1
|
Joković N, Pešić S, Vitorović J, Bogdanović A, Sharifi-Rad J, Calina D. Glucosinolates and Their Hydrolytic Derivatives: Promising Phytochemicals With Anticancer Potential. Phytother Res 2024. [PMID: 39726346 DOI: 10.1002/ptr.8419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/29/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Recent research has increasingly focused on phytochemicals as promising anticancer agents, with glucosinolates (GSLs) and their hydrolytic derivatives playing a central role. These sulfur-containing compounds, found in plants of the Brassicales order, are converted by myrosinase enzymes into biologically active products, primarily isothiocyanates (ITCs) and indoles, which exhibit significant anticancer properties. Indole-3-carbinol, diindolylmethane, sulforaphane (SFN), phenethyl isothiocyanate (PEITC), benzyl isothiocyanate, and allyl isothiocyanate have shown potent anticancer effects in animal models, particularly in breast, prostate, lung, melanoma, bladder, hepatoma, and gastrointestinal cancers. Clinical studies further support the chemopreventive effects of SFN and PEITC, particularly in detoxifying carcinogens and altering biochemical markers in cancer patients. These compounds have demonstrated good bioavailability, low toxicity, and minimal adverse effects, supporting their potential therapeutic application. Their anticancer mechanisms include the modulation of reactive oxygen species, suppression of cancer-related signaling pathways, and direct interaction with tumor cell proteins. Additionally, semi-synthetic derivatives of GSLs have been developed to enhance anticancer efficacy. In conclusion, GSLs and their derivatives offer significant potential as both chemopreventive and therapeutic agents, warranting further clinical investigation to optimize their application in cancer treatment.
Collapse
Affiliation(s)
- Nataša Joković
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Strahinja Pešić
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Jelena Vitorović
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Andrija Bogdanović
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, Ecuador
- Department of Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
2
|
Jordan Chou P, Mary Peter R, Shannar A, Pan Y, Dushyant Dave P, Xu J, Shahid Sarwar M, Kong AN. Epigenetics of Dietary Phytochemicals in Cancer Prevention: Fact or Fiction. Cancer J 2024; 30:320-328. [PMID: 39312452 PMCID: PMC11573353 DOI: 10.1097/ppo.0000000000000742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
ABSTRACT Cancer development takes 10 to 50 years, and epigenetics plays an important role. Recent evidence suggests that ~80% of human cancers are linked to environmental factors impinging upon genetics/epigenetics. Because advanced metastasized cancers are resistant to radiation/chemotherapeutic drugs, cancer prevention by relatively nontoxic "epigenetic modifiers" will be logical. Many dietary phytochemicals possess powerful antioxidant and anti-inflammatory properties that are hallmarks of cancer prevention. Dietary phytochemicals can regulate gene expression of the cellular genome via epigenetic mechanisms. In this review, we will summarize preclinical studies that demonstrate epigenetic mechanisms of dietary phytochemicals in skin, colorectal, and prostate cancer prevention. Key examples of the importance of epigenetic regulation in carcinogenesis include hypermethylation of the NRF2 promoter region in cancer cells, resulting in inhibition of NRF2-ARE signaling. Many dietary phytochemicals demethylate NRF2 promoter region and restore NRF2 signaling. Phytochemicals can also inhibit inflammatory responses via hypermethylation of inflammation-relevant genes to block gene expression. Altogether, dietary phytochemicals are excellent candidates for cancer prevention due to their low toxicity, potent antioxidant and anti-inflammatory properties, and powerful epigenetic effects in reversing procarcinogenic events.
Collapse
Affiliation(s)
- PoChung Jordan Chou
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Rebecca Mary Peter
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ahmad Shannar
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yuxin Pan
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Parv Dushyant Dave
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jiawei Xu
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Md Shahid Sarwar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
3
|
Hu B, Wang H, Liang H, Ma N, Wu D, Zhao R, Lv H, Xiao Z. Multiple effects of spicy flavors on neurological diseases through the intervention of TRPV1: a critical review. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 39041177 DOI: 10.1080/10408398.2024.2381689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The spicy properties of foods are contributed by various spicy flavor substances (SFs) such as capsaicin, piperine, and allicin. Beyond their distinctive sensory characteristics, SFs also influence health conditions and numerous studies have associated spicy flavors with disease treatment. In this review, we enumerate different types of SFs and describe their role in food processing, with a specific emphasis on critically examining their influence on human wellness. Particularly, detailed insights into the mechanisms through which SFs enhance physiological balance and alleviate neurological diseases are provided, and a systematic analysis of the significance of transient receptor potential vanilloid type-1 (TRPV1) in regulating metabolism and nervous system homeostasis is presented. Moreover, enhancing the accessibility and utilization of SFs can potentially amplify the physiological effects. This review aims to provide compelling evidence for the integration of food flavor and human health.
Collapse
Affiliation(s)
- Boyong Hu
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Heng Wang
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Liang
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ning Ma
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Diyi Wu
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ruotong Zhao
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Haoming Lv
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zuobing Xiao
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Du J, Zhang Y, Chen J, Jin L, Pan L, Lei P, Lin S. Phenethyl isothiocyanate inhibits the carcinogenic properties of hepatocellular carcinoma Huh7.5.1 cells by activating MAPK/PI3K-Akt/p53 signaling pathways. PeerJ 2024; 12:e17532. [PMID: 38873643 PMCID: PMC11172670 DOI: 10.7717/peerj.17532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is an aggressive malignancy with limited effective treatment options. Phenethyl isothiocyanate (PEITC) is a bioactive substance present primarily in the cruciferous vegetables. PEITC has exhibited anti-cancer properties in various cancers, including lung, bile duct, and prostate cancers. It has been demonstrated that PEITC can inhibit the proliferation, invasion, and metastasis of SK-Hep1 cells, while effectively inducing apoptosis and cell cycle arrest in HepG2 cells. However, knowledge of its anti-carcinogenic effects on Huh7.5.1 cells and its underlying mechanism remains elusive. In the present study, we aim to evaluate the anti-carcinogenic effects of PEITC on human HCC Huh7.5.1 cells. Methods MTT assay and colony formation assay was performed to investigate the anti-proliferative effects of PEITC against Huh7.5.1 cells. The pro-apoptosis effects of PEITC were determined by Annexin V-FITC/PI double staining assay by flow cytometry (FCM), mitochondrial transmembrane potential (MMP) measurement, and Caspase-3 activity detection. A DAPI staining and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay was conducted to estimate the DNA damage in Huh7.5.1 cells induced by PEITC. Cell cycle progression was determined by FCM. Transwell invasion assay and wound healing migration assay were performed to investigate the impact of PEITC on the migration and invasion of Huh7.5.1 cells. In addition, transcriptome sequencing and gene set enrichment analysis (GSEA) were used to explore the potential molecular mechanisms of the inhibitory effects of PEITC on HCC. Quantitative real-time PCR (qRT-PCR) analysis was performed to verify the transcriptome data. Results MTT assay showed that treatment of Huh7.5.1 cells with PEITC resulted in a dose-dependent decrease in viability, and colony formation assay further confirmed its anti-proliferative effect. Furthermore, we found that PEITC could induce mitochondrial-related apoptotic responses, including a decrease of mitochondrial transmembrane potential, activation of Caspase-3 activity, and generation of intracellular reactive oxygen species. It was also observed that PEITC caused DNA damage and cell cycle arrest in the S-phase in Huh7.5.1 cells. In addition, the inhibitory effect of PEITC on the migration and invasion ability of Huh7.5.1 cells was assessed. Transcriptome sequencing analysis further suggested that PEITC could activate the typical MAPK, PI3K-Akt, and p53 signaling pathways, revealing the potential mechanism of PEITC in inhibiting the carcinogenic properties of Huh7.5.1 cells. Conclusion PEITC exhibits anti-carcinogenic activities against human HCC Huh7.5.1 cells by activating MAPK/PI3K-Akt/p53 signaling pathways. Our results suggest that PEITC may be useful for the anti-HCC treatment.
Collapse
Affiliation(s)
- Jiao Du
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Yuting Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Jiajia Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Libo Jin
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| | - Liying Pan
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Pengyu Lei
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Sue Lin
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| |
Collapse
|
5
|
Khan A, Khan A, Khan MA, Malik Z, Massey S, Parveen R, Mustafa S, Shamsi A, Husain SA. Phytocompounds targeting epigenetic modulations: an assessment in cancer. Front Pharmacol 2024; 14:1273993. [PMID: 38596245 PMCID: PMC11002180 DOI: 10.3389/fphar.2023.1273993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/09/2023] [Indexed: 04/11/2024] Open
Abstract
For centuries, plants have been serving as sources of potential therapeutic agents. In recent years, there has been a growing interest in investigating the effects of plant-derived compounds on epigenetic processes, a novel and captivating Frontier in the field of epigenetics research. Epigenetic changes encompass modifications to DNA, histones, and microRNAs that can influence gene expression. Aberrant epigenetic changes can perturb key cellular processes, including cell cycle control, intercellular communication, DNA repair, inflammation, stress response, and apoptosis. Such disruptions can contribute to cancer development by altering the expression of genes involved in tumorigenesis. However, these modifications are reversible, offering a unique avenue for therapeutic intervention. Plant secondary compounds, including terpenes, phenolics, terpenoids, and sulfur-containing compounds are widely found in grains, vegetables, spices, fruits, and medicinal plants. Numerous plant-derived compounds have demonstrated the potential to target these abnormal epigenetic modifications, including apigenin (histone acetylation), berberine (DNA methylation), curcumin (histone acetylation and epi-miRs), genistein (histone acetylation and DNA methylation), lycopene (epi-miRs), quercetin (DNA methylation and epi-miRs), etc. This comprehensive review highlights these abnormal epigenetic alterations and discusses the promising efficacy of plant-derived compounds in mitigating these deleterious epigenetic signatures in human cancer. Furthermore, it addresses ongoing clinical investigations to evaluate the therapeutic potential of these phytocompounds in cancer treatment, along with their limitations and challenges.
Collapse
Affiliation(s)
- Aqsa Khan
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Asifa Khan
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Mohammad Aasif Khan
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
- Department of Radiation Oncology, The University of Texas Health Science Centre at San Antonio, San Antonio, TX, United States
| | - Zoya Malik
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Sheersh Massey
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Rabea Parveen
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Saad Mustafa
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Anas Shamsi
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Syed A. Husain
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| |
Collapse
|
6
|
Prigol AN, Rode MP, da Luz Efe F, Saleh NA, Creczynski-Pasa TB. The Bone Microenvironment Soil in Prostate Cancer Metastasis: An miRNA Approach. Cancers (Basel) 2023; 15:4027. [PMID: 37627055 PMCID: PMC10452124 DOI: 10.3390/cancers15164027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Bone metastatic prostate cancer (PCa) is associated with a high risk of mortality. Changes in the expression pattern of miRNAs seem to be related to early aspects of prostate cancer, as well as its establishment and proliferation, including the necessary steps for metastasis. Here we compiled, for the first time, the important roles of miRNAs in the development, diagnosis, and treatment of bone metastasis, focusing on recent in vivo and in vitro studies. PCa exosomes are proven to promote metastasis-related events, such as osteoblast and osteoclast differentiation and proliferation. Aberrant miRNA expression in PCa may induce abnormal bone remodeling and support tumor development. Furthermore, miRNAs are capable of binding to multiple mRNA targets, a dynamic property that can be harnessed for the development of treatment tools, such as antagomiRs and miRNA mimics, which have emerged as promising candidates in PCa treatment. Finally, miRNAs may serve as noninvasive biomarkers, as they can be detected in tissue and bodily fluids, are highly stable, and show differential expression between nonmetastatic PCa and bone metastatic samples. Taken together, the findings underscore the importance of miRNA expression profiles and miRNA-based tools as rational technologies to increase the quality of life and longevity of patients.
