Masan University, Masan, Korea
| | - Ki-Seok Koh
- Department of Anatomy, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Wu-Chul Song
- Department of Anatomy, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Suh J, Moncaster JA, Wang L, Hafeez I, Herz J, Tanzi RE, Goldstein LE, Guénette SY. FE65 and FE65L1 amyloid precursor protein-binding protein compound null mice display adult-onset cataract and muscle weakness. FASEB J 2015; 29:2628-39. [PMID: 25757569 DOI: 10.1096/fj.14-261453] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 02/19/2015] [Indexed: 12/11/2022]
Abstract
FE65 and FE65L1 are cytoplasmic adaptor proteins that bind a variety of proteins, including the amyloid precursor protein, and that mediate the assembly of multimolecular complexes. We previously reported that FE65/FE65L1 double knockout (DKO) mice display disorganized laminin in meningeal fibroblasts and a cobblestone lissencephaly-like phenotype in the developing cortex. Here, we examined whether loss of FE65 and FE65L1 causes ocular and muscular deficits, 2 phenotypes that frequently accompany cobblestone lissencephaly. Eyes of FE65/FE65L1 DKO mice develop normally, but lens degeneration becomes apparent in young adult mice. Abnormal lens epithelial cell migration, widespread small vacuole formation, and increased laminin expression underneath lens capsules suggest impaired interaction between epithelial cells and capsular extracellular matrix in DKO lenses. Cortical cataracts develop in FE65L1 knockout (KO) mice aged 16 months or more but are absent in wild-type or FE65 KO mice. FE65 family KO mice show attenuated grip strength, and the nuclei of DKO muscle cells frequently locate in the middle of muscle fibers. These findings reveal that FE65 and FE65L1 are essential for the maintenance of lens transparency, and their loss produce phenotypes in brain, eye, and muscle that are comparable to the clinical features of congenital muscular dystrophies in humans.
Collapse
Affiliation(s)
- Jaehong Suh
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, and Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA; and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Juliet A Moncaster
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, and Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA; and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lirong Wang
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, and Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA; and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Imran Hafeez
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, and Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA; and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Joachim Herz
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, and Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA; and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rudolph E Tanzi
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, and Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA; and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lee E Goldstein
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, and Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA; and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Suzanne Y Guénette
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, and Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA; and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
7
|
Abstract
This review concentrates on the biology of long-term denervated muscle, especially as it relates to newer techniques for restoring functional mass. After denervation, muscle passes through three stages: 1) immediate loss of voluntary function and rapid loss of mass, 2) increasing atrophy and loss of sarcomeric organization, and 3) muscle fiber degeneration and replacement of muscle by fibrous connective tissue and fat. Parallel to the overall program of atrophy and degeneration is the proliferation and activation of satellite cells, and the appearance of neomyogenesis within the denervated muscle. Techniques such as functional electrical stimulation take advantage of this capability to restore functional mass to a denervated muscle.
Collapse
Affiliation(s)
- Bruce M Carlson
- Institute of Gerontology, University of Michigan , Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Schaakxs D, Kalbermatten DF, Raffoul W, Wiberg M, Kingham PJ. Regenerative cell injection in denervated muscle reduces atrophy and enhances recovery following nerve repair. Muscle Nerve 2013; 47:691-701. [DOI: 10.1002/mus.23662] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2012] [Indexed: 12/17/2022]
Affiliation(s)
| | - Daniel F. Kalbermatten
- Department of Plastic; Reconstructive and Aesthetic Surgery; University Hospital of Basel; Basel; Switzerland
| | - Wassim Raffoul
- Division of Plastic; Reconstructive and Aesthetic Surgery; CHUV; University Hospital of Lausanne; Lausanne; Switzerland
| | | | - Paul J. Kingham
- Department of Integrative Medical Biology; Section for Anatomy; Umeå University; Umeå SE-901 87; Sweden
| |
Collapse
|
9
|
Sions JM, Tyrell CM, Knarr BA, Jancosko A, Binder-Macleod SA. Age- and stroke-related skeletal muscle changes: a review for the geriatric clinician. J Geriatr Phys Ther 2012; 35:155-61. [PMID: 22107952 PMCID: PMC3290755 DOI: 10.1519/jpt.0b013e318236db92] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Independently, aging and stroke each have a significant negative impact on skeletal muscle, but the potential cumulative effects of aging and stroke have not been explored. Optimal interventions for individuals post stroke may include those that specifically target skeletal muscle. Addressing changes in muscles may minimize activity limitations and enhance participation post stroke. This article reviews the impact of aging and stroke on muscle morphology and composition, including fiber atrophy, reductions in muscle cross-sectional area, changes in muscle fiber distributions, and increases in intramuscular fat. Relationships between changes in muscle structure, muscle function, and physical mobility are reviewed. Clinical recommendations that preserve and enhance skeletal muscle in the aging adult and individuals post stroke are discussed. Future research directions that include systematic comparison of the differences in skeletal muscle between younger and older adults who have sustained a stroke are suggested.
