1
|
Jing MR, Liang XY, Zhang YX, Zhu YW, Wang Y, Chu T, Jin YQ, Zhang CH, Zhu SG, Zhang CJ, Wang QM, Feng ZF, Ji XY, Wu DD. Role of hydrogen sulfide-microRNA crosstalk in health and disease. Nitric Oxide 2024; 152:19-30. [PMID: 39260562 DOI: 10.1016/j.niox.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/15/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
The mutual regulation between hydrogen sulfide (H2S) and microRNA (miRNA) is involved in the development of many diseases, including cancer, cardiovascular disease, inflammatory disease, and high-risk pregnancy. Abnormal expressions of endogenous H2S-producing enzyme and miRNA in tissues and cells often indicate the occurrence of diseases, so the maintenance of their normal levels in the body can mitigate damages caused by various factors. Many studies have found that H2S can promote the migration, invasion, and proliferation of cancer cells by regulating the expression of miRNA, while many H2S donors can inhibit cancer progression by interfering with the proliferation, apoptosis, cell cycle, metastasis, and angiogenesis of cancer cells. Furthermore, the mutual regulation between H2S and miRNA can also prevent cell injury in cardiovascular disease and inflammatory disease through anti-inflammation, anti-oxidation, anti-apoptosis, and pro-autophagy. In addition, H2S can promote angiogenesis and relieve vasoconstriction by regulating the expression of miRNA, thereby improving fetal growth in high-risk pregnancy. In this review, we discuss the mechanism of mutual regulation between H2S and miRNA in various diseases, which may provide reliable therapeutic targets for these diseases.
Collapse
Affiliation(s)
- Mi-Rong Jing
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xiao-Yi Liang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Ti Chu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yu-Qing Jin
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Chuan-Hao Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Shuai-Gang Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Chao-Jing Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Qi-Meng Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Zhi-Fen Feng
- School of Nursing and Health, Henan University, Kaifeng, Henan, 475004, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, 450064, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
2
|
Elzeiny N, Sayed Shafei AE, Wagih S, Saad M, Sayed D, Salem EY, Wael M, Ellackany R, Matboli M. Phytochemicals in cervical cancer: an epigenetic overview. Epigenomics 2023; 15:941-959. [PMID: 37916277 DOI: 10.2217/epi-2023-0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Cervical cancer is the fourth most common female malignancy worldwide and a complex disease that typically starts with HPV infection. Various genetic and epigenetic alterations are implicated in its development. The current cervical cancer therapies have unsatisfactory outcomes due to their serious adverse effects, necessitating the need for safe, effective preventive and therapeutic modalities. Phytochemicals have been addressed in cervical cancer prevention and treatment, and further understanding the epigenetics of cervical cancer pathogenesis is critical to investigate new preventive and therapeutic modalities. Addressing the epigenetic mechanisms of potential phytochemicals will provide an overview of their use individually or in combination. The primary aim of this review is to highlight the epigenetic effects of the phytochemicals addressed in cervical cancer therapy.
Collapse
Affiliation(s)
- Noha Elzeiny
- Departement of Medical Biochemistry & Molecular Biology, Faculty of Medicine Ain Shams University, Cairo, 11566, Egypt
| | - Ayman El Sayed Shafei
- Biomedical Research Department, Faculty of Medicine, Modern University for Technology & Information, Cairo, Egypt
| | - Sherin Wagih
- Biomedical Research Department, Faculty of Medicine, Modern University for Technology & Information, Cairo, Egypt
| | - Maha Saad
- Biomedical Research Department, Faculty of Medicine, Modern University for Technology & Information, Cairo, Egypt
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Modern University for Technology & Information, Cairo, Egypt
| | - Dina Sayed
- Clinical Pharmacology Department, Faculty of Medicine Ain Shams University, Cairo, Egypt
| | - Esraa Y Salem
- Undergraduate Students, Faculty of Medicine, Modern University for Technology & Information, Cairo, Egypt
| | - Mostafa Wael
