1
|
Zi J, Ma G, Hu Y, Li X, Cao Q, Li Y, Wang X, Cheng G, Xiong J. Prenatal genistein exposure in rats affects pubertal onset and serum reproductive hormone levels in male offsprings via the hypothalamic-pituitary-gonadal axis. Food Chem Toxicol 2025; 202:115498. [PMID: 40320066 DOI: 10.1016/j.fct.2025.115498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/11/2025]
Abstract
Genistein, an abundant phytoestrogen found in soy and soy products, can cross the placental barrier. However, impacts of prenatal genistein on male offspring reproductive development are unclear. Here, pregnant Sprague-Dawley rats were exposed to genistein at 1, 10, and 20 mg/kg·bw/day from gestational day 0-17. Medium- and high-dose prenatal genistein delayed pubertal onset in male offspring by 2-3 days, reduced body weight, increased the testis-to-body weight ratio and shortened anogenital distance. Testicular histology revealed disorganized seminiferous tubules and reduced germ cell numbers. At pubertal onset, serum levels of gonadotropin-releasing hormone, follicle-stimulating hormone, luteinizing hormone and estradiol were increased in medium- and high-dose groups, while at postnatal day 49, serum level of testosterone was decreased. Real-Time quantitative PCR revealed reduced transcription of Kiss1 and Esr1, and elevated transcription of Gnrh1 in hypothalamus; reduced transcription of Esr1, Gnrhr, Fshb and Lhb in pituitary; and elevated transcription of Esr2, Lhcgr, Cyp11a1 and Inhba in testes. Immunohistochemistry and Western-blot analyses showed dysregulated protein expression of KISS1, GnRHR, and FSHR. In conclusion, prenatal genistein exposure in rats delays pubertal onset in male offspring by affecting hypothalamic-pituitary-gonadal axis, highlighting potential transgenerational impacts of prenatal phytoestrogen on pubertal and reproductive development of male offspring.
Collapse
Affiliation(s)
- Jing Zi
- Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Guochen Ma
- Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Yifan Hu
- Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinlong Li
- Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Qianqian Cao
- Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanliu Li
- Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoyu Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Maternal & Child Nutrition Center, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Guo Cheng
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Maternal & Child Nutrition Center, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Children's Medicine Key Laboratory of Sichuan Province, Chengdu, 610041, China.
| | - Jingyuan Xiong
- Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, 610041, China.
| |
Collapse
|
2
|
Rivera-Núñez Z, Kinkade C, Brinker A, Zhang R, Buckley B, Brunner J, Ohman-Strickland P, Qiu X, Qasem RJ, Fallon JK, Smith PC, Miller RK, Salafia CS, O’Connor TG, Aleksunes LM, Barrett ES. Mycoestrogen Exposure during Pregnancy: Impact of the ABCG2 Q141K Variant on Birth and Placental Outcomes. ENVIRONMENTAL HEALTH PERSPECTIVES 2025; 133:57001. [PMID: 40126888 PMCID: PMC12052082 DOI: 10.1289/ehp14478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/06/2025] [Accepted: 03/19/2025] [Indexed: 03/26/2025]
Abstract
BACKGROUND Zearalenone (ZEN) is an estrogenic mycotoxin ("mycoestrogen") that contaminates global grain crops leading to detectable concentrations of ZEN and its metabolites, including the synthetic version α -zearalanol (also called zeranol; ZER), in human populations. Despite in vitro and in vivo animal evidence of endocrine disruption by ZEN, there has been limited investigation in humans. OBJECTIVES To examine markers of fetal growth following prenatal exposure to ZEN and evaluate the role of the placental efflux transporter BCRP/ABCG2 in protecting against ZEN's potential fetoplacental toxicity. METHODS Placentas were collected from participants (n = 271 ) in the Understanding Pregnancy Signals and Development cohort (Rochester, New York, USA). Placental ZEN and its metabolites were analyzed from tissue samples using HPLC-MS. Birth weights and placental weights were obtained from medical records and direct measurement, respectively; fetoplacental weight ratio (FPR) was calculated by dividing birth weight by placental weight. Covariate-adjusted generalized linear regression models were used to examine ZEN, ZER, and total mycoestrogens (sum of ZEN, ZER, and their metabolites) in relation to birth length, birth weight, placental weight and FPR. We additionally stratified models by infant sex and ABCG2 C421A (Q141K) genotype. RESULTS Mycoestrogens were detected in 84% of placentas (median ZEN: 0.010 ng / g ) and total mycoestrogens were associated with lower FPR [- 0.20 ; 95% confidence interval (CI): - 0.32 , - 0.08 ], particularly in female infants (- 0.31 ; 95% CI: - 0.52 , - 0.09 ). Associations with birth weight were inverse and overall nonsignificant. Among the 17% of participants with the reduced function 421A ABCG2 variant (AA or AC), total mycoestrogens were associated with lower birth weight (- 113.5 g ; 95% CI: - 226.5 , - 0.50 ), whereas in wild-type individuals, total mycoestrogens were associated with higher placental weight (9.9; 95% CI: 0.57, 19.2) and reduced FPR (- 0.19 ; 95% CI: - 0.33 , - 0.05 ). DISCUSSION Results from this epidemiological study of prenatal mycoestrogen exposure and perinatal health suggest that mycoestrogens may reduce placental efficiency, resulting in lower birth weight, particularly in female and ABCG2 421A infants. https://doi.org/10.1289/EHP14478.
Collapse
Affiliation(s)
- Zorimar Rivera-Núñez
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Carolyn Kinkade
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Anita Brinker
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Ranran Zhang
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Jessica Brunner
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
- Department of Psychiatry, University of Rochester, Rochester, New York, USA
| | - Pamela Ohman-Strickland
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA
| | - Xing Qiu
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York, USA
| | - Rani J. Qasem
- Department of Applied Pharmaceutical Sciences, School of Pharmacy, Isra University, Amman, Jordan
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - John K. Fallon
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Philip C. Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Richard K. Miller
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
| | | | - Thomas G. O’Connor
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
| | - Lauren M. Aleksunes
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - Emily S. Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
3
|
Li Y, Yu B, Liu C, Xia S, Luo Y, Zheng P, Cong G, Yu J, Luo J, Yan H, He J. Effects of dietary genistin supplementation on reproductive performance, immunity and antioxidative capacity in gestating sows. Front Vet Sci 2024; 11:1489227. [PMID: 39641093 PMCID: PMC11618539 DOI: 10.3389/fvets.2024.1489227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Genistin is an isoflavone of soybean, with estrogenic activity. This experiment was conducted to investigate its effect on reproductive performance, antioxidant capacity, and immunity in gestating sows. Seventy-two sows (Landrace × Yorkshire) were selected and randomly divided into two treatment groups (n = 36) based on their backfat thickness, parity and fed with basal diet or supplementation of 150 mg/ kg genistin to the basal diet based on DMI for the entire gestation period. Results showed that dietary genistin supplementation significantly increased the average number of live born per litter (p < 0.05), and tended to increase the number of healthy piglets per litter (p = 0.058), but decreased the average weight of live born per litter (p < 0.05). Dietary genistin supplementation significantly decreased the number of mummified and stillbirths per litter (p < 0.05). Moreover, the average daily feed intake (ADFI) and total feed intake of the gestating sows were also increased in the genistin-supplemented group (p < 0.05). Genistin significantly increased the serum concentrations of catalase (CAT), immunoglobulin A (IgA), IgG, and IgM at 35 days of gestation (p < 0.05). The serum concentrations of interleukin-10 (IL-10) and interferon-γ (IFN-γ) were also increased upon genistin supplementation (p < 0.05). However, genistin supplementation tended to decrease the serum concentrations of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and leptin at 85 days of gestation (p = 0.081 and p = 0.096, respectively). Interestingly, genistin supplementation decreased the transcript abundance of interferon-γ (IFN-γ) and placental imprinting gene H19, but significantly increased the transcript abundance of insulin-like growth factor I (IGF-I) and amino acid transporters such as the sodium-coupled neutral amino acid transporter 2 (SNTA2) and SNAT4 in the placenta (p < 0.05). These results suggested that dietary genistin supplementation during gestation can improve the reproductive performance of sows, which was probably associated with improving of antioxidant capacity and immunity, as well as changes of transcript abundance of critical functional genes in the placenta.
Collapse
Affiliation(s)
- Yuchen Li
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| | - Bing Yu
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| | - Chunxue Liu
- Anyou Biotechnology Group Co., Ltd., Taicang, China
| | | | - Yuheng Luo
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| | - Ping Zheng
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| | | | - Jie Yu
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| | - Junqiu Luo
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| | - Hui Yan
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| | - Jun He
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Pool KR, Gajanayakage RH, Connolly C, Blache D. Ancestral lineages of dietary exposure to an endocrine disrupting chemical drive distinct forms of transgenerational subfertility in an insect model. Sci Rep 2024; 14:18153. [PMID: 39103404 PMCID: PMC11300584 DOI: 10.1038/s41598-024-67921-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024] Open
Abstract
Across the globe, many species of insects are facing population decline. This is largely driven by anthropogenic changes to the environment, including the widespread exposure of invertebrates to endocrine disrupting chemicals (EDCs), which impair fertility. To test whether generations of Drosophila melanogaster born from parents exposed to a common dietary EDC, equol, could recover reproductive function, we quantified the reproductive capacity of the two subsequent generations. Using a novel suite of flow cytometry assays to assess sperm functionality in real time, we find that sperm function is compromised across three generations, even after non-exposed in individuals contribute to the breeding population. Though the sex ratio alters in response to EDC exposure, favouring the survival of female offspring, most lineages with ancestral EDC exposure exhibit persistent subfertility in both the male and female. Male offspring with ancestral EDC exposure present with reduced fertility and dysfunctional spermatozoa, whereby spermatozoa are metabolically stressed, lack DNA integrity and present with permanent epigenetic alterations. Across generations, male and female offspring demonstrate distinct patterns of reproductive characteristics, depending upon the specific lineage of EDC exposure. Our results illustrate how dietary EDCs present in agricultural plants could promote transgenerational subfertility and contribute to declining insect populations.
