1
|
Peach extract induces systemic and local immune responses in an experimental food allergy model. Sci Rep 2023; 13:1892. [PMID: 36732575 PMCID: PMC9894845 DOI: 10.1038/s41598-023-28933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Peach allergy is among the most frequent food allergies in the Mediterranean area, often eliciting severe anaphylactic reactions in patients. Due to the risk of severe symptoms, studies in humans are limited, leading to a lack of therapeutic options. This study aimed to develop a peach allergy mouse model as a tool to better understand the pathomechanism and to allow preclinical investigations on the development of optimized strategies for immunotherapy. CBA/J mice were sensitized intraperitoneally with peach extract or PBS, using alum as adjuvant. Afterwards, extract was administered intragastrically to involve the intestinal tract. Allergen provocation was performed via intraperitoneal injection of extract, measuring drop of body temperature as main read out of anaphylaxis. The model induced allergy-related symptoms in mice, including decrease of body temperature. Antibody levels in serum and intestinal homogenates revealed a Th2 response with increased levels of mMCPT-1, peach- and Pru p 3-specific IgE, IgG1 and IgG2a as well as increased levels of IL-4 and IL-13. FACS analysis of small intestine lamina propria revealed increased amounts of T cells, neutrophils and DCs in peach allergic mice. These data suggest the successful establishment of a peach allergy mouse model, inducing systemic as well as local gastrointestinal reactions.
Collapse
|
2
|
Nahrungsmittelunverträglichkeiten - eine diagnostische Herausforderung. ALLERGO JOURNAL 2022. [DOI: 10.1007/s15007-021-4932-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Abstract
This review searched for published evidence that could explain how different physicochemical properties impact on the allergenicity of food proteins and if their effects would follow specific patterns among distinct protein families. Owing to the amount and complexity of the collected information, this literature overview was divided in two articles, the current one dedicated to protein families of plant allergens and a second one focused on animal allergens. Our extensive analysis of the available literature revealed that physicochemical characteristics had consistent effects on protein allergenicity for allergens belonging to the same protein family. For example, protein aggregation contributes to increased allergenicity of 2S albumins, while for legumins and cereal prolamins, the same phenomenon leads to a reduction. Molecular stability, related to structural resistance to heat and proteolysis, was identified as the most common feature promoting plant protein allergenicity, although it fails to explain the potency of some unstable allergens (e.g. pollen-related food allergens). Furthermore, data on physicochemical characteristics translating into clinical effects are limited, mainly because most studies are focused on in vitro IgE binding. Clinical data assessing how these parameters affect the development and clinical manifestation of allergies is minimal, with only few reports evaluating the sensitising capacity of modified proteins (addressing different physicochemical properties) in murine allergy models. In vivo testing of modified pure proteins by SPT or DBPCFC is scarce. At this stage, a systematic approach to link the physicochemical properties with clinical plant allergenicity in real-life scenarios is still missing.
Collapse
|
4
|
Identification and characterization of major IgE binding of purified allergenic protein (11 kDa) from Buchanania lanzan. Food Res Int 2019; 125:108640. [PMID: 31554061 DOI: 10.1016/j.foodres.2019.108640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/16/2022]
Abstract
Tree nut along with peanut are among the most potent food allergens, responsible for frequently inducing the IgE-mediated hypersensitivity reaction. Our aim was identification, purification of Buchanania lanzan (Bl-11 kDa) protein along with characterization and assessment of allergenic potential of clinically relevant allergen. Further study was executed in clinical samples of sensitive patients, BALB/c mice, and in-vitro. A major IgE binding 11-kDa protein from Buchanania lanzan was purified by anion exchange chromatography, reverse phase high pressure liquid chromatography (RP-HPLC) and characterized using peptide mass fingerprinting (PMF). Buchanania lanzan (Bl-11 kDa) protein shows the pepsin resistance and depicts IgE interacting capacity to Buchanania lanzan allergic patient's sera as well as sensitized mice sera. It also showed increase in the allergic mediator's like IgE, IgG1, histamine levels in sensitized mice sera. Further study was carried out in-vitro (RBL-2H3 cells) and increased release mast cell degranulation mediators such as β-hexosaminidase, histamine, CysL and PGD2 in the culture supernatant was found. The activation of Th2 cytokines/transcription factors and expression of molecular markers in the downstream of mast cell signaling were up-regulated while the Th1 transcriptional factor (T-bet) was decreased in Bl-11 kDa protein treated mice. Conclusively, our study demonstrates Buchanania lanzan purified protein to be potential allergen that may generate an allergic reaction in sensitized individuals, and one of the most important IgE binding protein responsible for its allergenicity.