- Undergraduate Students, Faculty of Medicine, Modern University for Technology & Information, Cairo, Egypt
| | - Rawan Ellackany
- Undergraduate Students, Faculty of Medicine, Modern University for Technology & Information, Cairo, Egypt
| | - Marwa Matboli
- Departement of Medical Biochemistry & Molecular Biology, Faculty of Medicine Ain Shams University, Cairo, 11566, Egypt
- Biomedical Research Department, Faculty of Medicine, Modern University for Technology & Information, Cairo, Egypt
| |
Collapse
|
3
|
Marcinkowska MA, Jeleń HH. Role of Sulfur Compounds in Vegetable and Mushroom Aroma. Molecules 2022; 27:6116. [PMID: 36144849 PMCID: PMC9502545 DOI: 10.3390/molecules27186116] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022] Open
Abstract
At the base of the food pyramid is vegetables, which should be consumed most often of all food products, especially in raw and unprocessed form. Vegetables and mushrooms are rich sources of bioactive compounds that can fulfill various functions in plants, starting from protection against herbivores and being natural insecticides to pro-health functions in human nutrition. Many of these compounds contain sulfur in their structure. From the point of view of food producers, it is extremely important to know that some of them have flavor properties. Volatile sulfur compounds are often potent odorants, and in many vegetables, belonging mainly to Brassicaeae and Allium (Amaryllidaceae), sulfur compounds determine their specific flavor. Interestingly, some of the pathways that form volatile sulfur compounds in vegetables are also found in selected edible mushrooms. The most important odor-active organosulfur compounds can be divided into isothiocyanates, nitriles, epithionitriles, thiols, sulfides, and polysulfides, as well as others, such as sulfur containing carbonyl compounds and esters, R-L-cysteine sulfoxides, and finally heterocyclic sulfur compounds found in shiitake mushrooms or truffles. This review paper summarizes their precursors and biosynthesis, as well as their sensory properties and changes in selected technological processes.
Collapse
Affiliation(s)
| | - Henryk H. Jeleń
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland
| |
Collapse
|
4
|
Lu Y, Maria Vos RD, Zhang Y, Zhang M, Liu Y, Fu C, Liu SQ, Huang D. The degradation kinetics and mechanism of moringin in aqueous solution and the cytotoxicity of degraded products. Food Chem 2021; 364:130424. [PMID: 34182363 DOI: 10.1016/j.foodchem.2021.130424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/29/2021] [Accepted: 06/17/2021] [Indexed: 12/17/2022]
Abstract
In this work, we investigated the degradation of moringin (4-[(α-l-rhamnosyloxy)benzyl]-isothiocyanate), a major bioactive isothiocyanate (ITC) found in moringa seeds (Moringa oleifera Lam), at various food processing conditions. Moringin degrades rapidly to several water-soluble products via a pseudo-first-order kinetics. By analyzing the reaction products, the degradation mechanism was found to be through hydrolyzing to (A) 1-O-(4-hydroxymethylphenyl) α-l-rhamnopyranoside (rhamnobenzyl alcohol RBA) or (B) rhamnobenzylamine. The formed amine further reacts with moringin to form N,N'-bis{4-[(α-l-rhamnosyloxy)benzyl]}thiourea (di-rhamnobenzyl thiourea, DRBTU). In addition, moringin isomerizes to 4-[(α-l-rhamnosyloxy)benzyl]thiocyanate (RBTC), which further reacts with moringin to form S,N-bis{4-[(α-l-rhamnosyloxy)benzyl]}-dithiocarbamate (DRBDTC). Furthermore, pH was found to have an effect on the degradation of moringin. RBA and RBTC were major degraded products in neutral and acidic conditions while thiourea (DRBTU) was in alkaline condition. Although moringin showed higher cytotoxicity to cancer cells, its degraded products showed very weak or no activities, suggesting that the isothiocyanate group of ITCs is essential for their cancer chemoprevention activities.
Collapse
Affiliation(s)
- Yuyun Lu
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Romy Dorothea Maria Vos
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Yuyu Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Molan Zhang
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Yunjiao Liu
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Caili Fu
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Jiangsu 215123, China
| | - Shao Quan Liu
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Jiangsu 215123, China
| | - Dejian Huang
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Jiangsu 215123, China.
