1
|
Skalny AV, Korobeinikova TV, Aschner M, Paoliello MMB, Lu R, Skalny AA, Mazaletskaya AL, Tinkov AA. Hair and Serum Trace Element and Mineral Levels Profiles in Women with Premenopausal and Postmenopausal Osteoporosis. Biol Trace Elem Res 2024; 202:3886-3899. [PMID: 38038893 DOI: 10.1007/s12011-023-03970-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
The objective of the present study was to evaluate serum and hair trace element and mineral levels in women with osteoporosis, as well as to estimate the impact of menopausal status on the profile of trace element and mineral status in women with osteoporosis. 207 women with diagnosed osteoporosis 22-85 years-of-age, and 197 healthy women of the respective age participated in the present study. Analysis of the levels of mineral and trace element in hair and serum samples was performed by inductively-coupled plasma mass-spectrometry (ICP-MS). Women with osteoporosis were characterized by significantly lower hair Ca, Mg, Co, I, Li, and Mn levels, as well as serum Ca, Mg, Co, Fe, V, and Zn concentrations compared to women in the control group. After additional grouping according to menopausal status, the lowest hair Ca and Mg content was observed in postmenopausal osteoporotic women, whereas serum Ca and Mg concentrations were the lowest in premenopausal osteoporotic women. Hair Co, Mn, and Zn levels in postmenopausal osteoporotic women were lower than in healthy postmenopausal women. The lowest circulating Zn levels were observed in osteoporotic postmenopausal women. Taken together, decreased hair and serum levels in osteoporotic women are indicative of increased risk of Ca, Mg, Co, and Zn deficiency in women with osteoporosis. In turn, alterations in hair trace element and mineral levels in osteoporosis are more profound in postmenopausal women. Hypothetically, improvement in trace element and mineral metabolism especially in postmenopausal women may be considered as a potential strategy for mitigating osteoporosis.
Collapse
Affiliation(s)
- Anatoly V Skalny
- Yaroslavl State University, Yaroslavl, Russia.
- Center for Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia.
| | - Tatiana V Korobeinikova
- Center for Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Monica M B Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Andrey A Skalny
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Anna L Mazaletskaya
- Yaroslavl State University, Yaroslavl, Russia
- Center for Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Alexey A Tinkov
- Yaroslavl State University, Yaroslavl, Russia
- Center for Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
2
|
Kwon JH, Kim DK, Cho YE, Kwun IS. Zinc Action in Vascular Calcification. Prev Nutr Food Sci 2024; 29:118-124. [PMID: 38974586 PMCID: PMC11223917 DOI: 10.3746/pnf.2024.29.2.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 07/09/2024] Open
Abstract
Although zinc's involvement in bone calcification is well-established, its role in vascular calcification, characterized by abnormal calcium and phosphorus deposition in soft tissues and a key aspect of various vascular diseases, including atherosclerosis, remains unclear. This review focuses on zinc's action in vascular smooth muscle cell (VSMC) calcification, including the vascular calcification mechanism. Accumulated research has indicated that zinc deficiency induces calcification in VSMCs and the aorta, primarily through apoptosis accompanied by a downregulation of smooth muscle cell markers. Moreover, zinc deficiency-induced vascular calcification operates independently of the action of alkaline phosphatase (ALP) activity, typically associated with osteogenic processes, but is partly regulated via inorganic phosphate transporter-1 (Pit-1). To date, research has shown that zinc regulates vascular calcification through a mechanism distinct from that of osteogenic calcification, providing insight into its dual effects on physiological and pathological calcification and thereby explaining the "zinc paradox," wherein zinc simultaneously increases osteoblastic calcification and decreases VSMC calcification.
Collapse
Affiliation(s)
- Jae-Hee Kwon
- Department of Food and Nutrition, College of Life Science and Biotechnology, Andong National University, Andong 36729, Korea
| | - Do-Kyun Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Korea
| | - Young-Eun Cho
- Department of Food and Nutrition, College of Life Science and Biotechnology, Andong National University, Andong 36729, Korea
| | - In-Sook Kwun
- Department of Food and Nutrition, College of Life Science and Biotechnology, Andong National University, Andong 36729, Korea
| |
Collapse
|
3
|
Zhao Y, Cheng C, Wang X, Yuan Z, Sun B, El-Newehy M, Abdulhameed MM, Fang B, Mo X. Aspirin-Loaded Anti-Inflammatory ZnO-SiO 2 Aerogel Scaffolds for Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17092-17108. [PMID: 38533625 DOI: 10.1021/acsami.3c17152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The increasing aging of the population has elevated bone defects to a significant threat to human life and health. Aerogel, a biomimetic material similar to an extracellular matrix (ECM), is considered an effective material for the treatment of bone defects. However, most aerogel scaffolds suffer from immune rejection and poor anti-inflammatory properties and are not well suited for human bone growth. In this study, we used electrospinning to prepare flexible ZnO-SiO2 nanofibers with different zinc concentrations and further assembled them into three-dimensional composite aerogel scaffolds. The prepared scaffolds exhibited an ordered pore structure, and chitosan (CS) was utilized as a cross-linking agent with aspirin (ASA). Interestingly, the 1%ZnO-SiO2/CS@ASA scaffolds not only exhibited good biocompatibility, bioactivity, anti-inflammation, and better mechanical properties but also significantly promoted vascularization and osteoblast differentiation in vitro. In the mouse cranial defect model, the BV/TV data showed a higher osteogenesis rate in the 1%ZnO-SiO2/CS group (10.94 ± 0.68%) and the 1%ZnO-SiO2/CS@ASA group (22.76 ± 1.83%), compared with the control group (5.59 ± 2.08%), and in vivo studies confirmed the ability of 1%ZnO-SiO2/CS@ASA to promote in situ regeneration of new bone. This may be attributed to the fact that Si4+, Zn2+, and ASA released from 1%ZnO-SiO2/CS@ASA scaffolds can promote angiogenesis and bone formation by stimulating the interaction between endothelial cells (ECs) and BMSCs, as well as inducing macrophage differentiation to the M2 type and downregulating the expression of pro-inflammatory factor (TNF-α) to modulate local inflammatory response. These exciting results and evidence suggest that it provides a new and effective strategy for the treatment of bone defects.
Collapse
Affiliation(s)
- Yue Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P R China
| | - Caiqi Cheng
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Xinyi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P R China
| | - Zhengchao Yuan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P R China
| | - Binbin Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P R China
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Meera Moydeen Abdulhameed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Bing Fang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P R China
| |
Collapse
|
4
|
Rehder F, Arango-Ospina M, Decker S, Saur M, Kunisch E, Moghaddam A, Renkawitz T, Boccaccini AR, Westhauser F. The Addition of Zinc to the ICIE16-Bioactive Glass Composition Enhances Osteogenic Differentiation and Matrix Formation of Human Bone Marrow-Derived Mesenchymal Stromal Cells. Biomimetics (Basel) 2024; 9:53. [PMID: 38248627 PMCID: PMC10813151 DOI: 10.3390/biomimetics9010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
An ICIE16-bioactive glass (BG) composition (in mol%: 49.5 SiO2, 6.6 Na2O, 36.3 CaO, 1.1 P2O5, and 6.6 K2O) has demonstrated excellent in vitro cytocompatibility when cultured with human bone marrow-derived mesenchymal stromal cells (BMSCs). However, its impact on the development of an osseous extracellular matrix (ECM) is limited. Since zinc (Zn) is known to enhance ECM formation and maturation, two ICIE16-BG-based Zn-supplemented BG compositions, namely 1.5 Zn-BG and 3Zn-BG (in mol%: 49.5 SiO2, 6.6 Na2O, 34.8/33.3 CaO, 1.1 P2O5, 6.6 K2O, and 1.5/3.0 ZnO) were developed, and their influence on BMSC viability, osteogenic differentiation, and ECM formation was assessed. Compared to ICIE16-BG, the Zn-doped BGs showed improved cytocompatibility and significantly enhanced osteogenic differentiation. The expression level of the osteopontin gene was significantly higher in the presence of Zn-doped BGs. A larger increase in collagen production was observed when the BMSCs were exposed to the Zn-doped BGs compared to that of the ICIE16-BG. The calcification of the ECM was increased by all the BG compositions; however, calcification was significantly enhanced by the Zn-doped BGs in the early stages of cultivation. Zn constitutes an attractive addition to ICIE16-BG, since it improves its ability to build and calcify an ECM. Future studies should assess whether these positive properties remain in an in vivo environment.