Collapse
Affiliation(s)
| | | | | | | | - Tânia Beatriz Creczynski-Pasa
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, Santa Catarina State, Brazil; (A.N.P.); (M.P.R.); (F.d.L.E.); (N.A.S.)
| |
Collapse
|
7
|
Shoaib S, Ansari MA, Ghazwani M, Hani U, Jamous YF, Alali Z, Wahab S, Ahmad W, Weir SA, Alomary MN, Yusuf N, Islam N. Prospective Epigenetic Actions of Organo-Sulfur Compounds against Cancer: Perspectives and Molecular Mechanisms. Cancers (Basel) 2023; 15:cancers15030697. [PMID: 36765652 PMCID: PMC9913804 DOI: 10.3390/cancers15030697] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Major epigenetic alterations, such as chromatin modifications, DNA methylation, and miRNA regulation, have gained greater attention and play significant roles in oncogenesis, representing a new paradigm in our understanding of cancer susceptibility. These epigenetic changes, particularly aberrant promoter hypermethylation, abnormal histone acetylation, and miRNA dysregulation, represent a set of epigenetic patterns that contribute to inappropriate gene silencing at every stage of cancer progression. Notably, the cancer epigenome possesses various HDACs and DNMTs, which participate in the histone modifications and DNA methylation. As a result, there is an unmet need for developing the epigenetic inhibitors against HDACs and DNMTs for cancer therapy. To date, several epigenetically active synthetic inhibitors of DNA methyltransferases and histone deacetylases have been developed. However, a growing body of research reports that most of these synthetic inhibitors have significant side effects and a narrow window of specificity for cancer cells. Targeting tumor epigenetics with phytocompounds that have the capacity to modulate abnormal DNA methylation, histone acetylation, and miRNAs expression is one of the evolving strategies for cancer prevention. Encouragingly, there are many bioactive phytochemicals, including organo-sulfur compounds that have been shown to alter the expression of key tumor suppressor genes, oncogenes, and oncogenic miRNAs through modulation of DNA methylation and histones in cancer. In addition to vitamins and microelements, dietary phytochemicals such as sulforaphane, PEITC, BITC, DADS, and allicin are among a growing list of naturally occurring anticancer agents that have been studied as an alternative strategy for cancer treatment and prevention. Moreover, these bioactive organo-sulfur compounds, either alone or in combination with other standard cancer drugs or phytochemicals, showed promising results against many cancers. Here, we particularly summarize and focus on the impact of specific organo-sulfur compounds on DNA methylation and histone modifications through targeting the expression of different DNMTs and HDACs that are of particular interest in cancer therapy and prevention.
Collapse
Affiliation(s)
- Shoaib Shoaib
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh 202001, Uttar Pradesh, India
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Yahya F. Jamous
- Vaccine and Bioprocessing Center, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Zahraa Alali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Sydney A. Weir
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
- Correspondence: (M.N.A.); (N.I.)
| | - Nabiha Yusuf
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Najmul Islam
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh 202001, Uttar Pradesh, India
- Correspondence: (M.N.A.); (N.I.)
| |
Collapse
|
8
|
Guan L, Yang Y, Lu Y, Chen Y, Luo X, Xin D, Meng X, Shan Z, Jiang G, Wang F. Reactivation of mutant p53 in esophageal squamous cell carcinoma by isothiocyanate inhibits tumor growth. Front Pharmacol 2023; 14:1141420. [PMID: 37168998 PMCID: PMC10164965 DOI: 10.3389/fphar.2023.1141420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/11/2023] [Indexed: 05/13/2023] Open
Abstract
p53 mutations are prevalent in human cancers; approximately half of patients with esophageal cancer present these mutations. Mutant p53 (mutp53) exerts oncogenic functions that promote malignant tumor progression, invasion, metastasis, and drug resistance, resulting in poor prognosis. Some small molecules have been shown to mitigate the oncogenic function of mutp53 by restoring its wild-type activity. Although these molecules have been evaluated in clinical trials, none have been successfully used in the clinic. Here, we investigated the antitumor effects of phenethyl isothiocyanate (PEITC) in p53-mutant esophageal squamous cell carcinoma (ESCC) and elucidated its mechanism to identify new therapeutic strategies. We observed that p53R248Q is a DNA contact mutation and a structural mutation and that PEITC can restore the activity of p53R248Q in vitro and in vivo, further clarifying the antitumor activity of PEITC in cancers with different types of p53 mutations. PEITC can inhibit ESCC growth, induce apoptosis, and arrest cell cycle progression and has a preferential selectivity for ESCC with p53 mutations. Mechanistic studies showed that PEITC induced apoptosis and arrested cells at G2/M transition in cells expressing the p53R248Q mutant by restoring the wild-type conformation and transactivation function of p53; these effects were concentration dependent. Furthermore, PEITC inhibited the growth of subcutaneous xenografts in vivo and restored p53 mutant activity in xenografts. According to these findings, PEITC has antitumor effects, with its ability to restore p53R248Q activity being a key molecular event responsible for these effects.
Collapse
Affiliation(s)
- Lulu Guan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yalan Yang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yao Lu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Chen
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xi Luo
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dao Xin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangrui Meng
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhengzheng Shan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guozhong Jiang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Feng Wang,
| |
Collapse
|
9
|
Anticarcinogenic Effects of Isothiocyanates on Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms232213834. [PMID: 36430307 PMCID: PMC9693344 DOI: 10.3390/ijms232213834] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, accounting for about 90% of cases. Sorafenib, lenvatinib, and the combination of atezolizumab and bevacizumab are considered first-line treatments for advanced HCC. However, clinical application of these drugs has also caused some adverse reactions such as hypertension, elevated aspartate aminotransferases, and proteinuria. At present, natural products and their derivatives have drawn more and more attention due to less side effects as cancer treatments. Isothiocyanates (ITCs) are one type of hydrolysis products from glucosinolates (GLSs), secondary plant metabolites found exclusively in cruciferous vegetables. Accumulating evidence from encouraging in vitro and in vivo animal models has demonstrated that ITCs have multiple biological activities, especially their potentially health-promoting activities (antibacterial, antioxidant, and anticarcinogenic effects). In this review, we aim to comprehensively summarize the chemopreventive, anticancer, and chemosensitizative effects of ITCs on HCC, and explain the underlying molecular mechanisms.
Collapse
|
10
|
Adelipour M, Cheraghzadeh M, Rashidi M. Polyphenols as epigenetic modulators in treating or preventing of cancers. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Novel epigenetic therapeutic strategies and targets in cancer. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166552. [PMID: 36126898 DOI: 10.1016/j.bbadis.2022.166552] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
Abstract
The critical role of dysregulated epigenetic pathways in cancer genesis, development, and therapy has typically been established as a result of scientific and technical innovations in next generation sequencing. RNA interference, histone modification, DNA methylation and chromatin remodelling are epigenetic processes that control gene expression without causing mutations in the DNA. Although epigenetic abnormalities are thought to be a symptom of cell tumorigenesis and malignant events that impact tumor growth and drug resistance, physicians believe that related processes might be a key therapeutic target for cancer treatment and prevention due to the reversible nature of these processes. A plethora of novel strategies for addressing epigenetics in cancer therapy for immuno-oncological complications are currently available - ranging from basic treatment to epigenetic editing. - and they will be the subject of this comprehensive review. In this review, we cover most of the advancements made in the field of targeting epigenetics with special emphasis on microbiology, plasma science, biophysics, pharmacology, molecular biology, phytochemistry, and nanoscience.
Collapse
|
12
|
Chopra H, Bibi S, Goyal R, Gautam RK, Trivedi R, Upadhyay TK, Mujahid MH, Shah MA, Haris M, Khot KB, Gopan G, Singh I, Kim JK, Jose J, Abdel-Daim MM, Alhumaydhi FA, Emran TB, Kim B. Chemopreventive Potential of Dietary Nanonutraceuticals for Prostate Cancer: An Extensive Review. Front Oncol 2022; 12:925379. [PMID: 35903701 PMCID: PMC9315356 DOI: 10.3389/fonc.2022.925379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/25/2022] [Indexed: 12/24/2022] Open
Abstract
There are more than two hundred fifty different types of cancers, that are diagnosed around the world. Prostate cancer is one of the suspicious type of cancer spreading very fast around the world, it is reported that in 2018, 29430 patients died of prostate cancer in the United State of America (USA), and hence it is expected that one out of nine men diagnosed with this severe disease during their lives. Medical science has identified cancer at several stages and indicated genes mutations involved in the cancer cell progressions. Genetic implications have been studied extensively in cancer cell growth. So most efficacious drug for prostate cancer is highly required just like other severe diseases for men. So nutraceutical companies are playing major role to manage cancer disease by the recommendation of best natural products around the world, most of these natural products are isolated from plant and mushrooms because they contain several chemoprotective agents, which could reduce the chances of development of cancer and protect the cells for further progression. Some nutraceutical supplements might activate the cytotoxic chemotherapeutic effects by the mechanism of cell cycle arrest, cell differentiation procedures and changes in the redox states, but in other, it also elevate the levels of effectiveness of chemotherapeutic mechanism and in results, cancer cell becomes less reactive to chemotherapy. In this review, we have highlighted the prostate cancer and importance of nutraceuticals for the control and management of prostate cancer, and the significance of nutraceuticals to cancer patients during chemotherapy.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-milat University, Islamabad, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| | - Rajat Goyal
- Maharishi Markandeshwar (MM) School of Pharmacy, Maharishi Markandeshwar University, Sadopur-Ambala, India
- Maharishi Markandeshwar (MM) College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Rupesh K. Gautam
- Maharishi Markandeshwar (MM) School of Pharmacy, Maharishi Markandeshwar University, Sadopur-Ambala, India
| | - Rashmi Trivedi
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | - Mohd Hasan Mujahid
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | | | - Muhammad Haris
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Kartik Bhairu Khot
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Gopika Gopan
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Jin Kyu Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jobin Jose
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
13
|
Lu Y, Zhang M, Huang D. Dietary Organosulfur-Containing Compounds and Their Health-Promotion Mechanisms. Annu Rev Food Sci Technol 2022; 13:287-313. [DOI: 10.1146/annurev-food-052720-010127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dietary organosulfur-containing compounds (DOSCs) in fruits, vegetables, and edible mushrooms may hold the key to the health-promotion benefits of these foods. Yet their action mechanisms are not clear, partially due to their high reactivity, which leads to the formation of complex compounds during postharvest processing. Among postharvest processing methods, thermal treatment is the most common way to process these edible plants rich in DOSCs, which undergo complex degradation pathways with the generation of numerous derivatives over a short time. At low temperatures, DOSCs are biotransformed slowly during fermentation to different metabolites (e.g., thiols, sulfides, peptides), whose distinctive biological activity remains largely unexplored. In this review, we discuss the bioavailability of DOSCs in human digestion before illustrating their potential mechanisms for health promotion related to cardiovascular health, cancer chemoprevention, and anti-inflammatory and antimicrobial activities. In particular, it is interesting that different DOSCs react with glutathione or cysteine, leading to the slow release of hydrogen sulfide (H2S), which has broad bioactivity in chronic disease prevention. In addition, DOSCs may interact with protein thiol groups of different protein targets of importance related to inflammation and phase II enzyme upregulation, among other action pathways critical for health promotion. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Yuyun Lu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore
| | - Molan Zhang
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore
| | - Dejian Huang
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore
- National University of Singapore (Suzhou) Research Institute, Jiangsu, China
| |
Collapse
|
14
|
Jaiswal B, Agarwal A, Gupta A. Lysine Acetyltransferases and Their Role in AR Signaling and Prostate Cancer. Front Endocrinol (Lausanne) 2022; 13:886594. [PMID: 36060957 PMCID: PMC9428678 DOI: 10.3389/fendo.2022.886594] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022] Open
Abstract
The development and growth of a normal prostate gland, as well as its physiological functions, are regulated by the actions of androgens through androgen receptor (AR) signaling which drives multiple cellular processes including transcription, cellular proliferation, and apoptosis in prostate cells. Post-translational regulation of AR plays a vital role in directing its cellular activities via modulating its stability, nuclear localization, and transcriptional activity. Among various post-translational modifications (PTMs), acetylation is an essential PTM recognized in AR and is governed by the regulated actions of acetyltransferases and deacetyltransferases. Acetylation of AR has been identified as a critical step for its activation and depending on the site of acetylation, the intracellular dynamics and activity of the AR can be modulated. Various acetyltransferases such as CBP, p300, PCAF, TIP60, and ARD1 that are known to acetylate AR, may directly coactivate the AR transcriptional function or help to recruit additional coactivators to functionally regulate the transcriptional activity of the AR. Aberrant expression of acetyltransferases and their deregulated activities have been found to interfere with AR signaling and play a key role in development and progression of prostatic diseases, including prostate cancer (PCa). In this review, we summarized recent research advances aimed at understanding the role of various lysine acetyltransferases (KATs) in the regulation of AR activity at the level of post-translational modifications in normal prostate physiology, as well as in development and progression of PCa. Considering the critical importance of KATs in modulating AR activity in physiological and patho-physiological context, we further discussed the potential of targeting these enzymes as a therapeutic option to treat AR-related pathology in combination with hormonal therapy.
