1
|
González-Manzano S, Ayuda-Durán B, Martín-Sanz R, Garzón-García L, Santos-Buelga C, González-Paramás AM. Exploring the Neuroprotective Effects of Grape Seed Procyanidins on Amyloid-β-Induced Toxicity in Caenorhabditis elegans. Foods 2024; 13:3865. [PMID: 39682936 DOI: 10.3390/foods13233865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Alzheimer's disease (AD), a major neurodegenerative disorder, is characterized by the progressive accumulation of amyloid-β (Aβ) plaques, leading to cognitive decline. Despite the existing treatments, their limited efficacy highlights the urgent need for novel therapeutic strategies. The present study investigates the neuroprotective effects of a grape seed polyphenol extract (GSPE) on transgenic Caenorhabditis elegans models specifically expressing human Aβ proteins. The obtained results show that GSPE not only significantly attenuates Aβ-induced paralysis but also extends the lifespan and improves sensory responses in these models, suggesting improved neural function and overall health. Additionally, GSPE treatment reduces proteasomal activity, which could lead to a reduction in the accumulation of misfolded proteins. It also modulates the expression of key genes involved in autophagy and proteostasis, thereby enhancing cellular mechanisms to manage protein aggregation and combat oxidative stress. On the whole, these findings support the potential of grape seed procyanidins (the main components in the extract) to be used as an effective dietary approach to mitigate Alzheimer's disease pathology through the modulation of critical neuroprotective pathways.
Collapse
Affiliation(s)
- Susana González-Manzano
- Grupo de Investigación en Polifenoles (GIP-USAL), Unidad de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Begoña Ayuda-Durán
- Grupo de Investigación en Polifenoles (GIP-USAL), Unidad de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Roberto Martín-Sanz
- Grupo de Investigación en Polifenoles (GIP-USAL), Unidad de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Lidia Garzón-García
- Grupo de Investigación en Polifenoles (GIP-USAL), Unidad de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Unidad de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Ana María González-Paramás
- Grupo de Investigación en Polifenoles (GIP-USAL), Unidad de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
2
|
Naskar R, Ghosh A, Bhattacharya R, Chakraborty S. A critical appraisal of geroprotective activities of flavonoids in terms of their bio-accessibility and polypharmacology. Neurochem Int 2024; 180:105859. [PMID: 39265701 DOI: 10.1016/j.neuint.2024.105859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Flavonoids, a commonly consumed natural product, elicit health-benefits such as antioxidant, anti-inflammatory, antiviral, anti-allergic, hepatoprotective, anti-carcinogenic and neuroprotective activities. Several studies have reported the beneficial role of flavonoids in improving memory, learning, and cognition in clinical settings. Their mechanism of action is mediated through the modulation of multiple signalling cascades. This polypharmacology makes them an attractive natural scaffold for designing and developing new effective therapeutics for complex neurological disorders like Alzheimer's disease and Parkinson's disease. Flavonoids are shown to inhibit crucial targets related to neurodegenerative disorders (NDDs), including acetylcholinesterase, butyrylcholinesterase, β-secretase, γ-secretase, α-synuclein, Aβ protein aggregation and neurofibrillary tangles formation. Conserved neuro-signalling pathways related to neurotransmitter biogenesis and inactivation, ease of genetic manipulation and tractability, cost-effectiveness, and their short lifespan make Caenorhabditis elegans one of the most frequently used models in neuroscience research and high-throughput drug screening for neurodegenerative disorders. Here, we critically appraise the neuroprotective activities of different flavonoids based on clinical trials and epidemiological data. This review provides critical insights into the absorption, metabolism, and tissue distribution of various classes of flavonoids, as well as detailed mechanisms of the observed neuroprotective activities at the molecular level, to rationalize the clinical data. We further extend the review to critically evaluate the scope of flavonoids in the disease management of neurodegenerative disorders and review the suitability of C. elegans as a model organism to study the neuroprotective efficacy of flavonoids and natural products.
Collapse
Affiliation(s)
- Roumi Naskar
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, 500046, India
| | - Anirrban Ghosh
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, India
| | - Raja Bhattacharya
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, India.
| | - Sandipan Chakraborty
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, 500046, India.
| |
Collapse
|
3
|
Boccardi V, Tagliafico L, Persia A, Page E, Ottaviani S, Cremonini AL, Borgarelli C, Pisciotta L, Mecocci P, Nencioni A, Monacelli F. The Potential Effects of Red Wine and Its Components on Neurocognitive Disorders: A Narrative Review. Nutrients 2024; 16:3431. [PMID: 39458427 PMCID: PMC11510231 DOI: 10.3390/nu16203431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The aging population is associated with a net increase in the incidence and prevalence of chronic-degenerative diseases, particularly neurocognitive disorders. Therefore, the identification of preventative strategies to restrain the burden of such chronic conditions is of key relevance. Red wine and its components have accumulated evidence regarding their positive effects in terms of neurological pathologies associated with neurocognitive symptoms. METHODS Based on this background, the present narrative review aims to summarize the state-of-the-art evidence on the effects of red wine and its components on neurocognitive disorders in both preclinical and clinical settings. RESULTS The main findings highlight a protective effect of wine polyphenols present in red wine on dementia in different preclinical models of cognitive decline. The current translational clinical evidence remains uncertain, especially considering the risk-to-benefit ratio of alcohol consumption on brain health. CONCLUSIONS Given the overall health risks associated with red wine consumption and consistent with the prevailing guidelines in the literature, there is insufficient evidence to support light-to-moderate red wine consumption as an effective strategy for preventing these diseases. However, the largely preclinical findings on polyphenols derived from red wine remain of significant interest in this context.
Collapse
Affiliation(s)
- Virginia Boccardi
- Division of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy
| | - Luca Tagliafico
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Angelica Persia
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
| | - Elena Page
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Silvia Ottaviani
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | | | | | - Livia Pisciotta
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Patrizia Mecocci
- Division of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
4
|
Amiri B, Yazdani Tabrizi M, Naziri M, Moradi F, Arzaghi M, Archin I, Behaein F, Bagheri Pour A, Ghannadikhosh P, Imanparvar S, Akhtari Kohneshahri A, Sanaye Abbasi A, Zerangian N, Alijanzadeh D, Ghayyem H, Azizinezhad A, Ahmadpour Youshanlui M, Poudineh M. Neuroprotective effects of flavonoids: endoplasmic reticulum as the target. Front Neurosci 2024; 18:1348151. [PMID: 38957188 PMCID: PMC11218733 DOI: 10.3389/fnins.2024.1348151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/28/2024] [Indexed: 07/04/2024] Open
Abstract
The incidence of neurological disorders, particularly age-related neurodegenerative pathologies, exhibits an alarming upward trend, while current pharmacological interventions seldom achieve curative outcomes. Despite their diverse clinical presentations, neurological diseases often share a common pathological thread: the aberrant accumulation of misfolded proteins within the endoplasmic reticulum (ER). This phenomenon, known as ER stress, arises when the cell's intrinsic quality control mechanisms fail to cope with the protein-folding burden. Consequently, misfolded proteins accumulate in the ER lumen, triggering a cascade of cellular stress responses. Recognizing this challenge, researchers have intensified their efforts over the past two decades to explore natural compounds that could potentially slow or even reverse these devastating pathologies. Flavonoids constitute a vast and heterogeneous class of plant polyphenols, with over 10,000 identified from diverse natural sources such as wines, vegetables, medicinal plants, and organic products. Flavonoids are generally divided into six different subclasses: anthocyanidins, flavanones, flavones, flavonols, isoflavones, and flavonols. The diverse family of flavonoids, featuring a common phenolic ring backbone adorned with varying hydroxyl groups and additional modifications, exerts its antioxidant activity by inhibiting the formation of ROS, as evidenced by research. Also, studies suggest that polyphenols such as flavonoids can regulate ER stress through apoptosis and autophagy. By understanding these mechanisms, we can unlock the potential of flavonoids as novel therapeutic agents for neurodegenerative disorders. Therefore, this review critically examines the literature exploring the modulatory effects of flavonoids on various steps of the ER stress in neurological disorders.
Collapse
Affiliation(s)
- Bita Amiri
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Yazdani Tabrizi
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdyieh Naziri
- Student Research Committee, School of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Moradi
- Student Research Committee, School of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Arzaghi
- Department of Physical Education and Sports Science-Nutrition, Branch Islamic Azad University, Tehran, Iran
| | - Iman Archin
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Parna Ghannadikhosh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Imanparvar
- School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ata Akhtari Kohneshahri
- Student Research Committee, Faculty of Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Ali Sanaye Abbasi
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nasibeh Zerangian
- PhD Student in Health Education and Health Promotion, Department of Health Education and Health Promotion, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Dorsa Alijanzadeh
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hani Ghayyem
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Azizinezhad
- Universal Scientific Education and Research Network (USERN), Tabriz, Iran
| | | | - Mohadeseh Poudineh
- Student Research Committee, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
5
|
Koo BW, Shin HJ, Jeon S, Bang JH, Do SH, Na HS. Neuroprotective effect of erythropoietin on anesthesia-induced neurotoxicity through the modulation of autophagy in Caenorhabditis elegans. Korean J Anesthesiol 2024; 77:384-391. [PMID: 38356139 PMCID: PMC11150124 DOI: 10.4097/kja.23789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND The anti-oxidative, anti-inflammatory, and anti-apoptotic effects of erythropoietin may provide neuroprotective effects. Erythropoietin also modulates autophagy signaling that may play a role in anesthesia-induced neurotoxicity (AIN). Herein, we investigated whether AIN can be attenuated by the neuroprotective effect of erythropoietin in the Caenorhabditis elegans (C. elegans). METHODS Synchronized worms were divided into the control, Iso, EPO, and EPO-Iso groups. The chemotaxis index (CI) was evaluated when they reached the young adult stage. The lgg-1::GFP-positive puncta per seam cell were used to determine the autophagic events. The erythropoietin-mediated pathway of autophagy was determined by measuring the genetic expression level of let-363, bec-1, atg-7, atg-5, and lgg-3. RESULTS Increased lgg-1::GFP puncta were observed in the Iso, EPO, and EPO-Iso groups. In the Iso group, only the let-363 level decreased significantly as compared to that in the control group (P = 0.009). bec-1 (P < 0.001), atg-5 (P = 0.012), and lgg-3 (P < 0.001) were expressed significantly more in the EPO-Iso group than in the Iso groups. Repeated isoflurane exposure during development decreased the CI. Erythropoietin could restore the decreased CI by isoflurane significantly in the EPO-Iso group. CONCLUSIONS Erythropoietin showed neuroprotective effects against AIN and modulated the autophagic pathway in C. elegans. This experimental evidence of erythropoietin-related neuroprotection against AIN may be correlated with the induced autophagic degradation process that was sufficient for handling enhanced autophagy induction in erythropoietin-treated worms.
Collapse
Affiliation(s)
- Bon-Wook Koo
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Anesthesiology and Pain Medicine, Seoul National University, Seoul, Korea
| | - Hyun-Jung Shin
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Anesthesiology and Pain Medicine, Seoul National University, Seoul, Korea
| | - Sooyoung Jeon
- National Dental Care Center for Persons with Special Needs, Seoul National University Dental Hospital, Seoul, Korea
| | - Jung Hyun Bang
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sang-Hwan Do
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Anesthesiology and Pain Medicine, Seoul National University, Seoul, Korea
| | - Hyo-Seok Na
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Anesthesiology and Pain Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
6
|
Moukham H, Lambiase A, Barone GD, Tripodi F, Coccetti P. Exploiting Natural Niches with Neuroprotective Properties: A Comprehensive Review. Nutrients 2024; 16:1298. [PMID: 38732545 PMCID: PMC11085272 DOI: 10.3390/nu16091298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Natural products from mushrooms, plants, microalgae, and cyanobacteria have been intensively explored and studied for their preventive or therapeutic potential. Among age-related pathologies, neurodegenerative diseases (such as Alzheimer's and Parkinson's diseases) represent a worldwide health and social problem. Since several pathological mechanisms are associated with neurodegeneration, promising strategies against neurodegenerative diseases are aimed to target multiple processes. These approaches usually avoid premature cell death and the loss of function of damaged neurons. This review focuses attention on the preventive and therapeutic potential of several compounds derived from natural sources, which could be exploited for their neuroprotective effect. Curcumin, resveratrol, ergothioneine, and phycocyanin are presented as examples of successful approaches, with a special focus on possible strategies to improve their delivery to the brain.
