1
|
Hancock RD, Schulz E, Verrall SR, Taylor J, Méret M, Brennan RM, Bishop GJ, Else M, Cross JV, Simkin AJ. Chilling or chemical induction of dormancy release in blackcurrant (Ribes nigrum) buds is associated with characteristic shifts in metabolite profiles. Biochem J 2024; 481:1057-1073. [PMID: 39072687 PMCID: PMC11346427 DOI: 10.1042/bcj20240213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/03/2024] [Accepted: 07/29/2024] [Indexed: 07/30/2024]
Abstract
This study reveals striking differences in the content and composition of hydrophilic and lipophilic compounds in blackcurrant buds (Ribes nigrum L., cv. Ben Klibreck) resulting from winter chill or chemical dormancy release following treatment with ERGER, a biostimulant used to promote uniform bud break. Buds exposed to high winter chill exhibited widespread shifts in metabolite profiles relative to buds that experience winter chill by growth under plastic. Specifically, extensive chilling resulted in significant reductions in storage lipids and phospholipids, and increases in galactolipids relative to buds that experienced lower chill. Similarly, buds exposed to greater chill exhibited higher levels of many amino acids and dipeptides, and nucleotides and nucleotide phosphates than those exposed to lower chilling hours. Low chill buds (IN) subjected to ERGER treatment exhibited shifts in metabolite profiles similar to those resembling high chill buds that were evident as soon as 3 days after treatment. We hypothesise that chilling induces a metabolic shift which primes bud outgrowth by mobilising lipophilic energy reserves, enhancing phosphate availability by switching from membrane phospholipids to galactolipids and enhancing the availability of free amino acids for de novo protein synthesis by increasing protein turnover. Our results additionally suggest that ERGER acts at least in part by priming metabolism for bud outgrowth. Finally, the metabolic differences presented highlight the potential for developing biochemical markers for dormancy status providing an alternative to time-consuming forcing experiments.
Collapse
Affiliation(s)
- Robert D. Hancock
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, U.K
| | - Elisa Schulz
- MetaSysX GmbH, Am Mühlenberg 11, 14476 Potsdam-Golm, Germany
| | - Susan R. Verrall
- Ecological Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, U.K
| | - June Taylor
- NIAB, New Road, East Malling, Kent ME19 6BJ, U.K
| | - Michaël Méret
- MetaSysX GmbH, Am Mühlenberg 11, 14476 Potsdam-Golm, Germany
| | - Rex M. Brennan
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, U.K
| | | | - Mark Else
- NIAB, New Road, East Malling, Kent ME19 6BJ, U.K
| | | | - Andrew J. Simkin
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, U.K
| |
Collapse
|
2
|
Pecoraro L, Peterle E, Dalla Benetta E, Piazza M, Chatziparasidis G, Kantar A. Well-Established and Traditional Use of Vegetal Extracts as an Approach to the "Deep Roots" of Cough. CHILDREN (BASEL, SWITZERLAND) 2024; 11:584. [PMID: 38790578 PMCID: PMC11120585 DOI: 10.3390/children11050584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
Cough is a common presenting symptom for patients in a primary care setting and significantly impacts a patient's quality of life. Cough involves a complex reflex arc beginning with the stimulation of sensory nerves that function as cough receptors that stimulate the cough center in the brain. This "cough center" functions to receive these impulses and produce a cough by activating efferent nervous pathways to the diaphragm and laryngeal, thoracic, and abdominal musculature. Drugs that suppress the neural activity of cough are non-specific as those treatments are not directed toward pathogenic causes such as inflammation and oxidative stress. Moreover, they block a reflex called the watchdog of the lung and have a defense mechanism. Acute respiratory infections of the upper and lower airways most commonly cause acute cough. In contrast, the most common causes of chronic cough are upper airway cough syndrome, asthma, and gastroesophageal reflux disease, all associated with an inflammatory reaction at the level of the cough receptors. The use of natural compounds or herbal drugs such as carob syrup, dry blackcurrant extract, dry extract of caraway fruit, dry extract of ginger rhizome, dry extract of marshmallow root, and dry extract of ivy leaves, to name a few, not only have anti-inflammatory and antioxidant activity, but also act as antimicrobials, bronchial muscle relaxants, and increase gastric motility and empty. For these reasons, these natural substances are widely used to control cough at its deep roots (i.e., contrasting its causes and not inhibiting the arch reflex). With this approach, the lung watchdog is not put to sleep, as with peripheral or central inhibition of the cough reflex, and by contrasting the causes, we may control cough that viruses use at self-advantage to increase transmission.
Collapse
Affiliation(s)
- Luca Pecoraro
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37126 Verona, Italy
| | | | | | - Michele Piazza
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37126 Verona, Italy
| | - Grigorios Chatziparasidis
- Faculty of Nursing, University of Thessaly, 38221 Volos, Greece
- School of Physical Education, Sport Science & Dietetics, University of Thessaly, 38221 Volos, Greece
| | - Ahmad Kantar
- Pediatric Cough and Asthma Center, Istituti Ospedalieri Bergamaschi, University and Research Hospitals, 24036 Bergamo, Italy
| |
Collapse
|
3
|
Ejaz A, Waliat S, Afzaal M, Saeed F, Ahmad A, Din A, Ateeq H, Asghar A, Shah YA, Rafi A, Khan MR. Biological activities, therapeutic potential, and pharmacological aspects of blackcurrants ( Ribes nigrum L): A comprehensive review. Food Sci Nutr 2023; 11:5799-5817. [PMID: 37823094 PMCID: PMC10563683 DOI: 10.1002/fsn3.3592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 10/13/2023] Open
Abstract
Blackcurrant possesses various health-endorsing attributes owing to its polyphenol profile. Recent studies have demonstrated its therapeutic potential against various health disorders. Various bioactives present in blackcurrants have different functional and pharmacological aspects including anti-inflammatory, antioxidant, and antimicrobial properties. The most dominant and important bioactive include anthocyanins, flavonols, phenolic acids, and polyunsaturated fatty acids. Food formats derived from blackcurrants comprise pomace, juice, powder, and extracts. All these food formats have industrial, prebiotic, and pharmacological benefits. In the current article, the nutritional composition, industrial applications, and therapeutic potential are discussed in the recent literature. Moreover, novel extraction techniques for the extraction of bioactive compounds present in blackcurrants and their safety concerns have been elaborated.