Collapse
Affiliation(s)
- Felix Rehder
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany (M.S.)
| | - Marcela Arango-Ospina
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Simon Decker
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany (M.S.)
| | - Merve Saur
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany (M.S.)
| | - Elke Kunisch
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany (M.S.)
| | - Arash Moghaddam
- PrivatÄrztliches Zentrum Aschaffenburg, Frohsinnstraße 12, 63739 Aschaffenburg, Germany
| | - Tobias Renkawitz
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany (M.S.)
| | - Aldo R. Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Fabian Westhauser
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany (M.S.)
| |
Collapse
|
5
|
Skalny AV, Aschner M, Silina EV, Stupin VA, Zaitsev ON, Sotnikova TI, Tazina SI, Zhang F, Guo X, Tinkov AA. The Role of Trace Elements and Minerals in Osteoporosis: A Review of Epidemiological and Laboratory Findings. Biomolecules 2023; 13:1006. [PMID: 37371586 DOI: 10.3390/biom13061006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The objective of the present study was to review recent epidemiological and clinical data on the association between selected minerals and trace elements and osteoporosis, as well as to discuss the molecular mechanisms underlying these associations. We have performed a search in the PubMed-Medline and Google Scholar databases using the MeSH terms "osteoporosis", "osteogenesis", "osteoblast", "osteoclast", and "osteocyte" in association with the names of particular trace elements and minerals through 21 March 2023. The data demonstrate that physiological and nutritional levels of trace elements and minerals promote osteogenic differentiation through the up-regulation of BMP-2 and Wnt/β-catenin signaling, as well as other pathways. miRNA and epigenetic effects were also involved in the regulation of the osteogenic effects of trace minerals. The antiresorptive effect of trace elements and minerals was associated with the inhibition of osteoclastogenesis. At the same time, the effect of trace elements and minerals on bone health appeared to be dose-dependent with low doses promoting an osteogenic effect, whereas high doses exerted opposite effects which promoted bone resorption and impaired bone formation. Concomitant with the results of the laboratory studies, several clinical trials and epidemiological studies demonstrated that supplementation with Zn, Mg, F, and Sr may improve bone quality, thus inducing antiosteoporotic effects.
Collapse
Affiliation(s)
- Anatoly V Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia
- Center of Bioelementology and Human Ecology, Institute of Biodesign and Modeling of Complex Systems, Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ekaterina V Silina
- Center of Bioelementology and Human Ecology, Institute of Biodesign and Modeling of Complex Systems, Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Victor A Stupin
- Department of Hospital Surgery No. 1, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Oleg N Zaitsev
- Department of Physical Education, Yaroslavl State Technical University, 150023 Yaroslavl, Russia
| | - Tatiana I Sotnikova
- Center of Bioelementology and Human Ecology, Institute of Biodesign and Modeling of Complex Systems, Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
- City Clinical Hospital n. a. S.P. Botkin of the Moscow City Health Department, 125284 Moscow, Russia
| | - Serafima Ia Tazina
- Center of Bioelementology and Human Ecology, Institute of Biodesign and Modeling of Complex Systems, Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Health Science Center, School of Public Health, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Health Science Center, School of Public Health, Xi'an Jiaotong University, Xi'an 710061, China
| | - Alexey A Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia
- Center of Bioelementology and Human Ecology, Institute of Biodesign and Modeling of Complex Systems, Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| |
Collapse
|
6
|
Dai Z, Zhang X. Pathophysiology and Clinical Impacts of Chronic Kidney Disease on Coronary Artery Calcification. J Cardiovasc Dev Dis 2023; 10:jcdd10050207. [PMID: 37233174 DOI: 10.3390/jcdd10050207] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
The global prevalence of chronic kidney disease (CKD) has increased in recent years. Adverse cardiovascular events have become the main cause of life-threatening events in patients with CKD, and vascular calcification is a risk factor for cardiovascular disease. Vascular calcification, especially coronary artery calcification, is more prevalent, severe, rapidly progressive, and harmful in patients with CKD. Some features and risk factors are unique to vascular calcification in patients with CKD; the formation of vascular calcification is not only influenced by the phenotypic transformation of vascular smooth muscle cells, but also by electrolyte and endocrine dysfunction, uremic toxin accumulation, and other novel factors. The study on the mechanism of vascular calcification in patients with renal insufficiency can provide a basis and new target for the prevention and treatment of this disease. This review aims to illustrate the impact of CKD on vascular calcification and to discuss the recent research data on the pathogenesis and factors involved in vascular calcification, mainly focusing on coronary artery calcification, in patients with CKD.
Collapse
Affiliation(s)
- Zhuoming Dai
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xiangyu Zhang
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| |
Collapse
|
7
|
Skrajnowska D, Idkowiak J, Szterk A, Ofiara K, Augustyniak K, Bobrowska-Korczak B. Effect of Nano- and Microzinc Supplementation on the Mineral Composition of Bones of Rats with Induced Mammary Gland Cancer. Foods 2023; 12:foods12061348. [PMID: 36981273 PMCID: PMC10047967 DOI: 10.3390/foods12061348] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND The aim of this study was to determine changes in the mineral composition of the bones of rats with chemically induced mammary gland cancer and to attempt to establish whether a specific diet modification involving the inclusion of zinc ions in two forms-nano and micro-will affect the mineral composition of the bones. METHODS Female Sprague-Dawley rats were used for the research. The animals were randomly assigned to three experimental groups. All animals were fed a standard diet (Labofeed H), and selected groups additionally received zinc nanoparticles or microparticles in the amount of 4.6 mg/mL. To induce mammary cancer, the animals were given 7,12-dimethyl-1,2-benz[a]anthracene. The content of Ag, As, B, Ba, Cd, Cr, Cu, Mn, Ni, Pb, Rb, Se, Sr, Tl, U, and V was determined using ICP-MS, while that of Ca, Fe, K, Mg, Na, and Zn was determined using FAAS. RESULTS The use of a diet enriched with zinc nano- or microparticles significantly influenced the content of the elements tested. In the bones of rats fed a diet with zinc nanoparticles, changes were found in the content of Ca, Mg, Zn, Cd, U, V, and Tl, while in the case of the diet supplemented with zinc microparticles, there were differences in six elements-Ca, Mg, B, Cd, Ag, and Pb-compared to animals receiving an unsupplemented diet. CONCLUSIONS The content of elements in the bone tissue of rats in the experimental model indicates disturbances of mineral metabolism in the tissue at an early stage of mammary cancer.
Collapse
Affiliation(s)
- Dorota Skrajnowska
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Jakub Idkowiak
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ-532 10 Pardubice, Czech Republic
| | - Arkadiusz Szterk
- Transfer of Science sp. z o. o., Strzygłowska 15, 04-872 Warsaw, Poland
| | - Karol Ofiara
- Transfer of Science sp. z o. o., Strzygłowska 15, 04-872 Warsaw, Poland
| | - Kinga Augustyniak
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Barbara Bobrowska-Korczak
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| |
Collapse
|
8
|
Innella K, Levidy MF, Kadkoy Y, Lin A, Selles M, Sanchez A, Weiner A, Greendyk J, Moriarty B, Lauritsen K, Lopez J, Teitelbaum M, Fisher M, Mendiratta D, Ahn DB, Ippolitto J, Paglia DN, Cottrell J, O'Connor JP, Benevenia J, Lin SS. Local zinc treatment enhances fracture callus properties in diabetic rats. J Orthop Res 2022. [PMID: 36515300 DOI: 10.1002/jor.25499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
The effects of locally applied zinc chloride (ZnCl2 ) on early and late-stage parameters of fracture healing were evaluated in a diabetic rat model. Type 1 Diabetes has been shown to negatively impact mechanical parameters of bone as well as biologic markers associated with bone healing. Zinc treatments have been shown to reverse those outcomes in tests of nondiabetic and diabetic animals. This study is the first to assess the efficacy of a noncarrier mediated ZnCl2 on bony healing in diabetic animals. This is a promising basic science approach which may lead to benefits for diabetic patients in the future. Treatment and healing were assessed through quantification of callus zinc, radiographic scoring, microcomputed tomography (µCT), histomorphometry, and mechanical testing. Local ZnCl2 treatment increased callus zinc levels at 1 and 3 days after fracture (p ≤ 0.025). Femur fractures treated with ZnCl2 showed increased mechanical properties after 4 and 6 weeks of healing. Histomorphometry of the ZnCl2 -treated fractures found increased callus cartilage area at Day 7 (p = 0.033) and increased callus bone area at Day 10 (p = 0.038). In contrast, callus cartilage area was decreased (p < 0.01) after 14 days in the ZnCl2 -treated rats. µCT analysis showed increased bone volume in the fracture callus of ZnCl2 -treated rats at 6 weeks (p = 0.0012) with an associated increase in the proportion of µCT voxel axial projections (Z-rays) spanning the fracture site. The results suggest that local ZnCl2 administration improves callus chondrogenesis leading to greater callus bone formation and improved fracture healing in diabetic rats.