Collapse
Affiliation(s)
- Hind Moukham
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy; (H.M.); (A.L.); (P.C.)
| | - Alessia Lambiase
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy; (H.M.); (A.L.); (P.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | | | - Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy; (H.M.); (A.L.); (P.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy; (H.M.); (A.L.); (P.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
7
|
Chen CH, Yang Y, Ke JP, Yang Z, Li JY, Zhang YX, Liu G, Liu Z, Yao G, Bao GH. Novel Flavonol Alkaloids in Green Tea: Synthesis, Detection, and Anti-Alzheimer's Disease Effect in a Transgenic Caenorhabditis elegans CL4176 Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3695-3706. [PMID: 38324412 DOI: 10.1021/acs.jafc.3c06608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Novel N-ethy-2-pyrrolidinone-substituted flavonols, myricetin alkaloids A-C (1-3), quercetin alkaloids A-C (4a, 4b, and 5), and kaempferol alkaloids A and B (6 and 7), were prepared from thermal reaction products of myricetin, quercetin, kaempferol─l-theanine, respectively. We used HPLC-ESI-HRMS/MS to detect 1-7 in 14 cultivars of green tea and found that they were all present in "Shuchazao," "Longjing 43", "Fudingdabai", and "Zhongcha 108" green teas. The structures of 1-4 and 6 were determined by extensive 1D and 2D NMR spectroscopies. These flavonol alkaloids along with their skeletal flavonols were assessed for anti-Alzheimer's disease effect based on molecular docking, acetylcholinesterase inhibition, and the transgenic Caenorhabditis elegans CL4176 model. Compound 7 strongly binds to the protein amyloid β (Aβ1-42) through hydrogen bonds (BE: -9.5 kcal/mol, Ki: 114.3 nM). Compound 3 (100 μM) is the strongest one in significantly extending the mean lifespan (13.4 ± 0.5 d, 43.0% promotion), delaying the Aβ1-42-induced paralysis (PT50: 40.7 ± 1.9 h, 17.1% promotion), enhancing the locomotion (140.0% promotion at 48 h), and alleviating glutamic acid (Glu)-induced neurotoxicity (153.5% promotion at 48 h) of CL4176 worms (p < 0.0001).
Collapse
Affiliation(s)
- Chen-Hui Chen
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Healthy Effects, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yi Yang
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Healthy Effects, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Jia-Ping Ke
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Healthy Effects, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Zi Yang
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Healthy Effects, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Jia-Yi Li
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Healthy Effects, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yu-Xing Zhang
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Healthy Effects, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Guangjin Liu
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Healthy Effects, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Zhijun Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guangmin Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guan-Hu Bao
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Healthy Effects, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| |
Collapse
|
8
|
Ayuda-Durán B, Garzón-García L, González-Manzano S, Santos-Buelga C, González-Paramás AM. Insights into the Neuroprotective Potential of Epicatechin: Effects against Aβ-Induced Toxicity in Caenorhabditis elegans. Antioxidants (Basel) 2024; 13:79. [PMID: 38247503 PMCID: PMC10812808 DOI: 10.3390/antiox13010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Medical therapies to avoid the progression of Alzheimer's disease (AD) are limited to date. Certain diets have been associated with a lower incidence of neurodegenerative diseases. In particular, the regular intake of foods rich in polyphenols, such as epicatechin (EC), could help prevent or mitigate AD progression. This work aims to explore the neuroprotective effects of EC using different transgenic strains of Caenorhabditis elegans, which express human Aβ1-42 peptides and contribute to elucidating the mechanisms involved in the effects of EC in AD. The performed assays indicate that this flavan-3-ol was able to reduce the signs of β-amyloid accumulation in C. elegans, improving motility and chemotaxis and increasing survival in transgenic strain peptide producers compared to nematodes not treated with EC. The neuroprotective effects exhibited by EC in C. elegans could be explained by the modulation of inflammation and stress-associated genes, as well as autophagy, microgliosis, and heat shock signaling pathways, involving the regulation of cpr-5, epg-8, ced-7, ZC239.12, and hsp-16 genes. Overall, the results obtained in this study support the protective effects of epicatechin against Aβ-induced toxicity.
Collapse
Affiliation(s)
| | | | | | - Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain; (B.A.-D.); (L.G.-G.); (S.G.-M.)
| | - Ana M. González-Paramás
- Grupo de Investigación en Polifenoles (GIP-USAL), Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain; (B.A.-D.); (L.G.-G.); (S.G.-M.)
| |
Collapse
|
9
|
Sharma A, Ewald CY. Clearance of extracellular human amyloid-β aggregates in C. elegans by nutraceutical and pharmaceutical interventions. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.000907. [PMID: 38287930 PMCID: PMC10823790 DOI: 10.17912/micropub.biology.000907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 01/31/2024]
Abstract
Numerous anti-amyloid therapies have seen recent clinical development and approval, such as the monoclonal antibodies aducanumab and lecanemab. However, in Alzheimer's disease patients, amyloid-β (Aβ) plaques are found embedded in the extracellular matrix and surrounded by collagens, which might hinder these antibodies from targeting the plaques. We reasoned that various different nutraceutical and pharmaceutical agents might induce collagen and extracellular matrix turnover and removal of these collagen-embedded amyloid-β (Aβ) plaques. To address this idea, here, we used a transgenic C. elegans strain, LSD2104 , expressing fluorescent human Aβ 1-42 as an in-vivo model for secreted amyloid aggregation in the extracellular matrix. We performed a screen of various nutraceuticals and pharmaceuticals along with different combinations, and we found that quercetin 350 µM and rifampicin 75 µM successfully cleared the extracellular amyloid plaque burden compared to the 0.2% DMSO control group, with a combination of the two agents producing the maximum effect compared to either drug alone. These results may implicate the exploration of combination therapeutics of nutraceuticals and pharmaceuticals in the clearance of amyloid-β (Aβ) plaques in Alzheimer's disease.
Collapse
Affiliation(s)
- Arastu Sharma
- Eidgenössische Technische Hochschule Zürich, Department of Health Sciences and Technology, Institute of Translational Medicine, 8603 Schwerzenbach-Zürich, Switzerland
- Johns Hopkins University, Baltimore, Maryland, United States
| | - Collin Y Ewald
- Eidgenössische Technische Hochschule Zürich, Department of Health Sciences and Technology, Institute of Translational Medicine, 8603 Schwerzenbach-Zürich, Switzerland
| |
Collapse
|
10
|
Monteiro KLC, de Aquino TM, da Silva-Júnior EF. Natural Compounds as Inhibitors of Aβ Peptide and Tau Aggregation. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1234-1250. [PMID: 38018200 DOI: 10.2174/0118715273273539231114095300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/08/2023] [Accepted: 10/16/2023] [Indexed: 11/30/2023]
Abstract
Neurodegenerative conditions like Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) encompass disorders characterized by the degeneration of neurons in specific circumstances. The quest for novel agents to influence these diseases, particularly AD, has unearthed various natural compounds displaying multifaceted activities and diverse pharmacological mechanisms. Given the ongoing extensive study of pathways associated with the accumulation of neurofibrillary aggregates and amyloid plaques, this paper aims to comprehensively review around 130 studies exploring natural products. These studies focus on inhibiting the formation of amyloid plaques and tau protein tangles, with the objective of potentially alleviating or delaying AD.
Collapse
Affiliation(s)
- Kadja Luana Chagas Monteiro
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Thiago Mendonça de Aquino
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | | |
Collapse
|
11
|
Osakabe N, Modafferi S, Ontario ML, Rampulla F, Zimbone V, Migliore MR, Fritsch T, Abdelhameed AS, Maiolino L, Lupo G, Anfuso CD, Genovese E, Monzani D, Wenzel U, Calabrese EJ, Vabulas RM, Calabrese V. Polyphenols in Inner Ear Neurobiology, Health and Disease: From Bench to Clinics. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2045. [PMID: 38004094 PMCID: PMC10673256 DOI: 10.3390/medicina59112045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/25/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
There is substantial experimental and clinical interest in providing effective ways to both prevent and slow the onset of hearing loss. Auditory hair cells, which occur along the basilar membrane of the cochlea, often lose functionality due to age-related biological alterations, as well as from exposure to high decibel sounds affecting a diminished/damaged auditory sensitivity. Hearing loss is also seen to take place due to neuronal degeneration before or following hair cell destruction/loss. A strategy is necessary to protect hair cells and XIII cranial/auditory nerve cells prior to injury and throughout aging. Within this context, it was proposed that cochlea neural stem cells may be protected from such aging and environmental/noise insults via the ingestion of protective dietary supplements. Of particular importance is that these studies typically display a hormetic-like biphasic dose-response pattern that prevents the occurrence of auditory cell damage induced by various model chemical toxins, such as cisplatin. Likewise, the hormetic dose-response also enhances the occurrence of cochlear neural cell viability, proliferation, and differentiation. These findings are particularly important since they confirmed a strong dose dependency of the significant beneficial effects (which is biphasic), whilst having a low-dose beneficial response, whereas extensive exposures may become ineffective and/or potentially harmful. According to hormesis, phytochemicals including polyphenols exhibit biphasic dose-response effects activating low-dose antioxidant signaling pathways, resulting in the upregulation of vitagenes, a group of genes involved in preserving cellular homeostasis during stressful conditions. Modulation of the vitagene network through polyphenols increases cellular resilience mechanisms, thus impacting neurological disorder pathophysiology. Here, we aimed to explore polyphenols targeting the NF-E2-related factor 2 (Nrf2) pathway to neuroprotective and therapeutic strategies that can potentially reduce oxidative stress and inflammation, thus preventing auditory hair cell and XIII cranial/auditory nerve cell degeneration. Furthermore, we explored techniques to enhance their bioavailability and efficacy.
Collapse
Affiliation(s)
- Naomi Osakabe
- Department of Bioscience and Engineering, Shibaura Institute Technology, Saitama 337-8570, Japan;
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Francesco Rampulla
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Vincenzo Zimbone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Maria Rita Migliore
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | | | - Ali S. Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Luigi Maiolino
- Department of Medical, Surgical Advanced Technologies “G. F. Ingrassia”, University of Catania, 95125 Catania, Italy;
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Elisabetta Genovese
- Department of Maternal and Child and Adult Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Daniele Monzani
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, 37100 Verona, Italy;
| | - Uwe Wenzel
- Institut für Ernährungswissenschaft, Justus Liebig Universitat Giessen, 35392 Giessen, Germany
| | - Edward J. Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA;
| | - R. Martin Vabulas
- Charité-Universitätsmedizin Berlin, Institute of Biochemistry, Charitéplatz 1, 10117 Berlin, Germany;
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| |
Collapse
|
12
|
Jiang Y, MacNeil LT. Simple model systems reveal conserved mechanisms of Alzheimer's disease and related tauopathies. Mol Neurodegener 2023; 18:82. [PMID: 37950311 PMCID: PMC10638731 DOI: 10.1186/s13024-023-00664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/04/2023] [Indexed: 11/12/2023] Open
Abstract
The lack of effective therapies that slow the progression of Alzheimer's disease (AD) and related tauopathies highlights the need for a more comprehensive understanding of the fundamental cellular mechanisms underlying these diseases. Model organisms, including yeast, worms, and flies, provide simple systems with which to investigate the mechanisms of disease. The evolutionary conservation of cellular pathways regulating proteostasis and stress response in these organisms facilitates the study of genetic factors that contribute to, or protect against, neurodegeneration. Here, we review genetic modifiers of neurodegeneration and related cellular pathways identified in the budding yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans, and the fruit fly Drosophila melanogaster, focusing on models of AD and related tauopathies. We further address the potential of simple model systems to better understand the fundamental mechanisms that lead to AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Yuwei Jiang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Lesley T MacNeil
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada.
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada.
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
13
|
Schiavi A, Cirotti C, Gerber LS, Di Lauro G, Maglioni S, Shibao PYT, Montresor S, Kirstein J, Petzsch P, Köhrer K, Schins RPF, Wahle T, Barilà D, Ventura N. Abl depletion via autophagy mediates the beneficial effects of quercetin against Alzheimer pathology across species. Cell Death Discov 2023; 9:376. [PMID: 37838776 PMCID: PMC10576830 DOI: 10.1038/s41420-023-01592-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/10/2023] [Accepted: 08/02/2023] [Indexed: 10/16/2023] Open
Abstract
Alzheimer's disease is the most common age-associated neurodegenerative disorder and the most frequent form of dementia in our society. Aging is a complex biological process concurrently shaped by genetic, dietary and environmental factors and natural compounds are emerging for their beneficial effects against age-related disorders. Besides their antioxidant activity often described in simple model organisms, the molecular mechanisms underlying the beneficial effects of different dietary compounds remain however largely unknown. In the present study, we exploit the nematode Caenorhabditis elegans as a widely established model for aging studies, to test the effects of different natural compounds in vivo and focused on mechanistic aspects of one of them, quercetin, using complementary systems and assays. We show that quercetin has evolutionarily conserved beneficial effects against Alzheimer's disease (AD) pathology: it prevents Amyloid beta (Aβ)-induced detrimental effects in different C. elegans AD models and it reduces Aβ-secretion in mammalian cells. Mechanistically, we found that the beneficial effects of quercetin are mediated by autophagy-dependent reduced expression of Abl tyrosine kinase. In turn, autophagy is required upon Abl suppression to mediate quercetin's protective effects against Aβ toxicity. Our data support the power of C. elegans as an in vivo model to investigate therapeutic options for AD.
