1
|
Miljkovic R, Marinkovic E, Lukic I, Kovacevic A, Lopandic Z, Popovic M, Gavrovic-Jankulovic M, Schabussova I, Inic-Kanada A, Stojanovic M. Banana Lectin: A Novel Immunomodulatory Strategy for Mitigating Inflammatory Bowel Disease. Nutrients 2024; 16:1705. [PMID: 38892639 PMCID: PMC11175119 DOI: 10.3390/nu16111705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Compared to the general population, patients with inflammatory bowel disease (IBD) are less likely to be vaccinated, putting them at an increased risk of vaccine-preventable illnesses. This risk is further compounded by the immunosuppressive therapies commonly used in IBD management. Therefore, developing new treatments for IBD that maintain immune function is crucial, as successful management can lead to better vaccination outcomes and overall health for these patients. Here, we investigate the potential of recombinant banana lectin (rBanLec) as a supporting therapeutic measure to improve IBD control and possibly increase vaccination rates among IBD patients. By examining the therapeutic efficacy of rBanLec in a murine model of experimental colitis, we aim to lay the foundation for its application in improving vaccination outcomes. After inducing experimental colitis in C57BL/6 and BALB/c mice with 2,4,6-trinitrobenzene sulfonic acid, we treated animals orally with varying doses of rBanLec 0.1-10 µg/mL (0.01-1 µg/dose) during the course of the disease. We assessed the severity of colitis and rBanLec's modulation of the immune response compared to control groups. rBanLec administration resulted in an inverse dose-response reduction in colitis severity (less pronounced weight loss, less shortening of the colon) and an improved recovery profile, highlighting its therapeutic potential. Notably, rBanLec-treated mice exhibited significant modulation of the immune response, favoring anti-inflammatory pathways (primarily reduction in a local [TNFα]/[IL-10]) crucial for effective vaccination. Our findings suggest that rBanLec could mitigate the adverse effects of immunosuppressive therapy on vaccine responsiveness in IBD patients. By improving the underlying immune response, rBanLec may increase the efficacy of vaccinations, offering a dual benefit of disease management and prevention of vaccine-preventable illnesses. Further studies are required to translate these findings into clinical practice.
Collapse
Affiliation(s)
- Radmila Miljkovic
- Department of Research and Development, Institute of Immunology, Virology, Vaccines and Sera—Torlak, 11152 Belgrade, Serbia; (R.M.); (E.M.); (I.L.); (A.K.)
| | - Emilija Marinkovic
- Department of Research and Development, Institute of Immunology, Virology, Vaccines and Sera—Torlak, 11152 Belgrade, Serbia; (R.M.); (E.M.); (I.L.); (A.K.)
| | - Ivana Lukic
- Department of Research and Development, Institute of Immunology, Virology, Vaccines and Sera—Torlak, 11152 Belgrade, Serbia; (R.M.); (E.M.); (I.L.); (A.K.)
| | - Ana Kovacevic
- Department of Research and Development, Institute of Immunology, Virology, Vaccines and Sera—Torlak, 11152 Belgrade, Serbia; (R.M.); (E.M.); (I.L.); (A.K.)
| | - Zorana Lopandic
- Institute for Chemistry in Medicine, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Mina Popovic
- Faculty of Ecology and Environmental Protection, University Union—Nikola Tesla, 11158 Belgrade, Serbia;
| | | | - Irma Schabussova
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Aleksandra Inic-Kanada
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Marijana Stojanovic
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia
| |
Collapse
|
2
|
Anisimova OK, Kochieva EZ, Shchennikova AV, Filyushin MA. Thaumatin-like Protein (TLP) Genes in Garlic (Allium sativum L.): Genome-Wide Identification, Characterization, and Expression in Response to Fusarium proliferatum Infection. PLANTS 2022; 11:plants11060748. [PMID: 35336630 PMCID: PMC8949454 DOI: 10.3390/plants11060748] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/01/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022]
Abstract
Plant antifungal proteins include the pathogenesis-related (PR)-5 family of fungi- and other stress-responsive thaumatin-like proteins (TLPs). However, the information on the TLPs of garlic (Allium sativum L.), which is often infected with soil Fusarium fungi, is very limited. In the present study, we identified 32 TLP homologs in the A. sativum cv. Ershuizao genome, which may function in the defense against Fusarium attack. The promoters of A. sativumTLP (AsTLP) genes contained cis-acting elements associated with hormone signaling and response to various types of stress, including those caused by fungal pathogens and their elicitors. The expression of AsTLP genes in Fusarium-resistant and -susceptible garlic cultivars was differently regulated by F. proliferatum infection. Thus, in the roots the mRNA levels of AsTLP7–9 and 21 genes were increased in resistant and decreased in susceptible A. sativum cultivars, suggesting the involvement of these genes in the garlic response to F. proliferatum attack. Our results provide insights into the role of TLPs in garlic and may be useful for breeding programs to increase the resistance of Allium crops to Fusarium infections.