Collapse
|
5
|
Stock LG, Wildner S, Regl C, Gadermaier G, Huber CG, Stutz H. Monitoring of Deamidation and Lanthionine Formation in Recombinant Mugwort Allergen by Capillary Zone Electrophoresis (CZE)-UV and Transient Capillary Isotachophoresis-CZE-Electrospray Ionization-TOF-MS. Anal Chem 2018; 90:11933-11940. [PMID: 30179456 DOI: 10.1021/acs.analchem.8b02328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The response to thermal stress is an important parameter relevant for characterizing the biological activity and long-term stability of recombinant proteins, which may show irreversible, pH dependent structural changes under these conditions. We selected the recombinant pollen allergen of mugwort ( Artemisia vulgaris) rArt v 3.0201 as a relevant model to study structural changes due to thermal and pH stress by means of capillary zone electrophoresis (CZE)-UV and capillary zone electrophoresis (CZE)-electrospray ionization (ESI)-TOF-MS. Therefore, this recombinant protein was exposed to 95 °C under acidic (pH 3.4) and slightly alkaline (pH 7.3) conditions for up to 120 min. CZE-UV data showed a continuous degradation of the allergen accompanied by the gradual formation of several reaction products. Characterization of novel allergen variants occurring at longer migration times was done via CZE-ESI-TOF-MS using in-capillary transient capillary isotachophoresis (tCITP) preconcentration to facilitate the identification of minor variants. MS data revealed various modifications of rArt v 3.0201 in response to heating. Variants with deamidations and sulfur-related modifications including both yield and loss of sulfur were identified at increased migration times. Desulfurization produced allergen variants with up to four lanthionines that replaced initial disulfide bonds. In addition, mass spectra revealed shifts in the charge state distribution which indicate concomitant conformational alterations. Moreover, several low-abundant oxidized variants were identified. With extended thermal stress, the portfolio of variants increased and progressively shifted toward rArt v 3.0201 with high lanthionine content. The kinetics of conversion and the complexity of variant composition were pH dependent and increased under alkaline conditions.
Collapse
Affiliation(s)
- Lorenz G Stock
- Department of Biosciences , University of Salzburg , Hellbrunner Straße 34 , 5020 Salzburg , Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization , University of Salzburg , Hellbrunner Straße 34 , 5020 Salzburg , Austria
| | - Sabrina Wildner
- Department of Biosciences , University of Salzburg , Hellbrunner Straße 34 , 5020 Salzburg , Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization , University of Salzburg , Hellbrunner Straße 34 , 5020 Salzburg , Austria
| | - Christof Regl
- Department of Biosciences , University of Salzburg , Hellbrunner Straße 34 , 5020 Salzburg , Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization , University of Salzburg , Hellbrunner Straße 34 , 5020 Salzburg , Austria
| | - Gabriele Gadermaier
- Department of Biosciences , University of Salzburg , Hellbrunner Straße 34 , 5020 Salzburg , Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization , University of Salzburg , Hellbrunner Straße 34 , 5020 Salzburg , Austria
| | - Christian G Huber
- Department of Biosciences , University of Salzburg , Hellbrunner Straße 34 , 5020 Salzburg , Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization , University of Salzburg , Hellbrunner Straße 34 , 5020 Salzburg , Austria
| | - Hanno Stutz
- Department of Biosciences , University of Salzburg , Hellbrunner Straße 34 , 5020 Salzburg , Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization , University of Salzburg , Hellbrunner Straße 34 , 5020 Salzburg , Austria