Collapse
Affiliation(s)
- Bharti Jaiswal
- Integrative Chemical Biology (ICB), Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru, India
- *Correspondence: Ashish Gupta, ; Bharti Jaiswal,
| | - Akanksha Agarwal
- Epigenetics and Human Disease Laboratory, Centre of Excellence in Epigenetics (CoEE) Department of Life Sciences, Shiv Nadar University, Delhi, UP, India
| | - Ashish Gupta
- Epigenetics and Human Disease Laboratory, Centre of Excellence in Epigenetics (CoEE) Department of Life Sciences, Shiv Nadar University, Delhi, UP, India
- *Correspondence: Ashish Gupta, ; Bharti Jaiswal,
| |
Collapse
|
15
|
Bai B, Chen Q, Jing R, He X, Wang H, Ban Y, Ye Q, Xu W, Zheng C. Molecular Basis of Prostate Cancer and Natural Products as Potential Chemotherapeutic and Chemopreventive Agents. Front Pharmacol 2021; 12:738235. [PMID: 34630112 PMCID: PMC8495205 DOI: 10.3389/fphar.2021.738235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer is the second most common malignant cancer in males. It involves a complex process driven by diverse molecular pathways that closely related to the survival, apoptosis, metabolic and metastatic characteristics of aggressive cancer. Prostate cancer can be categorized into androgen dependent prostate cancer and castration-resistant prostate cancer and cure remains elusive due to the developed resistance of the disease. Natural compounds represent an extraordinary resource of structural scaffolds with high diversity that can offer promising chemical agents for making prostate cancer less devastating and curable. Herein, those natural compounds of different origins and structures with potential cytotoxicity and/or in vivo anti-tumor activities against prostate cancer are critically reviewed and summarized according to the cellular signaling pathways they interfere. Moreover, the anti-prostate cancer efficacy of many nutrients, medicinal plant extracts and Chinese medical formulations were presented, and the future prospects for the application of these compounds and extracts were discussed. Although the failure of conventional chemotherapy as well as involved serious side effects makes natural products ideal candidates for the treatment of prostate cancer, more investigations of preclinical and even clinical studies are necessary to make use of these medical substances reasonably. Therefore, the elucidation of structure-activity relationship and precise mechanism of action, identification of novel potential molecular targets, and optimization of drug combination are essential in natural medicine research and development.
Collapse
Affiliation(s)
- Bingke Bai
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Qianbo Chen
- Department of Anesthesiology, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Rui Jing
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xuhui He
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Hongrui Wang
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yanfei Ban
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Qi Ye
- Department of Biological Science, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weiheng Xu
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Chengjian Zheng
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
16
|
Targeting miRNA by Natural Products: A Novel Therapeutic Approach for Nonalcoholic Fatty Liver. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6641031. [PMID: 34426744 PMCID: PMC8380168 DOI: 10.1155/2021/6641031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 08/02/2021] [Indexed: 02/07/2023]
Abstract
The increasing prevalence of nonalcoholic fatty liver disease (NAFLD) as multifactorial chronic liver disease and the lack of a specific treatment have begun a new era in its treatment using gene expression changes and microRNAs. This study aimed to investigate the potential therapeutic effects of natural compounds in NAFLD by regulating miRNA expression. MicroRNAs play essential roles in regulating the cell's biological processes, such as apoptosis, migration, lipid metabolism, insulin resistance, and adipocyte differentiation, by controlling the posttranscriptional gene expression level. The impact of current NAFLD pharmacological management, including drug and biological therapies, is uncertain. In this context, various dietary fruits or medicinal herbal sources have received worldwide attention versus NAFLD development. Natural ingredients such as berberine, lychee pulp, grape seed, and rosemary possess protective and therapeutic effects against NAFLD by modifying the gene's expression and noncoding RNAs, especially miRNAs.
Collapse
|
17
|
Sabo AA, Dudau M, Constantin GL, Pop TC, Geilfus CM, Naccarati A, Dragomir MP. Two Worlds Colliding: The Interplay Between Natural Compounds and Non-Coding Transcripts in Cancer Therapy. Front Pharmacol 2021; 12:652074. [PMID: 34295245 PMCID: PMC8290364 DOI: 10.3389/fphar.2021.652074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022] Open
Abstract
Cancer is a devastating disease and has recently become the leading cause of death in western countries, representing an immense public health burden. When it comes to cancer treatment, chemotherapy is one of the main pillars, especially for advanced stage tumors. Over the years, natural compounds have emerged as one of the most valuable resources for new chemotherapies. It is estimated that more than half of the currently used chemotherapeutic agents are derived from natural compounds. Usually, natural compounds are discovered empirically and an important limitation of introducing new anti-cancer natural products is lack of knowledge with regard to their mechanism of action. Recent data has proven that several natural compounds may function via modulating the expression and function of non-coding RNAs (ncRNAs). NcRNAs are a heterogenous class of RNA molecules which are usually not translated into proteins but have an important role in gene expression regulation and are involved in multiple tumorigenic processes, including response/resistance to pharmacotherapy. In this review, we will discuss how natural compounds function via ncRNAs while summarizing the available data regarding their effects on over 15 types of cancer. Moreover, we will critically analyze the current advances and limitations in understanding the way natural compounds exert these health-promoting effects by acting on ncRNAs. Finally, we will propose several hypotheses that may open new avenues and perspectives regarding the interaction between natural compounds and ncRNAs, which could lead to improved natural compound-based therapeutic strategies in cancer.
Collapse
Affiliation(s)
- Alexandru A. Sabo
- Pediatrics 2 (General and Special Pediatrics), Klinikum Stuttgart, Olgahospital, Zentrum für Kinder, Jugend- und Frauenmedizin, Stuttgart, Germany
| | - Maria Dudau
- Biochemistry-Proteomics Department, Victor Babes National Institute of Pathology, Bucharest, Romania
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - George L. Constantin
- Division of Soil Science and Site Science, Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tudor C. Pop
- Department of Pediatrics, Marie Curie Emergency Clinical Hospital for Children, Bucharest, Romania
| | - Christoph-M. Geilfus
- Division of Controlled Environment Horticulture, Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alessio Naccarati
- IIGM Italian Institute for Genomic Medicine, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Mihnea P. Dragomir
- Department of Surgery, Fundeni Clinical Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
18
|
Lu Y, Maria Vos RD, Zhang Y, Zhang M, Liu Y, Fu C, Liu SQ, Huang D. The degradation kinetics and mechanism of moringin in aqueous solution and the cytotoxicity of degraded products. Food Chem 2021; 364:130424. [PMID: 34182363 DOI: 10.1016/j.foodchem.2021.130424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/29/2021] [Accepted: 06/17/2021] [Indexed: 12/17/2022]
Abstract
In this work, we investigated the degradation of moringin (4-[(α-l-rhamnosyloxy)benzyl]-isothiocyanate), a major bioactive isothiocyanate (ITC) found in moringa seeds (Moringa oleifera Lam), at various food processing conditions. Moringin degrades rapidly to several water-soluble products via a pseudo-first-order kinetics. By analyzing the reaction products, the degradation mechanism was found to be through hydrolyzing to (A) 1-O-(4-hydroxymethylphenyl) α-l-rhamnopyranoside (rhamnobenzyl alcohol RBA) or (B) rhamnobenzylamine. The formed amine further reacts with moringin to form N,N'-bis{4-[(α-l-rhamnosyloxy)benzyl]}thiourea (di-rhamnobenzyl thiourea, DRBTU). In addition, moringin isomerizes to 4-[(α-l-rhamnosyloxy)benzyl]thiocyanate (RBTC), which further reacts with moringin to form S,N-bis{4-[(α-l-rhamnosyloxy)benzyl]}-dithiocarbamate (DRBDTC). Furthermore, pH was found to have an effect on the degradation of moringin. RBA and RBTC were major degraded products in neutral and acidic conditions while thiourea (DRBTU) was in alkaline condition. Although moringin showed higher cytotoxicity to cancer cells, its degraded products showed very weak or no activities, suggesting that the isothiocyanate group of ITCs is essential for their cancer chemoprevention activities.
Collapse
Affiliation(s)
- Yuyun Lu
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Romy Dorothea Maria Vos
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Yuyu Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Molan Zhang
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Yunjiao Liu
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Caili Fu
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Jiangsu 215123, China
| | - Shao Quan Liu
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Jiangsu 215123, China
| | - Dejian Huang
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Jiangsu 215123, China.
| |
Collapse
|
19
|
Wu R, Li S, Sargsyan D, Yin R, Kuo HC, Peter R, Wang L, Hudlikar R, Liu X, Kong AN. DNA methylome, transcriptome, and prostate cancer prevention by phenethyl isothiocyanate in TRAMP mice. Mol Carcinog 2021; 60:391-402. [PMID: 33848375 PMCID: PMC8201649 DOI: 10.1002/mc.23299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/28/2022]
Abstract
Epigenetics/epigenomics has been shown to be involved in carcinogenesis. However, how the epigenome would be altered in the transgenic adenocarcinoma of the mouse prostate (TRAMP) cancer model and the effect of cancer chemopreventive phytochemical phenethyl isothiocyanate (PEITC) on the epigenome in TRAMP mice are not known. PEITC has been reported to reduce the risk of many cancers including prostate cancer (PCa). In this study, male TRAMP mice were fed a control diet or diet containing 0.05% PEITC from 8 weeks to 16 weeks. The tumor incidence was reduced in the PEITC diet (0/6) as compared with the control diet (6/7). RNA-sequencing (RNA-seq) analyses on nontumor and tumor prostatic tissues revealed several pathways like cell cycle/Cdc42 signaling, inflammation, and cancer-related signaling, were activated in prostate tissues of TRAMP mice but were reversed or attenuated in TRAMP mice fed with PEITC diet. DNA CpG methyl-seq analyses showed that global methylation patterns of prostate samples from TRAMP mice were hugely different from those of wild-type mice. Dietary PEITC partially reversed the global methylation changes during prostatic carcinogenesis. Integration of RNA-seq and DNA methyl-seq analyses identified a list of genes, including Adgrb1 and Ebf4, with an inverse regulatory relationship between their RNA expression and CpG methylation. In summary, our current study demonstrates that alteration of the global epigenome in TRAMP prostate tumor and PEITC administration suppresses PCa carcinogenesis, impacts global CpG epigenome and transcriptome, and attenuates carcinogenic pathways like cell cycle arrest and inflammation. These results may provide insights and epigenetic markers/targets for PCa prevention and treatment in human PCa patients.
