1
|
Tonk-Rügen M, Vilcinskas A, Wagner AE. Insect Models in Nutrition Research. Biomolecules 2022; 12:1668. [PMID: 36421682 PMCID: PMC9687203 DOI: 10.3390/biom12111668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 09/08/2024] Open
Abstract
Insects are the most diverse organisms on earth, accounting for ~80% of all animals. They are valuable as model organisms, particularly in the context of genetics, development, behavior, neurobiology and evolutionary biology. Compared to other laboratory animals, insects are advantageous because they are inexpensive to house and breed in large numbers, making them suitable for high-throughput testing. They also have a short life cycle, facilitating the analysis of generational effects, and they fulfil the 3R principle (replacement, reduction and refinement). Many insect genomes have now been sequenced, highlighting their genetic and physiological similarities with humans. These factors also make insects favorable as whole-animal high-throughput models in nutritional research. In this review, we discuss the impact of insect models in nutritional science, focusing on studies investigating the role of nutrition in metabolic diseases and aging/longevity. We also consider food toxicology and the use of insects to study the gut microbiome. The benefits of insects as models to study the relationship between nutrition and biological markers of fitness and longevity can be exploited to improve human health.
Collapse
Affiliation(s)
- Miray Tonk-Rügen
- Institute of Nutritional Science, Justus Liebig University, Wilhelmstrasse 20, 35392 Giessen, Germany
- Institute for Insect Biotechnology, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch of Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Anika E. Wagner
- Institute of Nutritional Science, Justus Liebig University, Wilhelmstrasse 20, 35392 Giessen, Germany
| |
Collapse
|
2
|
Wang Y, Guo K, Wang Q, Zhong G, Zhang W, Jiang Y, Mao X, Li X, Huang Z. Caenorhabditis elegans as an emerging model in food and nutrition research: importance of standardizing base diet. Crit Rev Food Sci Nutr 2022; 64:3167-3185. [PMID: 36200941 DOI: 10.1080/10408398.2022.2130875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As a model organism that has helped revolutionize life sciences, Caenorhabditis elegans has been increasingly used in nutrition research. Here we explore the tradeoffs between pros and cons of its use as a dietary model based primarily on literature review from the past decade. We first provide an overview of its experimental strengths as an animal model, focusing on lifespan and healthspan, behavioral and physiological phenotypes, and conservation of key nutritional pathways. We then summarize recent advances of its use in nutritional studies, e.g. food preference and feeding behavior, sugar status and metabolic reprogramming, lifetime and transgenerational nutrition tracking, and diet-microbiota-host interactions, highlighting cutting-edge technologies originated from or developed in C. elegans. We further review current challenges of using C. elegans as a nutritional model, followed by in-depth discussions on potential solutions. In particular, growth scales and throughputs, food uptake mode, and axenic culture of C. elegans are appraised in the context of food research. We also provide perspectives for future development of chemically defined nematode food ("NemaFood") for C. elegans, which is now widely accepted as a versatile and affordable in vivo model and has begun to show transformative potential to pioneer nutrition science.
Collapse
Affiliation(s)
- Yuqing Wang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
| | - Kaixin Guo
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qiangqiang Wang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
| | - Guohuan Zhong
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenjun Zhang
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yiyi Jiang
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Perfect Life & Health Institute, Zhongshan, Guangdong, China
| | - Xinliang Mao
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Perfect Life & Health Institute, Zhongshan, Guangdong, China
| | - Xiaomin Li
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Perfect Life & Health Institute, Zhongshan, Guangdong, China
| | - Zebo Huang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
3
|
Ozkan G, Kostka T, Esatbeyoglu T, Capanoglu E. Effects of Lipid-Based Encapsulation on the Bioaccessibility and Bioavailability of Phenolic Compounds. Molecules 2020; 25:E5545. [PMID: 33256012 PMCID: PMC7731217 DOI: 10.3390/molecules25235545] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Phenolic compounds (quercetin, rutin, cyanidin, tangeretin, hesperetin, curcumin, resveratrol, etc.) are known to have health-promoting effects and they are accepted as one of the main proposed nutraceutical group. However, their application is limited owing to the problems related with their stability and water solubility as well as their low bioaccessibility and bioavailability. These limitations can be overcome by encapsulating phenolic compounds by physical, physicochemical and chemical encapsulation techniques. This review focuses on the effects of encapsulation, especially lipid-based techniques (emulsion/nanoemulsion, solid lipid nanoparticles, liposomes/nanoliposomes, etc.), on the digestibility characteristics of phenolic compounds in terms of bioaccessibility and bioavailability.