| |
Collapse
|
6
|
|
7
|
Himly M, Nandy A, Kahlert H, Thilker M, Steiner M, Briza P, Neubauer A, Klysner S, van Ree R, Buchheit KH, Vieths S, Ferreira F. Standardization of allergen products: 2. Detailed characterization of GMP-produced recombinant Phl p 5.0109 as European Pharmacopoeia reference standard. Allergy 2016; 71:495-504. [PMID: 26687027 DOI: 10.1111/all.12824] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND The Biological Standardization Programme of the European Directorate for Quality of Medicines and Healthcare (EDQM) aims at the establishment of well-characterized reference standards based on recombinant allergens and validated assays for the quantification of major allergen content. The objective of this study was to examine the detailed physicochemical and immunological characterization of recombinant Phl p 5.0109, the second available allergen reference standard. METHODS Recombinant Phl p 5.0109 PP5ar06007 was produced under GMP conditions and analyzed by an array of physicochemical and immunological methods for identity, quantity, homogeneity, and folding stability in bulk solution, as well as thermal denaturation, aggregation state, and biological activity when formulated for long-time storage. RESULTS PP5ar06007 revealed as a highly homogeneous, monomeric, well-folded preparation of rPhl p 5.0109, as documented by mass spectrometry, SDS-PAGE, isoelectric focusing, size-exclusion chromatography with light scattering, circular dichroism, and infrared spectroscopy. Upon storage at +4°C, PP5ar06007 retained the monomeric state for at least 2 months. A protein quantity of 1.56 ± 0.03 mg/ml was determined by amino acid analysis in PP5ar06007, and its biological activity was shown to be comparable to natural Phl p 5 in terms of basophil activation and T-cell reactivity. CONCLUSIONS Recombinant Phl p 5.0109 PP5ar06007 was characterized extensively at the physicochemical and immunological level. It revealed to be a highly stable, monomeric, and immunologically equivalent of its natural counterpart. PP5ar06007 is now available as European Pharmacopoeia allergen reference standard for grass pollen products.
Collapse
Affiliation(s)
- M. Himly
- Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | - A. Nandy
- Research and Development; Allergopharma GmbH & Co. KG; Reinbek Germany
| | - H. Kahlert
- Research and Development; Allergopharma GmbH & Co. KG; Reinbek Germany
| | - M. Thilker
- Research and Development; Allergopharma GmbH & Co. KG; Reinbek Germany
| | - M. Steiner
- Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | - P. Briza
- Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | | | - S. Klysner
- Research and Development; Allergopharma GmbH & Co. KG; Reinbek Germany
| | - R. van Ree
- Academic Medical Center; Amsterdam The Netherlands
| | - K.-H. Buchheit
- European Directorate for Quality of Medicines and Healthcare; Strasbourg France
| | - S. Vieths
- Department of Allergology; Paul-Ehrlich-Institut; Langen Germany
| | - F. Ferreira
- Department of Molecular Biology; University of Salzburg; Salzburg Austria
| |
Collapse
|
8
|
Shamoon M, Sajid MW, Safdar W, Haider J, Omar M, Ammar A, Sharif HR, Khalid S, Randhawa MA. An update on hypoallergenicity of peanut and soybean: where are we now? RSC Adv 2016. [DOI: 10.1039/c6ra12515h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Legumes are one of the major sources of proteins and positively correlate with the development of modern society. At the same time, unfortunately, they significantly contribute to the rising prevalence of food allergy.