Collapse
Affiliation(s)
- Kevin Innella
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Michael F Levidy
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Yazan Kadkoy
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Anthony Lin
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Marcus Selles
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Alexandra Sanchez
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Adam Weiner
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Joshua Greendyk
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Brian Moriarty
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Katherine Lauritsen
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Jonathan Lopez
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Marc Teitelbaum
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Mark Fisher
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Dhruv Mendiratta
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - David B Ahn
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Joseph Ippolitto
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - David N Paglia
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Jessica Cottrell
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA.,Department of Biological Sciences, Seton Hall University, South Orange, New Jersey, USA
| | - J Patrick O'Connor
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Joseph Benevenia
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Sheldon S Lin
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
9
|
Lu T, Wang J, Yuan X, Tang C, Wang X, He F, Ye J. Zinc-doped calcium silicate additive accelerates early angiogenesis and bone regeneration of calcium phosphate cement by double bioactive ions stimulation and immunoregulation. BIOMATERIALS ADVANCES 2022; 141:213120. [PMID: 36122428 DOI: 10.1016/j.bioadv.2022.213120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/03/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Calcium phosphate cement (CPC), a popular injectable bone defect repairing material, has deficiencies in stimulating osteogenesis and angiogenesis. To overcome the weaknesses of CPC, zinc-doped calcium silicate (Zn-CS) which can release bioactive silicon (Si) and zinc (Zn) ions was introduced to CPC. The physicochemical and biological properties of CPC and its composites were evaluated. Firstly, the most effective addition content of calcium silicate (CaSiO3, CS) in promoting the in vitro osteogenesis was first sorted out. On this basis, the most effective Zn doping content in CS for improving osteogenic differentiation of CPC-based composites was screened out. Finally, the immunoregulation of CS/CPC and Zn-CS/CPC in promoting angiogenesis and osteogenesis was studied. The results showed that the most effective incorporation content of CS was 10 wt%. Zn at a doping content of 30 mol% in CS (30Zn-CS) further enhanced the osteogenic capacity of CS/CPC and simultaneously maintained excellent proangiogenic activity. CS/CPC and 30Zn-CS/CPC promoted the recruitment of macrophages and enhanced M2 polarization while inhibiting M1 polarization, which was beneficial to the early vascularization as well as subsequent new bone formation. When implanted into the femoral condylar defects of rabbits, 30Zn-CS/CPC showed high in vivo materials degradation rate, angiogenesis and osteogenesis, due to the synergistic effects of Si and Zn on bio-stimulation and immunoregulation. This study shed light on the synergistic effects of Si and Zn on regulating the angiogenic, osteogenic, and immunoregulatory activity, and 30Zn-CS/CPC is expected to repair the lacunar bone defects effectively.
Collapse
Affiliation(s)
- Teliang Lu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China
| | - Jinchao Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China
| | - Xinyuan Yuan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China
| | - Chenyu Tang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China
| | - Xiaolan Wang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, PR China
| | - Fupo He
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jiandong Ye
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510641, PR China.
| |
Collapse
|
10
|
Al-Qaridhi A, Ghosh S, Luo D, Huang H. Magnesium and Zinc Intake Ratio Mediates the Increase of Coronary Artery Calcification through Upregulating Interleukin 6. Libyan J Med 2022; 17:2028997. [PMID: 35289237 PMCID: PMC8928801 DOI: 10.1080/19932820.2022.2028997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Abdulhakim Al-Qaridhi
- Department of Cardiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
- Cardiovascular Department, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Sounak Ghosh
- Department of Cardiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
- Cardiovascular Department, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Dongling Luo
- Cardiovascular Department, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hui Huang
- Department of Cardiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
- Cardiovascular Department, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
11
|
Skiba G, Raj S, Sobol M, Kowalczyk P, Barszcz M, Taciak M, Tuśnio A, Čobanová K, Grešáková Ľ, Grela ER. Influence of the Zinc and Fibre Addition in the Diet on Biomechanical Bone Properties in Weaned Piglets. Animals (Basel) 2022; 12:181. [PMID: 35049803 PMCID: PMC8773129 DOI: 10.3390/ani12020181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 12/31/2022] Open
Abstract
The effects of the zinc and fibre source in piglets' diet on the bone mineral content, density, and strength parameters of the femur were investigated using 24 piglets fed a diet supplemented with either lignocellulose (LC) or potato fibre (PF). Half of each group of piglets consumed a diet with ZnSO4 monohydrate or with zinc glycinate (ZnGly). The diets contained similar amounts of lysine, energy, and fibre. Bone mineral content and density were over 9% higher in pigs receiving diets with ZnGly than in animals fed diets with ZnSO4. Moreover, ZnGly strongly improved maximum and elastic strength (by 25.7 and 20.0%, respectively, p < 0.0001) and bone stiffness (by 29.4%, p < 0.0001). Only the mass of the femur was affected by the type of fibre in the diet, as the femurs of piglets fed diets with LC were over 7% (p < 0.0001) heavier than in piglets fed diets with PF. The intake of digestible zinc and the zinc content in the blood serum were positively correlated with the measured bone parameters and, depending on the parameter, "r" ranged from 0.749 to 0.866 and from 0.400 to 0.479, respectively. It can be concluded that bone parameters are affected more strongly by the organic than inorganic source of zinc.
Collapse
Affiliation(s)
- Grzegorz Skiba
- The Kielanowski Institute of Animal Physiology and Nutrition, Department of Animal Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland; (S.R.); (M.S.); (P.K.); (M.B.); (M.T.); (A.T.)
| | - Stanisława Raj
- The Kielanowski Institute of Animal Physiology and Nutrition, Department of Animal Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland; (S.R.); (M.S.); (P.K.); (M.B.); (M.T.); (A.T.)
| | - Monika Sobol
- The Kielanowski Institute of Animal Physiology and Nutrition, Department of Animal Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland; (S.R.); (M.S.); (P.K.); (M.B.); (M.T.); (A.T.)
| | - Paweł Kowalczyk
- The Kielanowski Institute of Animal Physiology and Nutrition, Department of Animal Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland; (S.R.); (M.S.); (P.K.); (M.B.); (M.T.); (A.T.)
| | - Marcin Barszcz
- The Kielanowski Institute of Animal Physiology and Nutrition, Department of Animal Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland; (S.R.); (M.S.); (P.K.); (M.B.); (M.T.); (A.T.)
| | - Marcin Taciak
- The Kielanowski Institute of Animal Physiology and Nutrition, Department of Animal Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland; (S.R.); (M.S.); (P.K.); (M.B.); (M.T.); (A.T.)
| | - Anna Tuśnio
- The Kielanowski Institute of Animal Physiology and Nutrition, Department of Animal Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland; (S.R.); (M.S.); (P.K.); (M.B.); (M.T.); (A.T.)
| | - Klaudia Čobanová
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Soltesovej 4, 04-001 Košice, Slovakia; (K.Č.); (Ľ.G.)
| | - Ľubomira Grešáková
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Soltesovej 4, 04-001 Košice, Slovakia; (K.Č.); (Ľ.G.)