Collapse
Affiliation(s)
- Kelsey R Pool
- UWA Institute of Agriculture and UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia.
| | - Raveena Hewa Gajanayakage
- UWA Institute of Agriculture and UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Callum Connolly
- UWA Institute of Agriculture and UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Dominique Blache
- UWA Institute of Agriculture and UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia
| |
Collapse
|
5
|
Priyadarshini E, Parambil AM, Rajamani P, Ponnusamy VK, Chen YH. Exposure, toxicological mechanism of endocrine disrupting compounds and future direction of identification using nano-architectonics. ENVIRONMENTAL RESEARCH 2023; 225:115577. [PMID: 36871939 DOI: 10.1016/j.envres.2023.115577] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/02/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Endocrine-disrupting compounds (EDC) are a group of exogenous chemicals that structurally mimic hormones and interfere with the hormonal signaling cascade. EDC interacts with hormone receptors, transcriptional activators, and co-activators, altering the signaling pathway at both genomic and non-genomic levels. Consequently, these compounds are responsible for adverse health ailments such as cancer, reproductive issues, obesity, and cardiovascular and neurological disorders. The persistent nature and increasing incidence of environmental contamination from anthropogenic and industrial effluents have become a global concern, resulting in a movement in both developed and developing countries to identify and estimate the degree of exposure to EDC. The U.S. Environment Protection Agency (EPA) has outlined a series of in vitro and in vivo assays to screen potential endocrine disruptors. However, the multidisciplinary nature and concerns over the widespread application demand alternative and practical techniques for identifying and estimating EDC. The review chronicles the state-of-art 20 years (1990-2023) of scientific literature regarding EDC's exposure and molecular mechanism, highlighting the toxicological effects on the biological system. Alteration in signaling mechanisms by representative endocrine disruptors such as bisphenol A (BPA), diethylstilbestrol (DES), and genistein has been emphasized. We further discuss the currently available assays and techniques for in vitro detection and propose the prominence of designing nano-architectonic-sensor substrates for on-site detection of EDC in the contaminated aqueous environment.
Collapse
Affiliation(s)
- Eepsita Priyadarshini
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ajith Manayil Parambil
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Vinoth Kumar Ponnusamy
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City, Taiwan; Department of Chemistry, National Sun Yat-sen University (NSYSU), Kaohsiung City, 804, Taiwan; PhD Program in Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City, 811, Taiwan.
| | - Yi-Hsun Chen
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| |
Collapse
|
6
|
Bucknor MC, Gururajan A, Dale RC, Hofer MJ. A comprehensive approach to modeling maternal immune activation in rodents. Front Neurosci 2022; 16:1071976. [PMID: 36590294 PMCID: PMC9800799 DOI: 10.3389/fnins.2022.1071976] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Prenatal brain development is a highly orchestrated process, making it a very vulnerable window to perturbations. Maternal stress and subsequent inflammation during pregnancy leads to a state referred to as, maternal immune activation (MIA). If persistent, MIA can pose as a significant risk factor for the manifestation of neurodevelopmental disorders (NDDs) such as autism spectrum disorder and schizophrenia. To further elucidate this association between MIA and NDD risk, rodent models have been used extensively across laboratories for many years. However, there are few uniform approaches for rodent MIA models which make not only comparisons between studies difficult, but some established approaches come with limitations that can affect experimental outcomes. Here, we provide researchers with a comprehensive review of common experimental variables and potential limitations that should be considered when designing an MIA study based in a rodent model. Experimental variables discussed include: innate immune stimulation using poly I:C and LPS, environmental gestational stress paradigms, rodent diet composition and sterilization, rodent strain, neonatal handling, and the inclusion of sex-specific MIA offspring analyses. We discuss how some aspects of these variables have potential to make a profound impact on MIA data interpretation and reproducibility.
Collapse
Affiliation(s)
- Morgan C. Bucknor
- School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Anand Gururajan
- The Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Russell C. Dale
- The Children’s Hospital at Westmead, Kids Neuroscience Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- The Children’s Hospital at Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Markus J. Hofer
- School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Ding T, Yan W, Zhou T, Shen W, Wang T, Li M, Zhou S, Wu M, Dai J, Huang K, Zhang J, Chang J, Wang S. Endocrine disrupting chemicals impact on ovarian aging: Evidence from epidemiological and experimental evidence. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119269. [PMID: 35405219 DOI: 10.1016/j.envpol.2022.119269] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/14/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are ubiquitous in daily life, but their harmful effects on the human body have not been fully explored. Recent studies have shown that EDCs exposure could lead to infertility, menstrual disorder and menopause, resulting in subsequent effects on female health. Therefore, it is of great significance to clarify and summarize the impacts of EDCs on ovarian aging for explaining the etiology of ovarian aging and maintaining female reproductive health. Here in this review, we focused on the impacts of ten typical environmental contaminants on the progression of ovarian aging during adult exposure, including epidemiological data in humans and experimental models in rodents, with their clinical phenotypes and underlying mechanisms. We found that both persistent (polychlorinated biphenyls, perfluoroalkyl and polyfluoroalkyl substances) and non-persistent (phthalates) EDCs exposure could increase an overall risk of ovarian aging, leading to the diminish of ovarian reserve, decline of fertility or fecundity, irregularity of the menstrual cycle and an earlier age at menopause, and/or premature ovarian insufficiency/failure in epidemiological studies. Among these, the loss of follicles can also be validated in experimental studies of some EDCs, such as BPA, phthalates, parabens and PCBs. The underlying mechanisms may involve the impaired ovarian follicular development by altering receptor-mediated pro-apoptotic pathways, inducing signal transduction and cell cycle arrest and epigenetic modification. However, there were inconsistent results in the impacts on fertility/fecundity, menstrual/estrous cycle and hormone changes response to different EDCs, and differences between human and animal studies. Our review summarizes the current state of knowledge on ovarian disrupters, highlights their risks to ovarian aging and identifies knowledge gaps in humans and animals. We therefore propose that females adopt healthy lifestyle changes to minimize their exposure to both persistent and non-persistent chemicals, that have the potential damage to their reproductive function.
Collapse
Affiliation(s)
- Ting Ding
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Yan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ting Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Shen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tian Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Milu Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Su Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kecheng Huang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiang Chang
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, Wuhan, 430030, China; School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
8
|
Mandour DA, Aidaros AAM, Mohamed S. Potential long-term developmental toxicity of in utero and lactational exposure to Triclocarban (TCC) in hampering ovarian folliculogenesis in rat offspring. Acta Histochem 2021; 123:151772. [PMID: 34428603 DOI: 10.1016/j.acthis.2021.151772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022]
Abstract
Triclocarban (TCC), an antimicrobial compound commonly added to a wide range of household and personal hygiene care products, is one of the most prevalent endocrine-disrupting substances (EDS). This study was conducted to elucidate whether in utero and lactational exposure to TCC could adversely affect folliculogenesis and the onset of puberty in female rat offspring. Twenty pregnant Sprague Dawley rats were equally divided into Control and TCC dam groups (supplemented daily with drinking water enriched with 0.5 mg/L of TCC) from gestational day5 to postnatal day21 (PND21). Female offspring, 20 from control and 20 from TCC dams, were subdivided into 4 subgroups (PND21, PND28, PND35 & PND42). The day of vaginal opening and first estrous cycle were determined. Ovarian sections of the offspring were processed for H&E staining and for immunohistochemical expression of Ki67, Caspase-3 and androgen receptors (AR) on the granulosa cells of ovarian follicles. Follicular count and atretic index were assessed besides, serum estradiol, progesterone, FSH and LH, C-reactive protein (CRP), malondialdehyde (MDA) and total antioxidant capacity (TAC) were measured. TCC offspring exhibited a significant delay in the onset of puberty and impedance of normal transition of the primordial follicles to more developed ones with altered cyctoarchitecture. Also, TCC decreased follicular count, proliferation and gonado-somatic index while it increased atretic index, apoptosis and AR of the granulosa cells along with disturbance of the feminine hormonal profile and oxidant/antioxidant balance. This study highlighted the potential long-term consequences of in utero and lactational exposure to TCC on the postnatal development of the ovary in rat offspring.
Collapse
Affiliation(s)
- Dalia A Mandour
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Egypt.
| | - Abd Al-Mawla Aidaros
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Egypt
| | - Soad Mohamed
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Egypt
| |
Collapse
|
9
|
Early Postnatal Genistein Administration Affects Mice Metabolism and Reproduction in a Sexually Dimorphic Way. Metabolites 2021; 11:metabo11070449. [PMID: 34357343 PMCID: PMC8303179 DOI: 10.3390/metabo11070449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 12/30/2022] Open
Abstract
The phytoestrogen genistein (GEN) may interfere with permanent morphological changes in the brain circuits sensitive to estrogen. Due to the frequent use of soy milk in the neonatal diet, we aimed to study the effects of early GEN exposure on some physiological and reproductive parameters. Mice of both sexes from PND1 to PND8 were treated with GEN (50 mg/kg body weight, comparable to the exposure level in babies fed with soy-based formulas). When adult, we observed, in GEN-treated females, an advanced pubertal onset and an altered estrous cycle, and, in males, a decrease of testicle weight and fecal testosterone concentration. Furthermore, we observed an increase in body weight and altered plasma concentrations of metabolic hormones (leptin, ghrelin, triiodothyronine) limited to adult females. Exposure to GEN significantly altered kisspeptin and POMC immunoreactivity only in females and orexin immunoreactivity in both sexes. In conclusion, early postnatal exposure of mice to GEN determines long-term sex-specific organizational effects. It impairs the reproductive system and has an obesogenic effect only in females, which is probably due to the alterations of neuroendocrine circuits controlling metabolism; thus GEN, should be classified as a metabolism disrupting chemical.
Collapse
|
10
|
Weis KE, Raetzman LT. Genistein inhibits proliferation and induces senescence in neonatal mouse pituitary gland explant cultures. Toxicology 2019; 427:152306. [PMID: 31593742 DOI: 10.1016/j.tox.2019.152306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/26/2019] [Accepted: 10/02/2019] [Indexed: 12/27/2022]
Abstract
Genistein is an isoflavone abundant in soybean and infants are exposed to high levels of genistein in soy-based formula. It is known that genistein mediates estrogen receptor (ER) signaling, and exposure during neonatal development could cause acute and long term endocrine effects. We assayed genistein's impact on the neonatal mouse pituitary gland because it is an endocrine signaling hub and is sensitive to endocrine disruption during critical periods. Pituitary explant cultures, which actively proliferate and differentiate, were exposed to 0.06 μM-36 μM genistein and assayed for mRNA and protein changes. Genistein induced mRNA expression of the ERα regulated gene, Cckar, to the same magnitude as estradiol (E2) but with less potency. Interestingly, 36 μM genistein strongly inhibited pituitary proliferation, measured by a reduction in mKi67 mRNA and phospho-Histone H3 immunostaining. Examining cell cycle dynamics, we found that 36 μM genistein decreased Ccnb1 (Cyclin B1) mRNA; while mRNA for the cyclin dependent kinase inhibitor Cdkn1a (p21) was upregulated, correlated with an apparent increase in p21 immunostained cells. Strikingly, we observed a robust onset of cellular senescence, permanent cell cycle exit, in 36 μM genistein treated pituitaries by increased senescence activated β-galactosidase staining. We also found that 36 μM genistein decreased Bcl2 mRNA levels, a gene protective against apoptosis. Taken together these data suggest that genistein exposure during the neonatal period could initiate senescence and halt proliferation during a time when the proper numbers of endocrine cells are being established for mature gland function.