Collapse
Affiliation(s)
- Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Shanyi Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Davit Sargsyan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ran Yin
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Hsiao-Chen Kuo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Rebecca Peter
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Lujing Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Rasika Hudlikar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Xia Liu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
20
|
Konoshenko MY, Laktionov PP. MiRNAs and radical prostatectomy: Current data, bioinformatic analysis and utility as predictors of tumour relapse. Andrology 2021; 9:1092-1107. [PMID: 33638886 DOI: 10.1111/andr.12994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Studies of microRNAs (miRNAs) and genes have particular interest for cancer biology and medicine due to the discovery of new therapeutic targets and markers. These studies are extensively influenced by anticancer therapy, as miRNAs interfere with the therapy's efficacy in prostate cancer (PCa). OBJECTIVES In this article, we summarise the available data on the influence of radical prostatectomy (RP) and biochemical recurrence on miRNA expression. MATERIALS AND METHODS Molecular targets of these miRNAs, as well as the reciprocal relations between different miRNAs and their targets, were studied using the DIANA, STRING and TransmiR databases. Special attention was dedicated to the mechanisms of PCa development, miRNA, and associated genes as tumour development mediators. RESULTS AND DISCUSSION Combined analysis of the databases and available literature indicates that expression of four miRNAs that are associated with prostate cancer relapse and alter their expression after RP, combined with genes that closely interact with selected miRNAs, has high potential for the prediction of PCa relapse after RP. PCa tissues and biofluids, both immediately after RP for diagnostics/prognostics and in long-term (relapse) monitoring, may be used as sources of these miRNAs. CONCLUSION An overview of the usefulness of published data and bioinformatics resources looking for diagnostic markers and molecular targets is presented in this article. The selected miRNA and gene panels have good potential as prognostic and PCa relapse markers after RP and likely could also serve as markers for therapeutic efficiency on a broader scale.
Collapse
Affiliation(s)
- Maria Yu Konoshenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Pavel P Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
21
|
Natural products in the reprogramming of cancer epigenetics. Toxicol Appl Pharmacol 2021; 417:115467. [PMID: 33631231 DOI: 10.1016/j.taap.2021.115467] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
Owing to the technological advancements, including next generation sequencing, the significance of deregulated epigenetic mechanisms in cancer initiation, progression and treatment has become evident. The accumulating knowledge relating to the epigenetic markers viz. DNA methylation, Histone modifications and non-coding RNAs make them one of the most interesting candidates for developing anti-cancer therapies. The reversibility of deregulated epigenetic mechanisms through environmental and dietary factors opens numerous avenues in the field of chemoprevention and drug development. Recent studies have proven that plant-derived natural products encompass a great potential in targeting epigenetic signatures in cancer and numerous natural products are being explored for their possibility to be considered as "epi-drug". This review intends to highlight the major aberrant epigenetic mechanisms and summarizes the essential functions of natural products like Resveratrol, Quercetin, Genistein, EGCG, Curcumin, Sulforaphane, Apigenin, Parthenolide and Berberine in modulating these aberrations. This knowledge along with the challenges and limitations in this field has potential and wider implications in developing novel and successful therapeutic strategies. The increased focus in the area will possibly provide a better understanding for the development of dietary supplements and/or drugs either alone or in combination. The interaction of epigenetics with different hallmarks of cancer and how natural products can be utilized to target them will also be interesting in the future therapeutic approaches.
Collapse
|
22
|
Cai S, Weng Y, Miao F. MicroRNA-194 inhibits PRC1 activation of the Wnt/β-catenin signaling pathway to prevent tumorigenesis by elevating self-renewal of non-side population cells and side population cells in esophageal cancer stem cells. Cell Tissue Res 2021; 384:353-366. [PMID: 33591442 DOI: 10.1007/s00441-021-03412-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 01/01/2021] [Indexed: 02/07/2023]
Abstract
Esophageal cancer (EC) is a leading cause of cancer-related deaths worldwide. Recent studies highlight roles for microRNAs (miRNAs) in EC. Microarray analysis identified miR-194 as downregulated in EC. However, little is known about the role of miR-194 in regulating self-renewal or other biological properties of EC stem cells. RT-qPCR and Western blot confirmed the downregulation of miR-194 in EC stem cells and revealed the upregulation of protein regulator of cytokinesis 1 (PRC1) in EC. Dual-luciferase reporter assay confirmed miR-194 targeting of PRC1 resulting in its downregulation. MiR-194 overexpression or PRC1 silencing reduced PRC1 expression, preventing the activation of the Wnt/β-catenin signaling pathway. Inhibition of the Wnt/β-catenin signaling pathway prevented the proliferation, invasion, and self-renewal of EC stem cells while promoting apoptosis. Furthermore, overexpressing miR-194 or silencing PRC1 in nude mice decreased the tumor formation ability of EC stem cells in vivo. Taken together, miR-194 prevents the progression of EC by downregulating PRC1 and inactivating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Shuang Cai
- Department of Digestive Endoscopy, The Fourth Affiliated Hospital of China Medical University, No. 4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning Province, People's Republic of China
| | - Yang Weng
- Department of Digestive Endoscopy, The Fourth Affiliated Hospital of China Medical University, No. 4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning Province, People's Republic of China
| | - Feng Miao
- Department of Digestive Endoscopy, The Fourth Affiliated Hospital of China Medical University, No. 4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning Province, People's Republic of China.
| |
Collapse
|
23
|
Javed Z, Khan K, Rasheed A, Sadia H, Raza S, Salehi B, Cho WC, Sharifi-Rad J, Koch W, Kukula-Koch W, Głowniak-Lipa A, Helon P. MicroRNAs and Natural Compounds Mediated Regulation of TGF Signaling in Prostate Cancer. Front Pharmacol 2021; 11:613464. [PMID: 33584291 PMCID: PMC7873640 DOI: 10.3389/fphar.2020.613464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/24/2020] [Indexed: 12/25/2022] Open
Abstract
Prostate cancer (PCa) is with rising incidence in male population globally. It is a complex anomaly orchestrated by a plethora of cellular processes. Transforming growth factor-beta (TGF-β) signaling is one of the key signaling pathways involved in the tumorigenesis of PCa. TGF-β signaling has a dual role in the PCa, making it difficult to find a suitable therapeutic option. MicroRNAs (miRNAs) mediated regulation of TGF-β signaling is responsible for the TGF-ß paradox. These are small molecules that modulate the expression of target genes and regulate cancer progression. Thus, miRNAs interaction with different signaling cascades is of great attention for devising new diagnostic and therapeutic options for PCa. Natural compounds have been extensively studied due to their high efficacy and low cytotoxicity. Here, we discuss the involvement of TGF-ß signaling in PCa with the interplay between miRNAs and TGF-β signaling and also review the role of natural compounds for the development of new therapeutics for PCa.
Collapse
Affiliation(s)
- Zeeshan Javed
- Office for Research Innovation and Commercialization, Lahore Garrison University, Lahore, Pakistan
| | - Khushbukhat Khan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Amna Rasheed
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Haleema Sadia
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Shahid Raza
- Office for Research Innovation and Commercialization, Lahore Garrison University, Lahore, Pakistan
| | - Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Wojciech Koch
- Chair and Department of Food and Nutrition, Medical University of Lublin, Lublin, Poland
| | | | - Anna Głowniak-Lipa
- Department of Cosmetology, University of Information Technology and Management in Rzeszów, Rzeszów, Poland
| | - Paweł Helon
- Branch in Sandomierz, Jan Kochanowski University in Kielce, Sandomierz, Poland
| |
Collapse
|
24
|
Dietary isothiocyanates inhibit cancer progression by modulation of epigenome. Semin Cancer Biol 2021; 83:353-376. [PMID: 33434642 DOI: 10.1016/j.semcancer.2020.12.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/13/2020] [Accepted: 12/27/2020] [Indexed: 12/15/2022]
Abstract
Cell cycle, growth, survival and metabolism are tightly regulated together and failure in cellular regulation leads to carcinogenesis. Several signaling pathways like the PI3K, WNT, MAPK and NFKb pathway exhibit aberrations in cancer and help achieve hallmark capabilities. Clinical research and in vitro studies have highlighted the role of epigenetic alterations in cancer onset and development. Altered gene expression patterns enabled by changes in DNA methylation, histone modifications and RNA processing have proven roles in cancer hallmark acquisition. The reversible nature of epigenetic processes offers robust therapeutic targets. Dietary bioactive compounds offer a vast compendium of effective therapeutic moieties. Isothiocyanates (ITCs) sourced from cruciferous vegetables demonstrate anti-proliferative, pro-apoptotic, anti-inflammatory, anti-migratory and anti-angiogenic effect against several cancers. ITCs also modulate the redox environment, modulate signaling pathways including PI3K, MAPK, WNT, and NFkB. They also modulate the epigenetic machinery by regulating the expression and activity of DNA methyltransferases, histone modifiers and miRNA. This further enhances their transcriptional modulation of key cellular regulators. In this review, we comprehensively assess the impact of ITCs such as sulforaphane, phenethyl isothiocyanate, benzyl isothiocyanate and allyl isothiocyanate on cancer and document their effect on various molecular targets. Overall, this will facilitate consolidation of the current understanding of the anti-cancer and epigenetic modulatory potential of these compounds and recognize the gaps in literature. Further, we discuss avenues of future research to develop these compounds as potential therapeutic entities.
Collapse
|
25
|
Wang Y, Petrikova E, Gross W, Sticht C, Gretz N, Herr I, Karakhanova S. Sulforaphane Promotes Dendritic Cell Stimulatory Capacity Through Modulation of Regulatory Molecules, JAK/STAT3- and MicroRNA-Signaling. Front Immunol 2020; 11:589818. [PMID: 33193420 PMCID: PMC7661638 DOI: 10.3389/fimmu.2020.589818] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/02/2020] [Indexed: 12/27/2022] Open
Abstract
Introduction The broccoli isothiocyanate sulforaphane was shown to inhibit inflammation and tumor progression, also in pancreatic cancer, while its effect on tumor immunity is poorly understood. We investigated the immunoregulatory effect of sulforaphane on human dendritic cells alone and in presence of pancreatic tumor antigens, as well as underlying molecular mechanisms. Methods Sulforaphane-treated human dendritic cells were matured in vitro with a cytokine cocktail, and the expression of regulatory molecules was examined by flow cytometry. The subsequent T-cell response was analyzed by T-cell proliferation assay and CD25 expression. To confirm the findings, dendritic cells pulsed with pancreatic cancer-derived tumor antigens were used. To identify the involved pathway- and microRNA-signaling in sulforaphane-treated dendritic cells, inhibitors of various signaling pathways, western blot analysis, microRNA array, and bioinformatic analysis were applied. Results Sulforaphane modulated the expression of the costimulatory CD80, CD83 and the suppressive B7-H1 molecules on dendritic cells and thereby promoted activation of T cells. The effect was verified in presence of pancreatic tumor antigens. Phosphorylation of STAT3 in dendritic cells was diminished by sulforaphane, and the inhibition of JAK/STAT3 led to downregulation of B7-H1 expression. Among the identified top 100 significant microRNA candidates, the inhibition of miR-155-5p, important for the expression of costimulatory molecules, and the induction of miR-194-5p, targeting the B7-H1 gene, were induced by sulforaphane. Conclusion Our findings demonstrate that sulforaphane promotes T-cell activation by dendritic cells through the modulation of regulatory molecules, JAK/STAT3- and microRNA-signaling in healthy conditions and in context of pancreatic cancer-derived antigens. They explore the immunoregulatory properties of sulforaphane and justify further research on nutritional strategies in the co-treatment of cancer.