| | - Eugeniusz Ryszard Grela
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| |
Collapse
|
12
|
Braveboy-Wagner J, Sharoni Y, Lelkes PI. Nutraceuticals Synergistically Promote Osteogenesis in Cultured 7F2 Osteoblasts and Mitigate Inhibition of Differentiation and Maturation in Simulated Microgravity. Int J Mol Sci 2021; 23:136. [PMID: 35008559 PMCID: PMC8745420 DOI: 10.3390/ijms23010136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 02/08/2023] Open
Abstract
Microgravity is known to impact bone health, similar to mechanical unloading on Earth. In the absence of countermeasures, bone formation and mineral deposition are strongly inhibited in Space. There is an unmet need to identify nutritional countermeasures. Curcumin and carnosic acid are phytonutrients with anticancer, anti-inflammatory, and antioxidative effects and may exhibit osteogenic properties. Zinc is a trace element essential for bone formation. We hypothesized that these nutraceuticals could counteract the microgravity-induced inhibition of osteogenic differentiation and function. To test this hypothesis, we cultured 7F2 murine osteoblasts in simulated microgravity (SMG) in a Random Positioning Machine in the presence and absence of curcumin, carnosic acid, and zinc and evaluated cell proliferation, function, and differentiation. SMG enhanced cell proliferation in osteogenic medium. The nutraceuticals partially reversed the inhibitory effects of SMG on alkaline phosphatase (ALP) activity and did not alter the SMG-induced reduction in the expression of osteogenic marker genes in osteogenic medium, while they promoted osteoblast proliferation and ALP activity in the absence of traditional osteogenic media. We further observed a synergistic effect of the intermix of the phytonutrients on ALP activity. Intermixes of phytonutrients may serve as convenient and effective nutritional countermeasures against bone loss in space.
Collapse
Affiliation(s)
- Justin Braveboy-Wagner
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA;
| | - Yoav Sharoni
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel;
| | - Peter I. Lelkes
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA;
| |
Collapse
|
13
|
Effects of Extracellular Osteoanabolic Agents on the Endogenous Response of Osteoblastic Cells. Cells 2021; 10:cells10092383. [PMID: 34572032 PMCID: PMC8471159 DOI: 10.3390/cells10092383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 12/27/2022] Open
Abstract
The complex multidimensional skeletal organization can adapt its structure in accordance with external contexts, demonstrating excellent self-renewal capacity. Thus, optimal extracellular environmental properties are critical for bone regeneration and inextricably linked to the mechanical and biological states of bone. It is interesting to note that the microstructure of bone depends not only on genetic determinants (which control the bone remodeling loop through autocrine and paracrine signals) but also, more importantly, on the continuous response of cells to external mechanical cues. In particular, bone cells sense mechanical signals such as shear, tensile, loading and vibration, and once activated, they react by regulating bone anabolism. Although several specific surrounding conditions needed for osteoblast cells to specifically augment bone formation have been empirically discovered, most of the underlying biomechanical cellular processes underneath remain largely unknown. Nevertheless, exogenous stimuli of endogenous osteogenesis can be applied to promote the mineral apposition rate, bone formation, bone mass and bone strength, as well as expediting fracture repair and bone regeneration. The following review summarizes the latest studies related to the proliferation and differentiation of osteoblastic cells, enhanced by mechanical forces or supplemental signaling factors (such as trace metals, nutraceuticals, vitamins and exosomes), providing a thorough overview of the exogenous osteogenic agents which can be exploited to modulate and influence the mechanically induced anabolism of bone. Furthermore, this review aims to discuss the emerging role of extracellular stimuli in skeletal metabolism as well as their potential roles and provide new perspectives for the treatment of bone disorders.
Collapse
|
14
|
Maleki-Ghaleh H, Siadati MH, Fallah A, Koc B, Kavanlouei M, Khademi-Azandehi P, Moradpur-Tari E, Omidi Y, Barar J, Beygi-Khosrowshahi Y, Kumar AP, Adibkia K. Antibacterial and Cellular Behaviors of Novel Zinc-Doped Hydroxyapatite/Graphene Nanocomposite for Bone Tissue Engineering. Int J Mol Sci 2021; 22:9564. [PMID: 34502473 PMCID: PMC8431478 DOI: 10.3390/ijms22179564] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/29/2021] [Accepted: 08/29/2021] [Indexed: 12/15/2022] Open
Abstract
Bacteria are one of the significant causes of infection in the body after scaffold implantation. Effective use of nanotechnology to overcome this problem is an exciting and practical solution. Nanoparticles can cause bacterial degradation by the electrostatic interaction with receptors and cell walls. Simultaneously, the incorporation of antibacterial materials such as zinc and graphene in nanoparticles can further enhance bacterial degradation. In the present study, zinc-doped hydroxyapatite/graphene was synthesized and characterized as a nanocomposite material possessing both antibacterial and bioactive properties for bone tissue engineering. After synthesizing the zinc-doped hydroxyapatite nanoparticles using a mechanochemical process, they were composited with reduced graphene oxide. The nanoparticles and nanocomposite samples were extensively investigated by transmission electron microscopy, X-ray diffraction, and Raman spectroscopy. Their antibacterial behaviors against Escherichia coli and Staphylococcus aureus were studied. The antibacterial properties of hydroxyapatite nanoparticles were found to be improved more than 2.7 and 3.4 times after zinc doping and further compositing with graphene, respectively. In vitro cell assessment was investigated by a cell viability test and alkaline phosphatase activity using mesenchymal stem cells, and the results showed that hydroxyapatite nanoparticles in the culture medium, in addition to non-toxicity, led to enhanced proliferation of bone marrow stem cells. Furthermore, zinc doping in combination with graphene significantly increased alkaline phosphatase activity and proliferation of mesenchymal stem cells. The antibacterial activity along with cell biocompatibility/bioactivity of zinc-doped hydroxyapatite/graphene nanocomposite are the highly desirable and suitable biological properties for bone tissue engineering successfully achieved in this work.
Collapse
Affiliation(s)
- H. Maleki-Ghaleh
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz 51664-14766, Iran; (H.M.-G.); (J.B.)
| | - M. H. Siadati
- Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran 19919-43344, Iran;
| | - A. Fallah
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; (A.F.); (B.K.)
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey
| | - B. Koc
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; (A.F.); (B.K.)
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey
| | - M. Kavanlouei
- Materials Engineering Department, Faculty of Engineering, Urmia University, Urmia 57561-51818, Iran;
| | - P. Khademi-Azandehi
- Research Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, Tabriz 51335-1996, Iran;
| | - E. Moradpur-Tari
- Materials Engineering Department, Faculty of Engineering, Tarbiat Modares University, Tehran 14115-111, Iran;
| | - Y. Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33314, USA;
| | - J. Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz 51664-14766, Iran; (H.M.-G.); (J.B.)
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 51664-14766, Iran
| | - Y. Beygi-Khosrowshahi
- Department of Chemical Engineering, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz 53751-71379, Iran;
| | - Alan P. Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - K. Adibkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz 51664-14766, Iran; (H.M.-G.); (J.B.)
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 51664-14766, Iran
| |
Collapse
|
15
|
Boughammoura S, Zarka M, Messaoudi I, Solal MC. Interactions between cadmium and zinc on gene expression pattern of differentiation markers in MC3T3-E1 cell line. Xenobiotica 2021; 51:1038-1046. [PMID: 34338604 DOI: 10.1080/00498254.2021.1963881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We evaluated, in vitro, the interactions between cadmium (Cd) and zinc (Zn) during the proliferation and differentiation process using bone MC3T3-E1 cell line.Cells were treated with CdCl2 and/or ZnCl2 for 24 and 48 h and 5 µM CdCl2 was found as low cytotoxic dose and 25 µM ZnCl2 as the best Zn treatment for cell proliferation. Gene expression of some bone markers (Runx2, collagen α1 (Colα1), osteocalcin (Oc), alkaline phosphatase (ALP) and bone sialoprotein (BSP)) was studied at 24, 48 and 72 h.Treatment by CdCl2 depressed Runx2, Colα1, and BSP mRNA levels after 24 h. Oc and ALP gene expression was found to be decreased after 72 h.CdCl2 -exposure decreased ALP activity and Ca deposit in matrix. In concomitant treatment by CdCl2 and ZnCl2, gene expression of osteoblastic markers was found to be up-regulated (p < 0, 05) compared to CdCl2 treated cells, ALP staining and mineralization were increased.Our results show that Zn could prevent Cd-induced toxicity on MC3T3-E1 cells, probably through the restoration of Runx2, col α1, BSP, ALP and Oc and gene expression inhibited by Cd.