Collapse
Affiliation(s)
- Karen E Weis
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, 524 Burrill Hall, 407 South Goodwin Avenue, Urbana, Illinois, 61801, USA
| | - Lori T Raetzman
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, 524 Burrill Hall, 407 South Goodwin Avenue, Urbana, Illinois, 61801, USA.
| |
Collapse
|
11
|
Rosenfeld CS. Effects of Phytoestrogens on the Developing Brain, Gut Microbiota, and Risk for Neurobehavioral Disorders. Front Nutr 2019; 6:142. [PMID: 31555657 PMCID: PMC6727358 DOI: 10.3389/fnut.2019.00142] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 08/14/2019] [Indexed: 01/11/2023] Open
Abstract
Many pregnant and nursing women consume high amounts of soy and other plant products that contain phytoestrogens, such as genistein (GEN) and daidzein. Infants may also be provided soy based formulas. With their ability to bind and activate estrogen receptors (ESR) in the brain, such compounds can disrupt normal brain programming and lead to later neurobehavioral disruptions. However, other studies suggest that maternal consumption of soy and soy based formulas containing such phytoestrogens might lead to beneficial behavioral effects. Select gut microbes might also convert daidzein and to a lesser extent genistein to even more potent forms, e.g., equol derivatives. Thus, infant exposure to phytoestrogens may result in contrasting effects dependent upon the gut flora. It is also becoming apparent that consumption or exposure to these xenoestrogens may lead to gut dysbiosis. Phytoestrogen-induced changes in gut bacteria might in turn affect the brain through various mechanisms. This review will consider the evidence to date in rodent and other animal models and human epidemiological data as to whether developmental exposure to phytoestrogens, in particular genistein and daidzein, adversely or beneficially impact offspring neurobehavioral programming. Consideration will be given to potential mechanisms by which such compounds might affect neurobehavioral responses. A better understanding of effects perinatal exposure to phytoestrogen can exert on brain programming will permit pregnant women and those seeking to become pregnant to make better-educated choices. If phytoestrogen-induced gut dysbiosis contributes to neurobehavioral disruptions, remediation strategies may be designed to prevent such gut microbiota alterations and thereby improve neurobehavioral outcomes.
Collapse
Affiliation(s)
- Cheryl S. Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- MU Informatics Institute, University of Missouri, Columbia, MO, United States
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, United States
- Biomedical Sciences, University of Missouri, Columbia, MO, United States
- Genetics Area Program, University of Missouri, Columbia, MO, United States
| |
Collapse
|
12
|
Marshall BL, Liu Y, Farrington MJ, Mao J, Helferich WG, Schenk AK, Bivens NJ, Sarma SJ, Lei Z, Sumner LW, Joshi T, Rosenfeld CS. Early genistein exposure of California mice and effects on the gut microbiota-brain axis. J Endocrinol 2019; 242:139-157. [PMID: 31189133 PMCID: PMC6885123 DOI: 10.1530/joe-19-0214] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022]
Abstract
Human offspring encounter high amounts of phytoestrogens, such as genistein (GEN), through maternal diet and soy-based formulas. Such chemicals can exert estrogenic activity and thereby disrupt neurobehavioral programming. Besides inducing direct host effects, GEN might cause gut dysbiosis and alter gut metabolites. To determine whether exposure to GEN affects these parameters, California mice (Peromyscus californicus) dams were placed 2 weeks prior to breeding and throughout gestation and lactation on a diet supplemented with GEN (250 mg/kg feed weight) or AIN93G phytoestrogen-free control diet (AIN). At weaning, offspring socio-communicative behaviors, gut microbiota and metabolite profiles were assayed. Exposure of offspring to GEN-induced sex-dependent changes in gut microbiota and metabolites. GEN exposed females were less likely to investigate a novel female mouse when tested in a three-chamber social test. When isolated, GEN males and females exhibited increased latency to elicit their first call, suggestive of reduced motivation to communicate with other individuals. Correlation analyses revealed interactions between GEN-induced microbiome, metabolome and socio-communicative behaviors. Comparison of GEN males with AIN males revealed the fraction of calls above 20 kHz was associated with daidzein, α-tocopherol, Flexispira spp. and Odoribacter spp. Results suggest early GEN exposure disrupts normal socio-communicative behaviors in California mice, which are otherwise evident in these social rodents. Such effects may be due to GEN disruptions on neural programming but might also be attributed to GEN-induced microbiota shifts and resultant changes in gut metabolites. Findings indicate cause for concern that perinatal exposure to GEN may detrimentally affect the offspring microbiome-gut-brain axis.
Collapse
Affiliation(s)
- Brittney L Marshall
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Yang Liu
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Informatics Institute, University of Missouri, Columbia, Missouri, USA
| | - Michelle J Farrington
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Jiude Mao
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - William G Helferich
- Food Science and Human Nutrition, University of Illinois, Urbana, Illinois, USA
| | | | - Nathan J Bivens
- DNA Core Facility, University of Missouri, Columbia, Missouri, USA
| | - Saurav J Sarma
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- MU Metabolomics Center, University of Missouri, Columbia, Missouri, USA
| | - Zhentian Lei
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- MU Metabolomics Center, University of Missouri, Columbia, Missouri, USA
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Lloyd W Sumner
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- MU Metabolomics Center, University of Missouri, Columbia, Missouri, USA
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Trupti Joshi
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Informatics Institute, University of Missouri, Columbia, Missouri, USA
- Department of Health Management and Informatics, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Cheryl S Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
- Informatics Institute, University of Missouri, Columbia, Missouri, USA
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, Missouri, USA
- Genetics Area Program, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
13
|
Hu C, Wong WT, Wu R, Lai WF. Biochemistry and use of soybean isoflavones in functional food development. Crit Rev Food Sci Nutr 2019; 60:2098-2112. [PMID: 31272191 DOI: 10.1080/10408398.2019.1630598] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Soybeans and their food products exist in the market in various forms, ranging from crude oils and bean meals to nutritious products (e.g. soy milk powers). With the availability of technologies for mass production of soy products and for enrichment of soy components (e.g. phospholipids, saponins, isoflavones, oligosaccharides and edible fiber), the nutritional values of soy products have been enhanced remarkably, offering the potential for functional food development. Among different bioactive components in soybeans, one important component is isoflavones, which have been widely exploited for health implications. While there are studies supporting the health benefits of isoflavones, concerns on adverse effects have been raised in the literature. The objective of this article is to review the recent understanding of the biological activities, adverse effects, and use of isoflavones in functional food development.
Collapse
Affiliation(s)
- Chengshen Hu
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
- Center for Human Tissue and Organs Degeneration, Institute of Biomedical and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Runyu Wu
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
- School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
| |
Collapse
|
14
|
Possible role of phytoestrogens in breast cancer via GPER-1/GPR30 signaling. Clin Sci (Lond) 2018; 132:2583-2598. [PMID: 30545896 DOI: 10.1042/cs20180885] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/12/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023]
Abstract
Estrogens generated within endocrine organs and the reproductive system act as ligands for at least three types of estrogen receptors. Estrogen receptors α (ERα) and β (ERβ) belong to the so-called classical family of estrogen receptors, whereas the G protein-coupled receptor GPR30, also known as GPER-1, has been described as a novel estrogen receptor sited in the cell membrane of target cells. Furthermore, these receptors are under stimulation of a family of exogenous estrogens, known as phytoestrogens, which are a diverse group of non-steroidal plant compounds derived from plant food consumed by humans and animals. Because phytoestrogens are omnipresent in our daily diet, they are becoming increasingly important in both human health and disease. Recent evidence indicates that in addition to classical estrogen receptors, phytoestrogens also activate GPER-1 a relevant observation since GPER-1 is involved in several physiopathological disorders and especially in estrogen-dependent diseases such as breast cancer.The first estrogen receptors discovered were the classical ERα and ERβ, but from an evolutionary point of view G protein-coupled receptors trace their origins in history to over a billion years ago suggesting that estrogen receptors like GPER-1 may have been the targets of choice for ancient phytoestrogens and/or estrogens.This review provides a comprehensive and systematic literature search on phytoestrogens and its relationship with classical estrogen receptors and GPER-1 including its role in breast cancer, an issue still under discussion.
Collapse
|
15
|
Catanese MC, Vandenberg LN. Developmental estrogen exposures and disruptions to maternal behavior and brain: Effects of ethinyl estradiol, a common positive control. Horm Behav 2018; 101:113-124. [PMID: 29107581 PMCID: PMC5938171 DOI: 10.1016/j.yhbeh.2017.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/28/2017] [Accepted: 10/24/2017] [Indexed: 12/22/2022]
Abstract
Due of its structural similarity to the endogenous estrogen 17β-estradiol (E2), the synthetic estrogen 17α-ethinyl estradiol (EE2) is widely used to study the effects of estrogenic substances on sensitive organs at multiple stages of development. Here, we investigated the effects of EE2 on maternal behavior and the maternal brain in females exposed during gestation and the perinatal period. We assessed several components of maternal behavior including nesting behavior and pup retrieval; characterized the expression of estrogen receptor (ER)α in the medial preoptic area (MPOA), a brain region critical for the display of maternal behavior; and measured expression of tyrosine hydroxylase, a marker for dopaminergic cells, in the ventral tegmental area (VTA), a brain region important in maternal motivation. We found that developmental exposure to EE2 induces subtle effects on several aspects of maternal behavior including time building the nest and time spent engaged in self-care. Developmental exposure to EE2 also altered ERα expression in the central MPOA during both early and late lactation and led to significantly reduced tyrosine hydroxylase immunoreactivity in the VTA. Our results demonstrate both dose- and postpartum stage-related effects of developmental exposure to EE2 on behavior and brain that manifest later in adulthood, during the maternal period. These findings provide further evidence for effects of exposure to exogenous estrogenic compounds during the critical periods of fetal and perinatal development.