Collapse
Affiliation(s)
- Yangyi Wang
- Section Surgical Research, Molecular OncoSurgery Group, Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Emilia Petrikova
- Section Surgical Research, Molecular OncoSurgery Group, Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Wolfgang Gross
- Section Surgical Research, Molecular OncoSurgery Group, Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Carsten Sticht
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Norbert Gretz
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ingrid Herr
- Section Surgical Research, Molecular OncoSurgery Group, Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Svetlana Karakhanova
- Section Surgical Research, Molecular OncoSurgery Group, Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
26
|
Xiao J, Zhou N, Li Y, Xiao Y, Chen W, Ye J, Ma T, Zhang Y. PEITC inhibits the invasion and migration of colorectal cancer cells by blocking TGF-β-induced EMT. Biomed Pharmacother 2020; 130:110743. [PMID: 34321176 DOI: 10.1016/j.biopha.2020.110743] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/30/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
AIM Tumor metastasis is the leading cause of death in patients with colorectal cancer (CRC), in which epithelial-mesenchymal transition(EMT) plays a vital role. However, the exact mechanisms of this process remain largely unknown. The aim of the present study was to determine the role of phenethyl isothiocyanate (PEITC) in CRC metastasis by regulating EMT. MAIN METHODS Wound healing assays and Transwell matrix assays were used to evaluate the potential of PEITC to inhibit CRC cells invasion and migration in vitro. Western blotting, light microscopy and immunofluorescence assays were used to detect the occurrence of EMT. Luciferase activity assay, real time-PCR and western blotting were used to investigate TGF-β1/Smad signaling activity. KEY FINDINGS We observed that PEITC, an isothiocyanate compound from crucifer with chemopreventive potential, inhibited the invasion and migration of CRC cells. Moreover, we showed that PEITC regulated the EMT of CRC cells. Additionally, we demonstrated that PEITC blocked the activation of the TGF-β1/Smad pathway and significantly suppressed TGF-β1-induced EMT. SIGNIFICANCE Our results suggested that PEITC plays a crucial role in inhibiting the invasion and migration of CRC cells by regulating TGF-β1-induced EMT. The results of the present study provide a theoretical basis for the use of PEITC to treat CRC.
Collapse
Affiliation(s)
- Jian Xiao
- Department of Medicine Oncology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
| | - Ningning Zhou
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yin Li
- Department of Endoscopy, Sun Yat-sen University Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yunyun Xiao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Wei Chen
- Department of Colorectal Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Guangzhou, 510655, China
| | - Junwen Ye
- Department of Colorectal Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Guangzhou, 510655, China
| | - Tenghui Ma
- Department of Colorectal Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Guangzhou, 510655, China
| | - Yan Zhang
- Department of Medicine Oncology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
| |
Collapse
|
27
|
Esteve M. Mechanisms Underlying Biological Effects of Cruciferous Glucosinolate-Derived Isothiocyanates/Indoles: A Focus on Metabolic Syndrome. Front Nutr 2020; 7:111. [PMID: 32984393 PMCID: PMC7492599 DOI: 10.3389/fnut.2020.00111] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
An inverse correlation between vegetable consumption and the incidence of cancer has long been described. This protective effect is stronger when cruciferous vegetables are specifically consumed. The beneficial properties of vegetables are attributed to their bioactive components like fiber, antioxidants vitamins, antioxidants, minerals, and phenolic compounds. Cruciferous vegetables contain all these molecules; however, what makes them different are their sulfurous components, called glucosinolates, responsible for their special smell and taste. Glucosinolates are inactive biologically in the organism but are hydrolyzed by the enzyme myrosinase released as a result of chewing, leading to the formation of active derivatives such as isothiocyanates and indoles. A considerable number of in vitro and in vivo studies have reported that isothiocyanates and indoles elicit chemopreventive potency through multiple mechanisms that include modulation of phases I and II detoxification pathway enzymes, regulation of cell cycle arrest, and control of cell growth, induction of apoptosis, antioxidant activity, anti-angiogenic effects, and epigenetic regulation. Nuclear erythroid 2-related factor 2 (Nrf2) and Nuclear factor-κB (NF-κB) are key and central regulators in all these processes with a main role in oxidative stress and inflammation control. It has been described that isothiocyanates and indoles regulate their activity directly and indirectly. Today, the metabolic syndrome (central obesity, insulin resistance, hyperlipidemia, and hypertension) is responsible for a majority of deaths worldwide. All components of metabolic syndrome are characterized by chronic inflammation with deregulation of the PI3K/AKT/mTOR, MAPK/EKR/JNK, Nrf2, and NF-κB signaling pathways. The effects of GLSs derivatives controlling these pathways have been widely described in relation to cancer. Changes in food consumption patterns observed in the last decades to higher consumption of ultra-processed foods, with elevation in simple sugar and saturated fat contents and lower consumption of vegetables and fruits have been directly correlated with metabolic syndrome prevalence. In this review, it is summarized the knowledge regarding the mechanisms by which cruciferous glucosinolate derivatives (isothiocyanates and indoles) directly and indirectly regulate these pathways. However, the review places a special focus on the knowledge of the effects of glucosinolates derivatives in metabolic syndrome, since this has not been reviewed before.
Collapse
Affiliation(s)
- Montserrat Esteve
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain
- Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
28
|
Lu Y, Wang X, Pu H, Lin Y, Li D, Liu SQ, Huang D. Moringin and Its Structural Analogues as Slow H 2S Donors: Their Mechanisms and Bioactivity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7235-7245. [PMID: 32543184 DOI: 10.1021/acs.jafc.0c02358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Moringin (rhamnobenzyl isothiocyanate) is a major bioactive compound in moringa seeds, which have been used as a healthy food. However, its bioactivity mechanisms are not well understood. We investigated moringin and its structurally similar analogues, including benzyl isothiocyanate and 4-hydroxylbenzyl isothiocyanate, for their hydrogen sulfide (H2S)-releasing activity triggered by cysteine. These isothiocyanates rapidly formed cysteine adducts, which underwent intramolecular cyclization followed by slowly releasing (a) organic amine and raphanusamic acid and (b) H2S and 2-carbylamino-4,5-dihydrothiazole-4-carboxylic acids. The product distributions are highly dependent on para-substituents on the phenyl group. Moringin has higher cytotoxicity to cancer cells and is a more potent anti-inflammatory agent than benzyl and hydroxybenzyl analogues, while benzyl isothiocyanate is a better antibacterial agent. Taken together, their bioactivity may not be directly related to their H2S donation activity. However, other metabolites alone do not have cytotoxicity and anti-inflammatory activity. These findings indicated that their activity may be the combination effects of different metabolites via competitive pathways as well the para-substituent groups of benzyl ITCs.
Collapse
Affiliation(s)
- Yuyun Lu
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, 117542 Singapore
| | - Xingyi Wang
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, 117542 Singapore
| | - Haoliang Pu
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, 117542 Singapore
| | - Yi Lin
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, 117542 Singapore
| | - Dan Li
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, 117542 Singapore
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Shao Quan Liu
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, 117542 Singapore
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Dejian Huang
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, 117542 Singapore
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| |
Collapse
|
29
|
Martelli A, Citi V, Testai L, Brogi S, Calderone V. Organic Isothiocyanates as Hydrogen Sulfide Donors. Antioxid Redox Signal 2020; 32:110-144. [PMID: 31588780 DOI: 10.1089/ars.2019.7888] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Hydrogen sulfide (H2S), the "new entry" in the series of endogenous gasotransmitters, plays a fundamental role in regulating the biological functions of various organs and systems. Consequently, the lack of adequate levels of H2S may represent the etiopathogenetic factor of multiple pathological alterations. In these diseases, the use of H2S donors represents a precious and innovative opportunity. Recent Advances: Natural isothiocyanates (ITCs), sulfur compounds typical of some botanical species, have long been investigated because of their intriguing pharmacological profile. Recently, the ITC moiety has been proposed as a new H2S-donor chemotype (with a l-cysteine-mediated reaction). Based on this recent discovery, we can clearly observe that almost all the effects of natural ITCs can be explained by the H2S release. Consistently, the ITC function was also used as an original H2S-releasing moiety for the design of synthetic H2S donors and original "pharmacological hybrids." Very recently, the chemical mechanism of H2S release, resulting from the reaction between l-cysteine and some ITCs, has been elucidated. Critical Issues: Available literature gives convincing demonstration that H2S is the real player in ITC pharmacology. Further, countless studies have been carried out on natural ITCs, but this versatile moiety has been used only rarely for the design of synthetic H2S donors with optimal drug-like properties. Future Directions: The development of more ITC-based synthetic H2S donors with optimal drug-like properties and selectivity toward specific tissues/pathologies seem to represent a stimulating and indispensable prospect of future experimental activities.
Collapse
Affiliation(s)
- Alma Martelli
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)," University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of "Ageing Biology and Pathology," University of Pisa, Pisa, Italy
| | | | - Lara Testai
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)," University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of "Ageing Biology and Pathology," University of Pisa, Pisa, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)," University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of "Ageing Biology and Pathology," University of Pisa, Pisa, Italy
| |
Collapse
|
30
|
Montgomery M, Srinivasan A. Epigenetic Gene Regulation by Dietary Compounds in Cancer Prevention. Adv Nutr 2019; 10:1012-1028. [PMID: 31100104 PMCID: PMC6855955 DOI: 10.1093/advances/nmz046] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/07/2019] [Accepted: 04/03/2019] [Indexed: 02/06/2023] Open
Abstract
Traditionally, cancer has been viewed as a set of diseases that are driven by the accumulation of genetic mutations, but we now understand that disruptions in epigenetic regulatory mechanisms are prevalent in cancer as well. Unlike genetic mutations, however, epigenetic alterations are reversible, making them desirable therapeutic targets. The potential for diet, and bioactive dietary components, to target epigenetic pathways in cancer is now widely appreciated, but our understanding of how to utilize these compounds for effective chemopreventive strategies in humans is in its infancy. This review provides a brief overview of epigenetic regulation and the clinical applications of epigenetics in cancer. It then describes the capacity for dietary components to contribute to epigenetic regulation, with a focus on the efficacy of dietary epigenetic regulators as secondary cancer prevention strategies in humans. Lastly, it discusses the necessary precautions and challenges that will need to be overcome before the chemopreventive power of dietary-based intervention strategies can be fully harnessed.