Collapse
|
3
|
Nawrot R, Musidlak O, Barylski J, Nowicki G, Bałdysz S, Czerwoniec A, Goździcka-Józefiak A. Characterization and expression of a novel thaumatin-like protein (CcTLP1) from papaveraceous plant Corydalis cava. Int J Biol Macromol 2021; 189:678-689. [PMID: 34390750 DOI: 10.1016/j.ijbiomac.2021.08.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/01/2021] [Accepted: 08/08/2021] [Indexed: 10/20/2022]
Abstract
Thaumatin-like proteins (TLPs, osmotins) form a protein family which shares a significant sequence homology to the sweet-tasting thaumatin from the plant Thaumatococcus daniellii. TLPs are not sweet-tasting and are involved in response to biotic stresses and developmental processes. Recently it has been shown using a proteomic approach that the tuber extract from Corydalis cava (Papaveraceae) contains a TLP protein. The aim of this work was to characterize the structure and expression of TLP from C. cava tubers. The results obtained using a PCR approach with degenerate primers demonstrated a coding sequence of a novel protein, named CcTLP1. It consists of 225 aa, has a predicted molecular weight of 24.2 kDa (NCBI GenBank accession no. KJ513303) and has 16 strictly conserved cysteine residues, which form 8 disulfide bridges and stabilize the 3D structure. CcTLP1 may be classified into class IX of plant TLPs. The highest CcTLP1 expression levels were shown by qPCR in the stem of the plant compared to other organs and in the medium-size plants compared to other growth phases. The results confirm that CcTLP1 is expressed during plant growth and development until flowering, with a possible defensive function against different stress conditions.
Collapse
Affiliation(s)
- Robert Nawrot
- Molecular Virology Research Unit, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| | - Oskar Musidlak
- Molecular Virology Research Unit, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| | - Jakub Barylski
- Molecular Virology Research Unit, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Grzegorz Nowicki
- Molecular Virology Research Unit, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Sophia Bałdysz
- Molecular Virology Research Unit, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Anna Czerwoniec
- Zylia Sp. z o. o., Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland; INNO-GENE S.A.- Vita in Silica, ul. Inflancka 25, 61-132 Poznań, Poland
| | - Anna Goździcka-Józefiak
- Molecular Virology Research Unit, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| |
Collapse
|
4
|
Feasibility of Utilizing Stable-Isotope Dimethyl Labeling in Liquid Chromatography⁻Tandem Mass Spectrometry-Based Determination for Food Allergens-Case of Kiwifruit. Molecules 2019; 24:molecules24101920. [PMID: 31109069 PMCID: PMC6571768 DOI: 10.3390/molecules24101920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 12/28/2022] Open
Abstract
Stable-isotope dimethyl labeling is a highly reactive and cost-effective derivatization procedure that could be utilized in proteomics analysis. In this study, a liquid chromatography- tandem mass spectrometry in multiple reaction monitoring mode (LC-MS-MRM) platform for the quantification of kiwi allergens was first developed using this strategy. Three signature peptides for target allergens Act d 1, Act d 5, and Act d 11 were determined and were derivatized with normal and deuterated formaldehyde as external calibrants and internal standards, respectively. The results showed that sample preparation with the phenol method provided comprehensive protein populations. Recoveries at four different levels ranging from 72.5-109.3% were achieved for the H-labeled signature peptides of Act d 1 (SPA1-H) and Act d 5 (SPA5-H) with precision ranging from 1.86-9.92%. The limit of quantification (LOQ) was set at 8 pg mL-1 for SPA1-H and at 8 ng mL-1 for SPA5-H. The developed procedure was utilized to analyze seven kinds of hand-made kiwi foods containing 0.0175-0.0515 mg g-1 of Act d 1 and 0.0252-0.0556 mg g-1 of Act d 5. This study extended the applicability of stable-isotope dimethyl labeling to the economical and precise determination of food allergens and peptides.