Collapse
Affiliation(s)
- Afaf Ejaz
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Sadaf Waliat
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Afzaal
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Farhan Saeed
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Aftab Ahmad
- Department of Food and NutritionGovernment College University FaisalabadFaisalabadPakistan
| | - Ahmad Din
- National Institute of Food Science & TechnologyUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Huda Ateeq
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Asma Asghar
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Yasir Abbas Shah
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Ahmad Rafi
- National Institute of Food Science & TechnologyUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Mahbubur Rahman Khan
- Department of Food Processing and PreservationHajee Mohammad Danesh Science & Technology UniversityDinajpurBangladesh
| |
Collapse
|
4
|
Jin J, Fan YJ, Nguyen TV, Yu ZN, Song CH, Lee SY, Shin HS, Chai OH. Fallopia japonica Root Extract Ameliorates Ovalbumin-Induced Airway Inflammation in a CARAS Mouse Model by Modulating the IL-33/TSLP/NF-κB Signaling Pathway. Int J Mol Sci 2023; 24:12514. [PMID: 37569890 PMCID: PMC10420321 DOI: 10.3390/ijms241512514] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Fallopia japonica (Asian knotweed) is a medicinal herb traditionally used to treat inflammation, among other conditions. However, the effects of F. japonica root extract (FJE) on airway inflammation associated with combined allergic rhinitis and asthma (CARAS) and the related mechanisms have not been investigated. This study examined the effect of FJE against CARAS in an ovalbumin (OVA)-induced CARAS mouse model. Six-week-old male BALB/c mice were randomly segregated into six groups. Mice were sensitized intraperitoneally with OVA on days 1, 8, and 15, and administered saline, Dexamethasone (1.5 mg/kg), or FJE (50, 100, or 200 mg/kg) once a day for 16 days. Nasal symptoms, inflammatory cells, OVA-specific immunoglobulins, cytokine production, mast cell activation, and nasal histopathology were assessed. Administration of FJE down-regulated OVA-specific IgE and up-regulated OVA-specific IgG2a in serum. FJE reduced the production of T helper (Th) type 2 cytokines, and the Th1 cytokine levels were enhanced in nasal and bronchoalveolar lavage fluid. Moreover, FJE positively regulated allergic responses by reducing the accumulation of inflammatory cells, improving nasal and lung histopathological characteristics, and inhibiting inflammation-associated cytokines. FJE positively modulated the IL-33/TSLP/NF-B signaling pathway, which is involved in regulating inflammatory cells, immunoglobulin levels, and pro-inflammatory cytokines at the molecular level.
Collapse
Affiliation(s)
- Juan Jin
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (J.J.); (T.V.N.)
| | - Yan Jing Fan
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (J.J.); (T.V.N.)
| | - Thi Van Nguyen
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (J.J.); (T.V.N.)
| | - Zhen Nan Yu
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (J.J.); (T.V.N.)
| | - Chang Ho Song
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (J.J.); (T.V.N.)
- Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| | - So-Yong Lee
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea (H.S.S.)
- Department of Food Functionality Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Hee Soon Shin
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea (H.S.S.)
- Department of Food Functionality Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Ok Hee Chai
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (J.J.); (T.V.N.)
- Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| |
Collapse
|
5
|
Rajasekaran S, Rajasekar N, Sivanantham A. Therapeutic potential of plant-derived tannins in non-malignant respiratory diseases. J Nutr Biochem 2021; 94:108632. [PMID: 33794331 DOI: 10.1016/j.jnutbio.2021.108632] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/06/2021] [Accepted: 03/23/2021] [Indexed: 12/24/2022]
Abstract
Respiratory diseases are the major cause of human illness and death around the world. Despite advances in detection and treatment, very few classes of safe and effective therapy have been introduced to date. At present, phytochemicals are getting more attention because of their diverse beneficial activities and minimal toxicity. Tannins are polyphenolic secondary metabolites with high molecular weights, which are naturally present in a wide variety of fruits, vegetables, cereals, and leguminous seeds. Many tannins are endowed with well-recognized protective properties, such as anti-cancer, anti-microbial, anti-oxidant, anti-hyperglycemic, and many others. This review summarizes a large body of experimental evidence implicating that tannins are helpful in tackling a wide range of non-malignant respiratory diseases including acute lung injury (ALI), pulmonary fibrosis, asthma, pulmonary hypertension, and chronic obstructive pulmonary disease (COPD). Mechanistic pathways by which various classes of tannins execute their beneficial effects are discussed. In addition, clinical trials and our perspective on future research with tannins are also reviewed.
Collapse
Affiliation(s)
- Subbiah Rajasekaran
- Department of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India.
| | - Nandhine Rajasekar
- Department of Biotechnology, BIT-Campus, Anna University, Tiruchirappalli, Tamil Nadu, India
| | - Ayyanar Sivanantham
- Department of Biotechnology, BIT-Campus, Anna University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
6
|
Ulaszewska M, Garcia-Aloy M, Vázquez-Manjarrez N, Soria-Florido MT, Llorach R, Mattivi F, Manach C. Food intake biomarkers for berries and grapes. GENES AND NUTRITION 2020; 15:17. [PMID: 32967625 PMCID: PMC7509942 DOI: 10.1186/s12263-020-00675-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
Grapes and berries are two types of widely consumed fruits characterized by a high content in different phytochemicals. However, their accurate dietary assessment is particularly arduous, because of the already wide recognized bias associated with self-reporting methods, combined with the large range of species and cultivars and the fact that these fruits are popularly consumed not only in fresh and frozen forms but also as processed and derived products, including dried and canned fruits, beverages, jams, and jellies. Reporting precise type and/or quantity of grape and berries in FFQ or diaries can obviously be affected by errors. Recently, biomarkers of food intake (BFIs) rose as a promising tool to provide accurate information indicating consumption of certain food items. Protocols for performing systematic reviews in this field, as well as for assessing the validity of candidate BFIs have been developed within the Food Biomarker Alliance (FoodBAll) Project. This paper aims to evaluate the putative BIFs for blueberries, strawberries, raspberries, blackberries, cranberries, blackcurrant, and grapes. Candidate BFIs for grapes were resveratrol metabolites and tartaric acid. The metabolites considered as putative BFI for berries consumption were mostly anthocyanins derivatives together with several metabolites of ellagitannins and some aroma compounds. However, identification of BFIs for single berry types encountered more difficulties. In the absence of highly specific metabolites reported to date, we suggested some multi-metabolite panels that may be further investigated as putative biomarkers for some berry fruits.
Collapse
Affiliation(s)
- M Ulaszewska
- Fondazione Edmund Mach, Research and Innovation Centre Food Quality and Nutrition, Via Mach 1, 38010, San Michele all'Adige, Italy.,Center for Omics Sciences, Proteomics and Metabolomics Facility - ProMeFa, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - M Garcia-Aloy
- Biomarkers and Nutrimetabolomic Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain. .,CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain.