Collapse
Affiliation(s)
- Alfonso Schiavi
- Leibniz Research Institute for Environmental Medicine (IUF), 40225, Düsseldorf, Germany
| | - Claudia Cirotti
- Department of Biology, University of Rome "Tor Vergata", 00133, Rome, Italy
- Laboratory of Cell Signaling, IRCCS-Fondazione Santa Lucia, 00179, Rome, Italy
| | - Lora-Sophie Gerber
- Leibniz Research Institute for Environmental Medicine (IUF), 40225, Düsseldorf, Germany
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Giulia Di Lauro
- Leibniz Research Institute for Environmental Medicine (IUF), 40225, Düsseldorf, Germany
| | - Silvia Maglioni
- Leibniz Research Institute for Environmental Medicine (IUF), 40225, Düsseldorf, Germany
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, 40225, Duesseldorf, Germany
| | - Priscila Yumi Tanaka Shibao
- Department of Cell Biology, University of Bremen, Bremen, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | | | - Janine Kirstein
- Department of Cell Biology, University of Bremen, Bremen, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Patrick Petzsch
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Karl Köhrer
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Roel P F Schins
- Leibniz Research Institute for Environmental Medicine (IUF), 40225, Düsseldorf, Germany
| | - Tina Wahle
- Leibniz Research Institute for Environmental Medicine (IUF), 40225, Düsseldorf, Germany
| | - Daniela Barilà
- Department of Biology, University of Rome "Tor Vergata", 00133, Rome, Italy
- Laboratory of Cell Signaling, IRCCS-Fondazione Santa Lucia, 00179, Rome, Italy
| | - Natascia Ventura
- Leibniz Research Institute for Environmental Medicine (IUF), 40225, Düsseldorf, Germany.
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, 40225, Duesseldorf, Germany.
| |
Collapse
|
14
|
Salgueiro WG, Soares MV, Martins CF, Paula FR, Rios-Anjos RM, Carrazoni T, Mori MA, Müller RU, Aschner M, Dal Belo CA, Ávila DS. Dopaminergic modulation by quercetin: In silico and in vivo evidence using Caenorhabditis elegans as a model. Chem Biol Interact 2023; 382:110610. [PMID: 37348670 PMCID: PMC10527449 DOI: 10.1016/j.cbi.2023.110610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Quercetin is a flavonol widely distributed in plants and has various described biological functions. Several studies have reported on its ability to restore neuronal function in a wide variety of disease models, including animal models of neurodegenerative disorders such as Parkinson's disease. Quercetin per se can act as a neuroprotector/neuromodulator, especially in diseases related to impaired dopaminergic neurotransmission. However, little is known about how quercetin interacts with the dopaminergic machinery. Here we employed the nematode Caenorhabditis elegans to study this putative interaction. After observing behavioral modulation, mutant analysis and gene expression in C. elegans upon exposure to quercetin at a concentration that does not protect against MPTP, we constructed a homology-based dopamine transporter protein model to conduct a docking study. This led to suggestive evidence on how quercetin may act as a dopaminergic modulator by interacting with C. elegans' dopamine transporter and alter the nematode's exploratory behavior. Consistent with this model, quercetin controls C. elegans behavior in a way dependent on the presence of both the dopamine transporter (dat-1), which is up-regulated upon quercetin exposure, and the dopamine receptor 2 (dop-2), which appears to be mandatory for dat-1 up-regulation. Our data propose an interaction with the dopaminergic machinery that may help to establish the effects of quercetin as a neuromodulator.
Collapse
Affiliation(s)
- Willian Goulart Salgueiro
- Research Group in Biochemistry and Toxicology in Caenorhabditis elegans (GBToxCe), Federal University of Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil; Department of Biochemistry and Tissue Biology, University of Campinas, Monteiro Lobato Avenue, 255, Campinas, São Paulo, 13083-862, Brazil; Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, 50931, Germany; Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Marcell Valandro Soares
- Research Group in Biochemistry and Toxicology in Caenorhabditis elegans (GBToxCe), Federal University of Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil; Department of Biochemistry and Molecular Biology, Post-graduate Program in Biological Sciences, Federal University of Santa Maria, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Cassiano Fiad Martins
- Research Group in Biochemistry and Toxicology in Caenorhabditis elegans (GBToxCe), Federal University of Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil
| | - Fávero Reisdorfer Paula
- Laboratory for Development and Quality Control in Medicines (LDCQ), Federal University of Pampa, Uruguaiana, RS, Brazil
| | | | - Thiago Carrazoni
- Neurobiology and Toxinology Laboratory, (LANETOX), Federal University of Pampa - UNIPAMPA, CEP 97300-000, São Gabriel, RS, Brazil
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, University of Campinas, Monteiro Lobato Avenue, 255, Campinas, São Paulo, 13083-862, Brazil; Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil; Experimental Medicine Research Cluster, University of Campinas, Campinas, SP, Brazil
| | - Roman-Ulrich Müller
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, 50931, Germany; Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Cháriston André Dal Belo
- Department of Biochemistry and Molecular Biology, Post-graduate Program in Biological Sciences, Federal University of Santa Maria, Camobi, 97105-900, Santa Maria, RS, Brazil; Neurobiology and Toxinology Laboratory, (LANETOX), Federal University of Pampa - UNIPAMPA, CEP 97300-000, São Gabriel, RS, Brazil; Multidisciplinar Department, Federal University of São Paulo (UNIFESP), Angelica Street, 100- CEP 06110295, Osasco, SP, Brazil
| | - Daiana Silva Ávila
- Research Group in Biochemistry and Toxicology in Caenorhabditis elegans (GBToxCe), Federal University of Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil; Department of Biochemistry and Molecular Biology, Post-graduate Program in Biological Sciences, Federal University of Santa Maria, Camobi, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
15
|
Fang M, Wang X, Su K, Jia X, Guan P, Hu X. Inhibition Effect and Molecular Mechanisms of Quercetin on the Aβ42 Dimer: A Molecular Dynamics Simulation Study. ACS OMEGA 2023; 8:18009-18018. [PMID: 37251196 PMCID: PMC10210038 DOI: 10.1021/acsomega.3c01208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023]
Abstract
Amyloid-β (Aβ) dimer as the smallest oligomer has recently been drawing attention due to its neurotoxicity, transient nature, and heterogeneity. The inhibition of Aβ dimer's aggregation is the key to primary intervention of Alzheimer's disease. Previous experimental studies have reported that quercetin, the widespread polyphenolic constituent of multiple fruits and vegetables, can hamper the formation of Aβ protofibrils and disaggregate Aβ fibrils. However, the molecular mechanisms of quercetin in the suppression of the Aβ(1-42) dimer's conformational changes still remain elusive. In this work, to investigate the inhibitory mechanisms of quercetin molecules on the Aβ(1-42) dimer, an Aβ(1-42) dimer based on monomeric the Aβ(1-42) peptide with enriched coil structures is constructed. The early molecular mechanisms of quercetin molecules on inhibiting the Aβ(1-42) dimer at two different Aβ42-to-quercetin molar ratios (1:5 and 1:10) are explored via all-atom molecular dynamics simulations. The results indicate that quercetin molecules can impede the configurational change of the Aβ(1-42) dimer. The interactions and the binding affinity between the Aβ(1-42) dimer and quercetin molecules in the Aβ42 dimer + 20 quercetin system are stronger in comparison with that in the Aβ42 dimer + 10 quercetin system. Our work may be helpful in developing new drug candidates for preventing the conformational transition and further aggregation of the Aβ dimer.
Collapse
|
16
|
Bellavite P. Neuroprotective Potentials of Flavonoids: Experimental Studies and Mechanisms of Action. Antioxidants (Basel) 2023; 12:antiox12020280. [PMID: 36829840 PMCID: PMC9951959 DOI: 10.3390/antiox12020280] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Neurological and neurodegenerative diseases, particularly those related to aging, are on the rise, but drug therapies are rarely curative. Functional disorders and the organic degeneration of nervous tissue often have complex causes, in which phenomena of oxidative stress, inflammation and cytotoxicity are intertwined. For these reasons, the search for natural substances that can slow down or counteract these pathologies has increased rapidly over the last two decades. In this paper, studies on the neuroprotective effects of flavonoids (especially the two most widely used, hesperidin and quercetin) on animal models of depression, neurotoxicity, Alzheimer's disease (AD) and Parkinson's disease are reviewed. The literature on these topics amounts to a few hundred publications on in vitro and in vivo models (notably in rodents) and provides us with a very detailed picture of the action mechanisms and targets of these substances. These include the decrease in enzymes that produce reactive oxygen and ferroptosis, the inhibition of mono-amine oxidases, the stimulation of the Nrf2/ARE system, the induction of brain-derived neurotrophic factor production and, in the case of AD, the prevention of amyloid-beta aggregation. The inhibition of neuroinflammatory processes has been documented as a decrease in cytokine formation (mainly TNF-alpha and IL-1beta) by microglia and astrocytes, by modulating a number of regulatory proteins such as Nf-kB and NLRP3/inflammasome. Although clinical trials on humans are still scarce, preclinical studies allow us to consider hesperidin, quercetin, and other flavonoids as very interesting and safe dietary molecules to be further investigated as complementary treatments in order to prevent neurodegenerative diseases or to moderate their deleterious effects.
Collapse
|
17
|
Agrawal K, Chakraborty P, Dewanjee S, Arfin S, Das SS, Dey A, Moustafa M, Mishra PC, Jafari SM, Jha NK, Jha SK, Kumar D. Neuropharmacological interventions of quercetin and its derivatives in neurological and psychological disorders. Neurosci Biobehav Rev 2023; 144:104955. [PMID: 36395983 DOI: 10.1016/j.neubiorev.2022.104955] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/20/2022] [Accepted: 11/06/2022] [Indexed: 11/16/2022]
Abstract
Quercetin is a naturally occurring bioactive flavonoid abundant in many plants and fruits. Quercetin and its derivatives have shown an array of pharmacological activities in preclinical tests against various illnesses and ailments. Owing to its protective role against oxidative stress and neuroinflammation, quercetin is a possible therapeutic choice for the treatment of neurological disorders. Quercetin and its derivatives can modulate a variety of signal transductions, including neuroreceptor, neuroinflammatory receptor, and redox signaling events. The research on quercetin and its derivatives in neurology-related illnesses mainly focused on the targets, such as redox stress, neuroinflammation, and signaling pathways; however, the function of quercetin and its derivatives on specific molecular targets, such as nuclear receptors and proinflammatory mediators are yet to be explored. Findings showed that various molecular targets of quercetin and its derivatives have therapeutic potential against psychological and neurodegenerative disorders.
Collapse
Affiliation(s)
- Kirti Agrawal
- School of Health sciences & Technology, UPES University, Dehradun, Uttarakhand, India, 248007
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032, West Bengal, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032, West Bengal, India
| | - Saniya Arfin
- School of Health sciences & Technology, UPES University, Dehradun, Uttarakhand, India, 248007
| | - Sabya Sachi Das
- School of Pharmaceutical and Population Health Informatics, DIT University, Dehradun 248009, Uttarakhand, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Mahmoud Moustafa
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia; Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, Egypt
| | - Prabhu Chandra Mishra
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India.
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India.
| | - Dhruv Kumar
- School of Health sciences & Technology, UPES University, Dehradun, Uttarakhand, India, 248007.
| |
Collapse
|
18
|
Bayazid AB, Lim BO. Quercetin Is An Active Agent in Berries against Neurodegenerative Diseases Progression through Modulation of Nrf2/HO1. Nutrients 2022; 14:5132. [PMID: 36501161 PMCID: PMC9737775 DOI: 10.3390/nu14235132] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/11/2022] Open
Abstract
Berries are well-known fruits for their antioxidant effects due to their high content of flavonoids, and quercetin is one of the potent bioactive flavonoids. Although oxidative stress is an inevitable outcome in cells due to energy uptake and metabolism and other factors, excessive oxidative stress is considered a pivotal mediator for the cell death and leads to the progression of neurodegenerative diseases (NDDs). Furthermore, oxidative stress triggers inflammation that leads to neuronal cell loss. Alzheimer's, Parkinson's, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, and so on are the main neurodegenerative diseases. Hence, AD and PD are the most affected NDDs and cause the most lethality without any effective cure. Since AD and PD are the most common NDDs, therefore, in this study, we will describe the effect of oxidative stress on AD and PD. Targeting oxidative stress could be a very effective way to prevent and cure NDDs. Thus, the nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO1) are potent endogenous antioxidant modulatory pathways, which also show cytoprotective activities. Modulation of Nrf2/HO1 signaling pathways through a biological approach could be an effective way to treat with NDDs. Quercetin is a natural polyphenol, which protects neurodegeneration, remarkably by suppressing oxidative stress and inflammation. Thus, quercetin could be a very effective agent against NDDs. We will discuss the benefits and challenges of quercetin to treat against NDDs, focusing on molecular biology.