Collapse
Affiliation(s)
- McKale Montgomery
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK,Address correspondence to MM (E-mail: )
| | | |
Collapse
|
31
|
Choquechambi LA, Callisaya IR, Ramos A, Bosque H, Mújica A, Jacobsen SE, Sørensen M, Leidi EO. Assessing the Nutritional Value of Root and Tuber Crops from Bolivia and Peru. Foods 2019; 8:foods8110526. [PMID: 31652880 PMCID: PMC6915682 DOI: 10.3390/foods8110526] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/16/2019] [Accepted: 10/19/2019] [Indexed: 11/16/2022] Open
Abstract
All over the world, there are species which may be considered as neglected or underutilized despite their nutritious properties. At present, such crops contribute to food security in isolated areas by providing energy and nutrients in a diversified diet. Such genetic heritage—improved by ancient cultures—is under threat of losing biodiversity as well as the traditional knowledge associated with their cultivation and usage. Among these species, the Andean root and tuber crops (ARTCs) constitute a valuable resource which should be preserved and popularized because of their food and functional properties. We studied three ARTC species (mashua, arracacha, and yacon) to provide data on their composition, essential for increasing their use globally. We compared their nutritional values with the values of more widely used crops. Important differences in nutrient composition among ARTC landraces were found. Mineral nutrients showed significant differences among species. Considerable variations in the contents of prebiotics like fructooligosaccharides or functional elements (antioxidants and glucosinolates) were found among species and intraspecific samples. Certainly, these species are important assets to complement human nutrition and to secure supply of functional elements for healthy diets.
Collapse
Affiliation(s)
- Luz A Choquechambi
- Facultad de Ciencias Agrarias, Universidad Nacional del Altiplano, Ciudad Universitaria, Puno 51, Perú.
| | - Iber Roy Callisaya
- Facultad de Agronomía, Universidad Mayor de San Andrés, La Paz, Bolivia.
| | - Alvaro Ramos
- Department of Plant Biotechnology, IRNAS-CSIC, E-41012 Seville, Spain.
| | - Hugo Bosque
- Facultad de Agronomía, Universidad Mayor de San Andrés, La Paz, Bolivia.
| | - Angel Mújica
- Facultad de Ciencias Agrarias, Universidad Nacional del Altiplano, Ciudad Universitaria, Puno 51, Perú.
| | | | - Marten Sørensen
- Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 3, 1870 Frederiksberg C, Denmark.
| | - Eduardo O Leidi
- Department of Plant Biotechnology, IRNAS-CSIC, E-41012 Seville, Spain.
| |
Collapse
|
32
|
In Search of Panacea-Review of Recent Studies Concerning Nature-Derived Anticancer Agents. Nutrients 2019; 11:nu11061426. [PMID: 31242602 PMCID: PMC6627480 DOI: 10.3390/nu11061426] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
Cancers are one of the leading causes of deaths affecting millions of people around the world, therefore they are currently a major public health problem. The treatment of cancer is based on surgical resection, radiotherapy, chemotherapy or immunotherapy, much of which is often insufficient and cause serious, burdensome and undesirable side effects. For many years, assorted secondary metabolites derived from plants have been used as antitumor agents. Recently, researchers have discovered a large number of new natural substances which can effectively interfere with cancer cells’ metabolism. The most famous groups of these compounds are topoisomerase and mitotic inhibitors. The aim of the latest research is to characterize natural compounds found in many common foods, especially by means of their abilities to regulate cell cycle, growth and differentiation, as well as epigenetic modulation. In this paper, we focus on a review of recent discoveries regarding nature-derived anticancer agents.
Collapse
|
33
|
Tong Y, Wang M, Dai Y, Bao D, Zhang J, Pan H. LncRNA HOXA-AS3 Sponges miR-29c to Facilitate Cell Proliferation, Metastasis, and EMT Process and Activate the MEK/ERK Signaling Pathway in Hepatocellular Carcinoma. HUM GENE THER CL DEV 2019; 30:129-141. [PMID: 30963785 DOI: 10.1089/humc.2018.266] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent malignant tumor with high morbidity and mortality across the world. Recent findings have suggested that long noncoding (lnc)RNA HOXA-AS3 plays an important role in tumorigenesis and metastasis in a variety of cancers. However, the role of lncRNA HOXA-AS3 in the initiation and progression of HCC remains largely unclear. In the present study, HOXA-AS3 was highly expressed in HCC tumor tissues and cell lines. High HOXA-AS3 expression was correlated with low survival of HCC patients. Loss-of-function experiments showed that knockdown of HOXA-AS3 inhibited cell proliferation, migration, invasion, the epithelial-mesenchymal transition (EMT) process, and the mitogen-activated protein kinase/extracellular regulated protein kinase (MEK/ERK) signaling pathway in HCC. Molecular mechanism exploration uncovered that HOXA-AS3 could directly interact with and negatively regulate miR-29c. BMP1 is a downstream target gene of miR-29c, and HOXA-AS3 could regulate BMP1 expression by targeting miR-29c. miR-29c negatively regulated and BMP1 promoted the progression of HCC. Rescue experiments revealed that miR-29c inhibitor could partially counteract the impact induced by HOXA-AS3 knockdown in HCC. Taken together, our study is the first to show the interaction of HOXA-AS3 with miR-29c in facilitating cell proliferation, metastasis, EMT process, and MEK/ERK signaling pathway in HCC.
Collapse
Affiliation(s)
- Yongxi Tong
- Department of Infection Diseases, Zhejiang Province People's Hospital, Hangzhou, Zhejiang, China
| | - Mingshan Wang
- Department of Infection Diseases, Zhejiang Province People's Hospital, Hangzhou, Zhejiang, China
| | - Yining Dai
- Department of Infection Diseases, Zhejiang Province People's Hospital, Hangzhou, Zhejiang, China
| | - Dujing Bao
- Department of Infection Diseases, Zhejiang Province People's Hospital, Hangzhou, Zhejiang, China
| | - Jiajie Zhang
- Department of Infection Diseases, Zhejiang Province People's Hospital, Hangzhou, Zhejiang, China
| | - Hongying Pan
- Department of Infection Diseases, Zhejiang Province People's Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
34
|
Mitsiogianni M, Koutsidis G, Mavroudis N, Trafalis DT, Botaitis S, Franco R, Zoumpourlis V, Amery T, Galanis A, Pappa A, Panayiotidis MI. The Role of Isothiocyanates as Cancer Chemo-Preventive, Chemo-Therapeutic and Anti-Melanoma Agents. Antioxidants (Basel) 2019; 8:E106. [PMID: 31003534 PMCID: PMC6523696 DOI: 10.3390/antiox8040106] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/03/2019] [Accepted: 04/12/2019] [Indexed: 12/11/2022] Open
Abstract
Many studies have shown evidence in support of the beneficial effects of phytochemicals in preventing chronic diseases, including cancer. Among such phytochemicals, sulphur-containing compounds (e.g., isothiocyanates (ITCs)) have raised scientific interest by exerting unique chemo-preventive properties against cancer pathogenesis. ITCs are the major biologically active compounds capable of mediating the anticancer effect of cruciferous vegetables. Recently, many studies have shown that a higher intake of cruciferous vegetables is associated with reduced risk of developing various forms of cancers primarily due to a plurality of effects, including (i) metabolic activation and detoxification, (ii) inflammation, (iii) angiogenesis, (iv) metastasis and (v) regulation of the epigenetic machinery. In the context of human malignant melanoma, a number of studies suggest that ITCs can cause cell cycle growth arrest and also induce apoptosis in human malignant melanoma cells. On such basis, ITCs could serve as promising chemo-therapeutic agents that could be used in the clinical setting to potentiate the efficacy of existing therapies.
Collapse
Affiliation(s)
- Melina Mitsiogianni
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| | - Georgios Koutsidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| | - Nikos Mavroudis
- Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6AP, UK.
| | - Dimitrios T Trafalis
- Laboratory of Pharmacology, Unit of Clinical Pharmacology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Sotiris Botaitis
- Second Department of Surgery, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - Vasilis Zoumpourlis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece.
| | - Tom Amery
- The Watrercress Company / The Wasabi Company, Waddock, Dorchester, Dorset DT2 8QY, UK.
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Mihalis I Panayiotidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| |
Collapse
|
35
|
Controlling metastatic cancer: the role of phytochemicals in cell signaling. J Cancer Res Clin Oncol 2019; 145:1087-1109. [DOI: 10.1007/s00432-019-02892-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/12/2019] [Indexed: 12/18/2022]
|
36
|
Huang D, Cui L, Ahmed S, Zainab F, Wu Q, Wang X, Yuan Z. An overview of epigenetic agents and natural nutrition products targeting DNA methyltransferase, histone deacetylases and microRNAs. Food Chem Toxicol 2019; 123:574-594. [DOI: 10.1016/j.fct.2018.10.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/25/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023]
|
37
|
Soundararajan P, Kim JS. Anti-Carcinogenic Glucosinolates in Cruciferous Vegetables and Their Antagonistic Effects on Prevention of Cancers. Molecules 2018; 23:E2983. [PMID: 30445746 PMCID: PMC6278308 DOI: 10.3390/molecules23112983] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 12/16/2022] Open
Abstract
Glucosinolates (GSL) are naturally occurring β-d-thioglucosides found across the cruciferous vegetables. Core structure formation and side-chain modifications lead to the synthesis of more than 200 types of GSLs in Brassicaceae. Isothiocyanates (ITCs) are chemoprotectives produced as the hydrolyzed product of GSLs by enzyme myrosinase. Benzyl isothiocyanate (BITC), phenethyl isothiocyanate (PEITC) and sulforaphane ([1-isothioyanato-4-(methyl-sulfinyl) butane], SFN) are potential ITCs with efficient therapeutic properties. Beneficial role of BITC, PEITC and SFN was widely studied against various cancers such as breast, brain, blood, bone, colon, gastric, liver, lung, oral, pancreatic, prostate and so forth. Nuclear factor-erythroid 2-related factor-2 (Nrf2) is a key transcription factor limits the tumor progression. Induction of ARE (antioxidant responsive element) and ROS (reactive oxygen species) mediated pathway by Nrf2 controls the activity of nuclear factor-kappaB (NF-κB). NF-κB has a double edged role in the immune system. NF-κB induced during inflammatory is essential for an acute immune process. Meanwhile, hyper activation of NF-κB transcription factors was witnessed in the tumor cells. Antagonistic activity of BITC, PEITC and SFN against cancer was related with the direct/indirect interaction with Nrf2 and NF-κB protein. All three ITCs able to disrupts Nrf2-Keap1 complex and translocate Nrf2 into the nucleus. BITC have the affinity to inhibit the NF-κB than SFN due to the presence of additional benzyl structure. This review will give the overview on chemo preventive of ITCs against several types of cancer cell lines. We have also discussed the molecular interaction(s) of the antagonistic effect of BITC, PEITC and SFN with Nrf2 and NF-κB to prevent cancer.