Collapse
Affiliation(s)
- Mary C Catanese
- Program in Neuroscience and Behavior, University of Massachusetts - Amherst, USA
| | - Laura N Vandenberg
- Program in Neuroscience and Behavior, University of Massachusetts - Amherst, USA; Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, USA.
| |
Collapse
|
16
|
Trifunović S, Milošević V. The Morpho-Functional Parameters of Rat Pituitary Hormone Producing Cells After Genistein Treatment. MACEDONIAN VETERINARY REVIEW 2018. [DOI: 10.1515/macvetrev-2017-0027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Abstract
Phytoestrogens are a diverse group of steroid–like compounds that occur naturally in many plants. There are various types of phytoestrogens, including the best-researched isoflavones which are commonly found in soy. The consumption of soy products has many health benefits, including protection against breast cancer, prostate cancer, menopausal symptoms, heart disease and osteoporosis. In contrast, use of hormonally active compounds-isoflavones may unfortunately interfere with the endocrine system and can have far-reaching consequences. Genistein, the most abundant soy-bean derived isoflavone, possesses a ring system similar to estrogens and acts through an estrogen receptor (ER)-mediated mechanism, by increasing or decreasing the transcription of ER-dependent target genes. Also, genistein can act on cells through ER non-dependent mechanisms, such as tyrosine kinase inhibitor. The neuroendocrine systems are responsible for the control of homeostatic processes in the body, including reproduction, growth, metabolism and energy balance, and stress responsiveness. It is well known, that estrogen is important for development of the neuroendocrine system in both sexes. At the pituitary level, estrogen is known to affect the regulation of all hormone producing (HP) cells, by direct and/or indirect mechanisms. Due to structural and functional resemblance to estrogen, the question may arise of whether and how genistein affects the morphofunctional features of pituitary HP cells. This review deals with the consequences of genistein’s effects on morphological, stereological and hormonal features of HP cells within the anterior pituitary gland. Transparency on this issue is needed because isoflavones are presently highly consumed. Inter alia, genistein as well as other isoflavones, are present in various dietary supplements and generally promoted as an accepted alternative to estrogen replacement therapy. Potential isoflavone biomedical exploitation is not only limited to estrogen replacement therapy, so it should be treated in a wider context of different ageing symptoms remediation.
Collapse
Affiliation(s)
- Svetlana Trifunović
- Department of Cytology, Institute for Biological Research “Siniša Stanković” , University of Belgrade , Bul Despot Stefan 142, 11060 Belgrade , Serbia
| | - Verica Milošević
- Department of Cytology, Institute for Biological Research “Siniša Stanković” , University of Belgrade , Bul Despot Stefan 142, 11060 Belgrade , Serbia
| |
Collapse
|
17
|
Amir AA, Kelly JM, Kleemann DO, Durmic Z, Blache D, Martin GB. Phyto-oestrogens affect fertilisation and embryo development in vitro in sheep. Reprod Fertil Dev 2018; 30:1109-1115. [DOI: 10.1071/rd16481] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/22/2017] [Indexed: 02/03/2023] Open
Abstract
Phyto-oestrogens such as isoflavones are natural compounds that can profoundly affect reproductive function. In the present study, we tested whether including isoflavone compounds (genistein, biochanin A, formononetin) in the maturation medium would affect the outcomes for ovine oocytes in vitro. Each isoflavone compound was evaluated at five concentrations (0, 2.5, 5, 10, 25 µg mL−1) and the entire protocol was repeated four times. Cumulus–oocyte complexes were randomly allocated to the treatments, then fertilised and cultured in vitro. Compared with control (0 µg mL−1), the lower concentrations of isoflavone (2.5, 5 and 10 µg mL−1) had no detectable effect on the rates of cleavage or embryo development, or on embryo total cell counts (TCC). However, the highest concentration (25 µg mL−1) of all three isoflavones exerted a variety of effects (P < 0.05): genistein decreased cleavage rate, blastocyst rate and blastocyst efficiency (blastocysts produced per 100 oocytes); biochanin A decreased cleavage rate and blastocyst efficiency; and formononetin decreased blastocyst rate and blastocyst efficiency. Biochanin A (25 µg mL−1) reduced embryo TCC specifically at the hatched blastocyst stage (P < 0.05). We conclude that the presence of isoflavones at 25 µg mL−1 during IVM decreases the cleavage rate and inhibits blastocyst hatching.
Collapse
|
18
|
Jarić I, Živanović J, Miler M, Ajdžanović V, Blagojević D, Ristić N, Milošević V, Nestorović N. Genistein and daidzein treatments differently affect uterine homeostasis in the ovary-intact middle-aged rats. Toxicol Appl Pharmacol 2018; 339:73-84. [DOI: 10.1016/j.taap.2017.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/07/2017] [Accepted: 12/02/2017] [Indexed: 01/16/2023]
|
19
|
Poutaraud A, Michelot-Antalik A, Plantureux S. Grasslands: A Source of Secondary Metabolites for Livestock Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6535-6553. [PMID: 28704611 DOI: 10.1021/acs.jafc.7b00425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The need for environmentally friendly practices in animal husbandry, in conjunction with the reduction of the use of synthetic chemicals, leads us to reconsider our agricultural production systems. In that context, grassland secondary metabolites (GSMs) could offer an alternative way to support to livestock health. In fact, grasslands, especially those with high dicotyledonous plant species, present a large, pharmacologically active reservoir of secondary metabolites (e.g., phenolic compounds, alkaloids, saponins, terpenoids, carotenoids, and quinones). These molecules have activities that could improve or deteriorate health and production. This Review presents the main families of GSMs and uses examples to describe their known impact on animal health in husbandry. Techniques involved for their study are also described. A particular focus is put on anti-oxidant activities of GSMs. In fact, numerous husbandry pathologies, such as inflammation, are linked to oxidative stress and can be managed by a diet rich in anti-oxidants. The different approaches and techniques used to evaluate grassland quality for livestock health highlight the lack of efficient and reliable technics to study the activities of this complex phytococktail. Better knowledge and management of this animal health resource constitute a new multidisciplinary research field and a challenge to maintain and valorize grasslands.
Collapse
Affiliation(s)
- Anne Poutaraud
- Laboratoire Agronomie et Environnement, INRA , UMR 1121, Colmar, 29 rue de Herrlisheim, F-68021 Colmar Cedex, France
| | - Alice Michelot-Antalik
- Laboratoire Agronomie et Environnement, Université de Lorraine , UMR 1121, 2 Avenue de la forêt de Haye - TSA 40602, F-54518 Vandœuvre-lès-Nancy Cedex, France
| | - Sylvain Plantureux
- Laboratoire Agronomie et Environnement, Université de Lorraine , UMR 1121, 2 Avenue de la forêt de Haye - TSA 40602, F-54518 Vandœuvre-lès-Nancy Cedex, France
| |
Collapse
|
20
|
Tsugami Y, Matsunaga K, Suzuki T, Nishimura T, Kobayashi K. Isoflavones and their metabolites influence the milk component synthesis ability of mammary epithelial cells through prolactin/STAT5 signaling. Mol Nutr Food Res 2017; 61. [DOI: 10.1002/mnfr.201700156] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Yusaku Tsugami
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture; Hokkaido University; Sapporo Japan
| | - Kota Matsunaga
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture; Hokkaido University; Sapporo Japan
| | - Takahiro Suzuki
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture; Hokkaido University; Sapporo Japan
| | - Takanori Nishimura
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture; Hokkaido University; Sapporo Japan
| | - Ken Kobayashi
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture; Hokkaido University; Sapporo Japan
| |
Collapse
|
21
|
Ward WE, Kaludjerovic J, Dinsdale EC. A Mouse Model for Studying Nutritional Programming: Effects of Early Life Exposure to Soy Isoflavones on Bone and Reproductive Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:E488. [PMID: 27187422 PMCID: PMC4881113 DOI: 10.3390/ijerph13050488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/03/2016] [Accepted: 05/05/2016] [Indexed: 12/17/2022]
Abstract
Over the past decade, our research group has characterized and used a mouse model to demonstrate that "nutritional programming" of bone development occurs when mice receive soy isoflavones (ISO) during the first days of life. Nutritional programming of bone development can be defined as the ability for diet during early life to set a trajectory for better or compromised bone health at adulthood. We have shown that CD-1 mice exposed to soy ISO during early neonatal life have higher bone mineral density (BMD) and greater trabecular inter-connectivity in long bones and lumbar spine at young adulthood. These skeletal sites also withstand greater forces before fracture. Because the chemical structure of ISO resembles that of 17-β-estradiol and can bind to estrogen receptors in reproductive tissues, it was prudent to expand analyses to include measures of reproductive health. This review highlights aspects of our studies in CD-1 mice to understand the early life programming effects of soy ISO on bone and reproductive health. Preclinical mouse models can provide useful data to help develop and guide the design of studies in human cohorts, which may, depending on findings and considerations of safety, lead to dietary interventions that optimize bone health.
Collapse
Affiliation(s)
- Wendy E Ward
- Department of Kinesiology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada.
| | - Jovana Kaludjerovic
- Department of Kinesiology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada.
| | - Elsa C Dinsdale
- Department of Kinesiology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
22
|
Zama AM, Bhurke A, Uzumcu M. Effects of Endocrine-disrupting Chemicals on Female Reproductive Health. ACTA ACUST UNITED AC 2016. [DOI: 10.2174/1874070701610010054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endocrine-disrupting chemicals (EDCs) are increasingly prevalent in the environment and the evidence demonstrates that they affect reproductive health, has been accumulating for the last few decades. In this review of recent literature, we present evidence of the effects of estrogen-mimicking EDCs on female reproductive health especially the ovaries and uteri. As representative EDCs, data from studies with a pharmaceutical estrogen, diethylstilbestrol (DES), an organochlorine pesticide methoxychlor (MXC), a phytoestrogen (genistein), and a chemical used in plastics, bisphenol a (BPA) have been presented. We also discuss the effects of a commonly found plasticizer in the environment, a phthalate (DEHP), even though it is not a typical estrogenic EDC. Collectively, these studies show that exposures during fetal and neonatal periods cause developmental reprogramming leading to adult reproductive disease. Puberty, estrous cyclicity, ovarian follicular development, and uterine functions are all affected by exposure to these EDCs. Evidence that epigenetic modifications are involved in the progression to adult disease is also presented.
Collapse
|
23
|
Genistein exposure inhibits growth and alters steroidogenesis in adult mouse antral follicles. Toxicol Appl Pharmacol 2016; 293:53-62. [PMID: 26792615 DOI: 10.1016/j.taap.2015.12.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/02/2015] [Accepted: 12/30/2015] [Indexed: 01/25/2023]
Abstract
Genistein is a naturally occurring isoflavone phytoestrogen commonly found in plant products such as soybeans, lentils, and chickpeas. Genistein, like other phytoestrogens, has the potential to mimic, enhance, or impair the estradiol biosynthesis pathway, thereby potentially altering ovarian follicle growth. Previous studies have inconsistently indicated that genistein exposure may alter granulosa cell proliferation and hormone production, but no studies have examined the effects of genistein on intact antral follicles. Thus, this study was designed to test the hypothesis that genistein exposure inhibits follicle growth and steroidogenesis in intact antral follicles. To test this hypothesis, antral follicles isolated from CD-1 mice were cultured with vehicle (dimethyl sulfoxide; DMSO) or genistein (6.0 and 36μM) for 18-96h. Every 24h, follicle diameters were measured to assess growth. At the end of each culture period, the media were pooled to measure hormone levels, and the cultured follicles were collected to measure expression of cell cycle regulators and steroidogenic enzymes. The results indicate that genistein (36μM) inhibits growth of mouse antral follicles. Additionally, genistein (6.0 and 36μM) increases progesterone, testosterone, and dehydroepiandrosterone (DHEA) levels, but decreases estrone and estradiol levels. The results also indicate that genistein alters the expression of steroidogenic enzymes at 24, 72 and 96h, and the expression of cell cycle regulators at 18h. These data indicate that genistein exposure inhibits antral follicle growth by inhibiting the cell cycle, alters sex steroid hormone levels, and dysregulates steroidogenic enzymes in cultured mouse antral follicles.