Collapse
Affiliation(s)
- Al Borhan Bayazid
- Medicinal Biosciences, Department of Applied Life Science, Konkuk University, Chungju 27478, Republic of Korea
| | - Beong Ou Lim
- Medicinal Biosciences, Department of Applied Life Science, Konkuk University, Chungju 27478, Republic of Korea
- Human Bioscience Corporate R&D Center, Human Bioscience Corp. 268 Chungwondaero, Chungju 27478, Republic of Korea
| |
Collapse
|
19
|
Zhang J, He L, Wang A, Wu B, Zhang P, Zhu Y, Jiang Y, Bai J, Xiao X. Responses of bitter melon saponins to oxidative stress and aging via the IIS pathway linked with sir-2.1 and hlh-30. J Food Biochem 2022; 46:e14456. [PMID: 36226991 DOI: 10.1111/jfbc.14456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/07/2022] [Accepted: 09/20/2022] [Indexed: 01/14/2023]
Abstract
Saponins from bitter melon (BMS) exert potential bioactivities and pharmacological activities, including anti-oxidation and lifespan extension. However, the exact mechanisms of BMS in response to oxidative stress remain unknown. Results demonstrated that bitter melon saponins could strengthen locomotive activities (body bend and head thrashing) accompanied by delaying the muscle fiber damage with age in Caenorhabditis elegans. In addition, BMS inhibited the ROS accumulation, improved the activities of antioxidant enzymes like SOD (by 57.90% and 94.34% for 100 μg/ml and 200 μg/ml BMS, respectively) and CAT (by 51.45% and 56.91% for 100 μg/ml and 200 μg/ml BMS, respectively), and extend the lifespan of N2 and CL2006 worms under paraquat-induced oxidative stress. Mechanism study suggested that BMS modulated the mRNA expressions of oxidation-related regulators, like the upregulation of cat-1, hsf-1, sir-2.1, and hlh-30. Furthermore, gene-deficient mutants verified that IIS (insulin/insulin-like growth factor-1 signaling) pathway linked with sir-2.1 and hlh-30 factors were involved in the BMS's lifespan-extension effects under oxidative stress. In general, this study supplemented the explanation of BMS in promoting oxidation-resistance and lifespan-extension activities, which could be served as a potential candidate for anti-aging. PRACTICAL APPLICATIONS: Our previous studies have suggested that saponins from bitter melon exhibited fat-lowering activity in C. elegans. However, little was known about the mechanism underlying the anti-oxidation effects of BMS in C. elegans. Current results indicated that the IIS pathway linked with sir-2.1 and hlh-30 transcriptional factors jointly to increase the lifespan in BMS' responses to oxidative stress. Our findings are beneficial to understand the main nutritional ingredients in bitter melon, which are ideal and expected in functional foods for aging.
Collapse
Affiliation(s)
- Jinfu Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Linzhao He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Anlin Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Beiqi Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Peixi Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ya Jiang
- Jiangsu Jiangnan Biotechnology Co. LTD, Zhenjiang, China
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Jiangsu Jiangnan Biotechnology Co. LTD, Zhenjiang, China
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Jiangsu Jiangnan Biotechnology Co. LTD, Zhenjiang, China
| |
Collapse
|
20
|
Cen J, Zhang R, Zhao T, Zhang X, Zhang C, Cui J, Zhao K, Duan S, Guo Y. A Water-Soluble Quercetin Conjugate with Triple Targeting Exerts Neuron-Protective Effect on Cerebral Ischemia by Mitophagy Activation. Adv Healthc Mater 2022; 11:e2200817. [PMID: 36071574 DOI: 10.1002/adhm.202200817] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/23/2022] [Indexed: 01/28/2023]
Abstract
The existing treatments for ischemic stroke cannot meet the clinical needs so far. Quercetin (QT) is an effective apoptosis inhibitor and antioxidant flavonoid, but its water solubility is poor and has no targeting. In this study, QT is modified with hyaluronic acid (HA) to form a water-soluble conjugate HA-QT, which can specifically bind to CD44 receptors and response to hyaluronidase. Next, a novel delivery system SS31-HA-QT is prepared by further modification with SS31, a polypeptide capable of penetrating the blood-brain barrier (BBB) and indiscriminately targeting mitochondria. Meanwhile, IR780, a near-infrared dye, is conjugated onto HA-QT and SS31-HA-QT to form diagnosis tools to trace HA-QT and SS31-HA-QT. In vitro and in vivo results shows that SS31 can four-fold increase the drug penetration into BBB without any toxicity. The highly expressed CD44 and hyaluronidase in ischemic area ensured the targeted delivery of QT to the ischemic region. Importantly, the mitochondrial targeting of damaged neurons is also achieved by SS31. Further studies confirmed that SS31-HA-QT exerted neuron-protection by activating mitophagy, and its mechanism involved Akt/mTOR related TFEB and HIF-1α activation. Hence, SS31-HA-QT shall be a promising neuroprotective drug due to its high water-solubility, superior triple-targeted neuroprotective ability, low toxicity, and high efficiency.
Collapse
Affiliation(s)
- Juan Cen
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.,Key Laboratory of Natural Medicine and Immune Engineering, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Runfang Zhang
- Key Laboratory of Natural Medicine and Immune Engineering, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Tingkui Zhao
- Key Laboratory of Natural Medicine and Immune Engineering, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Xin Zhang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Cui
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Keqing Zhao
- Key Laboratory of Natural Medicine and Immune Engineering, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Shaofeng Duan
- Key Laboratory of Natural Medicine and Immune Engineering, School of Pharmacy, Henan University, Kaifeng, 475004, China.,Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, 475004, China.,Henan International Joint Laboratory of Chinese Medicine Efficacy, Henan University, Kaifeng, 475004, China
| | - Yuqi Guo
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.,Engineering Research Center for Gynecological Oncology Nanomedicine of Henan Province, Zhengzhou, 450003, China
| |
Collapse
|
21
|
Alaqeel NK, AlSheikh MH, Al-Hariri MT. Quercetin Nanoemulsion Ameliorates Neuronal Dysfunction in Experimental Alzheimer's Disease Model. Antioxidants (Basel) 2022; 11:1986. [PMID: 36290710 PMCID: PMC9598210 DOI: 10.3390/antiox11101986] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 09/05/2023] Open
Abstract
Aluminum is the most abundant metal that can get admission to the human through several means that include our food, drinking water, cans, drugs, and deodorants, causing neurodegenerative diseases such as Alzheimer's disease (AD). The present study aims to evaluate the role of quercetin nanoemulsion (QCNE) in attenuating neuronal dysfunction in aluminum chloride (AlCl3)-induced experimental AD. All animals were classified into six groups including negative control group (I): received a vehicle; QC group: received intraperitoneal (IP) injection of QC; Alzheimer's group: received AlCl3 orally; treated group (I): received AlCl3 orally and IP injection of QC; treated group (II): received AlCl3 orally and QC orally; and treated group (III): received AlCl3 orally and IP injection of QCNE. At the end of the experimental period (30 days), the brain was used to study biochemical parameters (measurement of neurotransmitters (serotonin, dopamine, and norepinephrine), oxidant/antioxidant parameters (reduced glutathione, malondialdehyde, superoxide dismutase, and advanced oxidation protein product), and inflammatory markers (adiponectin, interleukin 1β, and plasma tumor necrosis factor-alpha)), while another part was for brain immune-histochemical analysis (study cyclooxygenases (COX-1 and COX-2)). Results showed that the mean value of oxidative stress markers was significantly increased in the AD group as well as the inflammatory biomarkers and all the study neurotransmitters, whereas these parameters were attenuated in treated groups, especially those that received QCNE. The immunohistochemistry findings confirm our results. Both approaches (QC and QCNE) succeeded in retracting the negative impact of AlCl3. Meanwhile, the effect of QCNE is more potent in mitigating the impact mediated by AlCl3 in treated animals. In conclusion, the treatment mainly by QCNE has huge potential in protecting against AlCl3-induced neuronal dysfunction, as shown in our results by the elevation of brain antioxidant/anti-inflammatory activities and neurotransmitter levels as well as mending of the histopathological changes in animal models.
Collapse
Affiliation(s)
- Nouf K. Alaqeel
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Mona H. AlSheikh
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34719, Saudi Arabia
| | - Mohammed T. Al-Hariri
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34719, Saudi Arabia
| |
Collapse
|
22
|
Vasilopoulou MA, Gioran A, Theodoropoulou M, Koutsaviti A, Roussis V, Ioannou E, Chondrogianni N. Healthspan improvement and anti-aggregation effects induced by a marine-derived structural proteasome activator. Redox Biol 2022; 56:102462. [PMID: 36095970 PMCID: PMC9482115 DOI: 10.1016/j.redox.2022.102462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/28/2022] [Accepted: 08/28/2022] [Indexed: 11/15/2022] Open
Abstract
Proteasome activation has been shown to promote cellular and organismal healthspan and to protect against aggregation-related conditions, such as Alzheimer's disease (AD). Various natural compounds have been described for their proteasome activating properties but scarce data exist on marine metabolites that often possess unique chemical structures, exhibiting pronounced bioactivities with novel mechanisms of action. In this study, we have identified for the first time a marine structural proteasome activator, namely (1R,3E,6R,7Z,11S,12S)-dolabella-3,7,18-trien-6,17-olide (DBTO). DBTO activates the 20S proteasome complex in cell-free assays but also in cellulo. Continuous supplementation of human primary fibroblasts with DBTO throughout their cellular lifespan confers an improved healthspan while ameliorated health status is also observed in wild type (wt) Caenorhabditis elegans (C. elegans) nematodes supplemented with DBTO. Furthermore, treatment of various AD nematode models, as well as of human cells of neuronal origin challenged with exogenously added Aβ peptide, with DBTO results in enhanced protection against Aβ-induced proteotoxicity. In total, our results reveal the first structural proteasome activator derived from the marine ecosystem and highlight its potential as a compound that might be used for healthspan maintenance and preventive strategies against proteinopathies, such as AD. (1R,3E,6R,7Z,11S,12S)-dolabella-3,7,18-trien-6,17-olide (DBTO) is a structural proteasome activator. DBTO is the first identified marine structural proteasome activator. DBTO positively modulates cellular healthspan and organismal health status. DBTO confers protection against Aβ-induced proteotoxicity.
Collapse
|
23
|
Wei CC, Li SW, Wu CT, How CM, Pan MH. Dietary Methylglyoxal Exposure Induces Alzheimer's Disease by Promoting Amyloid β Accumulation and Disrupting Autophagy in Caenorhabditis elegans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10011-10021. [PMID: 35917150 DOI: 10.1021/acs.jafc.2c03411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Methylglyoxal (MG) is a precursor of advanced glycation end products usually generated during cooking. The high level of MG in the brain is correlated to the pathogenesis of Alzheimer's disease (AD). However, it is not clear if MG consumed through the diet can cause AD-related toxicity. Herein, the Caenorhabditis elegans (C. elegans) AD model was used to investigate the neurotoxicity after long-term MG exposure at dietary levels. The results showed that C. elegans locomotive behaviors were significantly decreased after 0.1, 0.5, and 1 mM MG exposure (p < 0.001). In amyloid β (Aβ)-expressing transgenic C. elegans strains, 0.5 mM MG significantly promoted Aβ accumulation by around 50% in day-8 CL2006 (p < 0.001), enhanced paralysis in CL4176 (p < 0.001) and CL2006 (p < 0.01), and made CL2355 around 17% more vulnerable to 5-HT, indicating impaired serotonin reuptake (p < 0.05). Additionally, 0.5 mM MG significantly increased the reactive oxygen species level (p < 0.001) by inhibiting the expression of stress-response genes including sod-3, gst-4, and hsp-16.2 in day-8 aged worms. Moreover, the autophagic pathway was disrupted through lgg-1, vps-34, and bec-1 expression after MG exposure and Aβ accumulation. Treatment with the citrus flavonoid nobiletin reduced the MG-induced toxicity (p < 0.001). Overall, these findings imply that it is possible to exacerbate AD pathogenesis by MG exposure through the diet.
Collapse
Affiliation(s)
- Chia-Cheng Wei
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
- Department of Public Health, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
| | - Shang-Wei Li
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Chia-Tung Wu
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
| | - Chun Ming How
- Department of Bioenvironmental Systems Engineering, College of Bio-Resources and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei 10617, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
24
|
Moreira P, Matos P, Figueirinha A, Salgueiro L, Batista MT, Branco PC, Cruz MT, Pereira CF. Forest Biomass as a Promising Source of Bioactive Essential Oil and Phenolic Compounds for Alzheimer's Disease Therapy. Int J Mol Sci 2022; 23:ijms23158812. [PMID: 35955963 PMCID: PMC9369093 DOI: 10.3390/ijms23158812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/24/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder affecting elderly people worldwide. Currently, there are no effective treatments for AD able to prevent disease progression, highlighting the urgency of finding new therapeutic strategies to stop or delay this pathology. Several plants exhibit potential as source of safe and multi-target new therapeutic molecules for AD treatment. Meanwhile, Eucalyptus globulus extracts revealed important pharmacological activities, namely antioxidant and anti-inflammatory properties, which can contribute to the reported neuroprotective effects. This review summarizes the chemical composition of essential oil (EO) and phenolic extracts obtained from Eucalyptus globulus leaves, disclosing major compounds and their effects on AD-relevant pathological features, including deposition of amyloid-β (Aβ) in senile plaques and hyperphosphorylated tau in neurofibrillary tangles (NFTs), abnormalities in GABAergic, cholinergic and glutamatergic neurotransmission, inflammation, and oxidative stress. In general, 1,8-cineole is the major compound identified in EO, and ellagic acid, quercetin, and rutin were described as main compounds in phenolic extracts from Eucalyptus globulus leaves. EO and phenolic extracts, and especially their major compounds, were found to prevent several pathological cellular processes and to improve cognitive function in AD animal models. Therefore, Eucalyptus globulus leaves are a relevant source of biological active and safe molecules that could be used as raw material for nutraceuticals and plant-based medicinal products useful for AD prevention and treatment.