| | - N Vázquez-Manjarrez
- Université Clermont Auvergne, INRAE, UNH, F-63000, Clermont-Ferrand, France.,Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.,Dirección de Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Slavador Zubiran, Mexico City, Mexico
| | - M T Soria-Florido
- Biomarkers and Nutrimetabolomic Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - R Llorach
- Biomarkers and Nutrimetabolomic Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
| | - F Mattivi
- Fondazione Edmund Mach, Research and Innovation Centre Food Quality and Nutrition, Via Mach 1, 38010, San Michele all'Adige, Italy.,Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trent, Trento, Italy
| | - C Manach
- Université Clermont Auvergne, INRAE, UNH, F-63000, Clermont-Ferrand, France
| |
Collapse
|
7
|
Kiwifruit with high anthocyanin content modulates NF-κB activation and reduces CCL11 secretion in human alveolar epithelial cells. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103734] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
8
|
Cortez RE, Gonzalez de Mejia E. Blackcurrants (Ribes nigrum): A Review on Chemistry, Processing, and Health Benefits. J Food Sci 2019; 84:2387-2401. [PMID: 31454085 DOI: 10.1111/1750-3841.14781] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 07/21/2019] [Accepted: 07/27/2019] [Indexed: 02/02/2023]
Abstract
Blackcurrants (BC; Ribes nigrum) are relatively new to the U.S. market; however, they are well known and popular in Europe and Asia. The use of BC has been trending worldwide, particularly in the United States. We believe that demand for BC will grow as consumers become aware of the several potential health benefits these berries offer. The objectives of this review were to provide an up-to-date summary of information on BC based on articles published within the last decade; furthermore, to provide the food industry insights into possibilities for the utilization of BC. The chemistry, processing methods, and health benefits have been highlighted in addition to how the environment and variety impact the chemical constituents of BC. A search for journal publications on BC was conducted, which included keywords such as chemical characterization, health benefits, processing, technologies, anthocyanins (ANC), and proanthocyanidins. This review provides up-to-date information available on the subject. In conclusion, BC and their products have industrial uses from which extractions can be made to produce natural pigments to be used as food additives. BC contain flavonoids, specifically ANC, which provide the fruits with their purple color. BC are a rich source of phytochemicals with potent antioxidant, antimicrobial, and anti-inflammatory properties. Also, BC have the potential to improve overall human health particularly with diseases associated with inflammation and regulation of blood glucose.
Collapse
Affiliation(s)
- Regina E Cortez
- Dept. of Food Science and Human Nutrition, Univ. of Illinois at Urbana-Champaign, Urbana, IL, 61801, U.S.A
| | - Elvira Gonzalez de Mejia
- Dept. of Food Science and Human Nutrition, Univ. of Illinois at Urbana-Champaign, Urbana, IL, 61801, U.S.A
| |
Collapse
|
9
|
Wang WW, Zhu K, Yu HW, Pan YL. Interleukin-17A potentiates interleukin-13-induced eotaxin-3 production by human nasal epithelial cells from patients with allergic rhinitis. Int Forum Allergy Rhinol 2019; 9:1327-1333. [PMID: 31403761 DOI: 10.1002/alr.22382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 06/13/2019] [Accepted: 06/30/2019] [Indexed: 11/11/2022]
Abstract
BACKGROUND Interleukin (IL)-17A is involved in the pathogenesis of allergic rhinitis (AR). Increased expression of IL-17A is correlated with disease severity and nasal eosinophilia. However, the molecular mechanisms by which IL-17A contributes to T-helper 2 cytokine IL-13-driven pathology in AR remain unclear. We sought to obtain mechanistic insight into how IL-17A and IL-13 regulate the epithelial production of eotaxin-3 representing eosinophilic inflammation in AR. METHODS Human nasal epithelial cells (HNECs) from AR patients were cultured and stimulated with IL-17A, IL-13, or IL-17A and IL-13. Phosphorylated signal transducer activator of transcription 6 (p-STAT6) and suppressor of cytokine signaling 1 (SOCS1) in HNECs were assayed using Western blotting. Immunocytochemistry was used to determine p-STAT6-positive expression in the cells. Eotaxin-3 expression in the cells and culture supernatants was evaluated using real-time polymerase chain reaction and enzyme-linked immunosorbent assays. RESULTS Stimulation with IL-13 alone induced STAT6 phosphorylation and promoted p-STAT6 nuclear translocation, leading to eotaxin-3 production by HNECs. These effects were further enhanced by cotreatment with IL-13 and IL-17A, whereas IL-17A alone had no impact on STAT6 or eotaxin-3 expression. Incubation with IL-17A or IL-13 increased the level of SOCS1 protein in the cells, whereas the addition of IL-17A attenuated IL-13-induced SOCS1 expression. CONCLUSION IL-17A potentiated IL-13-driven STAT6 activation through the downregulation of SOCS1 expression, leading to enhancement of eotaxin-3 production by HNECs. These factors contributed to eosinophilic inflammation in AR.
Collapse
Affiliation(s)
- Wei Wei Wang
- Schools of Medicine and Nursing Sciences, Huzhou University, Zhejiang, PR China
| | - Kai Zhu
- Department of Pathology, Huzhou Maternity and Child Health Care Hospital, Zhejiang, PR China
| | - Hong Wei Yu
- Schools of Medicine and Nursing Sciences, Huzhou University, Zhejiang, PR China
| | - Yong Liang Pan
- Schools of Medicine and Nursing Sciences, Huzhou University, Zhejiang, PR China
| |
Collapse
|
10
|
Serrano A, Ros G, Nieto G. Bioactive Compounds and Extracts from Traditional Herbs and Their Potential Anti-Inflammatory Health Effects. MEDICINES 2018; 5:medicines5030076. [PMID: 30012980 PMCID: PMC6164612 DOI: 10.3390/medicines5030076] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 01/08/2023]
Abstract
The inflammatory processes associated with several chronic illnesses like cardiovascular disease and cancer have been the focus of mechanistic studies of the pathogenicity of these diseases and of the use of different pharmacological and natural methods to prevent them. In this study we review the current evidence regarding the effectiveness of natural extracts from as-yet little-studied traditional botanical species in alleviating the inflammation process associated with several chronic diseases. Additionally, the intention is to expose the known pathways of action and the potential synergistic effects of the constituent compounds of the discussed extracts. It is noted that the here-studied extracts, which include black garlic rich in S-allylcystein, polyphenols from cat’s claw (Uncaria tomentosa), devil’s claw (Harpagophytum procumbens), camu-camu (Myrciaria dubia), and blackcurrant (Ribes nigrum), and citrus fruit extracts rich in hesperidin, have similar or greater effects than other, more extensively studied extracts such as tea and cocoa. The combined use of all of these extracts can give rise to synergetic effects with greater biological relevance at lower doses.
Collapse
Affiliation(s)
- Antonio Serrano
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty University of Murcia, Campus de Espinardo, Espinardo, 30100 Murcia, Spain.
| | - Gaspar Ros
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty University of Murcia, Campus de Espinardo, Espinardo, 30100 Murcia, Spain.
| | - Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty University of Murcia, Campus de Espinardo, Espinardo, 30100 Murcia, Spain.
| |
Collapse
|
11
|
Coleman SL, Shaw OM. Progress in the understanding of the pathology of allergic asthma and the potential of fruit proanthocyanidins as modulators of airway inflammation. Food Funct 2018; 8:4315-4324. [PMID: 29140397 DOI: 10.1039/c7fo00789b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Allergic asthma is a chronic inflammatory lung disease characterized by sensitization of the airways, and the development of immunoglobulin E antibodies, to benign antigens. The established pathophysiology of asthma includes recurrent lung epithelial inflammation, excessive mucus production, bronchial smooth muscle hyperreactivity, and chronic lung tissue remodeling, resulting in reversible airflow restriction. Immune cells, including eosinophils and the recently characterized type 2 innate lymphoid cells, infiltrate into the lung tissue as part of the inflammatory response in allergic asthma. It is well established that a diet high in fruits and vegetables results in a reduction of the risk of developing inflammatory diseases. Secondary plant metabolites, such as proanthocyanidins which are found in apples, blackcurrants, boysenberries, cranberries, and grapes, have shown promising results in reducing or preventing allergic asthma airway inflammation. Recent evidence has also highlighted the importance of microbiome-mediated metabolism of plant polyphenols in modulating the immune system. In this review, we will discuss advances in our understanding of the pathophysiology of allergic asthma, including the role of the microbiome in lung immune function, and how proanthocyanidins modulate the airway inflammation. We will highlight the potential of dietary proanthocyanidins to impact on allergic asthma and the immune system.