Collapse
|
24
|
Medigović IM, Živanović JB, Ajdžanović VZ, Nikolić-Kokić AL, Stanković SD, Trifunović SL, Milošević VL, Nestorović NM. Effects of soy phytoestrogens on pituitary-ovarian function in middle-aged female rats. Endocrine 2015. [PMID: 26215277 DOI: 10.1007/s12020-015-0691-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aim of this study was to assess the effects of genistein (G) and daidzein (D) on the histological, hormonal, and functional parameters of the pituitary-ovarian axis in middle-aged female rats, and to compare these effects with the effects of estradiol (E), commonly used in the prevention and treatment of menopausal symptoms. Middle-aged (12 month old) Wistar female rats subcutaneously received 35 mg/kg of G, or 35 mg/kg of D, or 0.625 mg/kg of E every day for 4 weeks. Each of the treated groups had a corresponding control group. An intact control group was also established. G and D did not change the intracellular protein content within gonadotropic and lactotropic cells, but vacuolization was observed in all the cell types. In contrast, E caused an inhibition of gonadotropic and stimulation of lactotropic cells. Also, ovaries of middle-aged female rats exposed to G or D have more healthy primordial and primary follicles and less atretic follicles. E treatment in the ovaries had a mostly negative effect, which is reflected by the increased number of atretic follicles in all tested classes. G and D provoked decrease in CuZnSOD and CAT activity, while E treatment increased MnSOD and decreased CuZnSOD and GSHPx activity. All the treatments increased serum estradiol and decreased testosterone levels, while D and E increased the serum progesterone level. In conclusion, soy phytoestrogens exhibited beneficial effects on pituitary-ovarian function in middle-aged female rats, as compared to estradiol.
Collapse
Affiliation(s)
- Ivana M Medigović
- Department of Citology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia.
| | - Jasmina B Živanović
- Department of Citology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Vladimir Z Ajdžanović
- Department of Citology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Aleksandra L Nikolić-Kokić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Sanja D Stanković
- Center for Medical Biochemistry, Clinical Centre of Serbia, School of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Svetlana L Trifunović
- Department of Citology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Verica Lj Milošević
- Department of Citology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Nataša M Nestorović
- Department of Citology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| |
Collapse
|
25
|
Marshall SA, Rinker JA, Harrison LK, Fletcher CA, Herfel TM, Thiele TE. Assessment of the Effects of 6 Standard Rodent Diets on Binge-Like and Voluntary Ethanol Consumption in Male C57BL/6J Mice. Alcohol Clin Exp Res 2015; 39:1406-16. [PMID: 26110576 DOI: 10.1111/acer.12773] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 05/06/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND In recent years, much attention has been given to the lack of reproducibility in biomedical research, particularly in preclinical animal studies. This is a problem that also plagues the alcohol research field, particularly in consistent consumption in animal models of alcohol use disorders. One often overlooked factor that could affect reproducibility is the maintenance diet used in preclinical studies. METHODS Herein, 2 well-established models of alcohol consumption, the "drinking in the dark" (DID) procedure and the continuous 2-bottle choice (C2BC) paradigm, were employed to determine the effects of diet on ethanol (EtOH) consumption. Male C57BL/6J mice were given 1 of 6 standard rodent chow diets obtained from Purina LabDiet(®) , Inc. (Prolab(®) RMH 3000) or Harlan(®) Laboratories, Inc. (Teklad Diets T.2916, T.2918, T.2920X, T.7912, or T.8940). A separate group of animals were used to test dietary effects on EtOH pharmacokinetics and behavioral measures following intraperitoneal (IP) injections of various doses of EtOH. RESULTS Mice eating Harlan diets T.2916 (H2916) and T.2920X (H2920) consumed significantly less EtOH and exhibited lower blood EtOH concentrations (BECs) during DID; however, during C2BC, animals maintained on Harlan T.7912 (H7912) consumed more EtOH and had a higher EtOH preference than the other diet groups. EtOH consumption levels did not stem from changes in alcohol pharmacokinetics, as a separate group of animals administered EtOH IP showed no difference in BECs. However, animals on Harlan diet T.2920X (H2920) were more sensitive to alcohol-induced locomotor activity in an open-field task. No diet-dependent differences were seen in alcohol-induced sedation as measured with loss of righting reflex. CONCLUSIONS Although these data do not identify a specific mechanism, together, they clearly show that the maintenance diet impacts EtOH consumption. It is incumbent upon the research community to consider the importance of describing nutritional information in methods, which may help decrease interlaboratory reproducibility issues.
Collapse
Affiliation(s)
- Simon Alex Marshall
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jennifer A Rinker
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Langston K Harrison
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Craig A Fletcher
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Tina M Herfel
- Teklad Diets Technical Services, Harlan Laboratories, Inc., Madison, Wisconsin
| | - Todd E Thiele
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
26
|
Patel S, Zhou C, Rattan S, Flaws JA. Effects of Endocrine-Disrupting Chemicals on the Ovary. Biol Reprod 2015; 93:20. [PMID: 26063868 DOI: 10.1095/biolreprod.115.130336] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/05/2015] [Indexed: 01/01/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are found abundantly in the environment, resulting in daily human exposure. This is of concern because many EDCs are known to target the female reproductive system and, more specifically, the ovary. In the female, the ovary is the key organ responsible for reproductive and endocrine functions. Exposure to EDCs is known to cause many reproductive health problems such as infertility, premature ovarian failure, and abnormal sex steroid hormone levels. Some EDCs and their effects on adult ovarian function have been studied extensively over the years, whereas the effects of others remain unclear. This review covers what is currently known about the effects of selected EDCs (bisphenol A, methoxychlor, 2,3,7,8-tetrachlorodibenzo-p-dioxin, phthalates, and genistein) on the adult ovary and the mechanisms by which they act upon the ovary, focusing primarily on their effects on folliculogenesis and steroidogenesis. Furthermore, this review discusses future directions needed to better understand the effects of EDCs, including the need to examine the effects of multiple and more consistent doses and to study different mechanisms of action.
Collapse
Affiliation(s)
- Shreya Patel
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Changqing Zhou
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Saniya Rattan
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
27
|
Catanese MC, Suvorov A, Vandenberg LN. Beyond a means of exposure: a new view of the mother in toxicology research. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00119b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Toxicological studies generally view pregnant animals as a conduit through which gestational exposure of offspring to chemicals can be achieved, allowing for the study of developmental toxicity.
Collapse
Affiliation(s)
- Mary C. Catanese
- Program in Neuroscience & Behaviour
- University of Massachusetts – Amherst
- Amherst
- USA
| | - Alexander Suvorov
- Program in Neuroscience & Behaviour
- University of Massachusetts – Amherst
- Amherst
- USA
- Division of Environmental Health Sciences
| | - Laura N. Vandenberg
- Program in Neuroscience & Behaviour
- University of Massachusetts – Amherst
- Amherst
- USA
- Division of Environmental Health Sciences
| |
Collapse
|
28
|
Naringenin (NAR) and 8-prenylnaringenin (8-PN) reduce the developmental competence of porcine oocytes in vitro. Reprod Toxicol 2014; 49:1-11. [DOI: 10.1016/j.reprotox.2014.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/12/2014] [Accepted: 05/28/2014] [Indexed: 12/31/2022]
|
29
|
Kelly MM, Fleischhacker NT, Rearick DC, Arnold WA, Schoenfuss HL, Novak PJ. Phytoestrogens in the environment, II: microbiological degradation of phytoestrogens and the response of fathead minnows to degradate exposure. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:560-566. [PMID: 24249429 DOI: 10.1002/etc.2462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 09/23/2013] [Accepted: 11/08/2013] [Indexed: 06/02/2023]
Abstract
Phytoestrogens are endocrine active compounds derived from plants, including the isoflavones genistein and daidzein, and their methylated derivatives biochanin A and formononetin. These compounds have been detected at the µg/L level in the effluents of plant-processing industries and municipal treatment plants and at the ng/L level in surface waters worldwide. The present study assessed the persistence of genistein and daidzein in natural aquatic systems, specifically riverine samples. Initial concentration, temperature, sample location, and time of sample collection varied. Genistein and daidzein were found to be readily biodegradable at all tested concentrations, at both 10 °C and 20 °C, in samples collected during different seasons, and in samples from 3 different rivers. In addition, organismal responses in larval and sexually mature fathead minnows (Pimephales promelas) were quantified following exposure to microbiologically degraded phytoestrogens (genistein, daidzein, and formononetin). Products of the microbiological degradation of parent phytoestrogens did not affect larval survival, growth, or predator avoidance. Female adult fathead minnows exposed to these degradation products produced significantly fewer eggs than those exposed to a control, but no other morphological, physiological, or behavioral changes were observed with male or female minnows. The present research suggests that although phytoestrogens are not likely to persist in aquatic systems, they may pseudo-persist if discharges are continuous; in addition, caution should be exercised with respect to high-concentration effluents because of the potentially antiestrogenic effects of phytoestrogen degradates.
Collapse
Affiliation(s)
- Megan M Kelly
- Water Resources Science Graduate Program, University of Minnesota, St. Paul, Minnesota, USA
| | | | | | | | | | | |
Collapse
|
30
|
Rearick DC, Fleischhacker NT, Kelly MM, Arnold WA, Novak PJ, Schoenfuss HL. Phytoestrogens in the environment, I: occurrence and exposure effects on fathead minnows. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:553-559. [PMID: 24249361 DOI: 10.1002/etc.2461] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/23/2013] [Accepted: 11/08/2013] [Indexed: 06/02/2023]
Abstract
Naturally occurring phytoestrogens may mimic biogenic estrogens and modulate endocrine action in vertebrates. Little is known, however, about their temporal and spatial variability in the environment and the biological effects associated with exposures. The present study assessed the environmental presence of phytoestrogens in human-impacted and relatively pristine areas. The response in larval and sexually mature fathead minnows to environmentally relevant concentrations of 3 common phytoestrogens (genistein, daidzein, and formononetin), both singly and in mixture, was also quantified. Phytoestrogens were only present in the human-impacted surface waters. When detected, mean concentrations were low (± standard deviation) in an urban lake: 1.4 ± 0.5 ng/L, 1.6 ± 0.7 ng/L, and 1.1 ± 0.2 ng/L for genistein, daidzein, and formononetin, respectively, and in treated wastewater effluent: 1.6 ± 0.4 ng/L, 1.8 ± 1.3 ng/L, and 2.0 ng/L. Biochanin A was detected twice, whereas zearalenone and coumestrol were never detected. No clear temporal trends of aqueous phytoestrogen concentration were evident. Larval survival was significantly reduced in genistein, formononetin, and mixture treatments, whereas adult male fish only exhibited subtle changes to their anatomy, physiology, and behavior. Daidzein-exposed adult females produced greater quantities of eggs. The present study indicates that genistein, daidzein, and formononetin are likely attenuated rapidly and are unlikely to cause widespread ecological harm in the absence of other stressors.