Collapse
Affiliation(s)
- Sana Boughammoura
- LR11ES41: Génétique, Biodiversité et Valorisation des Bioressources, Institut de Biotechnologie, Université de Monastir, Monastir, Tunisia
| | - Mylène Zarka
- U1132: Biologie de l'Os et de Cartilage, Hôpital Lariboisière, Paris, France
| | - Imed Messaoudi
- LR11ES41: Génétique, Biodiversité et Valorisation des Bioressources, Institut de Biotechnologie, Université de Monastir, Monastir, Tunisia
| | - Martine Cohen Solal
- U1132: Biologie de l'Os et de Cartilage, Hôpital Lariboisière, Paris, France
| |
Collapse
|
16
|
Integrated multi-omics uncovers reliable potential biomarkers and adverse effects of zinc deficiency. Clin Nutr 2021; 40:2683-2696. [PMID: 33933734 DOI: 10.1016/j.clnu.2021.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/18/2021] [Accepted: 03/12/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Zinc deficiency is a worldwide public health problem. Currently, there are no established biomarkers available for the accurate diagnosis of zinc-deficiency in individuals. Additionally, a comprehensive view of the adverse effects of zinc deficiency is lacking. Our aim was to identify superior biomarkers of zinc deficiency and uncover the adverse effects of zinc deficiency. METHODS We performed multi-omics analysis using serum proteomics-metabolomics and liver proteomics on zinc-deficient rats to identify candidate biomarkers and reveal the associated adverse effects of zinc deficiency. Secondly, the candidate biomarkers were validated in two zinc-deficient populations and an RCT zinc supplementation trial on a zinc-deficient population. RESULTS Our integrated multi-omics approach revealed numerous biomarkers (>2000) and glutathione metabolism as the most important changed pathway in zinc deficiency. Three candidate biomarkers from glutathione metabolism were validated in repeated zinc-deficient rats by quantitative analysis. Only glutathione sulfotransferase omega-1 (GSTO1) (among 3 candidate biomarkers) was validated in the two zinc-deficient populations and zinc-supplemented population. Compared with serum zinc, serum GSTO1 yielded a better response to zinc supplementation and a higher correlation coefficient with zinc intake and the AUC value and has the potential for diagnosing zinc deficiency. By integrated multi-omics, we identified both established and novel adverse effects of zinc deficiency. CONCLUSIONS Our integrated multi-omics analysis revealed more complete information about zinc deficiency; GSTO1 was found to be a reliable potential biomarker for diagnosis of zinc deficiency. This trial is registered at http://www.chictr.org.cn/registry.aspx as ChiCTR1900028162.
Collapse
|
17
|
O’Connor JP, Kanjilal D, Teitelbaum M, Lin SS, Cottrell JA. Zinc as a Therapeutic Agent in Bone Regeneration. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2211. [PMID: 32408474 PMCID: PMC7287917 DOI: 10.3390/ma13102211] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/03/2020] [Accepted: 05/08/2020] [Indexed: 11/28/2022]
Abstract
Zinc is an essential mineral that is required for normal skeletal growth and bone homeostasis. Furthermore, zinc appears to be able to promote bone regeneration. However, the cellular and molecular pathways through which zinc promotes bone growth, homeostasis, and regeneration are poorly understood. Zinc can positively affect chondrocyte and osteoblast functions, while inhibiting osteoclast activity, consistent with a beneficial role for zinc in bone homeostasis and regeneration. Based on the effects of zinc on skeletal cell populations and the role of zinc in skeletal growth, therapeutic approaches using zinc to improve bone regeneration are being developed. This review focuses on the role of zinc in bone growth, homeostasis, and regeneration while providing an overview of the existing studies that use zinc as a bone regeneration therapeutic.
Collapse
Affiliation(s)
- J. Patrick O’Connor
- Department of Orthopaedics, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA;
- School of Graduate Studies, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA; (D.K.); (M.T.)
| | - Deboleena Kanjilal
- School of Graduate Studies, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA; (D.K.); (M.T.)
| | - Marc Teitelbaum
- School of Graduate Studies, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA; (D.K.); (M.T.)
| | - Sheldon S. Lin
- Department of Orthopaedics, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA;
- School of Graduate Studies, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA; (D.K.); (M.T.)
| | - Jessica A. Cottrell
- Department of Biological Sciences, Seton Hall University, 400 South Orange Avenue, South Orange, NJ 07079, USA;
| |
Collapse
|
18
|
Proteomic investigation of the blue mussel larval shell organic matrix. J Struct Biol 2019; 208:107385. [DOI: 10.1016/j.jsb.2019.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 11/22/2022]
|
19
|
Escobedo-Monge MF, Ayala-Macedo G, Sakihara G, Peralta S, Almaraz-Gómez A, Barrado E, Marugán-Miguelsanz JM. Effects of Zinc Supplementation on Nutritional Status in Children with Chronic Kidney Disease: A Randomized Trial. Nutrients 2019; 11:nu11112671. [PMID: 31694220 PMCID: PMC6893698 DOI: 10.3390/nu11112671] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/23/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Zinc is an essential micronutrient for human beings and its deficiency affects their normal growth and development. OBJECTIVE The main aim was to evaluate the effect of two doses of zinc supplementation (ZS) on the nutritional status in chronic kidney disease (CKD) children. METHODS A randomized-trial multicentric study was conducted in 48 CKD (23 females) patients under 18-years-old, for a year. At random, participants took 30 or 15 mg/day of ZS, respectively. Anthropometric measurements and biochemical analysis were performed. Hypozincemia was determined by serum zinc concentration (SZC) using atomic absorption spectrophotometry. The positive or negative change in patients' body mass index (BMI) Z-score, serum albumin, zinc and C-reactive protein (CRP) levels were used to evaluate the effect of ZS. RESULTS Mean SZC was normal before and after ZS. Despite ZS, there were no significant changes in serum albumin, zinc and CRP levels. A positive and significant association was observed between SZC and serum albumin before (p = 0.000) and after (p = 0.007) ZS. In both groups of ZS, there was a small but positive and significant change in body mass and normalization in BMI Z-score, hypoalbuminemia, hypozincemia and high CRP, especially with 30 mg/day of ZS. CONCLUSIONS Zinc supplementation may be beneficial for nutritional status in children and adolescents with CKD.