Collapse
Affiliation(s)
- Sara L Coleman
- Food and Wellness Group, The New Zealand Institute for Plant & Food Research Ltd, Palmerston North 4442, New Zealand.
| | | |
Collapse
|
12
|
Garcia-Larsen V, Thawer N, Charles D, Cassidy A, van Zele T, Thilsing T, Ahlström M, Haahtela T, Keil T, Matricardi PM, Brożek G, Kowalski ML, Makowska J, Niżankowska-Mogilnicka E, Rymarczyk B, Loureiro C, Todo Bom A, Bachert C, Forsberg B, Janson C, Torén K, Potts JF, Burney PG. Dietary Intake of Flavonoids and Ventilatory Function in European Adults: A GA²LEN Study. Nutrients 2018; 10:nu10010095. [PMID: 29342980 PMCID: PMC5793323 DOI: 10.3390/nu10010095] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/05/2018] [Accepted: 01/08/2018] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Flavonoids exert anti-inflammatory properties and modulate oxidative stress in vitro, suggesting a protective effect on lung function, but epidemiological studies examining this association are scarce. METHODS A stratified random sample was drawn from the GA²LEN screening survey, in which 55,000 adults aged 15 to 75 answered a questionnaire on respiratory symptoms. Post-bronchodilator spirometry was obtained from 2850 subjects. Forced vital capacity (FVC), the ratio between the forced exhaled volume in 1 second (FEV₁) and FVC (FEV₁/FVC), FVC below lower limit of normal (FVC < LLN), and FEV₁/FVC < LLN were calculated. Intake of the six main subclasses of flavonoids was estimated using the GA²LEN Food Frequency Questionnaire. Adjusted associations between outcomes and each subclass of flavonoids were examined with multivariate regressions. Simes' procedure was used to test for multiple comparisons. RESULTS A total of 2599 subjects had valid lung function and dietary data. A lower prevalence of FVC < LLN (airway restriction) was observed in those with higher total flavonoid (adjusted odds ratio (aOR), higher vs. lowest quintile intake 0.58; 95% Confidence Interval (CI) 0.36, 0.94), and pro-anthocyanidin intakes (aOR 0.47; 95% CI 0.27, 0.81). A higher FEV₁/FVC was associated with higher intakes of total flavonoids and pro-anthocyanidins (adjusted correlation coefficient (a β-coeff 0.33; 0.10, 0.57 and a β-coeff 0.44; 95% CI 0.19, 0.69, respectively). After Simes' procedure, the statistical significance of each of these associations was attenuated but remained below 0.05, with the exception of total flavonoids and airway restriction. CONCLUSIONS This population-based study in European adults provides cross-sectional evidence of a positive association of total flavonoid intake and pro-anthocyanidins and ventilatory function, and a negative association with spirometric restriction in European adults.
Collapse
Affiliation(s)
- Vanessa Garcia-Larsen
- Program in Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | - Narjis Thawer
- Respiratory Epidemiology and Public Health Group, National Heart and Lung Institute, Imperial College London, London SW7 1BU, UK.
| | - David Charles
- Respiratory Epidemiology and Public Health Group, National Heart and Lung Institute, Imperial College London, London SW7 1BU, UK.
- Barts and the London School of Medicine, Queen Mary University of London, London E1 1BZ, UK.
| | - Aedin Cassidy
- Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Thibaut van Zele
- Upper Airway Research Laboratory, Ghent University, 9000 Ghent, Belgium.
| | - Trine Thilsing
- Research Unit of General Practice, Department of Public Health, University of Southern Denmark, 5230 Odense M; Denmark.
| | - Matti Ahlström
- Skin and Allergy Hospital, Helsinki University Hospital, 00029 HUS Helsinki, Finland.
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, 00029 HUS Helsinki, Finland.
| | - Thomas Keil
- Deptartment of Pediatrics, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.
- Institute of Social Medicine, Epidemiology and Health Economics, Charité-Universitätsmedizin, 10117 Berlin, Germany.
| | - Paolo M Matricardi
- Institute of Clinical Epidemiology and Biometry, Würzburg University, 97070 Würzburg, Germany.
| | - Grzegorz Brożek
- Department of Epidemiology, College of Medicine, Medical University of Silesia, 40-752 Katowice, Poland.
| | - Marek L Kowalski
- Department of Immunology, Rheumatology and Allergy, Medical University of Lodz, 90-647 Lodz, Poland.
| | - Joanna Makowska
- Department of Immunology, Rheumatology and Allergy, Medical University of Lodz, 90-647 Lodz, Poland.
| | | | - Barbara Rymarczyk
- Clinical Department of Internal Diseases, Allergology and Clinical Immunology, Medical University of Silesia, 40-055 Katowice, Poland.
| | - Carlos Loureiro
- Department of Immuno-Allergology, Coimbra University Hospital, 3000-075 Coimbra, Portugal.
| | - Ana Todo Bom
- Department of Immuno-Allergology, Coimbra University Hospital, 3000-075 Coimbra, Portugal.
| | - Claus Bachert
- Division of ENT Diseases, Karolinska Institute, 171 77 Stockholm, Sweden.
| | - Bertil Forsberg
- Division of Occupational and Environmental Medicine, Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden.
| | - Christer Janson
- Department of Medical Sciences, Respiratory, Allergy and Sleep Research, Uppsala University, 751 85 Uppsala, Sweden.
| | - Kjell Torén
- Section of Occupational and Environmental Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden.
| | - James F Potts
- Respiratory Epidemiology and Public Health Group, National Heart and Lung Institute, Imperial College London, London SW7 1BU, UK.
| | - Peter Gj Burney
- Respiratory Epidemiology and Public Health Group, National Heart and Lung Institute, Imperial College London, London SW7 1BU, UK.
| |
Collapse
|
13
|
Shaw OM, Nyanhanda T, McGhie TK, Harper JL, Hurst RD. Blackcurrant anthocyanins modulate CCL11 secretion and suppress allergic airway inflammation. Mol Nutr Food Res 2017; 61. [PMID: 28393456 DOI: 10.1002/mnfr.201600868] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 03/26/2017] [Accepted: 03/30/2017] [Indexed: 12/17/2022]
Abstract
CCL11, a chemokine, is linked to the early development of airways eosinophilia in allergic asthma. Therefore, CCL11 production is a target for abrogating eosinophilic-driven airway inflammation. Blackcurrants are high in compounds that regulate inflammation, particularly anthocyanins. In this study, we investigated the effect of oral blackcurrant supplementation on allergen-induced eosinophilia and CCL11 production; we also profiled key compounds in blackcurrants that were linked to this effect. Ten milligram per kilogram (total anthocyanins) of a commercially available, anthocyanin-rich New Zealand "Ben Ard" blackcurrant extract ("Currantex 30") attenuated ovalbumin-induced inflammation, eosinophilia (by 52.45 ± 38.50%), and CCL11 production (by 48.55 ± 28.56%) in a mouse model of acute allergic lung inflammation. Ten blackcurrant polyphenolic extracts were also found to suppress CCL11 secretion by stimulated human lung epithelial cells in vitro. Correlation analysis identified potential blackcurrant polyphenolic anthocyanin constituents specifically delphinidins and cyanidins, involved in CCL11 suppression. Our findings show oral supplementation with New Zealand blackcurrant is effective in reducing lung inflammation, and highlight the potential benefit of developing cultivars with specific polyphenolic profiles for the creation of functional foods with desirable biological activity.