Collapse
Affiliation(s)
- Prabhakaran Soundararajan
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea.
| | - Jung Sun Kim
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea.
| |
Collapse
|
38
|
Lenzi M, Cocchi V, Novaković A, Karaman M, Sakač M, Mandić A, Pojić M, Barbalace MC, Angeloni C, Hrelia P, Malaguti M, Hrelia S. Meripilus giganteus ethanolic extract exhibits pro-apoptotic and anti-proliferative effects in leukemic cell lines. Altern Ther Health Med 2018; 18:300. [PMID: 30419892 PMCID: PMC6233556 DOI: 10.1186/s12906-018-2366-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/30/2018] [Indexed: 01/19/2023]
Abstract
Background The interest towards botanicals and plant extracts has strongly risen due to their numerous biological effects and ability to counteract chronic diseases development. Among these effects, chemoprevention which represents the possibility to counteract the cancerogenetic process is one of the most studied. The extracts of mushroom Meripilus giganteus (MG) (Phylum of Basidiomycota) showed to exert antimicrobic, antioxidant and antiproliferative effects. Therefore, since its effect in leukemic cell lines has not been previously evaluated, we studied its potential chemopreventive effect in Jurkat and HL-60 cell lines. Methods MG ethanolic extract was characterized for its antioxidant activity and scavenging effect against different radical species. Moreover, its phenolic profile was evaluated by HPLC-MS-MS analyses. Flow cytometry (FCM) analyses of Jurkat and HL-60 cells treated with MG extract (0–750 μg/mL) for 24–72 h- allowed to evaluate its cytotoxicity, pro-apoptotic and anti-proliferative effect. To better characterize MG pro-apoptotic mechanism ROS intracellular level and the gene expression level of FAS, BAX and BCL2 were also evaluated. Moreover, to assess MG extract selectivity towards cancer cells, its cytotoxicity was also evaluated in human peripheral blood lymphocytes (PBL). Results MG extract induced apoptosis in Jurkat and HL-60 cells in a dose- and time- dependent manner by increasing BAX/BCL2 ratio, reducing ROS intracellular level and inducing FAS gene expression level. In fact, reduced ROS level is known to be related to the activation of apoptosis in leukemic cells by the involvement of death receptors. MG extract also induced cell-cycle arrest in HL-60 cells. Moreover, IC50 at 24 h treatment resulted 2 times higher in PBL than in leukemic cell lines. Conclusions Our data suggest that MG extract might be considered a promising and partially selective chemopreventive agent since it is able to modulate different mechanisms in transformed cells at concentrations lower than in non-transformed ones.
Collapse
|
39
|
Li W, Qiu Y, Hao J, Zhao C, Deng X, Shu G. Dauricine upregulates the chemosensitivity of hepatocellular carcinoma cells: Role of repressing glycolysis via miR-199a:HK2/PKM2 modulation. Food Chem Toxicol 2018; 121:156-165. [PMID: 30171973 DOI: 10.1016/j.fct.2018.08.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 08/02/2018] [Accepted: 08/17/2018] [Indexed: 01/08/2023]
Abstract
Dauricine (Dau) is a natural alkaloid exhibiting anti-proliferative activity against several different types of malignant cell. However, effects of Dau on hepatocellular carcinoma (HCC) cells and the underlying molecular mechanisms have remained to be fully elucidated. In this study, we found that Dau elevated the sensitivities of HCC cells to chemotherapeutic reagents, including cisplatin, sorafenib, and isoliensinine. Moreover, Dau promoted apoptosis of HCC cells triggered by these chemotherapeutic reagents. Consistently, in a xenograft mouse model, Dau sensitized HCC cells to sorafenib. In HCC cells, Dau dose-dependently inhibited glucose glycolysis and increased oxidative phosphorylation. Mechanistically, Dau downregulated the expression of hexokinase 2 (HK2) and pyruvate kinase M2 (PKM2). HK2 and PKM2 can be directly targeted by miR-199a. Dau dose-dependently increased miR-199a expression in HCC cells. Transfection of anti-miR-199a abrogated Dau-mediated suppression of HK2 and PKM2. Dau-induced metabolic shift was thereby severely crippled by anti-miR-199a. In addition, the incremental activity of Dau on sorafenib sensitivity of HCC cells was diminished in response to the transfection of anti-miR-199a. Taken together, our findings provided novel insights into the impact of Dau on HCC cells and supported considering Dau as an adjuvant reagent in the clinical treatment of HCC.
Collapse
Affiliation(s)
- Wei Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074, PR China
| | - Yunhan Qiu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074, PR China
| | - Ji Hao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074, PR China
| | - Chi Zhao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074, PR China
| | - Xukun Deng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074, PR China
| | - Guangwen Shu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074, PR China.
| |
Collapse
|
40
|
Mitsiogianni M, Amery T, Franco R, Zoumpourlis V, Pappa A, Panayiotidis MI. From chemo-prevention to epigenetic regulation: The role of isothiocyanates in skin cancer prevention. Pharmacol Ther 2018; 190:187-201. [DOI: 10.1016/j.pharmthera.2018.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Dayalan Naidu S, Suzuki T, Yamamoto M, Fahey JW, Dinkova‐Kostova AT. Phenethyl Isothiocyanate, a Dual Activator of Transcription Factors NRF2 and HSF1. Mol Nutr Food Res 2018; 62:e1700908. [PMID: 29710398 PMCID: PMC6175120 DOI: 10.1002/mnfr.201700908] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/30/2018] [Indexed: 12/19/2022]
Abstract
Cruciferous vegetables are rich sources of glucosinolates which are the biogenic precursor molecules of isothiocyanates (ITCs). The relationship between the consumption of cruciferous vegetables and chemoprotection has been widely documented in epidemiological studies. Phenethyl isothiocyanate (PEITC) occurs as its glucosinolate precursor gluconasturtiin in the cruciferous vegetable watercress (Nasturtium officinale). PEITC has multiple biological effects, including activation of cytoprotective pathways, such as those mediated by the transcription factor nuclear factor erythroid 2 p45-related factor 2 (NRF2) and the transcription factor heat shock factor 1 (HSF1), and can cause changes in the epigenome. However, at high concentrations, PEITC leads to accumulation of reactive oxygen species and cytoskeletal changes, resulting in cytotoxicity. Underlying these activities is the sulfhydryl reactivity of PEITC with cysteine residues in its protein targets. This chemical reactivity highlights the critical importance of the dose of PEITC for achieving on-target selectivity, which should be carefully considered in the design of future clinical trials.
Collapse
Affiliation(s)
- Sharadha Dayalan Naidu
- Cullman Chemoprotection CenterJohns Hopkins UniversityBaltimoreMD21205USA
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Takafumi Suzuki
- Department of Medical BiochemistryTohoku University Graduate School of MedicineSendai980‐8575Japan
| | - Masayuki Yamamoto
- Department of Medical BiochemistryTohoku University Graduate School of MedicineSendai980‐8575Japan
| | - Jed W. Fahey
- Cullman Chemoprotection CenterJohns Hopkins UniversityBaltimoreMD21205USA
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Department of MedicineDivision of Clinical PharmacologyJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Department of International HealthCenter for Human NutritionJohns Hopkins University Bloomberg School of Public HealthBaltimoreMD21205USA
| | - Albena T. Dinkova‐Kostova
- Cullman Chemoprotection CenterJohns Hopkins UniversityBaltimoreMD21205USA
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Department of MedicineDivision of Clinical PharmacologyJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Jacqui Wood Cancer CentreDivision of Cancer ResearchSchool of MedicineUniversity of DundeeDundeeDD1 9SYScotlandUK
| |
Collapse
|
42
|
Martin SL, Royston KJ, Tollefsbol TO. The Role of Non-Coding RNAs and Isothiocyanates in Cancer. Mol Nutr Food Res 2018; 62:e1700913. [PMID: 29532604 PMCID: PMC6248329 DOI: 10.1002/mnfr.201700913] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/28/2018] [Indexed: 12/12/2022]
Abstract
Cancer is the second leading cause of mortalities in the United States, only exceeded by heart disease. Current cancer treatments include chemotherapy, surgery, and/or radiation. Due to the often harsh effects of current cancer therapies, investigators are focusing their efforts on cancer prevention mediated by dietary phytochemicals. Since the discovery that cancer can be initiated by and progressed through both genetic and epigenetic pathways, there has been a significant surge in studies on epigenetic effects mediated by nutritive compounds. Isothiocyanates, naturally occurring molecules found in cruciferous vegetables, have been documented to exhibit many anticarcinogenic activities. Although isothiocyanates have been extensively documented as key players in epigenetic processes such as DNA methylation and histone modifications, their effects on non-coding RNAs is understudied. Non-coding RNAs are molecules that target mRNA production and repress protein translation and are known to be dysregulated in various human malignancies. Studies have used non-coding RNAs as novel targets for exploration in cancer therapy. This review focuses on the exploration of isothiocyanates and their effect on non-coding RNAs in cancer prevention and therapy.
Collapse
Affiliation(s)
- Samantha L. Martin
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Kendra J. Royston
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Trygve O. Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
- Comprehensive Center for Healthy Aging, University of Alabama Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA
- Comprehensive Cancer Center, University of Alabama Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA
- Nutrition Obesity Research Center, University of Alabama Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA
- Comprehensive Diabetes Center, University of Alabama Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
| |
Collapse
|
43
|
Wang C, Shu L, Zhang C, Li W, Wu R, Guo Y, Yang Y, Kong AN. Histone Methyltransferase Setd7 Regulates Nrf2 Signaling Pathway by Phenethyl Isothiocyanate and Ursolic Acid in Human Prostate Cancer Cells. Mol Nutr Food Res 2018; 62:e1700840. [PMID: 29383876 PMCID: PMC6226019 DOI: 10.1002/mnfr.201700840] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/08/2017] [Indexed: 01/05/2023]
Abstract
SCOPE This study aims to investigate the role of the epigenetic regulator SET domain-containing lysine methyltransferase 7 (Setd7) in regulating the antioxidant Nrf2 pathway in prostate cancer (PCa) cells and examines the effects of two phytochemicals, phenethyl isothiocyanate (PEITC) and ursolic acid (UA). METHODS AND RESULTS Lentivirus-mediated shRNA knockdown of Setd7 in LNCaP and PC-3 cells decreases the expression of downstream Nrf2 targets, such as NAD(P)H: quinone oxidoreductase 1 (Nqo1) and glutathione S-transferase theta 2 (Gstt2). Downregulation of Setd7 decreases soft agar colony formation ability of PCa cells. Knockdown of Setd7 increases reactive oxygen species (ROS) generation. Furthermore, Setd7 knockdown attenuates Nqo1 and Gstt2 expression in response to H2 O2 challenge, whereas increased DNA damage is observed in Setd7 knockdown cells in comet assay. Interestingly, Setd7 expression could be induced by the dietary phytochemicals PEITC and UA. Chromatin immunoprecipitation (ChIP) assays show that Setd7 knockdown decreased H3K4me1 enrichment in the Nrf2 and Gstt2 promoter regions, while PEITC and UA treatments elevated the enrichment. CONCLUSION Taken together, these results indicate that Setd7 knockdown decreases Nrf2 and Nrf2-target genes expression and that PEITC and UA induce Setd7 expression, which activates the Nrf2/antioxidant response element (ARE) signaling pathway and protects DNA from oxidative damage.
Collapse
Affiliation(s)
- Chao Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| | - Limin Shu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| | - Chengyue Zhang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| | - Wenji Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| | - Yue Guo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| | - Yuqing Yang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| |
Collapse
|
44
|
Zuo Q, Wu R, Xiao X, Yang C, Yang Y, Wang C, Lin L, Kong AN. The dietary flavone luteolin epigenetically activates the Nrf2 pathway and blocks cell transformation in human colorectal cancer HCT116 cells. J Cell Biochem 2018; 119:9573-9582. [PMID: 30129150 DOI: 10.1002/jcb.27275] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/26/2018] [Indexed: 12/16/2022]
Abstract
Colorectal cancer remains a leading malignancy in humans. The importance of epigenetic modification in the development of this disease is now being recognized. The reversible and dynamic nature of epigenetic modifications provides a promising strategy in colorectal cancer chemoprevention and treatment. Luteolin (LUT), a flavone dietary phytochemical, can modulate various signaling pathways involved in carcinogenesis. Many studies have demonstrated that LUT inhibits colorectal carcinogenesis by activating the Nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant-responsive element (ARE) pathway. However, the potential epigenetic mechanism underlying Nrf2/ARE pathway activation remains unclear. In this study, we aimed to explore the anticancer potential of LUT in human colon cancer cells and the epigenetic regulation of the Nrf2/ARE pathway. Specifically, our data showed that LUT suppressed cell proliferation and cellular transformation of HCT116 and HT29 cells in a dose-dependent manner. Additionally, quantitative real-time polymerase chain reaction and Western blot analysis were performed to determine the mRNA and protein expression of Nrf2 and its downstream genes after LUT treatment. Bisulfite genomic sequencing revealed that methylation of the Nrf2 promoter region was decreased by LUT, corresponding with the increased mRNA expression of Nrf2. Decreased protein levels and enzyme activities of epigenetic modifying enzymes, such as DNA methyltransferases (DNMTs) and histone deacetylases (HDACs), were also observed in LUT-treated HCT116 cells. In summary, our findings suggest that LUT may exert its antitumor activity in part via epigenetic modifications of the Nrf2 gene with subsequent induction of its downstream antioxidative stress pathway.