Collapse
Affiliation(s)
- Patrícia Moreira
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Patrícia Matos
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Artur Figueirinha
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria Teresa Batista
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | | | - Maria Teresa Cruz
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Cláudia Fragão Pereira
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
25
|
Effects of Combining Biofactors on Bioenergetic Parameters, Aβ Levels and Survival in Alzheimer Model Organisms. Int J Mol Sci 2022; 23:ijms23158670. [PMID: 35955803 PMCID: PMC9368976 DOI: 10.3390/ijms23158670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 12/05/2022] Open
Abstract
Increased amyloid beta (Aβ) levels and mitochondrial dysfunction (MD) in the human brain characterize Alzheimer disease (AD). Folic acid, magnesium and vitamin B6 are essential micro-nutrients that may provide neuroprotection. Bioenergetic parameters and amyloid precursor protein (APP) processing products were investigated in vitro in human neuroblastoma SH-SY5Y-APP695 cells, expressing neuronal APP, and in vivo, in the invertebrate Caenorhabditis elegans (CL2006 & GMC101) expressing muscular APP. Model organisms were incubated with either folic acid and magnesium-orotate (ID63) or folic acid, magnesium-orotate and vitamin B6 (ID64) in different concentrations. ID63 and ID64 reduced Aβ, soluble alpha APP (sAPPα), and lactate levels in SH-SY5Y-APP695 cells. The latter might be explained by enhanced expression of lactate dehydrogenase (LDHA). Micronutrient combinations had no effects on mitochondrial parameters in SH-SY5Y-APP695 cells. ID64 showed a significant life-prolonging effect in C. elegans CL2006. Incubation of GMC101 with ID63 significantly lowered Aβ aggregation. Both combinations significantly reduced paralysis and thus improved the phenotype in GMC101. Thus, the combinations of the tested biofactors are effective in pre-clinical models of AD by interfering with Aβ related pathways and glycolysis.
Collapse
|
26
|
Zhang ZP, Bai X, Cui WB, Chen XH, Liu X, Zhi DJ, Zhang ZX, Fei DQ, Wang DS. Diterpenoid Caesalmin C Delays Aβ-Induced Paralysis Symptoms via the DAF-16 Pathway in Caenorhabditis elegans. Int J Mol Sci 2022; 23:ijms23126871. [PMID: 35743309 PMCID: PMC9225120 DOI: 10.3390/ijms23126871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 02/05/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease in the world. However, there is no effective drug to cure it. Caesalmin C is a cassane-type diterpenoid abundant in Caesalpinia bonduc (Linn.) Roxb. In this study, we investigated the effect of caesalmin C on Aβ-induced toxicity and possible mechanisms in the transgenic Caenorhabditis elegans AD model. Our results showed that caesalmin C significantly alleviated the Aβ-induced paralysis phenotype in transgenic CL4176 strain C. elegans. Caesalmin C dramatically reduced the content of Aβ monomers, oligomers, and deposited spots in AD C. elegans. In addition, mRNA levels of sod-3, gst-4, and rpt-3 were up-regulated, and mRNA levels of ace-1 were down-regulated in nematodes treated with caesalmin C. The results of the RNAi assay showed that the inhibitory effect of caesalmin C on the nematode paralysis phenotype required the DAF-16 signaling pathway, but not SKN-1 and HSF-1. Further evidence suggested that caesalmin C may also have the effect of inhibiting acetylcholinesterase (AchE) and upregulating proteasome activity. These findings suggest that caesalmin C delays the progression of AD in C. elegans via the DAF-16 signaling pathway and that it could be developed into a promising medication to treat AD.
Collapse
Affiliation(s)
- Zong-Ping Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Z.-P.Z.); (X.B.); (W.-B.C.); (X.-H.C.); (X.L.); (D.-J.Z.); (Z.-X.Z.)
| | - Xue Bai
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Z.-P.Z.); (X.B.); (W.-B.C.); (X.-H.C.); (X.L.); (D.-J.Z.); (Z.-X.Z.)
| | - Wen-Bo Cui
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Z.-P.Z.); (X.B.); (W.-B.C.); (X.-H.C.); (X.L.); (D.-J.Z.); (Z.-X.Z.)
| | - Xiao-Han Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Z.-P.Z.); (X.B.); (W.-B.C.); (X.-H.C.); (X.L.); (D.-J.Z.); (Z.-X.Z.)
| | - Xu Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Z.-P.Z.); (X.B.); (W.-B.C.); (X.-H.C.); (X.L.); (D.-J.Z.); (Z.-X.Z.)
| | - De-Juan Zhi
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Z.-P.Z.); (X.B.); (W.-B.C.); (X.-H.C.); (X.L.); (D.-J.Z.); (Z.-X.Z.)
| | - Zhan-Xin Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Z.-P.Z.); (X.B.); (W.-B.C.); (X.-H.C.); (X.L.); (D.-J.Z.); (Z.-X.Z.)
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Dong-Qing Fei
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Z.-P.Z.); (X.B.); (W.-B.C.); (X.-H.C.); (X.L.); (D.-J.Z.); (Z.-X.Z.)
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- Correspondence: (D.-Q.F.); (D.-S.W.)
| | - Dong-Sheng Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Z.-P.Z.); (X.B.); (W.-B.C.); (X.-H.C.); (X.L.); (D.-J.Z.); (Z.-X.Z.)
- Correspondence: (D.-Q.F.); (D.-S.W.)
| |
Collapse
|
27
|
Neuroprotective Effects and Therapeutic Potential of the Citrus Flavonoid Hesperetin in Neurodegenerative Diseases. Nutrients 2022; 14:nu14112228. [PMID: 35684025 PMCID: PMC9183194 DOI: 10.3390/nu14112228] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative disorders affect more than fifty million Americans each year and represent serious health threats as the population ages. Neuroinflammation and oxidative stress are critical in the onset, progression, and pathogenesis of neurodegenerative diseases such as Alzheimer’s (AD), Parkinson’s (PD), and amyotrophic lateral sclerosis (ALS). A wide range of natural compounds has been investigated because of their antioxidant, anti-inflammatory, and neuroprotective properties. The citrus flavonoid hesperetin (HPT), an aglycone of hesperidin found in oranges, mandarins, and lemons, has been extensively reported to exert neuroprotective effects in experimental models of neurogenerative diseases. This review has compiled multiple studies on HPT in both in vivo and in vitro models to study neurodegeneration. We focused on the modulatory effects of hesperetin on the release of cellular anti-inflammatory and antioxidative stress mediators. Additionally, this review discusses the hesperetin effect in maintaining the levels of microRNA (miRNA) and modulating autophagy as it relates to hesperetin’s protective mechanisms against neurodegeneration. Moreover, this review is focused on providing experimental data for hesperetin’s potential as a neuroprotective compound and discusses reported evidence that HPT crosses the blood–brain barrier. In summary, this review shows the evidence available in the literature to indicate the efficacy of hesperetin in delaying the onset of neurodegenerative diseases.
Collapse
|
28
|
Andersen N, Veuthey T, Blanco MG, Silbestri GF, Rayes D, De Rosa MJ. 1-Mesityl-3-(3-Sulfonatopropyl) Imidazolium Protects Against Oxidative Stress and Delays Proteotoxicity in C. elegans. Front Pharmacol 2022; 13:908696. [PMID: 35685626 PMCID: PMC9171001 DOI: 10.3389/fphar.2022.908696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/28/2022] [Indexed: 11/20/2022] Open
Abstract
Due to the increase in life expectancy worldwide, age-related disorders such as neurodegenerative diseases (NDs) have become more prevalent. Conventional treatments comprise drugs that only attenuate some of the symptoms, but fail to arrest or delay neuronal proteotoxicity that characterizes these diseases. Due to their diverse biological activities, imidazole rings are intensively explored as powerful scaffolds for the development of new bioactive molecules. By using C. elegans, our work aims to explore novel biological roles for these compounds. To this end, we have tested the in vivo anti-proteotoxic effects of imidazolium salts. Since NDs have been largely linked to impaired antioxidant defense mechanisms, we focused on 1-Mesityl-3-(3-sulfonatopropyl) imidazolium (MSI), one of the imidazolium salts that we identified as capable of improving iron-induced oxidative stress resistance in wild-type animals. By combining mutant and gene expression analysis we have determined that this protective effect depends on the activation of the Heat Shock Transcription Factor (HSF-1), whereas it is independent of other canonical cytoprotective molecules such as abnormal Dauer Formation-16 (DAF-16/FOXO) and Skinhead-1 (SKN-1/Nrf2). To delve deeper into the biological roles of MSI, we analyzed the impact of this compound on previously established C. elegans models of protein aggregation. We found that MSI ameliorates β-amyloid-induced paralysis in worms expressing the pathological protein involved in Alzheimer’s Disease. Moreover, this compound also delays age-related locomotion decline in other proteotoxic C. elegans models, suggesting a broad protective effect. Taken together, our results point to MSI as a promising anti-proteotoxic compound and provide proof of concept of the potential of imidazole derivatives in the development of novel therapies to retard age-related proteotoxic diseases.
Collapse
Affiliation(s)
- Natalia Andersen
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
| | - Tania Veuthey
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
| | - María Gabriela Blanco
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
| | - Gustavo Fabian Silbestri
- Departamento de Química, INQUISUR, Universidad Nacional Del Sur, UNS-CONICET, Bahía Blanca, Argentina
| | - Diego Rayes
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
- *Correspondence: Diego Rayes, ; María José De Rosa,
| | - María José De Rosa
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
- *Correspondence: Diego Rayes, ; María José De Rosa,
| |
Collapse
|
29
|
Navarro-Hortal MD, Romero-Márquez JM, Osta S, Jiménez-Trigo V, Muñoz-Ollero P, Varela-López A. Natural Bioactive Products and Alzheimer’s Disease Pathology: Lessons from Caenorhabditis elegans Transgenic Models. Diseases 2022; 10:diseases10020028. [PMID: 35645249 PMCID: PMC9149938 DOI: 10.3390/diseases10020028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer’s disease (AD) is an age-dependent, progressive disorder affecting millions of people. Currently, the therapeutics for AD only treat the symptoms. Although they have been used to discover new products of interest for this disease, mammalian models used to investigate the molecular determinants of this disease are often prohibitively expensive, time-consuming and very complex. On the other hand, cell cultures lack the organism complexity involved in AD. Given the highly conserved neurological pathways between mammals and invertebrates, Caenorhabditis elegans has emerged as a powerful tool for the investigation of the pathophysiology of human AD. Numerous models of both Tau- and Aβ-induced toxicity, the two prime components observed to correlate with AD pathology and the ease of performing RNA interference for any gene in the C. elegans genome, allow for the identification of multiple therapeutic targets. The effects of many natural products in main AD hallmarks using these models suggest promising health-promoting effects. However, the way in which they exert such effects is not entirely clear. One of the reasons is that various possible therapeutic targets have not been evaluated in many studies. The present review aims to explore shared therapeutical targets and the potential of each of them for AD treatment or prevention.