Collapse
Affiliation(s)
- Muhammad Shamoon
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- The Synergetic Innovation Center of Food Safety and Nutrition
- Jiangnan University
- Wuxi 214122
| | - Muhammad Wasim Sajid
- Department of Biosciences
- COMSATS Institute of Information Technology
- Sahiwal 57000
- Pakistan
| | - Waseem Safdar
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- The Synergetic Innovation Center of Food Safety and Nutrition
- Jiangnan University
- Wuxi 214122
| | - Junaid Haider
- Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
| | - Mukama Omar
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
- P. R. China
| | - Alfarga Ammar
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- The Synergetic Innovation Center of Food Safety and Nutrition
- Jiangnan University
- Wuxi 214122
| | - Hafiz Rizwan Sharif
- Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
| | - Saud Khalid
- Center for Polymer from Renewable Resources
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- P. R China
| | - Muhammad Atif Randhawa
- Faculty of Food
- Nutrition and Home Sciences
- National Institute of Food Science & Technology
- University of Agriculture
- Faisalabad 38040
| |
Collapse
|
9
|
Diesner SC, Schultz C, Ackaert C, Oostingh GJ, Ondracek A, Stremnitzer C, Singer J, Heiden D, Roth-Walter F, Fazekas J, Assmann VE, Jensen-Jarolim E, Stutz H, Duschl A, Untersmayr E. Nitration of β-Lactoglobulin but Not of Ovomucoid Enhances Anaphylactic Responses in Food Allergic Mice. PLoS One 2015; 10:e0126279. [PMID: 25955653 PMCID: PMC4425501 DOI: 10.1371/journal.pone.0126279] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 03/31/2015] [Indexed: 12/31/2022] Open
Abstract
Background We revealed in previous studies that nitration of food proteins reduces the risk of de novo sensitization in a murine food allergy model. In contrast, in situations with preformed specific IgE antibodies, in vitro experiments suggested an increased capacity of effector cell activation by nitrated food proteins. Objective The aim of this study was to investigate the influence of protein nitration on the effector phase of food allergy. Design BALB/c mice were immunized intraperitoneally (i.p.) with the milk allergen β-lactoglobulin (BLG) or the egg allergen ovomucoid (OVM), followed by intragastric (i.g.) gavages to induce a strong local inflammatory response and allergen-specific antibodies. Subsequently, naïve and allergic mice were intravenously (i.v.) challenged with untreated, sham-nitrated or nitrated BLG or OVM. Anaphylaxis was monitored by measuring core body temperature and determination of mouse mast cell protease-1 (mMCP-1) levels in blood. Results A significant drop of body temperature accompanied with significantly elevated concentrations of the anaphylaxis marker mMCP-1 were only observed in BLG allergic animals challenged with nitrated BLG and not in OVM allergic mice challenged with nitrated OVM. SDS-PAGE and circular dichroism analysis of the differentially modified allergens revealed an effect of nitration on the secondary protein structure exclusively for BLG together with enhanced protein aggregation. Conclusion Our data suggest that nitration affects differently the food allergens BLG and OVM. In the case of BLG, structural changes favored dimerization possibly explaining the increased anaphylactic reactivity in BLG allergic animals.
Collapse
Affiliation(s)
- Susanne C. Diesner
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Cornelia Schultz
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Chloé Ackaert
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Gertie J. Oostingh
- Biomedical Sciences, Salzburg University of Applied Sciences, Puch/Salzburg, Austria
| | - Anna Ondracek
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Caroline Stremnitzer
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Josef Singer
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Denise Heiden
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Franziska Roth-Walter
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Comparative Medicine, Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
| | - Judit Fazekas
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Vera E. Assmann
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Erika Jensen-Jarolim
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Comparative Medicine, Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
| | - Hanno Stutz
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Albert Duschl
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Eva Untersmayr
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
10
|
Flodrová D, Benkovská D, Laštovičková M. Study of quantitative changes of cereal allergenic proteins after food processing. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:983-990. [PMID: 24912629 DOI: 10.1002/jsfa.6773] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 06/01/2014] [Accepted: 06/03/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Within last few years, the occurrence of food allergens and corresponding food allergies has been increasing, therefore research into the individual allergens is required. In the present work, the effect of cereal processing on the amounts of allergenic proteins is studied by modern proteomic-based approaches. The most important wheat and barley allergens are low-molecular-weight (LMW) proteins. Therefore we investigated the relative quantitative changes of these proteins after food technological processing, namely wheat couscous production and barley malting. RESULTS A comparative study using mass spectrometry in connection with the technique of isobaric tag for relative and absolute quantification (iTRAQ) revealed that the amount of wheat allergenic LMW proteins decreased significantly during couscous production (approximately to 5-26% of their initial content in wheat flour). After barley malting, the amounts of the majority of LMW proteins decreased as well, although to a lesser extent than in the case of wheat/couscous. The level of two allergens even slightly increased. CONCLUSION Suggested proteomic strategy proved as universal and sensitive method for fast and reliable identification of various cereal allergens and monitoring of their quantitative changes during food processing. Such information is important for consumers who suffer from allergies.