Collapse
Affiliation(s)
- Qian Zuo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey.,Department of Integrated Chinese and Western Medicine, Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Xi Xiao
- Department of Integrated Chinese and Western Medicine, Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Caizhi Yang
- Department of Integrated Chinese and Western Medicine, Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuqing Yang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Chao Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Lizhu Lin
- Department of Oncology, No. 1 Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
45
|
Gao S, Zhao Z, Wu R, Wu L, Tian X, Zhang Z. MicroRNA-194 regulates cell viability and apoptosis by targeting CDH2 in prostatic cancer. Onco Targets Ther 2018; 11:4837-4844. [PMID: 30147335 PMCID: PMC6098416 DOI: 10.2147/ott.s169101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Introduction Prostate cancer (PCa) is one of the most common malignancies in men. However, a lack of understanding of the mechanism underlying PCa metastasis has strongly limited the effectiveness of therapy for this disease. Thus, investigating the mechanism of PCa may help improve the prognosis of PCa patients. The goal of this study was to investigate the role of microRNA-194 (miR-194) in PCa. Materials and methods The expression of miR-194 and cadherin 2 (CDH2) at the transcriptional level was measured by quantitative real-time polymerase chain reaction (qRT-PCR). The MTT assay cell apoptosis assay and Western blotting were used to determine the role of miR-194 and CDH2 in the PC3 human PCa cell line. The dual luciferase reporter assay system was performed to clarify the relationship between miR-194 and CDH2. qRT-PCR results showed that miR-194 was downregulated and CDH2 was upregulated in PC3 cells. Results Transfection with miR-194 mimics decreased cell viability and increased the rate of apoptosis compared with the control group of PC3 cells. Bioinformatics and the luciferase reporter assay indicated that CDH2 was a target of miR-194, and Western blot analysis suggested that CDH2 was negatively regulated by miR-194. Further studies revealed that the downregulation of CDH2 suppressed cell viability and promoted the apoptosis of PC3 cells and that miR-194 directly targeted CDH2 in PC3 cells. Finally, the in vivo experiments showed that miR-194 mimics suppressed tumor growth and induced apoptosis in a greater proportion of cells by decreasing the expression of CDH2 compared with the control group. Conclusion The results of this study showed that miR-194 targeted CDH2 to regulate PCa cell survival in vitro and suppress tumor growth in vivo. These findings suggest that miR-194 may be a useful therapeutic target in PCa.
Collapse
Affiliation(s)
- Song Gao
- The Second Department of Clinical Oncology, Shengjing Hospital, China Medical University, Shenyang 110022, China,
| | - Zhiying Zhao
- Department of computer science and engineering, Northeastern University, Shenyang 110004, China
| | - Rong Wu
- The Second Department of Clinical Oncology, Shengjing Hospital, China Medical University, Shenyang 110022, China,
| | - Lina Wu
- The Second Department of Clinical Oncology, Shengjing Hospital, China Medical University, Shenyang 110022, China,
| | - Xin Tian
- The Second Department of Clinical Oncology, Shengjing Hospital, China Medical University, Shenyang 110022, China,
| | - Zhenyong Zhang
- The Second Department of Clinical Oncology, Shengjing Hospital, China Medical University, Shenyang 110022, China,
| |
Collapse
|
46
|
Yen GC, Tsai CM, Lu CC, Weng CJ. Recent progress in natural dietary non-phenolic bioactives on cancers metastasis. J Food Drug Anal 2018; 26:940-964. [PMID: 29976413 PMCID: PMC9303016 DOI: 10.1016/j.jfda.2018.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/04/2018] [Accepted: 05/15/2018] [Indexed: 12/20/2022] Open
Abstract
From several decades ago to now, cancer continues to be the leading cause of death worldwide, and metastasis is the major cause of cancer-related deaths. For health benefits, there is a great desire to use non-chemical therapy such as nutraceutical supplementation to prevent pathology development. Over 10,000 different natural bioactives or phytochemicals have been known that possessing potential preventive or supplementary effects for various diseases including cancer. Previously, the in vitro and in vivo anti-invasive and anti-metastatic activities of phenolic acids, monophenol, polyphenol and their derivatives and flavonoids and their derivatives have been reviewed. However, a vast number of natural dietary compounds other than phenolics have been demonstrated to potentially possess the ability to inhibit the invasion and metastasis of various cancers. In this review, we summarize the studies in recent decade on in vitro and in vivo effects and molecular mechanisms of natural bioactives, excluding the phenolics in food, in cancer invasion and metastasis. By combining this review of non-phenolics with the previous phenolics reviews, the puzzle for the contribution of natural dietary bioactives on cancer invasive or/and metastatic progress will be almost complete and more clear.
Collapse
Affiliation(s)
- Gow-Chin Yen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan; Graduate Institute of Food Safety, National Chung Hsing University, Taichung, Taiwan
| | - Chiung-Man Tsai
- Tainan Hospital, Ministry of Health and Welfare, Tainan City, Taiwan
| | - Chi-Cheng Lu
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Chia-Jui Weng
- Department of Living Services Industry, Tainan University of Technology, Tainan City, Taiwan.
| |
Collapse
|
47
|
Bryzgunova OE, Konoshenko MY, Laktionov PP. MicroRNA-guided gene expression in prostate cancer: Literature and database overview. J Gene Med 2018; 20:e3016. [DOI: 10.1002/jgm.3016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/15/2018] [Accepted: 03/17/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Olga E. Bryzgunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia and ‘E. Meshalkin National Medical Research Center’ of the Ministry of Health of the Russian Federation; Novosibirsk Russia
| | - Maria Yu Konoshenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia and ‘E. Meshalkin National Medical Research Center’ of the Ministry of Health of the Russian Federation; Novosibirsk Russia
| | - Pavel P. Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia and ‘E. Meshalkin National Medical Research Center’ of the Ministry of Health of the Russian Federation; Novosibirsk Russia
| |
Collapse
|
48
|
Erin N, Ogan N, Yerlikaya A. Secretomes reveal several novel proteins as well as TGF-β1 as the top upstream regulator of metastatic process in breast cancer. Breast Cancer Res Treat 2018; 170:235-250. [PMID: 29557524 DOI: 10.1007/s10549-018-4752-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/13/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE Metastatic breast cancer is resistant to many conventional treatments and novel therapeutic targets are needed. We previously isolated subsets of 4T1 murine breast cancer cells which metastasized to liver (4TLM), brain (4TBM), and heart (4THM). Among these cells, 4TLM is the most aggressive one, demonstrating mesenchymal phenotype. Here we compared secreted proteins from 4TLM, 4TBM, and 4THM cells and compared with that of hardly metastatic 67NR cells to detect differentially secreted factors involved in organ-specific metastasis. METHOD AND RESULTS Label-free LC-MS/MS proteomic technique was used to detect the differentially secreted proteins. Eighty-five of over 500 secreted proteins were significantly altered in metastatic breast cancer cells. Differential expression of several proteins such as fibulin-4, Bone Morphogenetic Protein 1, TGF-β1 MMP-3, MMP-9, and Thymic Stromal Lymphopoietin were further verified using ELISA or Western blotting. Many of these identified proteins were also present in human metastatic breast carcinomas. Annexin A1 and A5, laminin beta 1, Neutral alpha-glucosidase AB were commonly found at least in three out of six studies examined here. Ingenuity Pathway Analysis showed that proteins differentially secreted from metastatic cells are involved primarily in carcinogenesis and TGF-β1 is the top upstream regulator in all metastatic cells. CONCLUSIONS Cells metastasized to different organs displayed significant differences in several of secreted proteins. Proteins differentially altered were fibronectin, insulin-like growth factor-binding protein 7, and Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1. On the other hand, many exosomal proteins were also common to all metastatic cells, demonstrating involvement of key universal factors in distant metastatic process.
Collapse
Affiliation(s)
- Nuray Erin
- Department of Medical Pharmacology, School of Medicine, Akdeniz University, B-blok kat 1, SBAUM/Immunoloji Lab, Antalya, Turkey.
| | - Nur Ogan
- Department of Medical Pharmacology, School of Medicine, Akdeniz University, B-blok kat 1, SBAUM/Immunoloji Lab, Antalya, Turkey
| | - Azmi Yerlikaya
- Department of Medical Biology, School of Medicine, Dumlupınar University, Kütahya, Turkey
| |
Collapse
|
49
|
Ramirez CN, Li W, Zhang C, Wu R, Su S, Wang C, Gao L, Yin R, Kong ANT. Correction to: In Vitro-In Vivo Dose Response of Ursolic Acid, Sulforaphane, PEITC, and Curcumin in Cancer Prevention. AAPS JOURNAL 2018; 20:27. [PMID: 29411155 DOI: 10.1208/s12248-018-0190-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The citation of the author name "Ah-Ng Tony Kong" in PubMed is not the author's preference. Instead of "Kong AT", the author prefers "Kong AN".
Collapse
Affiliation(s)
- Christina N Ramirez
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Cellular and Molecular Pharmacology Program, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, 08854, USA
| | - Wenji Li
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Chengyue Zhang
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Graduate Program in Pharmaceutical Sciences, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Renyi Wu
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Shan Su
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Chao Wang
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Linbo Gao
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Ran Yin
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Ah-Ng Tony Kong
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA. .,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA. .,Graduate Program in Pharmaceutical Sciences, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA. .,Ernest Mario School of Pharmacy, Room 228, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA.
| |
Collapse
|
50
|
Wang H, Wang L, Cao L, Zhang Q, Song Q, Meng Z, Wu X, Xu K. Inhibition of autophagy potentiates the anti-metastasis effect of phenethyl isothiocyanate through JAK2/STAT3 pathway in lung cancer cells. Mol Carcinog 2018; 57:522-535. [PMID: 29278657 DOI: 10.1002/mc.22777] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/06/2017] [Accepted: 12/20/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Huimin Wang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment; Tianjin Lung Cancer Institute; Tianjin Medical University General Hospital; Tianjin China
| | - Limin Wang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment; Tianjin Lung Cancer Institute; Tianjin Medical University General Hospital; Tianjin China
| | - Limin Cao
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment; Tianjin Lung Cancer Institute; Tianjin Medical University General Hospital; Tianjin China
| | - Qicheng Zhang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment; Tianjin Lung Cancer Institute; Tianjin Medical University General Hospital; Tianjin China
| | - Qianqian Song
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment; Tianjin Lung Cancer Institute; Tianjin Medical University General Hospital; Tianjin China
| | - Zhaowei Meng
- Department of Nuclear Medicine; Tianjin Medical University General Hospital; Tianjin China
| | - Xiang Wu
- Core Facility Center; Tianjin Medical University General Hospital; Tianjin China
| | - Ke Xu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment; Tianjin Lung Cancer Institute; Tianjin Medical University General Hospital; Tianjin China
| |
Collapse
|