Collapse
Affiliation(s)
- Odette M Shaw
- Food & Wellness Group, The New Zealand Institute for Plant & Food Research Ltd., Palmerston North, New Zealand.,Arthritis & Inflammation Group, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Tafadzwa Nyanhanda
- Food & Wellness Group, The New Zealand Institute for Plant & Food Research Ltd., Palmerston North, New Zealand
| | - Tony K McGhie
- Biological Chemistry & Bioactives Group, The New Zealand Institute for Plant & Food Research Ltd, Palmerston North, New Zealand
| | - Jacquie L Harper
- Arthritis & Inflammation Group, Malaghan Institute of Medical Research, Wellington, New Zealand.,Currently WelTec, Lower Hutt, New Zealand
| | - Roger D Hurst
- Food & Wellness Group, The New Zealand Institute for Plant & Food Research Ltd., Palmerston North, New Zealand
| |
Collapse
|
14
|
Suppression of CCL26 and CCL11 generation in human alveolar epithelial cells by apple extracts containing procyanidins. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.01.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
15
|
Power S, Williams M, Semprini A, Munro C, Caswell-Smith R, Pilcher J, Holliday M, Fingleton J, Harper J, Hurst R, Weatherall M, Beasley R, Braithwaite I. RCT of the effect of berryfruit polyphenolic cultivar extract in mild steroid-naive asthma: a cross-over, placebo-controlled study. BMJ Open 2017; 7:e013850. [PMID: 28320793 PMCID: PMC5372143 DOI: 10.1136/bmjopen-2016-013850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE There is preclinical evidence that consumption of berryfruit extract may reduce chronic airways inflammation and modify airway remodelling in allergen-induced models of lung inflammation. We investigated the effect of berryfruit extract on the fractional expired nitric oxide (FeNO), a biomarker of eosinophilic airways inflammation, in adults with steroid-naïve asthma. DESIGN Randomised placebo-controlled cross-over double-blind trial. SETTING Single-centre community-based trial. PARTICIPANTS 28 steroid-naïve mild asthmatics with Feno >40 ppb, of whom 25 completed both study interventions. INTERVENTIONS Participants were randomised to receive, according to the cross-over design, 100 mg berryfruit polyphenolic extract (BFPE) or placebo for 4 weeks, with a 4-week washout period between the interventions. PRIMARY OUTCOME MEASURE The primary outcome variable was FeNO at 4 weeks, analysed by a mixed linear model, with a random effect for participant and baseline FeNo as a covariate. RESULTS The mean (SD) natural logarithm transformed (ln) FeNO after 4 weeks of treatment for the BFPE and placebo groups was 4.28 (0.47) and 4.22 (0.47), respectively. The paired change from baseline mean (SD) BFPE minus placebo ln FeNO was -0.03 (0.39), N=25. The mixed linear model estimate, with baseline covariate adjustment, difference in ln FeNO, was -0.002 (95% CI -0.15 to 0.14), p=0.98. This is equivalent to a ratio of geometric mean FeNO of 1.0 (95% CI 0.86 to 1.15). CONCLUSIONS In steroid-naïve participants with mild asthma and elevated FeNO, there was no effect of BFPE on FeNO, a biomarker of eosinophilic airways inflammation. Caution is required in the extrapolation of apparent benefit in murine models of lung eosinophilia to clinical efficacy in patients with asthma. TRIAL REGISTRATION NUMBER ANZCTR: 12613000451707; Results.
Collapse
Affiliation(s)
- Sharon Power
- Medical Research Institute of New Zealand, Wellington, New Zealand
- Capital and Coast District Health Board, Wellington, New Zealand
| | - Mathew Williams
- Medical Research Institute of New Zealand, Wellington, New Zealand
| | - Alex Semprini
- Medical Research Institute of New Zealand, Wellington, New Zealand
- Capital and Coast District Health Board, Wellington, New Zealand
- Victoria University of Wellington, Wellington, New Zealand
| | | | - Rachel Caswell-Smith
- Medical Research Institute of New Zealand, Wellington, New Zealand
- Capital and Coast District Health Board, Wellington, New Zealand
- Victoria University of Wellington, Wellington, New Zealand
| | - Janine Pilcher
- Medical Research Institute of New Zealand, Wellington, New Zealand
- Capital and Coast District Health Board, Wellington, New Zealand
- Victoria University of Wellington, Wellington, New Zealand
| | - Mark Holliday
- Medical Research Institute of New Zealand, Wellington, New Zealand
| | - James Fingleton
- Medical Research Institute of New Zealand, Wellington, New Zealand
- Capital and Coast District Health Board, Wellington, New Zealand
- Victoria University of Wellington, Wellington, New Zealand
| | - Jacquie Harper
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Roger Hurst
- The New Zealand Institute for Plant & Food Research, Palmerston North, New Zealand
| | - Mark Weatherall
- Capital and Coast District Health Board, Wellington, New Zealand
- University of Otago, Wellington, New Zealand
| | - Richard Beasley
- Medical Research Institute of New Zealand, Wellington, New Zealand
- Capital and Coast District Health Board, Wellington, New Zealand
| | - Irene Braithwaite
- Medical Research Institute of New Zealand, Wellington, New Zealand
- Capital and Coast District Health Board, Wellington, New Zealand
- Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
16
|
de Boer A, van de Worp WRPH, Hageman GJ, Bast A. The effect of dietary components on inflammatory lung diseases - a literature review. Int J Food Sci Nutr 2017; 68:771-787. [PMID: 28276906 DOI: 10.1080/09637486.2017.1288199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Anti-inflammatory treatment in chronic inflammatory lung diseases usually involves glucocorticosteroids. With patients suffering from serious side effects or becoming resistant, specific nutrients, that are suggested to positively influence disease progression, can be considered as new treatment options. The dietary inflammatory index is used to calculate effects of dietary components on inflammation and lung function to identify most potent dietary components, based on 162 articles. The positive effects of n-3 PUFAs and vitamin E on lung function can at least partially be explained by their anti-inflammatory effect. Many other dietary components showed only small or no effects on inflammation and/or lung function, although the number of weighted studies was often too small for a reliable assessment. Optimal beneficial dietary elements might reduce the required amounts of anti-inflammatory treatments, thereby decreasing both side effects and development of resistance as to improve quality of life of patients suffering from chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Alie de Boer
- a Faculty of Humanities and Sciences , Food Claims Centre Venlo, Maastricht University Campus Venlo, Maastricht University , Venlo , The Netherlands
| | - Wouter R P H van de Worp
- b Department of Pharmacology and Toxicology, Faculty of Health Medicine and Life Sciences , Maastricht University , Maastricht , The Netherlands
| | - Geja J Hageman
- b Department of Pharmacology and Toxicology, Faculty of Health Medicine and Life Sciences , Maastricht University , Maastricht , The Netherlands
| | - Aalt Bast
- b Department of Pharmacology and Toxicology, Faculty of Health Medicine and Life Sciences , Maastricht University , Maastricht , The Netherlands.,c Faculty of Humanities and Sciences , Maastricht University Campus Venlo, Maastricht University , Venlo , The Netherlands
| |
Collapse
|
17
|
Procyanidin A2 Modulates IL-4-Induced CCL26 Production in Human Alveolar Epithelial Cells. Int J Mol Sci 2016; 17:ijms17111888. [PMID: 27845745 PMCID: PMC5133887 DOI: 10.3390/ijms17111888] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/08/2016] [Accepted: 11/08/2016] [Indexed: 12/16/2022] Open
Abstract
Allergic asthma is an inflammatory lung disease that is partly sustained by the chemokine eotaxin-3 (CCL26), which extends eosinophil migration into tissues long after allergen exposure. Modulation of CCL26 could represent a means to mitigate airway inflammation. Here we evaluated procyanidin A2 as a means of modulating CCL26 production and investigated interactions with the known inflammation modulator, Interferon γ (IFNγ). We used the human lung epithelial cell line A549 and optimized the conditions for inducing CCL26. Cells were exposed to a range of procyanidin A2 or IFNγ concentrations for varied lengths of time prior to an inflammatory insult of interleukin-4 (IL-4) for 24 h. An enzyme-linked immunosorbent assay was used to measure CCL26 production. Exposing cells to 5 μM procyanidin A2 (prior to IL-4) reduced CCL26 production by 35% compared with control. Greatest inhibition by procyanidin A2 was seen with a 2 h exposure prior to IL-4, whereas IFNγ inhibition was greatest at 24 h. Concomitant incubation of procyanidin A2 and IFNγ did not extend the inhibitory efficacy of procyanidin A2. These data provide evidence that procyanidin A2 can modulate IL-4-induced CCL26 production by A549 lung epithelial cells and that it does so in a manner that is different from IFNγ.