Collapse
|
30
|
Scuto M, Modafferi S, Rampulla F, Zimbone V, Tomasello M, Spano’ S, Ontario M, Palmeri A, Trovato Salinaro A, Siracusa R, Di Paola R, Cuzzocrea S, Calabrese E, Wenzel U, Calabrese V. Redox modulation of stress resilience by Crocus Sativus L. for potential neuroprotective and anti-neuroinflammatory applications in brain disorders: From molecular basis to therapy. Mech Ageing Dev 2022; 205:111686. [DOI: 10.1016/j.mad.2022.111686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 12/13/2022]
|
31
|
Wang C, Zheng C. Using Caenorhabditis elegans to Model Therapeutic Interventions of Neurodegenerative Diseases Targeting Microbe-Host Interactions. Front Pharmacol 2022; 13:875349. [PMID: 35571084 PMCID: PMC9096141 DOI: 10.3389/fphar.2022.875349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/08/2022] [Indexed: 12/02/2022] Open
Abstract
Emerging evidence from both clinical studies and animal models indicates the importance of the interaction between the gut microbiome and the brain in the pathogenesis of neurodegenerative diseases (NDs). Although how microbes modulate neurodegeneration is still mostly unclear, recent studies have started to probe into the mechanisms for the communication between microbes and hosts in NDs. In this review, we highlight the advantages of using Caenorhabditis elegans (C. elegans) to disentangle the microbe-host interaction that regulates neurodegeneration. We summarize the microbial pro- and anti-neurodegenerative factors identified using the C. elegans ND models and the effects of many are confirmed in mouse models. Specifically, we focused on the role of bacterial amyloid proteins, such as curli, in promoting proteotoxicity and neurodegeneration by cross-seeding the aggregation of endogenous ND-related proteins, such as α-synuclein. Targeting bacterial amyloid production may serve as a novel therapeutic strategy for treating NDs, and several compounds, such as epigallocatechin-3-gallate (EGCG), were shown to suppress neurodegeneration at least partly by inhibiting curli production. Because bacterial amyloid fibrils contribute to biofilm formation, inhibition of amyloid production often leads to the disruption of biofilms. Interestingly, from a list of 59 compounds that showed neuroprotective effects in C. elegans and mouse ND models, we found that about half of them are known to inhibit bacterial growth or biofilm formation, suggesting a strong correlation between the neuroprotective and antibiofilm activities. Whether these potential therapeutics indeed protect neurons from proteotoxicity by inhibiting the cross-seeding between bacterial and human amyloid proteins awaits further investigations. Finally, we propose to screen the long list of antibiofilm agents, both FDA-approved drugs and novel compounds, for their neuroprotective effects and develop new pharmaceuticals that target the gut microbiome for the treatment of NDs. To this end, the C. elegans ND models can serve as a platform for fast, high-throughput, and low-cost drug screens that target the microbe-host interaction in NDs.
Collapse
Affiliation(s)
| | - Chaogu Zheng
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
32
|
Yan L, Vaghari-Tabari M, Malakoti F, Moein S, Qujeq D, Yousefi B, Asemi Z. Quercetin: an effective polyphenol in alleviating diabetes and diabetic complications. Crit Rev Food Sci Nutr 2022; 63:9163-9186. [PMID: 35468007 DOI: 10.1080/10408398.2022.2067825] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Various studies, especially in recent years, have shown that quercetin has beneficial therapeutic effects in various human diseases, including diabetes. Quercetin has significant anti-diabetic effects and may be helpful in lowering blood sugar and increasing insulin sensitivity. Quercetin appears to affect many factors and signaling pathways involved in insulin resistance and the pathogenesis of type 2 of diabetes. TNFα, NFKB, AMPK, AKT, and NRF2 are among the factors that are affected by quercetin. In addition, quercetin can be effective in preventing and ameliorating the diabetic complications, including diabetic nephropathy, cardiovascular complications, neuropathy, delayed wound healing, and retinopathy, and affects the key mechanisms involved in the pathogenesis of these complications. These positive effects of quercetin may be related to its anti-inflammatory and anti-oxidant properties. In this article, after a brief review of the pathogenesis of insulin resistance and type 2 diabetes, we will review the latest findings on the anti-diabetic effects of quercetin with a molecular perspective. Then we will review the effects of quercetin on the key mechanisms of pathogenesis of diabetes complications including nephropathy, cardiovascular complications, neuropathy, delayed wound healing, and retinopathy. Finally, clinical trials investigating the effect of quercetin on diabetes and diabetes complications will be reviewed.
Collapse
Affiliation(s)
- Lei Yan
- Clinical Experimental Centre, Xi'an International Medical Center Hospital, Xi'an, China
- Department of Pre-Clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Malaysia
| | - Mostafa Vaghari-Tabari
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Malakoti
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
33
|
Xu S, Sun Y, Dong X. Design of Gallic Acid-Glutamine Conjugate and Chemical Implications for Its Potency Against Alzheimer's Amyloid-β Fibrillogenesis. Bioconjug Chem 2022; 33:677-690. [PMID: 35380783 DOI: 10.1021/acs.bioconjchem.2c00073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Epigallocatechin-3-gallate (EGCG) has been widely recognized as a potent inhibitor of Alzheimer's amyloid-β (Aβ) fibrillogenesis. We found that gallic acid (GA) has superior inhibitory effects over EGCG at the same mass concentrations and assumed the pivotal role of the carboxyl group in GA. Therefore, we designed five GA-derivatives to investigate the significance of carboxyl groups in modulating Aβ fibrillogenesis, including carboxyl-amidated GA (GA-NH2), GA-glutamic acid conjugate (GA-E), and GA-E derivatives with amidated either of the two carboxyl groups (GA-Q and GA-E-NH2) or with two amidated-carboxyl groups (GA-Q-NH2). Intriguingly, only GA-Q shows significantly stronger potency than GA and extends the life span of the AD transgenic nematode by over 30%. Thermodynamic studies reveal that GA-Q has a strong binding affinity for Aβ42 with two binding sites, one stronger (site 1, Ka1 = 3.1 × 106 M-1) and the other weaker (site 2, Ka2 = 0.8 × 106 M-1). In site 1, hydrogen bonding, electrostatic interactions, and hydrophobic interactions all have contributions, while in site 2, only hydrogen bonding and electrostatic interactions work. The two sites are confirmed by molecular simulations, and the computations specified the key residues. GA-Q has strong binding to Asp23, Gly33, Gly38, Ala30, Ile31, and Leu34 via hydrogen bonding and electrostatic interactions, while it interacts with Phe19, Ala21 Gly25, and Asn27 via hydrophobic interactions. Consequently, GA-Q destroys Asp23-Lys28 salt bridges and restricts β-sheet/bridge structures. The thermodynamic and molecular insight into the GA-Q functions on inhibiting Aβ fibrillogenesis would pave a new way to the design of potent molecules against Alzheimer's amyloid.
Collapse
Affiliation(s)
- Shaoying Xu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| |
Collapse
|
34
|
Targeting autophagy, oxidative stress, and ER stress for neurodegenerative diseases treatment. J Control Release 2022; 345:147-175. [DOI: 10.1016/j.jconrel.2022.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 12/13/2022]
|
35
|
Caruso G, Torrisi SA, Mogavero MP, Currenti W, Castellano S, Godos J, Ferri R, Galvano F, Leggio GM, Grosso G, Caraci F. Polyphenols and neuroprotection: Therapeutic implications for cognitive decline. Pharmacol Ther 2021; 232:108013. [PMID: 34624428 DOI: 10.1016/j.pharmthera.2021.108013] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/07/2021] [Accepted: 09/28/2021] [Indexed: 02/09/2023]
Abstract
Dietary polyphenols have been the focus of major interest for their potential benefits on human health. Several preclinical studies have been conducted to provide a rationale for their potential use as therapeutic agents in preventing or ameliorating cognitive decline. However, results from human studies are scarce and poorly documented. The aim of this review was to discuss the potential mechanisms involved in age-related cognitive decline or early stage cognitive impairment and current evidence from clinical human studies conducted on polyphenols and the aforementioned outcomes. The evidence published so far is encouraging but contrasting findings are to be taken into account. Most studies on anthocyanins showed a consistent positive effect on various cognitive aspects related to aging or early stages of cognitive impairment. Studies on cocoa flavanols, resveratrol, and isoflavones provided substantial contrasting results and further research is needed to clarify the therapeutic potential of these compounds. Results from other studies on quercetin, green tea flavanols, hydroxycinnamic acids (such as chlorogenic acid), curcumin, and olive oil tyrosol and derivatives are rather promising but still too few to provide any real conclusions. Future translational studies are needed to address issues related to dosage, optimal formulations to improve bioavailability, as well as better control for the overall diet, and correct target population.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Sebastiano A Torrisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Maria Paola Mogavero
- Istituti Clinici Scientifici Maugeri, IRCCS, Scientific Institute of Pavia, Pavia, Italy
| | - Walter Currenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Sabrina Castellano
- Department of Educational Sciences, University of Catania, Catania, Italy
| | - Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Fabio Galvano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania, Italy; Oasi Research Institute - IRCCS, Troina, Italy
| |
Collapse
|
36
|
Pérez-Arancibia R, Ordoñez JL, Rivas A, Pihán P, Sagredo A, Ahumada U, Barriga A, Seguel I, Cárdenas C, Vidal RL, Hetz C, Delporte C. A phenolic-rich extract from Ugni molinae berries reduces abnormal protein aggregation in a cellular model of Huntington's disease. PLoS One 2021; 16:e0254834. [PMID: 34324551 PMCID: PMC8320977 DOI: 10.1371/journal.pone.0254834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/02/2021] [Indexed: 12/21/2022] Open
Abstract
Accumulation of misfolded proteins in the brain is a common hallmark of most age-related neurodegenerative diseases. Previous studies from our group identified the presence of anti-inflammatory and antioxidant compounds in leaves derived from the Chilean berry Ugni molinae (murtilla), in addition to show a potent anti-aggregation activity in models of Alzheimer´s disease. However, possible beneficial effects of berry extracts of murtilla was not investigated. Here we evaluated the efficacy of fruit extracts from different genotypes of Chilean-native U. molinae on reducing protein aggregation using cellular models of Huntington´s disease and assess the correlation with their chemical composition. Berry extraction was performed by exhaustive maceration with increasing-polarity solvents. An unbiased automatic microscopy platform was used for cytotoxicity and protein aggregation studies in HEK293 cells using polyglutamine-EGFP fusion proteins, followed by secondary validation using biochemical assays. Phenolic-rich extracts from murtilla berries of the 19-1 genotype (ETE 19-1) significantly reduced polyglutamine peptide aggregation levels, correlating with the modulation in the expression levels of autophagy-related proteins. Using LC-MS and molecular network analysis we correlated the presence of flavonoids, phenolic acids, and ellagitannins with the protective effects of ETE 19-1 effects on protein aggregation. Overall, our results indicate the presence of bioactive components in ethanolic extracts from U. molinae berries that reduce the load of protein aggregates in living cells.
Collapse
Affiliation(s)
- Rodrigo Pérez-Arancibia
- Laboratorio de Productos Naturales, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Instituto de Neurociencia Biomédica (BNI), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Centro FONDAP de Gerociencia, Salud Mental y Metabolismo (GERO), Santiago, Chile
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Jose Luis Ordoñez
- Laboratorio de Productos Naturales, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Laboratorio de Química Inorgánica y Analítica, Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Alexis Rivas
- Instituto de Neurociencia Biomédica (BNI), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Centro FONDAP de Gerociencia, Salud Mental y Metabolismo (GERO), Santiago, Chile
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Philippe Pihán
- Instituto de Neurociencia Biomédica (BNI), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Centro FONDAP de Gerociencia, Salud Mental y Metabolismo (GERO), Santiago, Chile
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Alfredo Sagredo
- Instituto de Neurociencia Biomédica (BNI), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Centro FONDAP de Gerociencia, Salud Mental y Metabolismo (GERO), Santiago, Chile
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Ulises Ahumada
- Centro FONDAP de Gerociencia, Salud Mental y Metabolismo (GERO), Santiago, Chile
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Andrés Barriga
- Unidad de Espectrometría de Masas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Ivette Seguel
- Laboratorio de Productos Naturales, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - César Cárdenas
- Centro FONDAP de Gerociencia, Salud Mental y Metabolismo (GERO), Santiago, Chile
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, United States of America
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Rene L. Vidal
- Instituto de Neurociencia Biomédica (BNI), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Centro FONDAP de Gerociencia, Salud Mental y Metabolismo (GERO), Santiago, Chile
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Claudio Hetz
- Instituto de Neurociencia Biomédica (BNI), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Centro FONDAP de Gerociencia, Salud Mental y Metabolismo (GERO), Santiago, Chile
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Carla Delporte
- Laboratorio de Productos Naturales, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
37
|
Annunziata G, Sureda A, Orhan IE, Battino M, Arnone A, Jiménez-García M, Capó X, Cabot J, Sanadgol N, Giampieri F, Tenore GC, Kashani HRK, Silva AS, Habtemariam S, Nabavi SF, Nabavi SM. The neuroprotective effects of polyphenols, their role in innate immunity and the interplay with the microbiota. Neurosci Biobehav Rev 2021; 128:437-453. [PMID: 34245757 DOI: 10.1016/j.neubiorev.2021.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 05/21/2021] [Accepted: 07/05/2021] [Indexed: 12/19/2022]
Abstract
Neurodegenerative disorders, particularly in the elderly population, represent one of the most pressing social and health-care problems in the world. Besides the well-established role of both oxidative stress and inflammation, alterations of the immune response have been found to be closely linked to the development of neurodegenerative diseases. Interestingly, various scientific evidence reported that an altered gut microbiota composition may contribute to the development of neuroinflammatory disorders. This leads to the proposal of the concept of the gut-brain-immune axis. In this scenario, polyphenols play a pivotal role due to their ability to exert neuroprotective, immunomodulatory and microbiota-remodeling activities. In the present review, we summarized the available literature to provide a scientific evidence regarding this neuroprotective and immunomodulatory effects and the interaction with gut microbiota of polyphenols and, the main signaling pathways involved that can explain their potential therapeutic application in neurodegenerative diseases.