Collapse
|
5
|
Senyuva HZ, Jones IB, Sykes M, Baumgartner S. A critical review of the specifications and performance of antibody and DNA-based methods for detection and quantification of allergens in foods. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:507-547. [PMID: 30856064 DOI: 10.1080/19440049.2019.1579927] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Despite the availability of a large number of antibody and DNA based methods for detection and quantification of allergens in food there remain significant difficulties in selecting the optimum technique to employ. Published methods from research groups mostly contain sufficient detail concerning target antigen, calibration procedures and method performance to allow replication by others. However, routine allergen testing by the food industry relies upon commercialised test kits and frequently the suppliers provide disappointingly little specification detail on the grounds that this is proprietary information. In this review we have made a critical assessment of the published literature describing the performance of both commercial and non-commercial test kits for food allergens over the period 2008-2018. Mass spectrometric methods, which have the potential to become reference methods for allergens, are not covered in this review. Available information on the specifications of commercial ELISA and LFD test kits are tabulated for milk, egg and peanut allergens, where possible linking to publications concerning collaborative studies and proficiency testing. For a number of commercial PCR test kits, specifications provided by manufacturers for detection of a small selection of allergen are tabulated. In conclusion we support the views of others of the critical need for allergen reference materials as the way forward to improve the comparability of different testing strategies in foods.
Collapse
Affiliation(s)
| | - Ivona Baricevic Jones
- b Institute of Inflammation and Repair , Manchester Institute of Biotechnology , Manchester , UK
| | - Mark Sykes
- c Fera Science Ltd , National Agri-Food Innovation Campus Sand Hutton , York , UK
| | - Sabine Baumgartner
- d Dept. IFA-Tulln, Center for Analytical Chemistry , BOKU Vienna , Tulln , Austria
| |
Collapse
|
6
|
Graziano S, Gullì M, Marmiroli N. Detection of allergen coding sequences of kiwi, peach, and apple in processed food by qPCR. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:3129-3139. [PMID: 29210450 DOI: 10.1002/jsfa.8814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 11/13/2017] [Accepted: 11/30/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Food traceability becomes lifesaving for persons suffering severe allergy or intolerance, and therefore need a complete avoidance of the immune-trigger food. This paper describes how to fingerprint the presence of some allergenic species (kiwi, peach, and apple) in foods by quantitative real-time PCR (qPCR). RESULTS Five DNA extraction procedures were tested on fruits and foods. The results were statistically evaluated, and discussed. Analysis by qPCR with SYBR Green was developed to detect traces of these allergenic species in foods. Plasmids containing the target sequences of kiwi, peach and apple were employed as internal reference standard. Analysis of spiked food samples showed a limit of detection of 25 mg kg-1 for kiwi, 20 mg kg-1 for peach and 50 mg kg-1 for apple. CONCLUSION The qPCR method here developed, combined with the use of internal plasmid reference standard, represents a specific system for the quick detection of allergenic species in complex food matrices, with a limit of detection comparable with those reported using more time-consuming methods. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sara Graziano
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Mariolina Gullì
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parma, Italy
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parma, Italy
| |
Collapse
|
7
|
Shimizu Y, Oda H, Seiki K, Saeki H. Development of an enzyme-linked immunosorbent assay system for detecting β′-component (Onk k 5), a major IgE-binding protein in salmon roe. Food Chem 2015; 181:310-7. [DOI: 10.1016/j.foodchem.2015.02.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 01/21/2015] [Accepted: 02/14/2015] [Indexed: 10/23/2022]
|
8
|
Cavic M, Grozdanovic MM, Bajic A, Jankovic R, Andjus PR, Gavrovic-Jankulovic M. The effect of kiwifruit (Actinidia deliciosa) cysteine protease actinidin on the occludin tight junction network in T84 intestinal epithelial cells. Food Chem Toxicol 2014; 72:61-8. [PMID: 25042511 DOI: 10.1016/j.fct.2014.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/30/2014] [Accepted: 07/07/2014] [Indexed: 12/14/2022]
Abstract
Actinidin, a kiwifruit cysteine protease, is a marker allergen for genuine sensitization to this food allergen source. Inhalatory cysteine proteases have the capacity for disruption of tight junctions (TJs) enhancing the permeability of the bronchial epithelium. No such properties have been reported for allergenic food proteases so far. The aim was to determine the effect of actinidin on the integrity of T84 monolayers by evaluating its action on the TJ protein occludin. Immunoblot and immunofluorescence were employed for the detection of occludin protein alterations. Gene expression was evaluated by RT-PCR. Breach of occludin network was assessed by measuring transepithelial resistance, blue dextran leakage and passage of allergens from the apical to basolateral compartment. Actinidin exerted direct proteolytic cleavage of occludin; no alteration of occludin gene expression was detected. There was a reduction of occludin staining upon actinidin treatment as a consequence of its degradation and dispersion within the membrane. There was an increase in permeability of the T84 monolayer resulting in reduced transepithelial resistance, blue dextran leakage and passage of allergens actinidin and thaumatin-like protein from the apical to basolateral compartment. Opening of TJs by actinidin may increase intestinal permeability and contribute to the process of sensitization in kiwifruit allergy.