Collapse
|
18
|
Woznicki TL, Aaby K, Sønsteby A, Heide OM, Wold AB, Remberg SF. Influence of Controlled Postflowering Temperature and Daylength on Individual Phenolic Compounds in Four Black Currant Cultivars. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:752-61. [PMID: 26758764 DOI: 10.1021/acs.jafc.5b05966] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The effects of postflowering temperature and daylength on the concentration of individual phenolic compounds were studied in black currant (Ribes nigrum L.) berries under controlled phytotron conditions. The four cultivars studied varied greatly in their concentrations of individual phenolic compounds and temperature stability for accumulation. The concentrations of a wide range of identified phenolic compounds were strongly influenced by temperature over the 12-24 °C range, often with opposite temperature gradient patterns for compounds within the same subclass. Accumulation of anthocyanins and flavonols increased under natural long day conditions, which provided an increased daily light integral, while under identical light energy conditions, photoperiod had little or no effect on the concentration of phenolic compounds. Furthermore, with the exception of members of the hydroxycinnamic acid subclass, the concentration of most phenolic compounds was higher in berries ripened outdoors than in the phytotron, apparently due to screening of UV-B radiation by the glass cover.
Collapse
Affiliation(s)
- Tomasz L Woznicki
- Department of Plant Sciences, Norwegian University of Life Sciences , NO-1432 Ås, Akershus, Norway
| | - Kjersti Aaby
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research , NO-1430 Ås, Akershus, Norway
| | - Anita Sønsteby
- NIBIO, Norwegian Institute for Bioeconomy Research , NO-1431 Ås, Akershus, Norway
| | - Ola M Heide
- Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences , NO-1432 Ås, Akershus, Norway
| | - Anne-Berit Wold
- Department of Plant Sciences, Norwegian University of Life Sciences , NO-1432 Ås, Akershus, Norway
| | - Siv F Remberg
- Department of Plant Sciences, Norwegian University of Life Sciences , NO-1432 Ås, Akershus, Norway
| |
Collapse
|
19
|
Nyanhanda T, Gould EM, McGhie T, Shaw OM, Harper JL, Hurst RD. Blackcurrant cultivar polyphenolic extracts suppress CCL26 secretion from alveolar epithelial cells. Food Funct 2014; 5:671-7. [PMID: 24526266 DOI: 10.1039/c3fo60568j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Eosinophil recruitment to the airways is a characteristic feature of allergic asthma. Eotaxins are potent chemokines that regulate the recruitment of eosinophils to sites of inflammation. Of these, CCL26 is linked to persistent eosinophil recruitment in the later phase of an allergic response. We evaluated the effectiveness of 10 different blackcurrant cultivar polyphenolic extracts in suppressing CCL26 secretion in stimulated human alveolar epithelial cells. Correlation analysis to identify the potential blackcurrant composition constituent(s) involved in CCL26 suppression and the effects of the four major anthocyanins present in blackcurrants to validate results was conducted. All blackcurrant polyphenolic extracts suppressed CCL26 secretion by lung alveolar cells; however, differential efficacy was observed, which was attributed to their cultivar-specific polyphenolic composition profiles. We identified that the ratio of concentrations of delphinidin glycosides to cyanidin glycosides in the blackcurrant cultivars was an important determinant in influencing CCL26 suppression in lung cells. Our findings support the potential use of blackcurrants or blackcurrant-derived foods/ingredients in managing lung inflammation and the development of specific cultivars as functional foods/ingredients with beneficial biological activities.
Collapse
Affiliation(s)
- Tafadzwa Nyanhanda
- Food Innovation, The New Zealand Institute for Plant & Food Research Ltd, Private Bag 3123, Hamilton, 3240, New Zealand
| | | | | | | | | | | |
Collapse
|
20
|
Gutiérrez-Venegas G, Ventura-Arroyo JA, Arreguín-Cano JA, Ostoa-Pérez MF. Flavonoids inhibit iNOS production via mitogen activated proteins in lipoteichoic acid stimulated cardiomyoblasts. Int Immunopharmacol 2014; 21:320-7. [PMID: 24768712 DOI: 10.1016/j.intimp.2014.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/25/2014] [Accepted: 04/10/2014] [Indexed: 10/25/2022]
Abstract
Infective endocarditis is caused by oral commensal bacteria which are important etiologic agents in this disease and can induce release of nitric oxide (NO), promoting an inflammatory response in the endocardium. In this study, we investigated the properties of kaempherol, epigallocatechin, apigenin, and naringin in embryonic mouse heart cells (H9c2) treated with lipoteichoic acid (LTA) obtained from Streptococcus sanguinis. NO production was measured with the Griess method. Expression of inducible nitric oxide synthase (iNOS) was detected by reverse transcriptase polymerase chain reaction (RT-PCR). In addition, western blot assays and immunofluorescence staining were used to assess translocation of nuclear factor kappa beta (NF-κB), degradation of IκB, and activity of the mitogen activated protein (MAP) kinases extracellular signal-regulated kinase (ERK 1/2), p38, and c-Jun N-terminal kinase (JNK). And the effects of these flavonoids on cell viability were also assessed. Our results showed that flavonoids blocked activation of ERK, JNK, and p38 in cardiomyocytes treated with LTA. Moreover, the flavonoids showed no cytotoxic effects and blocked NF-κB translocation and IκB degradation and inhibited LTA-induced NF-κB promoter activity, iNOS expression and NO production. In conclusion these effects are consistent with some of the observed anti-inflammatory properties of other flavonoids.