Collapse
Affiliation(s)
- Daniel C Rearick
- Aquatic Toxicology Laboratory, St. Cloud State University, St. Cloud, Minnesota, USA
| | | | | | | | | | | |
Collapse
|
31
|
Phytoestrogens β -sitosterol and genistein have limited effects on reproductive endpoints in a female fish, Betta splendens. BIOMED RESEARCH INTERNATIONAL 2014; 2014:681396. [PMID: 24707495 PMCID: PMC3953504 DOI: 10.1155/2014/681396] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/08/2014] [Accepted: 01/12/2014] [Indexed: 01/25/2023]
Abstract
Phytoestrogens are produced by plants and may cause endocrine disruption in vertebrates. The present study hypothesizes that phytoestrogen exposure of female Siamese fighting fish (Betta splendens) may disrupt endogenous steroid levels, change agonistic behavior expression, and potentially also disrupt oocyte development. However, only the pharmacologic dose of β-sitosterol had a significant effect on opercular flaring behavior, while we did not find significant effects of β-sitosterol or genistein on steroids or gonads. These findings are in direct contrast with previous studies on the effects of phytoestrogens in female fish. Results of the current study support previous work showing that the effects of phytoestrogen exposure may be less acute in mature female B. splendens than in other fish.
Collapse
|
32
|
Bhattarai JP, Abrahám IM, Han SK. Genistein excitation of gonadotrophin-releasing hormone neurones in juvenile female mice. J Neuroendocrinol 2013; 25:497-505. [PMID: 23351167 DOI: 10.1111/jne.12020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 12/28/2012] [Accepted: 01/01/2013] [Indexed: 11/30/2022]
Abstract
We investigated the effects of the phytoestrogen genistein on gonadotrophin-releasing hormone (GnRH) neurones using single-cell electrophysiology on GnRH-green fluorescent protein (GFP) transgenic juvenile female mice. Perforated patch-clamp recordings from GnRH-GFP neurones showed that approximately 83% of GnRH neurones responded to 30 μm genistein with a markedly prolonged membrane depolarisation. This effect not only persisted in the presence of tetrodotoxin, but also in the presence of amino acid receptor antagonists, indicating the direct site of action on postsynaptic GnRH neurones. Using a voltage clamp technique, we found that 30 μm genistein increased the frequency of synaptic current of GnRH neurones clamped at -60 mV in the presence of glutamate receptor blocker but not GABAA receptor blocker. Pre-incubation of GnRH neurones with 30 μm genistein enhanced kisspeptin-induced membrane depolarisation and firing. GnRH neurones of juvenile mice injected with genistein in vivo showed an enhanced kisspeptin response compared to vehicle-injected controls. The transient receptor potential channel (TRPC) blocker 2-aminoethoxydiphenyl borate (75 μm) blocked the genistein-mediated response on GnRH neurones. These results demonstrate that genistein acts on GnRH neurones in juvenile female mice to induce excitation via GABA neurotransmission and TRPCs to enhance kisspeptin-induced activation.
Collapse
Affiliation(s)
- J P Bhattarai
- Department of Oral Physiology, School of Dentistry & Institute of Oral Bioscience, Chonbuk National University, Jeonju, Korea
| | | | | |
Collapse
|
33
|
Zin SRM, Omar SZ, Khan NLA, Musameh NI, Das S, Kassim NM. Effects of the phytoestrogen genistein on the development of the reproductive system of Sprague Dawley rats. Clinics (Sao Paulo) 2013; 68:253-62. [PMID: 23525324 PMCID: PMC3584289 DOI: 10.6061/clinics/2013(02)oa21] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/26/2012] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES Genistein is known to influence reproductive system development through its binding affinity for estrogen receptors. The present study aimed to further explore the effect of Genistein on the development of the reproductive system of experimental rats. METHODS Eighteen post-weaning female Sprague Dawley rats were divided into the following groups: (i) a control group that received vehicle (distilled water and Tween 80); (ii) a group treated with 10 mg/kg body weight (BW) of Genistein (Gen 10); and (iii) a group treated with a higher dose of Genistein (Gen 100). The rats were treated daily for three weeks from postnatal day 22 (P22) to P42. After the animals were sacrificed, blood samples were collected, and the uteri and ovaries were harvested and subjected to light microscopy and immunohistochemical study. RESULTS A reduction of the mean weekly BW gain and organ weights (uteri and ovaries) were observed in the Gen 10 group compared to the control group; these findings were reversed in the Gen 100 group. Follicle stimulating hormone and estrogen levels were increased in the Gen 10 group and reduced in the Gen 100 group. Luteinizing hormone was reduced in both groups of Genistein-treated animals, and there was a significant difference between the Gen 10 and control groups (p<0.05). These findings were consistent with increased atretic follicular count, a decreased number of corpus luteum and down-regulation of estrogen receptors-a in the uterine tissues of the Genistein-treated animals compared to the control animals. CONCLUSION Post-weaning exposure to Genistein could affect the development of the reproductive system of ovarian-intact experimental rats because of its action on the hypothalamic-pituitary-gonadal axis by regulating hormones and estrogen receptors.
Collapse
Affiliation(s)
- Siti Rosmani Md Zin
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | | | | | | | | | | |
Collapse
|
34
|
Wocławek-Potocka I, Mannelli C, Boruszewska D, Kowalczyk-Zieba I, Waśniewski T, Skarżyński DJ. Diverse effects of phytoestrogens on the reproductive performance: cow as a model. Int J Endocrinol 2013; 2013:650984. [PMID: 23710176 PMCID: PMC3655573 DOI: 10.1155/2013/650984] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/04/2013] [Indexed: 12/12/2022] Open
Abstract
Phytoestrogens, polyphenolic compounds derived from plants, are more and more common constituents of human and animal diets. In most of the cases, these chemicals are much less potent than endogenous estrogens but exert their biological effects via similar mechanisms of action. The most common source of phytoestrogen exposure to humans as well as ruminants is soybean-derived foods that are rich in the isoflavones genistein and daidzein being metabolized in the digestive tract to even more potent metabolites-para-ethyl-phenol and equol. Phytoestrogens have recently come into considerable interest due to the increasing information on their adverse effects in human and animal reproduction, increasing the number of people substituting animal proteins with plant-derived proteins. Finally, the soybean becomes the main source of protein in animal fodder because of an absolute prohibition of bone meal use for animal feeding in 1995 in Europe. The review describes how exposure of soybean-derived phytoestrogens can have adverse effects on reproductive performance in female adults.
Collapse
Affiliation(s)
- Izabela Wocławek-Potocka
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10 Street, 10-747 Olsztyn, Poland
| | - Chiara Mannelli
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10 Street, 10-747 Olsztyn, Poland
- Department of Life Sciences, Doctoral School in Life Sciences, University of Siena, Miniato via A. Moro 2 St., 53100 Siena, Italy
| | - Dorota Boruszewska
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10 Street, 10-747 Olsztyn, Poland
| | - Ilona Kowalczyk-Zieba
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10 Street, 10-747 Olsztyn, Poland
| | - Tomasz Waśniewski
- Department of Gynecology and Obstetrics, Faculty of Medical Sciences, University of Warmia and Masuria, Zolnierska 14 C St., 10-561 Olsztyn, Poland
| | - Dariusz J. Skarżyński
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10 Street, 10-747 Olsztyn, Poland
- *Dariusz J. Skarżyński:
| |
Collapse
|
35
|
Kamp H, Strauss V, Wiemer J, Leibold E, Walk T, Mellert W, Looser R, Prokoudine A, Fabian E, Krennrich G, Herold M, van Ravenzwaay B. Reproducibility and robustness of metabolome analysis in rat plasma of 28-day repeated dose toxicity studies. Toxicol Lett 2012; 215:143-9. [DOI: 10.1016/j.toxlet.2012.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 09/18/2012] [Accepted: 09/24/2012] [Indexed: 11/28/2022]
|
36
|
Gertz J, Reddy TE, Varley KE, Garabedian MJ, Myers RM. Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res 2012; 22:2153-62. [PMID: 23019147 PMCID: PMC3483545 DOI: 10.1101/gr.135681.111] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Endogenous estrogens that are synthesized in the body impact gene regulation by activating estrogen receptors in diverse cell types. Exogenous compounds that have estrogenic properties can also be found circulating in the blood in both children and adults. The genome-wide impact of these environmental estrogens on gene regulation is unclear. To obtain an integrated view of gene regulation in response to environmental and endogenous estrogens on a genome-wide scale, we performed ChIP-seq to identify estrogen receptor 1 (ESR1; previously estrogen receptor α) binding sites, and RNA-seq in endometrial cancer cells exposed to bisphenol A (BPA; found in plastics), genistein (GEN; found in soybean), or 17β-estradiol (E2; an endogenous estrogen). GEN and BPA treatment induces thousands of ESR1 binding sites and >50 gene expression changes, representing a subset of E2-induced gene regulation changes. Genes affected by E2 were highly enriched for ribosome-associated proteins; however, GEN and BPA failed to regulate most ribosome-associated proteins and instead enriched for transporters of carboxylic acids. Treatment-dependent changes in gene expression were associated with treatment-dependent ESR1 binding sites, with the exception that many genes up-regulated by E2 harbored a BPA-induced ESR1 binding site but failed to show any expression change after BPA treatment. GEN and BPA exhibited a similar relationship to E2 in the breast cancer line T-47D, where cell type specificity played a much larger role than treatment specificity. Overall, both environmental estrogens clearly regulate gene expression through ESR1 on a genome-wide scale, although with lower potency resulting in less ESR1 binding sites and less gene expression changes compared to the endogenous estrogen, E2.
Collapse
Affiliation(s)
- Jason Gertz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | | | | | | | | |
Collapse
|
37
|
Khaw AK, Yong JWY, Kalthur G, Hande MP. Genistein induces growth arrest and suppresses telomerase activity in brain tumor cells. Genes Chromosomes Cancer 2012; 51:961-74. [DOI: 10.1002/gcc.21979] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 12/19/2022] Open
|
38
|
Abstract
In the present report, we studied if an isoflavone, genistein, enhances the nerve growth factor (NGF)-induced neurite outgrowth of PC12 cells. Application of genistein enhanced the NGF-induced neurite outgrowth. Knockdown of Na+/K+/2Cl- cotransporter isoform 1 (NKCC1) abolished the stimulatory effect of genistein on the neurite outgrowth. These observations indicate that NKCC1 is essential for genistein to stimulate the NGF-induced neurite outgrowth, although genistein had no effect on the protein expression of NKCC1. On the other hand, genistein activates NKCC1 as shown in our previous study. Taken together, these observations indicate that genistein enhanced the NGF-induced neurite outgrowth in PC12 cells via activation of NKCC1.