Collapse
Affiliation(s)
- Marlene Fabiola Escobedo-Monge
- Faculty of Medicine, National University of San Marcos, Cangallo 818, 15001 Cercado de Lima, Peru
- National Institute of Child Health, Paediatric Nephrology Service, Avenida Brasil 600, 15083 Breña, Peru;
- Faculty of Medicine, Valladolid University, Avenida Ramón y Cajal, 7, 47005 Valladolid, Spain
- Correspondence: ; Tel.: +34-639-590-467
| | - Guido Ayala-Macedo
- Faculty of Medicine, National University of San Marcos, Cangallo 818, 15001 Cercado de Lima, Peru
| | - Graciela Sakihara
- National Institute of Child Health, Paediatric Nephrology Service, Avenida Brasil 600, 15083 Breña, Peru;
| | - Silvia Peralta
- Faculty of Food Science and Technology, National Agrarian University, Avenida la Molina, s/n, 15024 La Molina, Lima, Peru;
| | - Ana Almaraz-Gómez
- Department of Public Health and Preventive Medicine, Faculty of Medicine, Valladolid University, 47005 Valladolid, Spain;
| | - Enrique Barrado
- Department of Analytical Chemistry, Science Faculty, University of Valladolid, Campus Miguel Delibes, Calle Paseo de Belén, 7, 47011 Valladolid, Spain;
| | - J. M. Marugán-Miguelsanz
- Department of Paediatrics of the Faculty of Medicine, Valladolid University, Section of Gastroenterology and Pediatric Nutrition, University Clinical Hospital of Valladolid, 47005 Valladolid, Spain;
| |
Collapse
|
20
|
Li L, Li Q, Zhao M, Dong L, Wu J, Li D. Effects of Zn and Ag Ratio on Cell Adhesion and Antibacterial Properties of Zn/Ag Coimplanted TiN. ACS Biomater Sci Eng 2019; 5:3303-3310. [DOI: 10.1021/acsbiomaterials.9b00248] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Li Li
- College of Physics and Materials Science and Tianjin International Joint Research Center of Surface Technology for Energy Storage Materials, Tianjin Normal University, Tianjin 300387, China
| | - Qingling Li
- College of Physics and Materials Science and Tianjin International Joint Research Center of Surface Technology for Energy Storage Materials, Tianjin Normal University, Tianjin 300387, China
| | - Mengli Zhao
- College of Physics and Materials Science and Tianjin International Joint Research Center of Surface Technology for Energy Storage Materials, Tianjin Normal University, Tianjin 300387, China
| | - Lei Dong
- College of Physics and Materials Science and Tianjin International Joint Research Center of Surface Technology for Energy Storage Materials, Tianjin Normal University, Tianjin 300387, China
| | - Jie Wu
- College of Physics and Materials Science and Tianjin International Joint Research Center of Surface Technology for Energy Storage Materials, Tianjin Normal University, Tianjin 300387, China
| | - Dejun Li
- College of Physics and Materials Science and Tianjin International Joint Research Center of Surface Technology for Energy Storage Materials, Tianjin Normal University, Tianjin 300387, China
| |
Collapse
|
21
|
Orzechowska S, Wróbel A, Kozieł M, Łasocha W, Rokita E. Physicochemical characterization of mineral deposits in human ligamenta flava. J Bone Miner Metab 2018; 36:314-322. [PMID: 28389931 DOI: 10.1007/s00774-017-0835-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 03/14/2017] [Indexed: 10/19/2022]
Abstract
The aim of our study was the detailed characterization of calcium deposits in ligamenta flava. The use of microcomputed tomography allowed extending the routine medical investigations to characterize mineral grains in the microscopic scale. A possible connection between spinal stenosis and ligament mineralization was investigated. The studies were carried out on 24 surgically removed ligamentum flavum samples divided into control and stenosis groups. Physicochemical characterization of the inorganic material was performed using X-ray fluorescence, X-ray diffraction, and Fourier transform infrared spectroscopy. The minerals were present in 14 of 24 ligament samples, both in stenosis and control groups. The inorganic substance constitutes on average ~0.1% of the sample volume. The minerals are scattered in the soft tissue matrix without any regular pattern. It was confirmed that minerals possess an internal structure and consist of the organic material and small inorganic grains mixture. The physicochemical analyses show that the predominant crystalline phase was hydroxyapatite (HAP). In the stenosis group calcium pyrophosphate dehydrate (CPPD) was identified. Both structures were never present in a single sample. Two different crystal structures suggest two independent processes of mineralization. The formation of CPPD may be treated as a more intense process since CPPD minerals are characterized by bigger values of the structural parameters and higher density than HAP deposits. The formation of HAP minerals is a soft tissue degeneration process that begins, in some cases, at early age or may not occur at all. Various density and volume of mineral grains indicate that the mineralization process does not occur in a constant environment and proceeds with various speeds. The formation of minerals in ligamenta flava is not directly associated with diagnosed spinal canal stenosis.
Collapse
Affiliation(s)
- Sylwia Orzechowska
- M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland.
| | - Andrzej Wróbel
- M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Marcin Kozieł
- Faculty of Chemistry, Jagiellonian University, R. Ingardena 3, 30-060, Krakow, Poland
| | - Wiesław Łasocha
- Faculty of Chemistry, Jagiellonian University, R. Ingardena 3, 30-060, Krakow, Poland
| | - Eugeniusz Rokita
- M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
- Department of Biophysics, Jagiellonian University Medical College, św. Łazarza 16, 31-530, Kraków, Poland
| |
Collapse
|
22
|
Andrulewicz-Botulińska E, Wiśniewska R, Brzóska MM, Rogalska J, Galicka A. Beneficial impact of zinc supplementation on the collagen in the bone tissue of cadmium-exposed rats. J Appl Toxicol 2018; 38:996-1007. [DOI: 10.1002/jat.3608] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/09/2018] [Accepted: 01/18/2018] [Indexed: 01/22/2023]
Affiliation(s)
| | - Róża Wiśniewska
- Department of Pharmacology; Medical University of Bialystok; Kilinskiego 1 15-230 Bialystok Poland
| | - Malgorzata M. Brzóska
- Department of Toxicology; Medical University of Bialystok; Kilinskiego 1 15-230 Bialystok Poland
| | - Joanna Rogalska
- Department of Toxicology; Medical University of Bialystok; Kilinskiego 1 15-230 Bialystok Poland
| | - Anna Galicka
- Department of Medical Chemistry; Medical University of Bialystok; Kilinskiego 1 15-230 Bialystok Poland
| |
Collapse
|
23
|
Cho YE, Kwun IS. Zinc upregulates bone-specific transcription factor Runx2 expression via BMP-2 signaling and Smad-1 phosphorylation in osteoblasts. ACTA ACUST UNITED AC 2018. [DOI: 10.4163/jnh.2018.51.1.23] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Young-Eun Cho
- Department of Food Science and Nutrition, Andong National University, 1375 Kyungdong Road, Andong, Kyungbook 36633, South Korea
| | - In-Sook Kwun
- Department of Food Science and Nutrition, Andong National University, 1375 Kyungdong Road, Andong, Kyungbook 36633, South Korea
| |
Collapse
|
24
|
Abstract
Cardiovascular disease is the main cause of early death in the settings of chronic kidney disease (CKD), type 2 diabetes mellitus (T2DM), and ageing. Cardiovascular events can be caused by an imbalance between promoters and inhibitors of mineralization, which leads to vascular calcification. This process is akin to skeletal mineralization, which is carefully regulated and in which isozymes of alkaline phosphatase (ALP) have a crucial role. Four genes encode ALP isozymes in humans. Intestinal, placental and germ cell ALPs are tissue-specific, whereas the tissue-nonspecific isozyme of ALP (TNALP) is present in several tissues, including bone, liver and kidney. TNALP has a pivotal role in bone calcification. Experimental overexpression of TNALP in the vasculature is sufficient to induce vascular calcification, cardiac hypertrophy and premature death, mimicking the cardiovascular phenotype often found in CKD and T2DM. Intestinal ALP contributes to the gut mucosal defence and intestinal and liver ALPs might contribute to the acute inflammatory response to endogenous or pathogenic stimuli. Here we review novel mechanisms that link ALP to vascular calcification, inflammation, and endothelial dysfunction in kidney and cardiovascular diseases. We also discuss new drugs that target ALP, which have the potential to improve cardiovascular outcomes without inhibiting skeletal mineralization.
Collapse
|
25
|
Zinc Up-Regulates Insulin Secretion from β Cell-Like Cells Derived from Stem Cells from Human Exfoliated Deciduous Tooth (SHED). Int J Mol Sci 2016; 17:ijms17122092. [PMID: 27983594 PMCID: PMC5187892 DOI: 10.3390/ijms17122092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/01/2016] [Accepted: 12/06/2016] [Indexed: 11/17/2022] Open
Abstract
Stem cells from human exfoliated deciduous tooth (SHED) offer several advantages over other stem cell sources. Using SHED, we examined the roles of zinc and the zinc uptake transporter ZIP8 (Zrt- and irt-like protein 8) while inducing SHED into insulin secreting β cell-like stem cells (i.e., SHED-β cells). We observed that ZIP8 expression increased as SHED differentiated into SHED-β cells, and that zinc supplementation at day 10 increased the levels of most pancreatic β cell markers-particularly Insulin and glucose transporter 2 (GLUT2). We confirmed that SHED-β cells produce insulin successfully. In addition, we note that zinc supplementation significantly increases insulin secretion with a significant elevation of ZIP8 transporters in SHED-β cells. We conclude that SHED can be converted into insulin-secreting β cell-like cells as zinc concentration in the cytosol is elevated. Insulin production by SHED-β cells can be regulated via modulation of zinc concentration in the media as ZIP8 expression in the SHED-β cells increases.