Collapse
Affiliation(s)
- Dana Flodrová
- Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic, v. v. i., Veveří 97, Brno, 602 00, Czech Republic
| | | | | |
Collapse
|
11
|
Costa J, Mafra I, Carrapatoso I, Oliveira MBPP. Hazelnut Allergens: Molecular Characterization, Detection, and Clinical Relevance. Crit Rev Food Sci Nutr 2015; 56:2579-2605. [DOI: 10.1080/10408398.2013.826173] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Scientific Opinion on the evaluation of allergenic foods and food ingredients for labelling purposes. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3894] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
13
|
Costa J, Carrapatoso I, Oliveira MBPP, Mafra I. Walnut allergens: molecular characterization, detection and clinical relevance. Clin Exp Allergy 2014; 44:319-41. [PMID: 24382327 DOI: 10.1111/cea.12267] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Food-induced allergies have been regarded as an emergent problem of public health. Classified as important allergenic ingredients, the presence of walnut and other nuts as hidden allergens in processed foods constitutes a risk for sensitized individuals, being a real problem of allergen management. Attending to the increasing importance dedicated to walnut allergy, this review intends to provide the relevant and up-to-date information on main issues such as the prevalence of walnut allergy, the clinical threshold levels, the molecular characterization of walnut allergens and their clinical relevance, as well as the methodologies for walnut allergen detection in foods. As the walnut used in human diet comes from Juglans regia and Juglans nigra, the molecular characterization of the allergens from both species included in the prolamins (Jug r 1, Jug n 1 and Jug r 3), cupins (Jug r 2, Jug n 2 and Jug r 4) and profilins (Jug r 5), together with respective clinical relevance, were compiled in this review. The most recent progresses on walnut allergen detection techniques (protein- and DNA-based) are described and critically compared, including the emergent multitarget approaches.
Collapse
Affiliation(s)
- J Costa
- REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | | | | | | |
Collapse
|
14
|
Volpicella M, Leoni C, Fanizza I, Placido A, Pastorello EA, Ceci LR. Overview of plant chitinases identified as food allergens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:5734-5742. [PMID: 24841122 DOI: 10.1021/jf5007962] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Food allergies are induced by proteins belonging to a limited number of families. Unfortunately, relationships between protein structure and capacity to induce the immune response have not been completely clarified yet, which precludes possible improvements in the diagnosis, prevention, and therapy of allergies. Plant chitinases constitute a good example of food allergenic proteins for which structural analysis of allergenicity has only been carried out partially. In plants, there are at least five structural classes of chitinases plus a number of chitinase-related polypeptides. Their allergenicity has been mostly investigated for chitinases of class I, due to both their higher prevalence among plant chitinases and by the high structural similarity between their substrate-binding domain and hevein, a well-known allergen present in the latex of rubber trees. Even if allergenic molecules have been identified for at least three other classes of plant chitinases, the involvement of the different structural motifs in the allergenicity of molecules has been disregarded so far. In this review, we provide a structurally based catalog of plant chitinases investigated for allergenicity, which could be a useful base for further studies aimed at better clarifying the structure-allergenicity relationships for this protein family.