Collapse
Affiliation(s)
- Ken-Ichi Nakajima
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | |
Collapse
|
39
|
Kaludjerovic J, Chen J, Ward WE. Early life exposure to genistein and daidzein disrupts structural development of reproductive organs in female mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2012; 75:649-660. [PMID: 22712850 DOI: 10.1080/15287394.2012.688482] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In mice, exposure to isoflavones (ISO), abundant in soy infant formula, during the first 5 d of life alters structural and functional development of reproductive organs. Effects of longer exposures are unknown. The study objective was to evaluate whether exposure to a combination of daidzein and genistein in the first 10 compared to 5 d of life results in greater adverse effects on ovarian and uterine structure in adult mice. Thirteen litters of 8-12 pups were cross-fostered and randomized to corn oil or ISO (2 mg daidzein + 5 mg genistein/kg body weight/d) for the first 5 or 10 d of life. The 10-d protocol mimicked the period when infants are fed soy protein formula (SPF) but avoids the time when suckling pups can consume mother's diet. Body and organ weights, and histology of ovaries and uteri were analyzed. There were no differences in the ovary or uterus weight, number of ovarian follicles, number of multiple oocyte follicles, or percent of ovarian cysts with 5 or 10 d ISO intervention compared to respective controls. The 10-d ISO group had higher body weights from 6 d to 4 mo of age and a higher percent of hyperplasia in the oviduct than the respective control. Lower number of ovarian corpus lutea and a higher incidence of abnormal changes were reported in the uteri of both ISO groups compared to their respective controls. Five and 10-d exposure to ISO had similar long-lasting adverse effects on the structure of ovaries and uterus in adult mice. Only the 10-d ISO exposure resulted in greater body weight gain at adulthood.
Collapse
Affiliation(s)
- Jovana Kaludjerovic
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
40
|
Dinsdale EC, Chen J, Ward WE. Early life exposure to isoflavones adversely affects reproductive health in first but not second generation female CD-1 mice. J Nutr 2011; 141:1996-2002. [PMID: 21940509 DOI: 10.3945/jn.111.142281] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Soy-based infant formula (SBIF) can be a substantial source of soy isoflavones during early life. Because soy isoflavones have the capacity to mimic endogenous estrogen and thereby exert hormone-like effects, there is concern regarding reproductive health. The objectives were to determine if neonatal exposure to soy isoflavones altered reproductive health in females and, if so, whether such effects are transferred to subsequent generations. CD-1 mice were bred and F1 mouse offspring were cross-fostered at birth and randomized to 1 of 4 treatments: 7 mg soy isoflavones · kg body weight(-1) · d(-1) or corn oil from postnatal d (PND) 1 to 10 or from PND 1 to 21 (n = 8-13 females/group). Mice were subsequently bred to control males on PND 56 to obtain F2 females (n = 10-15/group). F1 mice that received isoflavones had ~15% greater body weight during wk 4-8 and markedly reduced fertility with a 55-60% success rate. Reduced fertility was associated with abnormal estrus cycles, fewer corpora lutea in ovaries, and increased incidence of hyperplasia and atypia in the uteri. Offspring (F2 mice) of isoflavone-treated F1 mice had ~15% higher body weight by wk 8 through 16 of age than controls and fertility was normal. In summary, early exposure to soy isoflavones resulting in serum isoflavone concentrations similar to human infants fed SBIF reduced fertility in F1 but not F2 mice and increased body weight in both generations of female offspring. Extrapolation of these findings to the human scenario are complex but can provide guidance for more fully understanding the implications for infants consuming SBIF.
Collapse
Affiliation(s)
- Elsa C Dinsdale
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
41
|
Mark-Kappeler CJ, Hoyer PB, Devine PJ. Xenobiotic effects on ovarian preantral follicles. Biol Reprod 2011; 85:871-83. [PMID: 21697514 PMCID: PMC3197911 DOI: 10.1095/biolreprod.111.091173] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 02/16/2011] [Accepted: 05/17/2011] [Indexed: 01/30/2023] Open
Abstract
Women are born with a finite population of ovarian follicles, which are slowly depleted during their reproductive years until reproductive failure (menopause) occurs. The rate of loss of primordial follicles is determined by genetic and environmental influences, but certain toxic exposures can accelerate this process. Ionizing radiation reduces preantral follicle numbers in rodents and humans in a dose-dependent manner. Cigarette smoking is linked to menopause occurring 1-4 yr earlier than with nonsmokers, and components of smoke, polycyclic aromatic hydrocarbons, can cause follicle depletion in rodents or in ovaries in vitro. Chemotherapeutic agents, such as alkylating drugs and cisplatin, also cause loss of preantral ovarian follicles. Effects depend on dose, type, and reactivity of the drug, and the age of the individual. Evidence suggests DNA damage may underlie follicle loss induced by one common alkylating drug, cyclophosphamide. Occupational exposures have also been linked to ovarian damage. In an industrial setting, 2-bromopropane caused infertility in men and women, and it can induce ovarian follicle depletion in rats. Solvents, such as butadiene, 4-vinylcyclohexene, and their diepoxides, can also cause specific preantral follicle depletion. The mechanism(s) underlying effects of the latter compound may involve alterations in apoptosis, survival factors such as KIT/Kit Ligand, and/or the cellular signaling that maintains primordial follicle dormancy. Estrogenic endocrine disruptors may alter follicle formation/development and impair fertility or normal development of offspring. Thus, specific exposures are known or suspected of detrimentally impacting preantral ovarian follicles, leading to early ovarian failure.
Collapse
|
42
|
Gao LL, Hane JK, Kamphuis LG, Foley R, Shi BJ, Atkins CA, Singh KB. Development of genomic resources for the narrow-leafed lupin (Lupinus angustifolius): construction of a bacterial artificial chromosome (BAC) library and BAC-end sequencing. BMC Genomics 2011; 12:521. [PMID: 22014081 PMCID: PMC3206524 DOI: 10.1186/1471-2164-12-521] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 10/21/2011] [Indexed: 11/26/2022] Open
Abstract
Background Lupinus angustifolius L, also known as narrow-leafed lupin (NLL), is becoming an important grain legume crop that is valuable for sustainable farming and is becoming recognised as a potential human health food. Recent interest is being directed at NLL to improve grain production, disease and pest management and health benefits of the grain. However, studies have been hindered by a lack of extensive genomic resources for the species. Results A NLL BAC library was constructed consisting of 111,360 clones with an average insert size of 99.7 Kbp from cv Tanjil. The library has approximately 12 × genome coverage. Both ends of 9600 randomly selected BAC clones were sequenced to generate 13985 BAC end-sequences (BESs), covering approximately 1% of the NLL genome. These BESs permitted a preliminary characterisation of the NLL genome such as organisation and composition, with the BESs having approximately 39% G:C content, 16.6% repetitive DNA and 5.4% putative gene-encoding regions. From the BESs 9966 simple sequence repeat (SSR) motifs were identified and some of these are shown to be potential markers. Conclusions The NLL BAC library and BAC-end sequences are powerful resources for genetic and genomic research on lupin. These resources will provide a robust platform for future high-resolution mapping, map-based cloning, comparative genomics and assembly of whole-genome sequencing data for the species.
Collapse
Affiliation(s)
- Ling-Ling Gao
- Plant Industry, Commonwealth Scientific and Industrial Research Organisation, Private Bag No, 5, Wembley WA 6913, Australia
| | | | | | | | | | | | | |
Collapse
|
43
|
Genistein upregulates placental corticotropin-releasing hormone expression in lipopolysaccharide-sensitized mice. Placenta 2011; 32:757-62. [PMID: 21816468 DOI: 10.1016/j.placenta.2011.07.082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 06/30/2011] [Accepted: 07/08/2011] [Indexed: 11/24/2022]
Abstract
Genistein is a phytoestrogen isolated from soya beans. Although soy products are staple food of Asian, the potential effect of genistein on reproduction has not been fully addressed. Lipopolysaccharide (LPS) is an endotoxin found in the cell membrane of gram-negative bacteria. It may cause inflammation and other immune responses. Previous study has shown that LPS may induce pre-mature birth in rodents. In the present study, effect of genistein on LPS-induced preterm birth was investigated. Pregnant ICR mice were gavaged with genistein at 40, 200 and 400 mg/kg body weight/day during E13 to E16. LPS was injected i.p. on E16.5 and the animals were sacrificed at E17. Compared to the control group, an increased incidence of early delivery was observed in the pooled mice under LPS treatment. A rising trend of incidence was also demonstrated dose-dependently with genistein co-treatment. Real-time RT-PCR indicated that the placental crh expression was highly induced by the co-administration of 400 mg/kg genistein and LPS. By contrast, neither genistein nor LPS alone could alter the expression. Increased plasma CRH concentration was also seen in the co-treatment groups. In addition, the mRNA expression of placental CRH-binding protein and plasma progesterone concentration were reduced in these groups. These results indicated that genistein might exacerbate the undesirable effect of LPS on pregnant mice by altering hormonal regulations.
Collapse
|
44
|
Abstract
A high intake of fruits and vegetables is associated with a lower risk of cancer. In this context, considerable attention is paid to Asian populations who consume high amounts of soy and soy-derived isoflavones, and have a lower risk for several cancer types such as breast and prostate cancers than populations in Western countries. Hence, interest focuses on soyfoods, soy products, and soy ingredients such as isoflavones with regard to their possible beneficial effects that were observed in numerous experiments and studies. The outcomes of the studies are not always conclusive, are often contradictory depending on the experimental conditions, and are, therefore, difficult to interpret. Isoflavone research revealed not only beneficial but also adverse effects, for instance, on the reproductive system. This is also the case with tumor-promoting effects on, for example, breast tissue. Isoflavone extracts and supplements are often used for the treatment of menopausal symptoms and for the prevention of age-associated conditions such as cardiovascular diseases and osteoporosis in postmenopausal women. In relation to this, questions about the effectiveness and safety of isoflavones have to be clarified. Moreover, there are concerns about the maternal consumption of isoflavones due to the development of leukemia in infants. In contrast, men may benefit from the intake of isoflavones with regard to reducing the risk of prostate cancer. Therefore, this review examines the risks but also the benefits of isoflavones with regard to various kinds of cancer, which can be derived from animal and human studies as well as from in vitro experiments.