Collapse
|
26
|
Kim G, Elnabawi O, Shin D, Pae EK. Transient Intermittent Hypoxia Exposure Disrupts Neonatal Bone Strength. Front Pediatr 2016; 4:15. [PMID: 27014665 PMCID: PMC4779887 DOI: 10.3389/fped.2016.00015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 02/22/2016] [Indexed: 12/20/2022] Open
Abstract
A brief intermittent hypoxia (IH, ambient O2 levels alternating between room air and 12% O2) for 1 h immediately after birth resulted in pancreatic islet dysfunction associated with zinc deficiency as previously reported. We hypothesized that IH exposure modulates zinc homeostasis in bone as well, which leads to increased bone fragility. To test this hypothesis, we used neonatal rats and human osteoblasts (HObs). To examine IH influences on osteoblasts devoid of neural influences, we quantified amounts of alkaline phosphatase and mineralization in IH-treated HObs. Bones harvested from IH-treated animals showed significantly reduced hardness and elasticity. The IH group also showed discretely decreased levels of alkaline phosphatase and mineralization amounts. The IH group showed a decreased expression of ZIP8 or Zrt and Irt-like protein 8 (a zinc uptake transporter), Runx2 (or Runt-related transcription factor 2, a master protein in bone formation), Collagen-1 (a major protein comprising the extracellular matrix of the bone), osteocalcin, and zinc content. When zinc was eliminated from the media containing HObs using a zinc chelate and added later with zinc sulfate, Runx2, ZIP8, and osteocalcin expression decreased first, and recovered with zinc supplementation. Adenovirus-mediated ZIP8 over-expression in osteoblasts increased mineralization significantly as well. We conclude that IH impairs zinc homeostasis in bones and osteoblasts, and that such disturbances decrease bone strength, which can be recovered by zinc supplementation.
Collapse
Affiliation(s)
- Gyuyoup Kim
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Maryland , Baltimore, MD , USA
| | - Omar Elnabawi
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Maryland , Baltimore, MD , USA
| | | | - Eung-Kwon Pae
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Maryland , Baltimore, MD , USA
| |
Collapse
|
27
|
King JC, Brown KH, Gibson RS, Krebs NF, Lowe NM, Siekmann JH, Raiten DJ. Biomarkers of Nutrition for Development (BOND)-Zinc Review. J Nutr 2015; 146:858S-885S. [PMID: 26962190 PMCID: PMC4807640 DOI: 10.3945/jn.115.220079] [Citation(s) in RCA: 301] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 07/29/2015] [Accepted: 12/29/2015] [Indexed: 12/17/2022] Open
Abstract
Zinc is required for multiple metabolic processes as a structural, regulatory, or catalytic ion. Cellular, tissue, and whole-body zinc homeostasis is tightly controlled to sustain metabolic functions over a wide range of zinc intakes, making it difficult to assess zinc insufficiency or excess. The BOND (Biomarkers of Nutrition for Development) Zinc Expert Panel recommends 3 measurements for estimating zinc status: dietary zinc intake, plasma zinc concentration (PZC), and height-for-age of growing infants and children. The amount of dietary zinc potentially available for absorption, which requires an estimate of dietary zinc and phytate, can be used to identify individuals and populations at risk of zinc deficiency. PZCs respond to severe dietary zinc restriction and to zinc supplementation; they also change with shifts in whole-body zinc balance and clinical signs of zinc deficiency. PZC cutoffs are available to identify individuals and populations at risk of zinc deficiency. However, there are limitations in using the PZC to assess zinc status. PZCs respond less to additional zinc provided in food than to a supplement administered between meals, there is considerable interindividual variability in PZCs with changes in dietary zinc, and PZCs are influenced by recent meal consumption, the time of day, inflammation, and certain drugs and hormones. Insufficient data are available on hair, urinary, nail, and blood cell zinc responses to changes in dietary zinc to recommend these biomarkers for assessing zinc status. Of the potential functional indicators of zinc, growth is the only one that is recommended. Because pharmacologic zinc doses are unlikely to enhance growth, a growth response to supplemental zinc is interpreted as indicating pre-existing zinc deficiency. Other functional indicators reviewed but not recommended for assessing zinc nutrition in clinical or field settings because of insufficient information are the activity or amounts of zinc-dependent enzymes and proteins and biomarkers of oxidative stress, inflammation, or DNA damage.
Collapse
Affiliation(s)
- Janet C King
- Children’s Hospital Oakland Research Institute, Oakland, CA
- University of California, Davis, Davis, CA
| | - Kenneth H Brown
- University of California, Davis, Davis, CA
- Bill & Melinda Gates Foundation, Seattle, WA
| | | | - Nancy F Krebs
- University of Colorado School of Medicine, Aurora, CO
| | - Nicola M Lowe
- University of Central Lancashire, Preston, United Kingdom; and
| | | | | |
Collapse
|
28
|
Shiota J, Tagawa H, Izumi N, Higashikawa S, Kasahara H. Effect of zinc supplementation on bone formation in hemodialysis patients with normal or low turnover bone. Ren Fail 2014; 37:57-60. [PMID: 25207792 DOI: 10.3109/0886022x.2014.959412] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Zinc (Zn) is an essential trace element, which has been shown to stimulate osteoblastic bone formation and to inhibit osteoclastic bone resorption in vitro. In thalassemia, major patients Zn supplementation was reported to increase whole-body bone mineral content and areal bone mineral density. Therefore, we investigated the effect of Zn supplementation on bone formation in hemodialysis (HD) patients. Nine male patients with age of 66 (35-78) years indicated by median (range), HD vintage of 57 (4-97) months and serum intact parathyroid hormone (PTH) of 113 (6-310) pg/mL were supplemented with polaprezinc containing 34 mg Zn/day for 18 months. Doses of vitamin D were not changed during supplementation. Blood was collected at baseline, 3, 6, 12 and 18 months. Serum Zn increased significantly from 58 (52-65) μg/dL to 71 (57-93) μg/dL at three months and remained unchanged until 18 months. No changes were observed in serum intact PTH during supplementation. Although we found no changes in serum bone alkaline phosphatase (BAP) during Zn supplementation analyzed by Friedman test and Scheffe post hoc test, a significant trend of increase in serum BAP was verified by Jonckheere-Terpstra test (p = 0.0409). On the contrary, there was no trend in serum TRACP5b by Jonckheere-Terpstra test. Therefore, we suggested the effect of Zn supplementation on promoting bone formation, not affected by the status of PTH and vitamin D, in HD patients with normal or low turnover bone.
Collapse
Affiliation(s)
- Jun Shiota
- Department of Internal Medicine, Kichijoji Asahi Hospital , Musashino, Tokyo , Japan
| | | | | | | | | |
Collapse
|
29
|
Dorst K, Rammelkamp D, Hadjiargyrou M, Meng Y. The Effect of Exogenous Zinc Concentration on the Responsiveness of MC3T3-E1 Pre-Osteoblasts to Surface Microtopography: Part II (Differentiation). MATERIALS 2014; 7:1097-1112. [PMID: 28788502 PMCID: PMC5453094 DOI: 10.3390/ma7021097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/24/2014] [Accepted: 01/28/2014] [Indexed: 02/04/2023]
Abstract
Osseointegration of bone implants is a vital part of the recovery process. Numerous studies have shown that micropatterned geometries can promote cell-substrate associations and strengthen the bond between tissue and the implanted material. As demonstrated previously, exogenous zinc levels can influence the responsiveness of pre-osteoblasts to micropatterns and modify their migratory behavior. In this study, we sought to determine the effect of exogenous zinc on differentiation of osteoblasts cultured on micropatterned vs. planar substrates. Levels of activated metalloproteinase-2 (MMP-2) and transforming growth factor-beta 1 (TGF-β1), as well as early stage differentiation marker alkaline phosphatase, were altered with the addition of zinc. These results suggest that exogenous zinc concentration and micropatterning may interdependently modulate osteoblast differentiation.
Collapse
Affiliation(s)
- Kathryn Dorst
- Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY 11794-2275, USA.
| | - Derek Rammelkamp
- Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY 11794-2275, USA.
| | - Michael Hadjiargyrou
- Department of Life Sciences, New York Institute of Technology, Old Westbury, NY 11568-8000, USA.
| | - Yizhi Meng
- Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY 11794-2275, USA.