Collapse
Affiliation(s)
- Milena Cavic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Milica M Grozdanovic
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Aleksandar Bajic
- Center for Laser Microscopy, Faculty of Biology, University of Belgrade, Studentski trg 3, 11000 Belgrade, Serbia
| | - Radmila Jankovic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Pavle R Andjus
- Center for Laser Microscopy, Faculty of Biology, University of Belgrade, Studentski trg 3, 11000 Belgrade, Serbia
| | - Marija Gavrovic-Jankulovic
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia.
| |
Collapse
|
9
|
Ciardiello MA, Tamburrini M, Liso M, Crescenzo R, Rafaiani C, Mari A. Food allergen profiling: A big challenge. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
10
|
Palazzo P, Tuppo L, Giangrieco I, Bernardi ML, Rafaiani C, Crescenzo R, Tamburrini M, Zuzzi S, Alessandri C, Mari A, Ciardiello MA. Prevalence and peculiarities of IgE reactivity to kiwifruit pectin methylesterase and its inhibitor, Act d 7 and Act d 6, in subjects allergic to kiwifruit. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.03.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Boland M. Kiwifruit proteins and enzymes: actinidin and other significant proteins. ADVANCES IN FOOD AND NUTRITION RESEARCH 2013; 68:59-80. [PMID: 23394982 DOI: 10.1016/b978-0-12-394294-4.00004-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Protein is a minor but significant component of kiwifruit. Crude protein is typically measured at about 1% of fresh weight; however, soluble protein is much less, around 0.3%. The difference can be accounted for by nonprotein nitrogen and insoluble protein, such as polypeptide chains forming part of the cell wall. Kiwifruit soluble protein is mostly accounted for by the proteolytic enzyme actinidin and its inactive forms, a so-called thaumatin-like protein and an unusual protein called kiwellin, which has no known function. Actinidin is the predominant enzyme in kiwifruit and can play a role in aiding the digestive process. There is also a wide range of enzymes involved in the ripening of kiwifruit, particularly enzymes involved in polysaccharide and oligosaccharide metabolism and in the development of flavor and aroma compounds. Whether the enzymatic actions of these have any effect during the consumption and digestion of kiwifruit is not known, although any noticeable effect is unlikely. Some enzymes are likely to have an effect on flavor, texture, and nutritional values, during storage, processing, and preparation of kiwifruit.
Collapse
Affiliation(s)
- Mike Boland
- Massey University, Palmerston North, New Zealand.
| |
Collapse
|
12
|
Abedini S, Sankian M, Falak R, Tehrani M, Talebi F, Shirazi FG, Varasteh AR. An approach for detection and quantification of fruits' natural profilin: natural melon profilin as a model. FOOD AGR IMMUNOL 2011. [DOI: 10.1080/09540105.2010.524918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Samaneh Abedini
- a Immunology Research Center, Bu-Ali Research Institute , Mashhad University of Medical Sciences , Mashhad, Iran
| | - Mojtaba Sankian
- a Immunology Research Center, Bu-Ali Research Institute , Mashhad University of Medical Sciences , Mashhad, Iran
| | - Reza Falak
- b Immunology Department, Faculty of Medicine , Iran University of Medical Sciences , Tehran, Iran
| | - Mohsen Tehrani
- a Immunology Research Center, Bu-Ali Research Institute , Mashhad University of Medical Sciences , Mashhad, Iran
| | - Farideh Talebi
- a Immunology Research Center, Bu-Ali Research Institute , Mashhad University of Medical Sciences , Mashhad, Iran
| | - Frough Golsaz Shirazi
- a Immunology Research Center, Bu-Ali Research Institute , Mashhad University of Medical Sciences , Mashhad, Iran
| | - Abdol-Reza Varasteh
- a Immunology Research Center, Bu-Ali Research Institute , Mashhad University of Medical Sciences , Mashhad, Iran
| |
Collapse
|
13
|
|
14
|
Popovic MM, Milovanovic M, Burazer L, Vuckovic O, Hoffmann-Sommergruber K, Knulst AC, Lindner B, Petersen A, Jankov R, Gavrovic-Jankulovic M. Cysteine proteinase inhibitor Act d 4 is a functional allergen contributing to the clinical symptoms of kiwifruit allergy. Mol Nutr Food Res 2010; 54:373-80. [DOI: 10.1002/mnfr.200900035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
John Wiley & Sons, Ltd.. Current awareness in phytochemical analysis. PHYTOCHEMICAL ANALYSIS : PCA 2008; 19:568-575. [PMID: 18988322 DOI: 10.1002/pca.1041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
|