Collapse
Affiliation(s)
- Susanne Andres
- Department of Food Safety, Federal Institute for Risk Assessment, Berlin, Germany
| | | | | | | |
Collapse
|
45
|
Circulating isoflavonoid levels in CD-1 mice: effect of oral versus subcutaneous delivery and frequency of administration. J Nutr Biochem 2011; 23:437-42. [PMID: 21658927 DOI: 10.1016/j.jnutbio.2011.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 01/13/2011] [Accepted: 01/21/2011] [Indexed: 11/22/2022]
Abstract
The CD-1 mouse is a commonly used animal model to understand the biological effects of early-life exposure to soy isoflavones in infants. Most studies using CD-1 mice have administered isoflavones by daily subcutaneous injection, while infants receive oral feeds every few hours. The study objectives were to compare the total serum levels of genistein (GEN), daidzein (DAI) and the DAI metabolites equol and O-desmethyl-angolensin (O-DMA), after subcutaneous injection and oral dosing and to determine if frequency of oral administration results in different circulating levels of isoflavones using the CD-1 mouse model. From postnatal days 1 to 5, pups randomly received corn oil or soy isoflavones (total daily dose, 0.010 mg DAI+0.025 mg GEN) by subcutaneous injection once a day, orally once a day or orally every 4 hours. On postnatal day 5, 1 h posttreatment, mice were killed and serum was collected. Mice treated with soy isoflavones had higher (P<.05) serum GEN (female: 1895-3391 ng/ml and male: 483-578 ng/ml) and DAI (female: 850-1580 ng/ml and male: 248-322 ng/ml) concentrations versus control (5-20 ng/ml) mice, regardless of route or frequency of administration, and were similar among dosing strategies. Total serum concentrations of GEN and DAI were higher (P<.05) among females (GEN: 2714 ± 393 ng/ml and DAI: 1205 ± 164 ng/ml) than males (GEN: 521 ± 439 ng/ml and DAI: 288 ± 184 ng/ml) across treatment groups. Serum equol and O-DMA concentrations were negligible (<3 ng/ml) across groups. In conclusion, different routes of delivery and frequency of administration resulted in similar total serum levels of GEN, DAI¸ equol or O-DMA.
Collapse
|
46
|
Gaete L, Tchernitchin AN, Bustamante R, Villena J, Lemus I, Gidekel M, Cabrera G, Carrillo O. Genistein selectively inhibits estrogen-induced cell proliferation and other responses to hormone stimulation in the prepubertal rat uterus. J Med Food 2011; 14:1597-603. [PMID: 21612459 DOI: 10.1089/jmf.2010.0349] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Sex hormone replacement therapy helps improve quality of life in climacteric women. However, estrogen-induced cell proliferation in the uterus and mammary gland increases the risk for cancer in these organs. The lower incidence of mammary cancer in Asian women than in western women has been attributed to high intake of soy isoflavones, including genistein. Our previous work in the prepubertal rat uterus model showed that genistein (0.5 mg/kg body weight subcutaneously) caused an estradiol-like hypertrophy in myometrial and uterine luminal epithelial cells and an increase in RNA content in luminal epithelium; however, it did not induce cell proliferation, uterine eosinophilia, or endometrial edema. The present study investigated, in the same animal model, the effect of genistein administration (0.5 mg/kg body weight subcutaneously) before treatment with estradiol-17β (0.33 mg/kg body weight subcutaneously) on uterine responses that were not induced by genistein. Pretreatment with this phytoestrogen completely inhibited estradiol-induced mitoses in uterine luminal epithelium, endometrial stroma, and myometrium and partially inhibited estradiol-induced uterine eosinophilia and endometrial edema. These findings indicate that genistein protects against estrogen-induced cell proliferation in the uterus and suggest that future studies should investigate the possibility of using this agent to decrease the risk for uterine cancer after hormone replacement therapy in climacteric women.
Collapse
Affiliation(s)
- Leonardo Gaete
- 1Laboratory of Experimental Endocrinology and Environmental Pathology, Institute of Biomedical Sciences (ICBM), University of Chile Medical School, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Degen GH, Blaszkewicz M, Shi L, Buyken AE, Remer T. Urinary isoflavone phytoestrogens in German children and adolescents--a longitudinal examination in the DONALD cohort. Mol Nutr Food Res 2011; 55:359-67. [PMID: 20938994 DOI: 10.1002/mnfr.201000325] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/26/2010] [Accepted: 08/30/2010] [Indexed: 12/16/2023]
Abstract
SCOPE In light of concerns about hormonally active agents, it is important to assess human exposure to such compounds, especially in children as a susceptible subgroup. Estrogenic plant constituents are present in the human diet in varying levels, in particular the isoflavones daidzein (DAI) and genistein (GEN). We aimed to examine age-dependent and secular trends in phytoestrogen exposures and to investigate equol (EQ) excretion of German children using biomarker analysis in 24-h urine samples from a longitudinally designed study. METHODS AND RESULTS The concentrations of DAI, its metabolite EQ and GEN were determined by GC-MS analysis in 24-h urines (510 samples) collected between 1985 and 2000 in 90 (47 boys) German children (6-18 years old), who are participants in the Dortmund Nutritional and Anthropometric Longitudinally Designed study. The results from the urinary biomarker analysis indicate isoflavone exposures at quite variable levels in German children: Analyte concentrations in over 500 urine samples cover the range reported previously in adults on typical German diet and with soy intake. EQ, the DAI metabolite produced by the gastrointestinal microflora, was detected in a high fraction of all samples, with 28/90 children (31%) excreting EQ in all their urines, and 62/90 children (68%) in at least one sample. Interestingly, when multiple urines obtained from individuals at different ages (6-18 years) were analyzed, EQ formation did not appear to be a constant trait over time. When stratified by sex, DAI, EQ and GEN concentrations (ng/mL) in urines and excretion rates (μg/day) were similar in boys and girls. Total isoflavone excretion rates (μg/day) increased during childhood (6-12 years) (p=0.02) and were constant during adolescence (13-18 years) (p=0.6). No clear trend for changes in dietary isoflavone exposure over the total study period was seen (p=0.7). CONCLUSIONS In conclusion, biomarkers in urine of German children and adolescents indicate a frequent, but widely variable dietary isoflavone intake and suggest no secular increase (1985-2000) in the exposure to isoflavone phytoestrogens among German children and adolescents.
Collapse
Affiliation(s)
- Gisela H Degen
- IfADo--Leibniz Research Centre for Working Environment and Human Factors at the TU Dortmund, Germany.
| | | | | | | | | |
Collapse
|
48
|
Altun D, Uysal H, Aşkın H, Ayar A. Determination of the effects of genistein on the longevity of Drosophila melanogaster meigen (Diptera; Drosophilidae). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2011; 86:120-123. [PMID: 21127834 DOI: 10.1007/s00128-010-0159-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 11/11/2010] [Indexed: 05/30/2023]
Abstract
In this study, the effects of genistein on the longevity of Drosophila melanogaster were investigated. The effects of different concentrations of genistein (1, 3, 5 and 10 μM/100 mL medium) were separately administered one by one to female and male populations of D. melanogaster for application groups. In the control group, the maximum life span was determined to be 57 days for ♀♀, 46 for ♂♂. The maximum life span for the lowest (1.0 μL) and highest (10.0 μL) application groups among the adult populations of D. melanogaster subjected to genistein were observed to be 54, 50, 40 and 36 days for ♀♀ and 51, 48, 40 and 33 days for ♂♂. These values indicate a negative correlation (R = 0.513 for ♂♂ and R = 0.509 for ♀♀) between the maximum life span of the application groups and changing genistein concentrations.
Collapse
Affiliation(s)
- Deniz Altun
- Department of Biology, Faculty of Art and Science, Erzincan University, 24100 Erzincan, Turkey
| | | | | | | |
Collapse
|
49
|
Zhao E, Mu Q. Phytoestrogen biological actions on Mammalian reproductive system and cancer growth. Sci Pharm 2010; 79:1-20. [PMID: 21617769 PMCID: PMC3097497 DOI: 10.3797/scipharm.1007-15] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 12/31/2010] [Indexed: 02/04/2023] Open
Abstract
Phytoestrogens are a family of diverse polyphenolic compounds derived from nature plant that structurally or functionally mimic circulating estrogen in the mammalian reproductive system. They induce estrogenic and anti-estrogenic effects in the brain-pituitary-gonad axis (a principal endocrine system involving in reproductive regulation) and peripheral reproductive organs. The dichotomy of phytoestrogen-mediated actions elucidates that they play the biological activities via complex mechanisms and belong to various chemical classes. In comparison with their unobvious physiological functions in normal reproductive tissues, there are increasing investigations showing that phytoestrogen induces significant inhibitory effects on the growth of breast and ovarian cancers through different signaling pathways. This review summarized the results of the previous studies regarding principal signaling transductions for mediating the growth of the ovarian and breast cancers. Phytoestrogen potentially modulates the signaling molecules via: (1) blocking the nuclear and membrane estrogen receptors (ER), (2) interfering with the growth factor receptor, (3) inhibiting the G protein-coupled receptor in ER-deficient cells, (4) activating apoptosis and nullifying anti-apoptotic signals.
Collapse
Affiliation(s)
- E Zhao
- Department of Biology, University of Ottawa, Gendron Hall, 30 Marie Curie, K1N 6N5, Ottawa, ON, Canada
| | | |
Collapse
|
50
|
Zhuang XL, Fu YC, Xu JJ, Kong XX, Chen ZG, Luo LL. Effects of genistein on ovarian follicular development and ovarian life span in rats. Fitoterapia 2010; 81:998-1002. [PMID: 20600685 DOI: 10.1016/j.fitote.2010.06.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 06/14/2010] [Accepted: 06/19/2010] [Indexed: 02/05/2023]
Abstract
Recently, studies reported that neonatal genistein treatment inhibited breakdown of oocyte nests and increased oocyte survival, resulting in multi-oocyte survival in adult mice. However, whether the inhibition effect in ovarian follicular development exists also in other stages during ovarian development (e.g. adult or climacteric) is unknown. So far, few studies have investigated the effect of genistein in adult or pre-menopausal ovarian follicular development and follicular reserves. We investigated ovarian follicular development in 4-month and 15-month-old rats after 4 weeks and 4 months treatment with genistein in a dose of 160 mg/kg d. Genistein-treated rats obtained a higher percentage of primordial follicles by 4 months of age and a greater number of surviving follicles at 15 months of age compared to a control group (P<0.05). In addition, vaginal cytology showed that age-dependent cessation of regular estrus was delayed for 2 months in the genistein-treated group than control group. These results suggest that genistein alters rat ovarian follicular development and increases the number of surviving follicles, which may prolong ovarian reproductive life.
Collapse
Affiliation(s)
- Xiao-Lan Zhuang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | | | | | | | | | | |
Collapse
|