- Department of Chemical and Molecular Engineering, Stony Brook University, Stony Brook, NY 11794-2275, USA.
| |
Collapse
|
30
|
Dorst K, Rammelkamp D, Hadjiargyrou M, Gersappe D, Meng Y. The Effect of Exogenous Zinc Concentration on the Responsiveness of MC3T3-E1 Pre-Osteoblasts to Surface Microtopography: Part I (Migration). MATERIALS 2013; 6:5517-5532. [PMID: 28788406 PMCID: PMC5452741 DOI: 10.3390/ma6125517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 11/11/2013] [Accepted: 11/21/2013] [Indexed: 12/27/2022]
Abstract
Initial cell-surface interactions are guided by the material properties of substrate topography. To examine if these interactions are also modulated by the presence of zinc, we seeded murine pre-osteoblasts (MC3T3-E1, subclone 4) on micropatterned polydimethylsiloxane (PDMS) containing wide (20 µm width, 30 µm pitch, 2 µm height) or narrow (2 µm width, 10 µm pitch, 2 µm height) ridges, with flat PDMS and tissue culture polystyrene (TC) as controls. Zinc concentration was adjusted to mimic deficient (0.23 µM), serum-level (3.6 µM), and zinc-rich (50 µM) conditions. Significant differences were observed in regard to cell morphology, motility, and contact guidance. We found that cells exhibited distinct anisotropic migration on the wide PDMS patterns under either zinc-deprived (0.23 µM) or serum-level zinc conditions (3.6 µM). However, this effect was absent in a zinc-rich environment (50 µM). These results suggest that the contact guidance of pre-osteoblasts may be partly influenced by trace metals in the microenvironment of the extracellular matrix.
Collapse
Affiliation(s)
- Kathryn Dorst
- Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY 11794-2275, USA.
| | - Derek Rammelkamp
- Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY 11794-2275, USA.
| | - Michael Hadjiargyrou
- Department of Life Sciences, New York Institute of Technology, Old Westbury, NY 11568-8000, USA.
| | - Dilip Gersappe
- Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY 11794-2275, USA.
- Department of Chemical and Molecular Engineering, Stony Brook University, Stony Brook, NY 11794-2275, USA.
| | - Yizhi Meng
- Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY 11794-2275, USA.
- Department of Chemical and Molecular Engineering, Stony Brook University, Stony Brook, NY 11794-2275, USA.
| |
Collapse
|
31
|
Brzóska MM, Rogalska J. Protective effect of zinc supplementation against cadmium-induced oxidative stress and the RANK/RANKL/OPG system imbalance in the bone tissue of rats. Toxicol Appl Pharmacol 2013; 272:208-20. [PMID: 23726800 DOI: 10.1016/j.taap.2013.05.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/14/2013] [Accepted: 05/20/2013] [Indexed: 10/26/2022]
Abstract
It was investigated whether protective influence of zinc (Zn) against cadmium (Cd)-induced disorders in bone metabolism may be related to its antioxidative properties and impact on the receptor activator of nuclear factor (NF)-κΒ (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) system. Numerous indices of oxidative/antioxidative status, and Cd and Zn were determined in the distal femur of the rats administered Zn (30 and 60mg/l) or/and Cd (5 and 50mg/l) for 6months. Soluble RANKL (sRANKL) and OPG were measured in the bone and serum. Zn supplementation importantly protected from Cd-induced oxidative stress preventing protein, DNA, and lipid oxidation in the bone. Moreover, Zn protected from the Cd-induced increase in sRANKL concentration and the sRANKL/OPG ratio, and decrease in OPG concentration in the bone and serum. Numerous correlations were noted between indices of the oxidative/antioxidative bone status, concentrations of sRANKL and OPG in the bone and serum, as well as the bone concentrations of Zn and Cd, and previously reported by us in these animals (Brzóska et al., 2007) indices of bone turnover and bone mineral density. The results allow us to conclude that the ability of Zn to prevent from oxidative stress and the RANK/RANKL/OPG system imbalance may be implicated in the mechanisms of its protective impact against Cd-induced bone damage. This paper is the first report from an in vivo study providing evidence that beneficial Zn impact on the skeleton under exposure to Cd is related to the improvement of the bone tissue oxidative/antioxidative status and mediating the RANK/RANKL/OPG system.
Collapse
Affiliation(s)
- Malgorzata M Brzóska
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C Street, 15-222 Bialystok, Poland.
| | | |
Collapse
|
32
|
Beattie JH, Gordon MJ, Duthie SJ, McNeil CJ, Horgan GW, Nixon GF, Feldmann J, Kwun IS. Suboptimal dietary zinc intake promotes vascular inflammation and atherogenesis in a mouse model of atherosclerosis. Mol Nutr Food Res 2012; 56:1097-105. [PMID: 22760982 DOI: 10.1002/mnfr.201100776] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
SCOPE Cardiovascular health is strongly influenced by diet. Zinc has antioxidant and anti-inflammatory properties but its long-term influence on vascular health at dietary intake levels relevant to the human population in developed countries has not been studied. We investigated the influence of suboptimal zinc intake in a Western-type diet on the development of vascular inflammation and arterial plaque in apoE knock-out (AEKO) mice. METHODS AND RESULTS Weanling AEKO and wild-type (WT) controls were given high saturated fat (21% w/w) and high cholesterol (0.15%) semi-synthetic diets containing 3 or 35 mg Zn/kg (AEKO and WT) or 8 mg Zn/kg (AEKO only) for over 6 months. AEKO mice on zinc intakes of 3 and 8 mg Zn/kg (suboptimal zinc) developed significantly (p < 0.05) more aortic plaque than AEKO mice consuming 35 mg Zn/kg (adequate zinc). Circulating levels of interleukin-1β, interleukin-6 and soluble vascular adhesion molecule-1 were significantly (p < 0.05) raised at the lowest zinc intake in AEKO mice, as compared to zinc-adequate controls. Plasma total cholesterol and total protein were also significantly (p < 0.05) increased at the lowest zinc intake. CONCLUSION We propose that suboptimal dietary zinc intake raises circulating pro-atherogenic lipoprotein levels that promote vascular inflammation and enhance arterial plaque formation.
Collapse
Affiliation(s)
- John H Beattie
- Division of Lifelong Health, Rowett Institute of Nutrition and Health, University of Aberdeen, Bucksburn, Aberdeen, Scotland, UK.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Liang D, Yang M, Guo B, Cao J, Yang L, Guo X. Zinc upregulates the expression of osteoprotegerin in mouse osteoblasts MC3T3-E1 through PKC/MAPK pathways. Biol Trace Elem Res 2012; 146:340-8. [PMID: 22081405 DOI: 10.1007/s12011-011-9254-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 10/26/2011] [Indexed: 11/29/2022]
Abstract
Zinc is an essential element for bone formation; however, its role in osteoblast has not been well understood. In the present study, we hypothesized that zinc could increase osteogenetic function by stimulating osteoblast proliferation and osteoprotegerin (OPG) activity. To test this hypothesis, osteoblastic MC3T3-E1 cells were cultured and treated with various concentrations of zinc (0, 10, 30, 50, 70, 110, 130, and 150 μM) for 24 and 48 h. 3-[4,5-dimethylthiazol-2-y]-2,5-diphenyltetrazolium bromide assay showed that cell proliferation was significantly stimulated with 50 μM zinc treatment. Furthermore, under the same treatment condition, OPG expression was significantly increased as evidenced by the results of RT-PCR and ELISA. However, the zinc-induced OPG expression was significantly attenuated when MC3T3-E1 cells were co-treated with either protein kinase C (PKC) inhibitor, GF109203X, or the Inhibitor of mitogen-activated extracellular signal-regulated kinase 1 (MEK1), PD98059. Moreover, OPG expression was further increased when MC3T3-E1 cells were treated with PMA (the activator of protein of kinase C) in the presence of zinc. These results suggested that zinc would increase osteogenic function by stimulating PKC and MAPK signaling pathways.
Collapse
Affiliation(s)
- Dan Liang
- Department of Orthopedics, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, People's Republic of China.
| | | | | | | | | | | |
Collapse
|