Collapse
Affiliation(s)
- Giuseppe Annunziata
- NutraPharmaLabs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy.
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, E-07122, Palma de Mallorca, Spain; CIBEROBN (Physiopathology of Obesity and Nutrition), Istituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey.
| | - Maurizio Battino
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, Vigo, Spain; Dept of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.
| | - Angela Arnone
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy.
| | - Manuel Jiménez-García
- Laboratory of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, E-07122, Palma de Mallorca, Spain.
| | - Xavier Capó
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, E-07122, Palma de Mallorca, Spain.
| | - Joan Cabot
- Biology Department, University of Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, E-07122 Palma de Mallorca, Spain.
| | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran; Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil.
| | - Francesca Giampieri
- Department of Odontostomatologic and Specialized Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy; Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Gian Carlo Tenore
- NutraPharmaLabs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy.
| | | | - Ana Sanches Silva
- National Institute of Agrarian and Veterinary Research (INIAV), Rua dos Lágidos, Lugar da Madalena, Vairão, Vila do Conde, Oporto, 4485-655, Portugal; Center for Study in Animal Science (CECA), ICETA, University of Oporto, Oporto, Portugal.
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Central Avenue, Charham-Maritime, Kent, ME4 4TB, UK.
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
38
|
Islam MS, Quispe C, Hossain R, Islam MT, Al-Harrasi A, Al-Rawahi A, Martorell M, Mamurova A, Seilkhan A, Altybaeva N, Abdullayeva B, Docea AO, Calina D, Sharifi-Rad J. Neuropharmacological Effects of Quercetin: A Literature-Based Review. Front Pharmacol 2021; 12:665031. [PMID: 34220504 PMCID: PMC8248808 DOI: 10.3389/fphar.2021.665031] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022] Open
Abstract
Quercetin (QUR) is a natural bioactive flavonoid that has been lately very studied for its beneficial properties in many pathologies. Its neuroprotective effects have been demonstrated in many in vitro studies, as well as in vivo animal experiments and human trials. QUR protects the organism against neurotoxic chemicals and also can prevent the evolution and development of neuronal injury and neurodegeneration. The present work aimed to summarize the literature about the neuroprotective effect of QUR using known database sources. Besides, this review focuses on the assessment of the potential utilization of QUR as a complementary or alternative medicine for preventing and treating neurodegenerative diseases. An up-to-date search was conducted in PubMed, Science Direct and Google Scholar for published work dealing with the neuroprotective effects of QUR against neurotoxic chemicals or in neuronal injury, and in the treatment of neurodegenerative diseases. Findings suggest that QUR possess neuropharmacological protective effects in neurodegenerative brain disorders such as Alzheimer’s disease, Amyloid β peptide, Parkinson’s disease, Huntington's disease, multiple sclerosis, and amyotrophic lateral sclerosis. In summary, this review emphasizes the neuroprotective effects of QUR and its advantages in being used in complementary medicine for the prevention and treatment o of different neurodegenerative diseases.
Collapse
Affiliation(s)
- Md Shahazul Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Cristina Quispe
- Facultad de Ciencias de La Salud, Universidad Arturo Prat, Iquique, Chile
| | - Rajib Hossain
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Rawahi
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, Centre for Healthy Living, University of Concepción, Concepción, Chile
| | - Assem Mamurova
- Department of Biodiversity of Bioresources, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Ainur Seilkhan
- Educational program, Geography, Environment and Service sector, Abai Kazakh National Pedagogical University, Kazakhstan, Almaty, Kazakhstan.,Biomedical Research Centre, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Nazgul Altybaeva
- Department of Molecular Biology and Genetics, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Bagila Abdullayeva
- Department of Biodiversity of Bioresources, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Jalloh A, Flowers A, Hudson C, Chaput D, Guergues J, Stevens SM, Bickford PC. Polyphenol Supplementation Reverses Age-Related Changes in Microglial Signaling Cascades. Int J Mol Sci 2021; 22:6373. [PMID: 34198710 PMCID: PMC8232085 DOI: 10.3390/ijms22126373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 12/24/2022] Open
Abstract
Microglial activity in the aging neuroimmune system is a central player in aging-related dysfunction. Aging alters microglial function via shifts in protein signaling cascades. These shifts can propagate neurodegenerative pathology. Therapeutics require a multifaceted approach to understand and address the stochastic nature of this process. Polyphenols offer one such means of rectifying age-related decline. Our group used mass spectrometry (MS) analysis to explicate the complex nature of these aging microglial pathways. In our first experiment, we compared primary microglia isolated from young and aged rats and identified 197 significantly differentially expressed proteins between these groups. Then, we performed bioinformatic analysis to explore differences in canonical signaling cascades related to microglial homeostasis and function with age. In a second experiment, we investigated changes to these pathways in aged animals after 30-day dietary supplementation with NT-020, which is a blend of polyphenols. We identified 144 differentially expressed proteins between the NT-020 group and the control diet group via MS analysis. Bioinformatic analysis predicted an NT-020 driven reversal in the upregulation of age-related canonical pathways that control inflammation, cellular metabolism, and proteostasis. Our results highlight salient aspects of microglial aging at the level of protein interactions and demonstrate a potential role of polyphenols as therapeutics for age-associated dysfunction.
Collapse
Affiliation(s)
- Ahmad Jalloh
- Center of Excellence for Aging and Brain Repair, Departments of Neurosurgery and Brain Repair, and Molecular Pharmacology and Physiology, USF Morsani College of Medicine, 12901 Bruce B. Downs Blvd, MDC 78, Tampa, FL 33612, USA; (A.J.); (A.F.)
| | - Antwoine Flowers
- Center of Excellence for Aging and Brain Repair, Departments of Neurosurgery and Brain Repair, and Molecular Pharmacology and Physiology, USF Morsani College of Medicine, 12901 Bruce B. Downs Blvd, MDC 78, Tampa, FL 33612, USA; (A.J.); (A.F.)
| | - Charles Hudson
- Research Service, James A Haley VA Hospital, Tampa, FL 33620, USA;
| | - Dale Chaput
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA; (D.C.); (J.G.); (S.M.S.J.)
| | - Jennifer Guergues
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA; (D.C.); (J.G.); (S.M.S.J.)
| | - Stanley M. Stevens
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA; (D.C.); (J.G.); (S.M.S.J.)
| | - Paula C. Bickford
- Center of Excellence for Aging and Brain Repair, Departments of Neurosurgery and Brain Repair, and Molecular Pharmacology and Physiology, USF Morsani College of Medicine, 12901 Bruce B. Downs Blvd, MDC 78, Tampa, FL 33612, USA; (A.J.); (A.F.)
- Research Service, James A Haley VA Hospital, Tampa, FL 33620, USA;
| |
Collapse
|
40
|
Nargeh H, Aliabadi F, Ajami M, Pazoki-Toroudi H. Role of Polyphenols on Gut Microbiota and the Ubiquitin-Proteasome System in Neurodegenerative Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6119-6144. [PMID: 34038102 DOI: 10.1021/acs.jafc.1c00923] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Today, neurodegenerative diseases have become a remarkable public health challenge due to their direct relation with aging. Accordingly, understanding the molecular and cellular mechanisms occurring in the pathogenesis of them is essential. Both protein aggregations as a result of the ubiquitin-proteasome system (UPS) inefficiency and gut microbiota alternation are the main pathogenic hallmarks. Polyphenols upregulating this system may decrease the developing rate of neurodegenerative diseases. Most of the dietary intake of polyphenols is converted into other microbial metabolites, which have completely different biological properties from the original polyphenols and should be thoroughly investigated. Herein, several prevalent neurodegenerative diseases are pinpointed to explain the role of gut microbiota alternations and the role of molecular changes, especially UPS down-regulation in their pathogenesis. Some of the most important polyphenols found in our diet are explained along with their microbial metabolites in the body.
Collapse
Affiliation(s)
- Hanieh Nargeh
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1417466191, Iran
| | - Fatemeh Aliabadi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
| | - Marjan Ajami
- Faculty of Nutrition Sciences & Food Technology, Shahid Beheshti University of Medical Sciences, 7th Floor, Bldg No. 2 SBUMS, Arabi Avenue, Daneshjoo Boulevard, Velenjak, Tehran 19839-63113, Iran
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Department of Physiology and Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
| |
Collapse
|
41
|
Pharmacological Potentiality of Bioactive Flavonoid against Ketamine Induced Cell Death of PC 12 Cell Lines: An In Vitro Study. Antioxidants (Basel) 2021; 10:antiox10060934. [PMID: 34207728 PMCID: PMC8230239 DOI: 10.3390/antiox10060934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
During the past few years, there has been exponential growth in the field of ethnopharmacology in the treatment of different human ailments, including neurological disorders. In our previous study, we isolated, characterized, and reported a novel bioactive compound with therapeutic efficacy in vivo, which was used in the current study. This study was designed to investigate the pharmacological effect and therapeutic mechanism of the natural plant compound 3-(3,4-dimethoxy phenyl)-1-(4-methoxy phenyl)prop-2-en-1-one against ketamine-induced toxicity in PC 12 cell lines. Cell death was induced in PC 12 cell lines by incubating with ketamine, and the protection offered by the compound at different concentrations was studied during pretreatment. The therapeutic efficacy was screened through MTT assay, LDH assay, DCF-DA assay, clonogenic assay, RT-PCR, and densitometric analysis. The bioactive compound caused a significant elevation in cell viability up to approximately 80%, down-regulation of cell damage, reduction in free radical damage caused by intracellular reactive oxygen species, and up-regulation of cell survival ability, which was dysregulated during ketamine induction. In addition, RT-PCR analysis of DOPA-related genes suggests that the compound exerted significant inhibition in the expression of these genes, which were overexpressed during ketamine induction. The current findings provide new insight into the neuroprotective mediation of bioactive factors as a prospective therapy for neurological disorders.
Collapse
|
42
|
Yen PL, How CM, Hsiu-Chuan Liao V. Early-life and chronic exposure to di(2-ethylhexyl) phthalate enhances amyloid-β toxicity associated with an autophagy-related gene in Caenorhabditis elegans Alzheimer's disease models. CHEMOSPHERE 2021; 273:128594. [PMID: 33066971 DOI: 10.1016/j.chemosphere.2020.128594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/18/2020] [Accepted: 10/07/2020] [Indexed: 05/23/2023]
Abstract
The widespread use of di(2-ethylhexyl) phthalate (DEHP) has resulted in its ubiquitous presence in the environment, which has led to serious health concerns. One of these concerns is its possible link to Alzheimer's disease (AD), which is the most common neurodegenerative disease in aged individuals. This study investigated whether early-life and chronic exposure to DEHP affects AD via the toxicity of amyloid-β (Aβ), which has been implicated in the pathogenesis of AD, using Caenorhabditis elegans AD models (strains CL4176 and CL2006). We show that early-life DEHP exposure increased Aβ toxicity in C. elegans strains CL4176 and CL2006. Early-life and chronic exposure to DEHP also significantly increased intracellular ROS levels and Aβ deposition in aged CL2006 nematodes. Moreover, it was found that DEHP-induced Aβ toxicity does not require transcription factors DAF-16 or SKN-1, while early-life and chronic exposure to DEHP significantly increased the accumulation of lysosome-related organelles and the mRNA levels of the autophagy-related gene bec-1 in aged CL2006 nematodes. Our findings suggest that early-life and chronic exposure to DEHP enhances Aβ toxicity, which may be associated with the autophagy-lysosomal degradation pathway in C. elegans.
Collapse
Affiliation(s)
- Pei-Ling Yen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Chun Ming How
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
43
|
Mechanistic insights and perspectives involved in neuroprotective action of quercetin. Biomed Pharmacother 2021; 140:111729. [PMID: 34044274 DOI: 10.1016/j.biopha.2021.111729] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative diseases (NDDs) are the primary cause of disabilities in the elderly people. Growing evidence indicates that oxidative stress, mitochondrial dysfunction, neuroinflammation and apoptosis are associated with aging and the basis of most neurodegenerative disorders. Quercetin is a flavonoid with significant pharmacological effects and promising therapeutic potential. It is widely distributed among plants and typically found in daily diets mainly in fruits and vegetables. It shows a number of biological properties connected to its antioxidant activity. Neuroprotection by quercetin has been reported in many in vitro as well as in in vivo studies. However, the exact mechanism of action is still mystery and similarly there are a number of hypothesis exploring the mechanism of neuroprotection. Quercetin enhances neuronal longevity and neurogenesis by modulating and inhibiting wide number of pathways. This review assesses the food sources of quercetin, its pharmacokinetic profile, structure activity relationship and its pathophysiological role in various NDDs and it also provides a synopsis of the literature exploring the relationship between quercetin and various downstream signalling pathways modulated by quercetin for neuroprotection for eg. nuclear factor erythroid 2-related factor 2 (Nrf2), Paraoxonase-2 (PON2), c-Jun N-terminal kinase (JNK), Tumour Necrosis Factor alpha (TNF-α), Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha (PGC-1α), Sirtuins, Mitogen-activated protein kinases (MAPKs) signalling cascades, CREB (Cyclic AMP response element binding protein) and Phosphoinositide 3- kinase(PI3K/Akt). Therefore, the aim of the present review was to elaborate on the cellular and molecular mechanisms of the quercetin involved in the protection against NDDs.