Collapse
Affiliation(s)
- Gulay Ozkan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; (G.O.); (E.C.)
| | - Tina Kostka
- Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University of Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany;
| | - Tuba Esatbeyoglu
- Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University of Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany;
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; (G.O.); (E.C.)
| |
Collapse
|
4
|
Spankovich C, Le Prell CG. The role of diet in vulnerability to noise-induced cochlear injury and hearing loss. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:4033. [PMID: 31795697 DOI: 10.1121/1.5132707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The influence of dietary nutrient intake on the onset and trajectory of hearing loss during aging and in mediating protection from challenges such as noise is an important relationship yet to be fully appreciated. Dietary intake provides essential nutrients that support basic cellular processes related to influencing cellular stress response, immune response, cardiometabolic status, neural status, and psychological well-being. Dietary quality has been shown to alter risk for essentially all chronic health conditions including hearing loss and tinnitus. Evidence of nutrients with antioxidant, anti-inflammatory, and anti-ischemic properties, and overall healthy diet quality as otoprotective strategies are slowly accumulating, but many questions remain unanswered. In this article, the authors will discuss (1) animal models in nutritional research, (2) evidence of dietary nutrient-based otoprotection, and (3) consideration of confounds and limitations to nutrient and dietary study in hearing sciences. Given that there are some 60 physiologically essential nutrients, unraveling the intricate biochemistry and multitude of interactions among nutrients may ultimately prove infeasible; however, the wealth of available data suggesting healthy nutrient intake to be associated with improved hearing outcomes suggests the development of evidence-based guidance regarding diets that support healthy hearing may not require precise understanding of all possible interactions among variables. Clinical trials evaluating otoprotective benefits of nutrients should account for dietary quality, noise exposure history, and exercise habits as potential covariates that may influence the efficacy and effectiveness of test agents; pharmacokinetic measures are also encouraged.
Collapse
Affiliation(s)
- Christopher Spankovich
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | - Colleen G Le Prell
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| |
Collapse
|
5
|
Efficient Extraction from Mice Feces for NMR Metabolomics Measurements with Special Emphasis on SCFAs. Metabolites 2019; 9:metabo9030055. [PMID: 30901936 PMCID: PMC6468719 DOI: 10.3390/metabo9030055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/15/2019] [Accepted: 03/17/2019] [Indexed: 01/29/2023] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is one of the most promising methods for use in metabolomics studies as it is able to perform non targeted measurement of metabolites in a quantitative and non-destructive way. Sample preparation of liquid samples like urine or blood serum is comparatively easy in NMR metabolomics, because mainly buffer and chemical shift reference substance are added. For solid samples like feces suitable extraction protocols need to be defined as initial step, where the exact protocol depends on sample type and features. Focusing on short chain fatty acids (SCFAs) in mice feces, we describe here a set of extraction protocols developed with the aim to suppress changes in metabolite composition within 24 h after extraction. Feces are obtained from mice fed on either standard rodent diet or high fat diet. The protocols presented in this manuscript are straightforward for application, and successfully minimize residual bacterial and enzymatic activities. Additionally, they are able to minimize the lipid background originating from the high fat diet.
Collapse
|
6
|
Chalvon-Demersay T, Blachier F, Tomé D, Blais A. Animal Models for the Study of the Relationships between Diet and Obesity: A Focus on Dietary Protein and Estrogen Deficiency. Front Nutr 2017; 4:5. [PMID: 28373974 PMCID: PMC5357654 DOI: 10.3389/fnut.2017.00005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/01/2017] [Indexed: 01/26/2023] Open
Abstract
Obesity is an increasing major public health concern asking for dietary strategies to limit weight gain and associated comorbidities. In this review, we present animal models, particularly rats and mice, which have been extensively used by scientists to understand the consequences of diet quality on weight gain and health. Notably, modulation of dietary protein quantity and/or quality has been shown to exert huge effects on body composition homeostasis through the modulation of food intake, energy expenditure, and metabolic pathways. Interestingly, the perinatal window appears to represent a critical period during which the protein intake of the dam can impact the offspring’s weight gain and feeding behavior. Animal models are also widely used to understand the processes and mechanisms that contribute to obesity at different physiological and pathophysiological stages. An interesting example of such aspect is the situation of decreased estrogen level occurring at menopause, which is linked to weight gain and decreased energy expenditure. To study metabolic disorders associated with such situation, estrogen withdrawal in ovariectomized animal models to mimic menopause are frequently used. According to many studies, clear species-specific differences exist between rats and mice that need to be taken into account when results are extrapolated to humans.