| |
Collapse
|
5
|
Miura A, Ikeda A, Abe M, Seo K, Watanabe T, Ozaki-Masuzawa Y, Hosono T, Seki T. Diallyl Trisulfide Prevents Obesity and Decreases miRNA-335 Expression in Adipose Tissue in a Diet-Induced Obesity Rat Model. Mol Nutr Food Res 2021; 65:e2001199. [PMID: 34014027 DOI: 10.1002/mnfr.202001199] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/19/2021] [Indexed: 01/03/2023]
Abstract
SCOPE Diallyl trisulfide (DATS), an organosulfur compound generates in crushed garlic, has various beneficial health effects. A growing body of evidence indicates that miRNAs are involved in the pathology of lifestyle diseases including obesity. The anti-obesogenic effect of garlic is previously reported; however, the effects of DATS on obesity, and the relationship between garlic compounds and the involvement of miRNA remains unclear. Here, the anti-obesogenic activity of DATS and the potential role of miRNA in a diet-induced obesity rat model are investigated. METHODS AND RESULTS Oral administration of DATS suppressed body and white adipose tissue (WAT) weight gain in rats fed a high-fat diet compared with vehicle-administered rats. DATS lowered the plasma and liver triglyceride levels in obese rats, and decreased lipogenic mRNA levels including those of Srebp1c, Fasn, and Scd1 in the liver. DATS also suppressed de novo lipogenesis in the liver. Transcriptomic analyses of miRNA and mRNA in the epididymal WAT of obese rats using microarrays revealed that DATS decreased miRNA-335 expression and normalized the obesity-related mRNA transcriptomic signatures in epididymal WAT. CONCLUSION The potent anti-obesogenic effects of DATS and its possible mechanism of action was clearly demonstrated in this study.
Collapse
Affiliation(s)
- Atsushi Miura
- General Research Institute, Nihon University College of Bioresource Sciences, Fujisawa, Kanagawa, 252-0880, Japan
| | - Ayana Ikeda
- Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, Fujisawa, Kanagawa, 252-0880, Japan
| | - Marina Abe
- Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, Fujisawa, Kanagawa, 252-0880, Japan
| | - Kiki Seo
- Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, Fujisawa, Kanagawa, 252-0880, Japan
| | - Takahiro Watanabe
- Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, Fujisawa, Kanagawa, 252-0880, Japan
| | - Yori Ozaki-Masuzawa
- Department of Chemistry and Life Science, Nihon University College of Bioresource Sciences, Fujisawa, Kanagawa, 252-0880, Japan
| | - Takashi Hosono
- Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, Fujisawa, Kanagawa, 252-0880, Japan
- Department of Chemistry and Life Science, Nihon University College of Bioresource Sciences, Fujisawa, Kanagawa, 252-0880, Japan
| | - Taiichiro Seki
- General Research Institute, Nihon University College of Bioresource Sciences, Fujisawa, Kanagawa, 252-0880, Japan
- Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, Fujisawa, Kanagawa, 252-0880, Japan
- Department of Chemistry and Life Science, Nihon University College of Bioresource Sciences, Fujisawa, Kanagawa, 252-0880, Japan
| |
Collapse
|
6
|
Cao H, Li X, Wang F, Zhang Y, Xiong Y, Yang Q. Phytochemical-Mediated Glioma Targeted Treatment: Drug Resistance and Novel Delivery Systems. Curr Med Chem 2020; 27:599-629. [PMID: 31400262 DOI: 10.2174/0929867326666190809221332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 03/15/2019] [Accepted: 07/23/2019] [Indexed: 02/08/2023]
Abstract
Glioma, especially its most malignant type, Glioblastoma (GBM), is the most common and the most aggressive malignant tumour in the central nervous system. Currently, we have no specific therapies that can significantly improve its dismal prognosis. Recent studies have reported promising in vitro experimental results of several novel glioma-targeting drugs; these studies are encouraging to both researchers and patients. However, clinical trials have revealed that novel compounds that focus on a single, clear glioma genetic alteration may not achieve a satisfactory outcome or have side effects that are unbearable. Based on this consensus, phytochemicals that exhibit multiple bioactivities have recently attracted much attention. Traditional Chinese medicine and traditional Indian medicine (Ayurveda) have shown that phytocompounds inhibit glioma angiogenesis, cancer stem cells and tumour proliferation; these results suggest a novel drug therapeutic strategy. However, single phytocompounds or their direct usage may not reverse comprehensive malignancy due to poor histological penetrability or relatively unsatisfactory in vivo efficiency. Recent research that has employed temozolomide combination treatment and Nanoparticles (NPs) with phytocompounds has revealed a powerful dual-target therapy and a high blood-brain barrier penetrability, which is accompanied by low side effects and strong specific targeting. This review is focused on major phytocompounds that have contributed to glioma-targeting treatment in recent years and their role in drug resistance inhibition, as well as novel drug delivery systems for clinical strategies. Lastly, we summarize a possible research strategy for the future.