Collapse
|
44
|
Yuan X, Wang Z, Zhang L, Sui R, Khan S. Exploring the inhibitory effects of liquiritigenin against tau fibrillation and related neurotoxicity as a model of preventive care in Alzheimer's disease. Int J Biol Macromol 2021; 183:1184-1190. [PMID: 33965487 DOI: 10.1016/j.ijbiomac.2021.05.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/18/2021] [Accepted: 05/03/2021] [Indexed: 01/12/2023]
Abstract
Aggregation of tau protein into the form of insoluble amyloid fibrils is linked with Alzheimer's disease. The identification of potential small molecules that can inhibit tau protein from undergoing aggregation has received a great deal of interest, recently. In the present study, the possible inhibitory effects of liquiritigenin as a member of chiral flavanone family on tau amyloid fibrils formation and their resulting neurotoxicity were assessed by different biophysical and cellular assays. The inhibitory effect of the liquiritigenin against tau amyloid formation was investigated using thioflavin T (ThT) and 1-Anilino-8-naphthalene sulfonate (ANS) fluorescence spectroscopy, Congo red (CR) binding assays, transmission electron microscopy (TEM) analysis, and circular dichroism (CD) spectroscopy. Neurotoxicity assays were also performed against neuron-like cells (SH-SY5Y) using 3-(4,5-Dimethylthiazol)-2,5-diphenyltetrazolium bromide (MTT) reduction, reactive oxygen species (ROS), catalase (CAT) and caspase-3 activity measurements. We found that liquiritigenin served as an efficient inhibitor of tau amyloid fibrils formation through prevention of structural transition in tau structure, exposure of hydrophobic patches and their associated neurotoxicity mediated by decrease in the production of ROS and caspase-3 activity and elevation of CAT activity. These data may finally find applications in the development of promising inhibitors against amyloid fibril formation and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Xueling Yuan
- Department of Neurology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121099, China
| | - Zhuo Wang
- School of Nursing, Jinzhou Medical University, Jinzhou 121099, China
| | - Lei Zhang
- School of Nursing, Jinzhou Medical University, Jinzhou 121099, China
| | - Rubo Sui
- Department of Neurology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121099, China.
| | - Suliman Khan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
45
|
Mao XY, Yin XX, Guan QW, Xia QX, Yang N, Zhou HH, Liu ZQ, Jin WL. Dietary nutrition for neurological disease therapy: Current status and future directions. Pharmacol Ther 2021; 226:107861. [PMID: 33901506 DOI: 10.1016/j.pharmthera.2021.107861] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023]
Abstract
Adequate food intake and relative abundance of dietary nutrients have undisputed effects on the brain function. There is now substantial evidence that dietary nutrition aids in the prevention and remediation of neurologic symptoms in diverse pathological conditions. The newly described influences of dietary factors on the alterations of mitochondrial dysfunction, epigenetic modification and neuroinflammation are important mechanisms that are responsible for the action of nutrients on the brain health. In this review, we discuss the state of evidence supporting that distinct dietary interventions including dietary supplement and dietary restriction have the ability to tackle neurological disorders using Alzheimer's disease, Parkinson's disease, stroke, epilepsy, traumatic brain injury, amyotrophic lateral sclerosis, Huntington's disease and multiple sclerosis as examples. Additionally, it is also highlighting that diverse potential mechanisms such as metabolic control, epigenetic modification, neuroinflammation and gut-brain axis are of utmost importance for nutrient supply to the risk of neurologic condition and therapeutic response. Finally, we also highlight the novel concept that dietary nutrient intervention reshapes metabolism-epigenetics-immunity cycle to remediate brain dysfunction. Targeting metabolism-epigenetics-immunity network will delineate a new blueprint for combating neurological weaknesses.
Collapse
Affiliation(s)
- Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China.
| | - Xi-Xi Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Qi-Wen Guan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Qin-Xuan Xia
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Nan Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China.
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
46
|
Tangrodchanapong T, Sornkaew N, Yurasakpong L, Niamnont N, Nantasenamat C, Sobhon P, Meemon K. Beneficial Effects of Cyclic Ether 2-Butoxytetrahydrofuran from Sea Cucumber Holothuria scabra against Aβ Aggregate Toxicity in Transgenic Caenorhabditis elegans and Potential Chemical Interaction. Molecules 2021; 26:molecules26082195. [PMID: 33920352 PMCID: PMC8070609 DOI: 10.3390/molecules26082195] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 12/24/2022] Open
Abstract
The pathological finding of amyloid-β (Aβ) aggregates is thought to be a leading cause of untreated Alzheimer’s disease (AD). In this study, we isolated 2-butoxytetrahydrofuran (2-BTHF), a small cyclic ether, from Holothuria scabra and demonstrated its therapeutic potential against AD through the attenuation of Aβ aggregation in a transgenic Caenorhabditis elegans model. Our results revealed that amongst the five H. scabra isolated compounds, 2-BTHF was shown to be the most effective in suppressing worm paralysis caused by Aβ toxicity and in expressing strong neuroprotection in CL4176 and CL2355 strains, respectively. An immunoblot analysis showed that CL4176 and CL2006 treated with 2-BTHF showed no effect on the level of Aβ monomers but significantly reduced the toxic oligomeric form and the amount of 1,4-bis(3-carboxy-hydroxy-phenylethenyl)-benzene (X-34)-positive fibril deposits. This concurrently occurred with a reduction of reactive oxygen species (ROS) in the treated CL4176 worms. Mechanistically, heat shock factor 1 (HSF-1) (at residues histidine 63 (HIS63) and glutamine 72 (GLN72)) was shown to be 2-BTHF’s potential target that might contribute to an increased expression of autophagy-related genes required for the breakdown of the Aβ aggregate, thus attenuating its toxicity. In conclusion, 2-BTHF from H. scabra could protect C. elegans from Aβ toxicity by suppressing its aggregation via an HSF-1-regulated autophagic pathway and has been implicated as a potential drug for AD.
Collapse
Affiliation(s)
- Taweesak Tangrodchanapong
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (T.T.); (L.Y.); (P.S.)
| | - Nilubon Sornkaew
- Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand; (N.S.); (N.N.)
| | - Laphatrada Yurasakpong
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (T.T.); (L.Y.); (P.S.)
| | - Nakorn Niamnont
- Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand; (N.S.); (N.N.)
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand;
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (T.T.); (L.Y.); (P.S.)
| | - Krai Meemon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (T.T.); (L.Y.); (P.S.)
- Correspondence: or ; Tel.: +66-22-015-407
| |
Collapse
|
47
|
Liu YG, Li B, Fu Q, Zhang XM, Ma FY, Hu Y. Miracle Fruit Leaf Extract: Antioxidant Activity Evaluation, Constituent Identification, and Medical Applications. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1854277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yu-Ge Liu
- Key Laboratory of Tropical Fruit Biology of Ministry of Agriculture, The South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang, China
| | - Boyan Li
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health/School of Food Science, Guizhou Medical University, Guiyang, China
| | - Qiong Fu
- Key Laboratory of Tropical Fruit Biology of Ministry of Agriculture, The South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang, China
| | - Xiu-Mei Zhang
- Key Laboratory of Tropical Fruit Biology of Ministry of Agriculture, The South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang, China
| | - Fei-Yue Ma
- Key Laboratory of Tropical Fruit Biology of Ministry of Agriculture, The South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang, China
| | - Yun Hu
- Technology Center, China Tobacco Guizhou Industrial Co. Ltd, Guiyang, China
| |
Collapse
|
48
|
Jara-Moreno D, Riveros AL, Barriga A, Kogan MJ, Delporte C. Inhibition of β-amyloid Aggregation of Ugni molinae Extracts. Curr Pharm Des 2020; 26:1365-1376. [PMID: 31931693 DOI: 10.2174/1381612826666200113160840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022]
Abstract
The β-amyloid peptide (1-42) is a molecule capable of aggregating into neurotoxic structures that have been implicated as potential etiological factors of Alzheimer's Disease. The aim of this study was to evaluate the inhibition of β-amyloid aggregation of ethyl acetate and ethanolic extracts obtained from Ugni molinae leaves on neurotoxic actions of β-amyloid aggregates. Chemical analyses were carried out with the extracts in order to determine their phenolic profile and its quantification. Both extracts showed a tendency to reduce neuronal deaths caused by β-amyloid. This tendency was inversely proportional to the evaluated concentrations. Moreover, the effect of EAE and ETE on β-amyloid aggregation was studied by fluorimetric T Thioflavin assay and transmission electronic microscopy (TEM); the extracts showed a modulation in the aggregation process. Partly, it is believed that these effects can be attributed to the polyphenolic compounds present in the extracts.
Collapse
Affiliation(s)
- Daniela Jara-Moreno
- Laboratorio de Productos Naturales, Departamento de Quimica Farmacologica y Toxicologica, Facultad de Ciencias Quimicas y Farmaceuticas, Universidad de Chile. Sergio Livingston 1007, Santiago 8380492, Chile.,Laboratorio de Nanobiotecnología y Nanotoxicología, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile. Sergio Livingston 1007, Santiago 8380492, Chile.,Centro Avanzado de Enfermedades Crónicas (ACCDIs), Universidad de Chile. Sergio Livingston 1007, Santiago 8380492, Chile
| | - Ana L Riveros
- Laboratorio de Nanobiotecnología y Nanotoxicología, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile. Sergio Livingston 1007, Santiago 8380492, Chile.,Centro Avanzado de Enfermedades Crónicas (ACCDIs), Universidad de Chile. Sergio Livingston 1007, Santiago 8380492, Chile
| | - Andrés Barriga
- Unidad de espectrometria de masas, Facultad de Ciencias Quimicas y Farmaceuticas, Universidad de Chile. Sergio Livingston 1007, Santiago 8380492, Chile
| | - Marcelo J Kogan
- Laboratorio de Nanobiotecnología y Nanotoxicología, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile. Sergio Livingston 1007, Santiago 8380492, Chile.,Centro Avanzado de Enfermedades Crónicas (ACCDIs), Universidad de Chile. Sergio Livingston 1007, Santiago 8380492, Chile
| | - Carla Delporte
- Laboratorio de Productos Naturales, Departamento de Quimica Farmacologica y Toxicologica, Facultad de Ciencias Quimicas y Farmaceuticas, Universidad de Chile. Sergio Livingston 1007, Santiago 8380492, Chile
| |
Collapse
|
49
|
Abstract
Alzheimer's disease (AD) is a form of dementia with high impact worldwide, accounting with more than 46 million cases. It is estimated that the number of patients will be four times higher in 2050. The initial symptoms of AD are almost imperceptible and typically involve lapses of memory in recent events. However, the available medicines still focus on controlling the symptoms and do not cure the disease. Regarding the advances in the discovery of new treatments for this devastating disease, natural compounds are gaining increasing relevance in the treatment of AD. Nevertheless, they present some limiting characteristics such as the low bioavailability and the low ability to cross the blood-brain barrier (BBB) that hinder the development of effective therapies. To overcome these issues, the delivery of natural products by targeting nanocarriers has aroused a great interest, improving the therapeutic activity of these molecules. In this article, a review of the research progress on drug delivery systems (DDS) to improve the therapeutic activity of natural compounds with neuroprotective effects for AD is presented. Graphical abstract.
Collapse
|
50
|
Role of Flavonoids in The Interactions among Obesity, Inflammation, and Autophagy. Pharmaceuticals (Basel) 2020; 13:ph13110342. [PMID: 33114725 PMCID: PMC7692407 DOI: 10.3390/ph13110342] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/19/2022] Open
Abstract
Nowadays, obesity is considered as one of the main concerns for public health worldwide, since it encompasses up to 39% of overweight and 13% obese (WHO) adults. It develops because of the imbalance in the energy intake/expenditure ratio, which leads to excess nutrients and results in dysfunction of adipose tissue. The hypertrophy of adipocytes and the nutrients excess trigger the induction of inflammatory signaling through various pathways, among others, an increase in the expression of pro-inflammatory adipocytokines, and stress of the endoplasmic reticulum (ER). A better understanding of obesity and preventing its complications are beneficial for obese patients on two facets: treating obesity, and treating and preventing the pathologies associated with it. Hitherto, therapeutic itineraries in most cases are based on lifestyle modifications, bariatric surgery, and pharmacotherapy despite none of them have achieved optimal results. Therefore, diet can play an important role in the prevention of adiposity, as well as the associated disorders. Recent results have shown that flavonoids intake have an essential role in protecting against oxidative damage phenomena, and presents biochemical and pharmacological functions beneficial to human health. This review summarizes the current knowledge of the anti-inflammatory actions and autophagic flux of natural flavonoids, and their molecular mechanisms for preventing and/or treating obesity.
Collapse
|