Collapse
Affiliation(s)
- Mariateresa Volpicella
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari , Via Amendola 165/A, 70126 Bari, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Phaseolin: A 47.5kDa protein of red kidney bean (Phaseolus vulgaris L.) plays a pivotal role in hypersensitivity induction. Int Immunopharmacol 2014; 19:178-90. [DOI: 10.1016/j.intimp.2014.01.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 01/11/2014] [Accepted: 01/13/2014] [Indexed: 12/30/2022]
|
16
|
Production and analysis of recombinant tree nut allergens. Methods 2014; 66:34-43. [DOI: 10.1016/j.ymeth.2013.07.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 07/15/2013] [Accepted: 07/19/2013] [Indexed: 01/08/2023] Open
|
17
|
Abstract
Peanut is recognized as a potent food allergen producing one of the most frequent food allergies. This fact has originated the publication of an elevated number of scientific reports dealing with peanut allergens and, especially, the prevalence of peanut allergy. For this reason, the information available on peanut allergens is increasing and the debate about peanut allergy is always renewed. This article reviews the information currently available on peanut allergens and on the techniques used for their chemical characterization. Moreover, a general overview on the current biotechnological approaches used to reduce or eliminate peanut allergens is also provided.
Collapse
Affiliation(s)
- Jorge Sáiz
- Department of Chemistry I, Faculty of Biology, Environmental Sciences, and Chemistry, University of Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | | | | | | |
Collapse
|
18
|
Muñoz-García E, Luengo-Sánchez O, Haroun-Díaz E, Maroto AS, Palacín A, Díaz-Perales A, de las Heras Gozalo M, Labrador-Horrillo M, Vivanco F, Cuesta-Herranz J, Pastor-Vargas C. Identification of thaumatin-like protein and aspartyl protease as new major allergens in lettuce (Lactuca sativa). Mol Nutr Food Res 2013; 57:2245-52. [PMID: 23983075 DOI: 10.1002/mnfr.201300139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 05/16/2013] [Accepted: 06/15/2013] [Indexed: 11/07/2022]
Abstract
SCOPE Today, about 2-8% of the population of Western countries exhibits some type of food allergy whose impact ranges from localized symptoms confined to the oral mucosa to severe anaphylactic reactions. Consumed worldwide, lettuce is a Compositae family vegetable that can elicit allergic reactions. To date, however, only one lipid transfer protein has been described in allergic reaction to lettuce. The aim of this study was to identify potential new allergens involved in lettuce allergy. METHODS AND RESULTS Sera from 42 Spanish lettuce-allergic patients were obtained from patients recruited at the outpatient clinic. IgE-binding proteins were detected by SDS-PAGE and immunoblotting. Molecular characterization of IgE-binding bands was performed by MS. Thaumatin was purified using the Agilent 3100 OFFGEL system. The IgE-binding bands recognized in the sera of more than 50% of patients were identified as lipid transfer protein (9 kDa), a thaumatin-like protein (26 kDa), and an aspartyl protease (35 and 45 kDa). ELISA inhibition studies were performed to confirm the IgE reactivity of the purified allergen. CONCLUSION Two new major lettuce allergens-a thaumatin-like protein and an aspartyl protease-have been identified and characterized. These allergens may be used to improve both diagnosis and treatment of lettuce-allergic patients.