Collapse
Affiliation(s)
- Tristan Chalvon-Demersay
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay , Paris , France
| | - François Blachier
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay , Paris , France
| | - Daniel Tomé
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay , Paris , France
| | - Anne Blais
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay , Paris , France
| |
Collapse
|
7
|
Veskoukis AS, Goutianos G, Paschalis V, Margaritelis NV, Tzioura A, Dipla K, Zafeiridis A, Vrabas IS, Kyparos A, Nikolaidis MG. The rat closely mimics oxidative stress and inflammation in humans after exercise but not after exercise combined with vitamin C administration. Eur J Appl Physiol 2016; 116:791-804. [PMID: 26856335 DOI: 10.1007/s00421-016-3336-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 01/25/2016] [Indexed: 02/08/2023]
Abstract
PURPOSE The purpose of the present study was to directly compare oxidative stress and inflammation responses between rats and humans. METHODS We contrasted rat and human oxidative stress and inflammatory responses to exercise (pro-oxidant stimulus) and/or vitamin C (anti-oxidant stimulus) administration. Vitamin C was administered orally in both species (16 mg kg(-1) of body weight). Twelve redox biomarkers and seven inflammatory biomarkers were determined in plasma and erythrocytes pre- and post-exercise or pre- and post-exercise combined with vitamin C administration. RESULTS Exercise increased oxidative stress and induced an inflammatory state in rats and humans. There were only 1/19 significant species × exercise interactions (catalase), indicating similar responses to exercise between rats and humans in redox and inflammatory biomarkers. Vitamin C decreased oxidative stress and increased antioxidant capacity only in humans and did not affect the redox state of rats. In contrast, vitamin C induced an anti-inflammatory state only in rats and did not affect the inflammatory state of humans. There were 10/19 significant species × vitamin C interactions, indicating that rats poorly mimic human oxidative stress and inflammatory responses to vitamin C administration. Exercise after acute vitamin C administration altered redox state only in humans and did not affect the redox state of rats. On the contrary, inflammation biomarkers changed similarly after exercise combined with vitamin C in both rats and humans. CONCLUSIONS The rat adequately mimics human responses to exercise in basic blood redox/inflammatory profile, yet this is not the case after exercise combined with vitamin C administration.
Collapse
Affiliation(s)
- Aristidis S Veskoukis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110, Serres, Greece
| | - Georgios Goutianos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110, Serres, Greece
| | - Vassilis Paschalis
- Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala, Greece.,Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Nikos V Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110, Serres, Greece.,Intensive Care Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece
| | - Aikaterini Tzioura
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110, Serres, Greece.,Department of Hematology, Blood Bank, General Hospital of Serres, Serres, Greece
| | - Konstantina Dipla
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110, Serres, Greece
| | - Andreas Zafeiridis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110, Serres, Greece
| | - Ioannis S Vrabas
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110, Serres, Greece
| | - Antonios Kyparos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110, Serres, Greece
| | - Michalis G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110, Serres, Greece.
| |
Collapse
|
8
|
Goutianos G, Tzioura A, Kyparos A, Paschalis V, Margaritelis NV, Veskoukis AS, Zafeiridis A, Dipla K, Nikolaidis MG, Vrabas IS. The rat adequately reflects human responses to exercise in blood biochemical profile: a comparative study. Physiol Rep 2015; 3:3/2/e12293. [PMID: 25677548 PMCID: PMC4393201 DOI: 10.14814/phy2.12293] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Animal models are widely used in biology and the findings of animal research are traditionally projected to humans. However, recent publications have raised concerns with regard to what extent animals and humans respond similar to physiological stimuli. Original data on direct in vivo comparison between animals and humans are scarce and no study has addressed this issue after exercise. We aimed to compare side by side in the same experimental setup rat and human responses to an acute exercise bout of matched intensity and duration. Rats and humans ran on a treadmill at 86% of maximal velocity until exhaustion. Pre and post exercise we measured 30 blood chemistry parameters, which evaluate iron status, lipid profile, glucose regulation, protein metabolism, liver, and renal function. ANOVA indicated that almost all biochemical parameters followed a similar alteration pattern post exercise in rats and humans. In fact, there were only 2/30 significant species × exercise interactions (in testosterone and globulins), indicating different responses to exercise between rats and humans. On the contrary, the main effect of exercise was significant in 15/30 parameters and marginally nonsignificant in other two parameters (copper, P = 0.060 and apolipoprotein B, P = 0.058). Our major finding is that the rat adequately mimics human responses to exercise in those basic blood biochemical parameters reported here. The physiological resemblance of rat and human blood responses after exercise to exhaustion on a treadmill indicates that the use of blood chemistry in rats for exercise physiology research is justified.
Collapse
Affiliation(s)
- Georgios Goutianos
- Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Aikaterini Tzioura
- Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece Department of Hematology - Blood Bank, General Hospital of Serres, Serres, Greece
| | - Antonios Kyparos
- Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Vassilis Paschalis
- Department of Physical Education and Sport Science, University of Thessaly, KariesTrikala, Greece
| | - Nikos V Margaritelis
- Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Aristidis S Veskoukis
- Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Andreas Zafeiridis
- Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Konstantina Dipla
- Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Michalis G Nikolaidis
- Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Ioannis S Vrabas
- Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| |
Collapse
|