Collapse
Affiliation(s)
- Gloria Gutiérrez-Venegas
- Laboratorio de Bioquímica de la División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, D.F., Mexico.
| | - Jairo Agustín Ventura-Arroyo
- Laboratorio de Bioquímica de la División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, D.F., Mexico
| | - Juan Antonio Arreguín-Cano
- Laboratorio de Bioquímica de la División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, D.F., Mexico
| | - María Fernanda Ostoa-Pérez
- Laboratorio de Bioquímica de la División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, D.F., Mexico
| |
Collapse
|
21
|
Vogl S, Picker P, Mihaly-Bison J, Fakhrudin N, Atanasov AG, Heiss EH, Wawrosch C, Reznicek G, Dirsch VM, Saukel J, Kopp B. Ethnopharmacological in vitro studies on Austria's folk medicine--an unexplored lore in vitro anti-inflammatory activities of 71 Austrian traditional herbal drugs. JOURNAL OF ETHNOPHARMACOLOGY 2013; 149:750-71. [PMID: 23770053 PMCID: PMC3791396 DOI: 10.1016/j.jep.2013.06.007] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 06/04/2013] [Accepted: 06/05/2013] [Indexed: 05/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In Austria, like in most Western countries, knowledge about traditional medicinal plants is becoming scarce. Searching the literature concerning Austria's ethnomedicine reveals its scant scientific exploration. Aiming to substantiate the potential of medicinal plants traditionally used in Austria, 63 plant species or genera with claimed anti-inflammatory properties listed in the VOLKSMED database were assessed for their in vitro anti-inflammatory activity. MATERIAL AND METHODS 71 herbal drugs from 63 plant species or genera were extracted using solvents of varying polarities and subsequently depleted from the bulk constituents, chlorophylls and tannins to avoid possible interferences with the assays. The obtained 257 extracts were assessed for their in vitro anti-inflammatory activity. The expression of the inflammatory mediators E-selectin and interleukin-8 (IL-8), induced by the inflammatory stimuli tumor necrosis factor alpha (TNF-α) and the bacterial product lipopolysaccharide (LPS) was measured in endothelial cells. The potential of the extracts to activate the nuclear factors PPARα and PPARγ and to inhibit TNF-α-induced activation of the nuclear factor-kappa B (NF-κB) in HEK293 cells was determined by luciferase reporter gene assays. RESULTS In total, extracts from 67 of the 71 assessed herbal drugs revealed anti-inflammatory activity in the applied in vitro test systems. Thereby, 30 could downregulate E-selectin or IL-8 gene expression, 28 were strong activators of PPARα or PPARγ (inducing activation of more than 2-fold at a concentration of 10µg/mL) and 21 evoked a strong inhibition of NF-κB (inhibition of more than 80% at 10µg/mL). CONCLUSION Our research supports the efficacy of herbal drugs reported in Austrian folk medicine used for ailments associated with inflammatory processes. Hence, an ethnopharmacological screening approach is a useful tool for the discovery of new drug leads.
Collapse
Affiliation(s)
- Sylvia Vogl
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Paolo Picker
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Judit Mihaly-Bison
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| | - Nanang Fakhrudin
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Atanas G. Atanasov
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Elke H. Heiss
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Christoph Wawrosch
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Gottfried Reznicek
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Verena M. Dirsch
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Johannes Saukel
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
- Corresponding author. Tel.: +43 1 4277 55273; fax: +43 1 4277 9552.
| | - Brigitte Kopp
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| |
Collapse
|
22
|
Polyphenols and their components in experimental allergic asthma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 756:91-8. [PMID: 22836623 DOI: 10.1007/978-94-007-4549-0_12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The aim of the study was to investigate the potential anti-inflammatory effects in -experimental allergic asthma of natural polyphenolic compounds or their single major components. The experiment was performed after 21-days sensitization of guinea pigs with ovalbumin suspension. Changes in airway reactivity after the long-term treatment with the polyphenolic compounds Provinol and Flavin-7 and their single major components quercetin and resveratrol during were assessed using a whole body plethysmography. Reactivity of tracheal smooth muscle was studied in vitro in response to cumulative doses of the bronchoconstrictive mediators histamine and acetylcholine. Furthermore, concentrations of the inflammatory cytokines IL-4 and IL-5 were measured in bronchoalveolar lavage fluid. The results demonstrate significant anti-inflammatory effects of Provinol and Flavin-7 exerted in the airways. In contrast, chronic treatment with quercetin and resveratrol, single components of the two polyphenols, did not show such activity. We conclude that polyphenolic compounds are more effective in the anti-inflammatory effects in the airways than their separate components.
Collapse
|
23
|
Vagiri M, Ekholm A, Andersson SC, Johansson E, Rumpunen K. An optimized method for analysis of phenolic compounds in buds, leaves, and fruits of black currant ( Ribes nigrum L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:10501-10. [PMID: 23046518 DOI: 10.1021/jf303398z] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Although the fruits are the economic driver for the black currant industry, the buds and leaves are excellent sources of beneficial phenolic compounds that may contribute to the future value of the crop. In this study, extraction of phenolic compounds for different parts of the black currant plant was optimized, and an efficient method for their separation by HPLC was developed. This allowed the simultaneous quantification of a range of hydroxycinnamic acids, flavan-3-ols, flavonols, and anthocyanins by DAD following their identification by HPLC-ESI-MS(n). A total of 23 compounds were detected in the buds, 22 of which were found in fruit and leaves. To the best of our knowledge, this is the first report of flavonol glycosides of quercetin, myricetin, isorhamnetin, and kaempferol along with hydroxycinnamic acids such as neo-chlorogenic acid and chlorogenic acid in the buds. Additionally, we provide the first evidence of kaempferol-3-O-rutinoside in black currant leaves. This approach offers avenues for superior combined compositional identification and cultivar selection targeted at the generation of polyphenol-rich products derived from the whole crop and not just the fruit.