Collapse
|
19
|
Ciardiello MA, Tamburrini M, Liso M, Crescenzo R, Rafaiani C, Mari A. Food allergen profiling: A big challenge. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
20
|
Zhang Q, Noble KA, Mao Y, Young NL, Sathe SK, Roux KH, Marshall AG. Rapid screening for potential epitopes reactive with a polycolonal antibody by solution-phase H/D exchange monitored by FT-ICR mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1016-1025. [PMID: 23681851 DOI: 10.1007/s13361-013-0644-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 04/03/2013] [Accepted: 04/03/2013] [Indexed: 06/02/2023]
Abstract
The potential epitopes of a recombinant food allergen protein, cashew Ana o 2, reactive to polyclonal antibodies, were mapped by solution-phase amide backbone H/D exchange (HDX) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Ana o 2 polyclonal antibodies were purified in the serum from a goat immunized with cashew nut extract. Antibodies were incubated with recombinant Ana o 2 (rAna o 2) to form antigen:polyclonal antibody (Ag:pAb) complexes. Complexed and uncomplexed (free) rAna o 2 were then subjected to HDX-MS analysis. Four regions protected from H/D exchange upon pAb binding are identified as potential epitopes and mapped onto a homologous model.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Myrset HR, Fæste CK, Kristiansen PE, Dooper MM. Mapping of the Immunodominant Regions of Shrimp Tropomyosin Pan b 1 by Human IgE-Binding and IgE Receptor Crosslinking Studies. Int Arch Allergy Immunol 2013; 162:25-38. [DOI: 10.1159/000350791] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 03/15/2013] [Indexed: 11/19/2022] Open
|
22
|
Tong P, Gao J, Chen H, Li X, Zhang Y, Jian S. Preparation and Immunological Reactions of a Purified Egg Allergen Ovotransferrin. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2013. [DOI: 10.1080/10942912.2011.631249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Ping Tong
- a State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , China
- b Sino-German Joint Research Institute, State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , China
| | - Jinyan Gao
- c Department of Food Science , Nanchang University , Nanchang , China
| | - Hongbing Chen
- a State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , China
- b Sino-German Joint Research Institute, State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , China
| | - Xin Li
- a State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , China
- c Department of Food Science , Nanchang University , Nanchang , China
| | - Yin Zhang
- a State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , China
- b Sino-German Joint Research Institute, State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , China
| | - Shan Jian
- a State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , China
- b Sino-German Joint Research Institute, State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , China
| |
Collapse
|
23
|
Abstract
This paper presents a revision on the instrumental analytical techniques and methods used in food analysis together with their main applications in food science research. The present paper includes a brief historical perspective on food analysis, together with a deep revision on the current state of the art of modern analytical instruments, methodologies, and applications in food analysis with a special emphasis on the works published on this topic in the last three years (2009–2011). The article also discusses the present and future challenges in food analysis, the application of “omics” in food analysis (including epigenomics, genomics, transcriptomics, proteomics, and metabolomics), and provides an overview on the new discipline of Foodomics.
Collapse
Affiliation(s)
- Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research (CIAL), CSIC, Nicolas Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
24
|
Costa J, Mafra I, Carrapatoso I, Oliveira MBPP. Almond allergens: molecular characterization, detection, and clinical relevance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:1337-1349. [PMID: 22260748 DOI: 10.1021/jf2044923] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Almond ( Prunus dulcis ) has been widely used in all sorts of food products (bakery, pastry, snacks), mostly due to its pleasant flavor and health benefits. However, it is also classified as a potential allergenic seed known to be responsible for triggering several mild to life-threatening immune reactions in sensitized and allergic individuals. Presently, eight groups of allergenic proteins have been identified and characterized in almond, namely, PR-10 (Pru du 1), TLP (Pru du 2), prolamins (Pru du 2S albumin, Pru du 3), profilins (Pru du 4), 60sRP (Pru du 5), and cupin (Pru du 6, Pru du γ-conglutin), although only a few of them have been tested for reactivity with almond-allergic sera. To protect sensitized individuals, labeling regulations have been implemented for foods containing potential allergenic ingredients, impelling the development of adequate analytical methods. This work aims to present an updated and critical overview of the molecular characterization and clinical relevance of almond allergens, as well as review the main methodologies used to detect and quantitate food allergens with special emphasis on almond.
Collapse
Affiliation(s)
- Joana Costa
- REQUIMTE, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | | | | | | |
Collapse
|
25
|
Vissers YM, Wichers HJ, Savelkoul HFJ. Influence of Food Processing, Digestion and the Food Matrix on Allergenicity & Cellular Measures of Allergenicity. MULTIDISCIPLINARY APPROACHES TO ALLERGIES 2012. [DOI: 10.1007/978-3-642-31609-8_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
Allergènes végétaux alimentaires identifiés (en dehors de l’arachide). REVUE FRANCAISE D ALLERGOLOGIE 2011. [DOI: 10.1016/j.reval.2010.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|