Collapse
Affiliation(s)
- Jaclyn Megan Sions
- Biomechanics and Movement Science Program, University of Delaware, Newark, USA.
| | | | | | | | | |
Collapse
|
10
|
Viddeleer AR, Sijens PE, van Ooyen PMA, Kuypers PDL, Hovius SER, Oudkerk M. Sequential MR imaging of denervated and reinnervated skeletal muscle as correlated to functional outcome. Radiology 2012; 264:522-30. [PMID: 22692039 DOI: 10.1148/radiol.12111915] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To prospectively assess the short inversion time inversion-recovery (STIR) magnetic resonance (MR) signal intensity changes of denervated and reinnervated skeletal muscle over time in clinical patients. MATERIALS AND METHODS This study was approved by the institutional review board, and informed consent was obtained from all patients. Twenty-three patients with complete traumatic transection of the median or ulnar nerve in the forearm were prospectively followed for 12 months after surgical nerve repair. STIR MR images of selected intrinsic hand muscles were obtained 1, 3, 6, 9, and 12 months after nerve repair, and signal intensities of denervated and reinnervated muscles were measured semiquantitatively. After 12 months, hand function was assessed. Signal intensity ratios were correlated to functional outcome with analysis of variance. RESULTS Of the 23 patients, 10 had good function recovery, while 13 had poor recovery. For the group with good function recovery, mean signal intensity ratios of 1.267 ± 0.060 (standard deviation), 1.357 ± 0.116, 1.297 ± 0.111, 1.205 ± 0.096, and 1.086 ± 0.104 were found at 1-, 3-, 6-, 9-, and 12-month follow-up, respectively. In the group with poor recovery, mean signal intensity ratios of 1.299 ± 0.056, 1.377 ± 0.094, 1.419 ± 0.117, 1.398 ± 0.111, and 1.342 ± 0.095 were found at 1-, 3-, 6-, 9-, and 12-month follow-up, respectively. Comparison of the group with poor function recovery and the group with good function recovery showed significant differences at 6-, 9-, and 12-month follow-up (P = .035, P = .001, and P < .001, respectively), with normalizing signal intensities in the group with good function recovery and sustained high signal intensity in the group with poor function recovery. CONCLUSION STIR MR imaging can be used to differentiate between denervated and reinnervated muscles for at least 12 months after nerve transection.
Collapse
Affiliation(s)
- Alain R Viddeleer
- Department of Radiology, University of Groningen, Groningen, the Netherlands.