Collapse
Affiliation(s)
- Michael Vagiri
- Department of Plant Breeding and Biotechnology-Balsgård, Swedish University of Agricultural Sciences, Fjälkestadsvägen 459, SE-291 94 Kristianstad, Sweden.
| | | | | | | | | |
Collapse
|
24
|
Mbeunkui F, Grace MH, Yousef GG, Ann Lila M. Isolation and characterization of flavonols from blackcurrant by high-performance counter-current chromatography and electrospray ionization tandem mass spectrometry. J Sep Sci 2012; 35:1682-9. [DOI: 10.1002/jssc.201200198] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | - Mary Ann Lila
- Plants for Human Health Institute; North Carolina State University; North Carolina Research Campus; Kannapolis NC USA
| |
Collapse
|
25
|
Rivera DG, Hernández I, Merino N, Luque Y, Álvarez A, Martín Y, Amador A, Nuevas L, Delgado R. Mangifera indica L. extract (Vimang) and mangiferin reduce the airway inflammation and Th2 cytokines in murine model of allergic asthma. ACTA ACUST UNITED AC 2012; 63:1336-45. [PMID: 21899550 DOI: 10.1111/j.2042-7158.2011.01328.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVES The aim was to study the effects of Mangifera indica extract and its major component mangiferin on lung inflammation response and Th2 cytokine production using a murine experimental model of allergic asthma. METHODS BALB/c mice were intraperitoneally sensitized with 10 µg of ovoalbumin (OVA) adsorbed on aluminium hydroxide on days 0, 7 and 14. Seven days after the last injection, the mice were challenged with 2% aerosolized OVA inhalation for 30 min beginning on day 21 and continuing until day 24. To evaluate the protective effect, mice were orally treated with M. indica extract (50, 100 or 250 mg/kg) or mangiferin (50 mg/kg) from days 0 to 24. Anti-OVA immunoglobulin E, interleukin (IL)-4 and IL-5 were determined by ELISA and lungs were analysed by histology. KEY FINDINGS M. indica extract and mangiferin produced a marked reduction of airway inflammation around vessels and bronchi, inhibition of IL-4 and IL-5 cytokines in bronchoalveolar lavage fluid and lymphocyte culture supernatant, IgE levels and lymphocyte proliferation. CONCLUSION This is the first pre-clinical report of the anti-inflammatory properties of M. indica extract and mangiferin in experimental asthma and it could be an important part of pre-clinical requirement necessary for its use to complement the treatment of this complex disease.
Collapse
Affiliation(s)
- Dagmar García Rivera
- Laboratory of Pharmacology, Department of Biomedical Research, Center for Pharmaceutical Chemistry, Atabey, Playa, Havana City, Cuba.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gong JH, Shin D, Han SY, Kim JL, Kang YH. Kaempferol suppresses eosionphil infiltration and airway inflammation in airway epithelial cells and in mice with allergic asthma. J Nutr 2012; 142:47-56. [PMID: 22157542 DOI: 10.3945/jn.111.150748] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The airway epithelium is thought to play an important role in the pathogenesis of asthma. Airway epithelial activation may contribute to inflammatory and airway-remodeling events characteristic of asthma. Kaempferol, a flavonoid with antioxidative and antitumor properties, has been studied as an antiinflammatory agent. However, little is known regarding its effects on allergic asthma. Human airway epithelial BEAS-2B cells and eosinophils were used to investigate the effects of kaempferol on endotoxin- or cytokine-associated airway inflammation. Kaempferol, nontoxic at 1-20 μmol/L, suppressed LPS-induced eotaxin-1 protein expression that may be mediated, likely via Janus kinase 2 (JAK2) JAK2 signaling. Additionally, 1-20 μmol/L kaempferol dose-dependently attenuated TNFα-induced expression of epithelial intracellular cell adhesion molecule-1 and eosinophil integrin β2, thus encumbering the eosinophil-airway epithelium interaction. Kaempferol blunted TNFα-induced airway inflammation by attenuating monocyte chemoattractant protein-1 transcription, possibly by disturbing NF-κB signaling. This study further investigated antiallergic activity of kaempferol in BALB/c mice sensitized with ovalbumin (OVA) and challenged with a single dose of OVA. Oral administration of kaempferol attenuated OVA challenge-elevated expression of eotaxin-1 and eosinophil major basic protein via the blockade of NF-κB transactivation, thereby blunting eosinophil accumulation in airway and lung tissue. Therefore, dietary kaempferol is effective in ameliorating allergic and inflammatory airway diseases through disturbing NF-κB signaling.
Collapse
Affiliation(s)
- Ju-Hyun Gong
- Department of Food and Nutrition, Hallym University, Chuncheon, Korea
| | | | | | | | | |
Collapse
|
27
|
Gopalan A, Reuben SC, Ahmed S, Darvesh AS, Hohmann J, Bishayee A. The health benefits of blackcurrants. Food Funct 2012; 3:795-809. [DOI: 10.1039/c2fo30058c] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
28
|
Bishayee A, Thoppil RJ, Mandal A, Darvesh AS, Ohanyan V, Meszaros JG, Háznagy-Radnai E, Hohmann J, Bhatia D. Black currant phytoconstituents exert chemoprevention of diethylnitrosamine-initiated hepatocarcinogenesis by suppression of the inflammatory response. Mol Carcinog 2011; 52:304-17. [DOI: 10.1002/mc.21860] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Revised: 11/22/2011] [Accepted: 11/30/2011] [Indexed: 12/17/2022]
|
29
|
Bishayee A, Mbimba T, Thoppil RJ, Háznagy-Radnai E, Sipos P, Darvesh AS, Folkesson HG, Hohmann J. Anthocyanin-rich black currant (Ribes nigrum L.) extract affords chemoprevention against diethylnitrosamine-induced hepatocellular carcinogenesis in rats. J Nutr Biochem 2011; 22:1035-46. [DOI: 10.1016/j.jnutbio.2010.09.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 09/15/2010] [Accepted: 09/22/2010] [Indexed: 10/18/2022]
|
30
|
Bishayee A, Háznagy-Radnai E, Mbimba T, Sipos P, Morazzoni P, Darvesh AS, Bhatia D, Hohmann J. Anthocyanin-rich black currant extract suppresses the growth of human hepatocellular carcinoma cells. Nat Prod Commun 2011. [PMID: 21121259 DOI: 10.1177/1934578x1000501020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Dietary antioxidants, such as anthocyanins, are helpful in the prevention and control of various diseases by counteracting the imbalance of oxidative and antioxidative factors in the living systems. Black currant (Ribes nigrum L., Grossulariaceae) is known to contain high amounts of anthocyanins (250 mg/100 g fresh fruit). Black currant fruits have been used in Asian and European traditional medicine for the treatment of a variety of diseases. Black currant extract has recently been found to be the second most effective amongst nine different berry extracts studied for their free radical scavenging activity. Constituents present in black currant juice have been found to exert a number of health-promoting effects, including immunomodulatory, antimicrobial and antiinflammatory actions, inhibition of low-density lipoprotein, and reduction of cardiovascular diseases. Although antioxidant and antiinflammatory effects of black currant juice could be of value in preventing and treating oxidative stress- and inflammation-driven cancers, no experimental evidence is available to now. The objective of the present study was to evaluate the potential antiproliferative effects of black currant fruit skin extract against HepG2 human liver cancer cells. The aqueous extract yielded an anthocyanin-rich fraction with cyanidin-3-O-rutinoside as one of the major anthocyanins. This fraction exhibited a potent cytotoxic effect on HepG2 cells and this effect was more pronounced than that of delphinidin and cyanidin, two major aglycones of anthocyanins present in black currant. Our results indicate, for the first time, that black currant skin containing an anthocyanin-rich fraction inhibits the proliferation of liver cancer cells, possibly due to additive as well as synergistic effects. This product could be useful in the prevention and treatment of human hepatocellular carcinoma.
Collapse
Affiliation(s)
- Anupam Bishayee
- Cancer Therapeutics and Chemoprevention Group, Department of Pharmaceutical Sciences, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, 4209 State Route 44, Rootstown, OH 44272, USA.
| | | | | | | | | | | | | | | |
Collapse
|