| | | | | | | | | | | |
Collapse
|
11
|
Pisani DF, Dechesne CA, Sacconi S, Delplace S, Belmonte N, Cochet O, Clement N, Wdziekonski B, Villageois AP, Butori C, Bagnis C, Di Santo JP, Kurzenne JY, Desnuelle C, Dani C. Isolation of a highly myogenic CD34-negative subset of human skeletal muscle cells free of adipogenic potential. Stem Cells 2010; 28:753-64. [PMID: 20135684 DOI: 10.1002/stem.317] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The differentiation of multipotent cells into undesirable lineages is a significant risk factor when performing cell therapy. In muscular diseases, myofiber loss can be associated with progressive fat accumulation that is one of the primary factors leading to decline of muscular strength. Therefore, to avoid any contribution of injected multipotent cells to fat deposition, we have searched for a highly myogenic but nonadipogenic muscle-derived cell population. We show that the myogenic marker CD56, which is the gold standard for myoblast-based therapy, was unable to separate muscle cells into myogenic and adipogenic fractions. Conversely, using the stem cell marker CD34, we were able to sort two distinct populations, CD34(+) and CD34(-), which have been thoroughly characterized in vitro and in vivo using an immunodeficient Rag2(-/-)gamma(c) (-/-) mouse model of muscle regeneration with or without adipose deposition. Our results demonstrate that both populations have equivalent capacities for in vitro amplification. The CD34(+) cells and CD34(-) cells exhibit equivalent myogenic potential, but only the CD34(-) population fails to differentiate into adipocytes in vitro and in vivo after transplantation into regenerative fat muscle. These data indicate that the muscle-derived cells constitute a heterogeneous population of cells with various differentiation potentials. The simple CD34 sorting allows isolation of myogenic cells with no adipogenic potential and therefore could be of high interest for cell therapy when fat is accumulated in diseased muscle.
Collapse
Affiliation(s)
- Didier F Pisani
- Institute of Developmental Biology and Cancer, Faculty of Medicine, University of Nice Sophia-Antipolis, CNRS, Nice, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mouse model of skeletal muscle adiposity: A glycerol treatment approach. Biochem Biophys Res Commun 2010; 396:767-73. [DOI: 10.1016/j.bbrc.2010.05.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 05/05/2010] [Indexed: 11/20/2022]
|
13
|
Panguluri SK, Bhatnagar S, Kumar A, McCarthy JJ, Srivastava AK, Cooper NG, Lundy RF, Kumar A. Genomic profiling of messenger RNAs and microRNAs reveals potential mechanisms of TWEAK-induced skeletal muscle wasting in mice. PLoS One 2010; 5:e8760. [PMID: 20098732 PMCID: PMC2808241 DOI: 10.1371/journal.pone.0008760] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 12/24/2009] [Indexed: 12/30/2022] Open
Abstract
Background Skeletal muscle wasting is a devastating complication of several physiological and pathophysiological conditions. Inflammatory cytokines play an important role in the loss of skeletal muscle mass in various chronic diseases. We have recently reported that proinflammatory cytokine TWEAK is a major muscle-wasting cytokine. Emerging evidence suggests that gene expression is regulated not only at transcriptional level but also at post-transcriptional level through the expression of specific non-coding microRNAs (miRs) which can affect the stability and/or translation of target mRNA. However, the role of miRs in skeletal muscle wasting is unknown. Methodology/Principal Findings To understand the mechanism of action of TWEAK in skeletal muscle, we performed mRNA and miRs expression profile of control and TWEAK-treated myotubes. TWEAK increased the expression of a number of genes involved in inflammatory response and fibrosis and reduced the expression of few cytoskeletal gene (e.g. Myh4, Ankrd2, and TCap) and metabolic enzymes (e.g. Pgam2). Low density miR array demonstrated that TWEAK inhibits the expression of several miRs including muscle-specific miR-1-1, miR-1-2, miR-133a, miR-133b and miR-206. The expression of a few miRs including miR-146a and miR-455 was found to be significantly increased in response to TWEAK treatment. Ingenuity pathway analysis showed that several genes affected by TWEAK are known/putative targets of miRs. Our cDNA microarray data are consistent with miRs profiling. The levels of specific mRNAs and miRs were also found to be similarly regulated in atrophying skeletal muscle of transgenic mice (Tg) mice expressing TWEAK. Conclusions/Significance Our results suggest that TWEAK affects the expression of several genes and microRNAs involved in inflammatory response, fibrosis, extracellular matrix remodeling, and proteolytic degradation which might be responsible for TWEAK-induced skeletal muscle loss.
Collapse
Affiliation(s)
- Siva K. Panguluri
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Shephali Bhatnagar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Akhilesh Kumar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - John J. McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Apurva K. Srivastava
- Laboratory of Human Toxicology and Pharmacology, Applied & Developmental Research Directorate SAIC-Frederick, National Cancer Institute, Frederick, Maryland, United States of America
| | - Nigel G. Cooper
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Robert F. Lundy
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Ashok Kumar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|