Collapse
Affiliation(s)
- Hang Cao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Feiyifan Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yueqi Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Xiong
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Qi Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Mastuo T, Miyata Y, Yuno T, Mukae Y, Otsubo A, Mitsunari K, Ohba K, Sakai H. Molecular Mechanisms of the Anti-Cancer Effects of Isothiocyanates from Cruciferous Vegetables in Bladder Cancer. Molecules 2020; 25:molecules25030575. [PMID: 32013065 PMCID: PMC7037050 DOI: 10.3390/molecules25030575] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 12/18/2022] Open
Abstract
Bladder cancer (BC) is a representative of urological cancer with a high recurrence and metastasis potential. Currently, cisplatin-based chemotherapy and immune checkpoint inhibitors are used as standard therapy in patients with advanced/metastatic BC. However, these therapies often show severe adverse events, and prolongation of survival is unsatisfactory. Therefore, a treatment strategy using natural compounds is of great interest. In this review, we focused on the anti-cancer effects of isothiocyanates (ITCs) derived from cruciferous vegetables, which are widely cultivated and consumed in many regions worldwide. Specifically, we discuss the anti-cancer effects of four ITC compounds—allyl isothiocyanate, benzyl isothiocyanate, sulforaphane, and phenethyl isothiocyanate—in BC; the molecular mechanisms underlying their anti-cancer effects; current trends and future direction of ITC-based treatment strategies; and the carcinogenic potential of ITCs. We also discuss the advantages and limitations of each ITC in BC treatment, furthering the consideration of ITCs in treatment strategies and for improving the prognosis of patients with BC.
Collapse
|
8
|
Mondal P, Natesh J, Kamal MA, Meeran SM. Non-coding RNAs in Lung Cancer Chemoresistance. Curr Drug Metab 2020; 20:1023-1032. [DOI: 10.2174/1389200221666200106105201] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/15/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023]
Abstract
Background:
Lung cancer is the leading cause of cancer-associated death worldwide with limited
treatment options. The major available treatment options are surgery, radiotherapy, chemotherapy and combinations
of these treatments. In chemotherapy, tyrosine kinase inhibitors and taxol are the first lines of chemotherapeutics
used for the treatment of lung cancer. Often drug resistance in the clinical settings hinders the efficiency of the
treatment and intrigues the tumor relapse. Drug-resistance is triggered either by intrinsic factors or due to the
prolonged cycles of chemotherapy as an acquired-resistance. There is an emerging role of non-coding RNAs
(ncRNAs), including notorious microRNAs (miRNAs), proposed to be actively involved in the regulations of various
tumor-suppressor genes and oncogenes.
Result:
The altered gene expression by miRNA is largely mediated either by the degradation or by interfering with
the translation of targeted mRNA. Unlike miRNA, other type of ncRNAs, such as long non-coding RNAs
(lncRNAs), can target the transcriptional activator or the repressor, RNA polymerase, and even DNA-duplex to
regulate the gene expressions. Many studies have confirmed the crucial role of ncRNAs in lung adenocarcinoma
progression and importantly, in the acquisition of chemoresistance. Recently, ncRNAs have become early biomarkers
and therapeutic targets for lung cancer.
Conclusion:
Targeting ncRNAs could be an effective approach for the development of novel therapeutics against
lung cancer and to overcome the chemoresistance.
Collapse
Affiliation(s)
- Priya Mondal
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - Jagadish Natesh
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Syed Musthapa Meeran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| |
Collapse
|
9
|
Repurposing old drugs as new inhibitors of the ubiquitin-proteasome pathway for cancer treatment. Semin Cancer Biol 2019; 68:105-122. [PMID: 31883910 DOI: 10.1016/j.semcancer.2019.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/30/2019] [Accepted: 12/15/2019] [Indexed: 12/25/2022]
Abstract
The ubiquitin-proteasome system (UPS) plays a central role in the degradation of cellular proteins. Targeting protein degradation has been validated as an effective strategy for cancer therapy since 2003. Several components of the UPS have been validated as potential anticancer targets, including 20S proteasomes, 19S proteasome-associated deubiquitinases (DUBs) and ubiquitin ligases (E3s). 20S proteasome inhibitors (such as bortezomib/BTZ and carfilzomib/CFZ) have been approved by the U.S. Food and Drug Administration (FDA) for the treatment of multiple myeloma (MM) and some other liquid tumors. Although survival of MM patients has been improved by the introduction of BTZ-based therapies, these clinical 20S proteasome inhibitors have several limitations, including emergence of resistance in MM patients, neuro-toxicities, and little efficacy in solid tumors. One of strategies to improve the current status of cancer treatment is to repurpose old drugs with UPS-inhibitory properties as new anticancer agents. Old drug reposition represents an attractive drug discovery approach compared to the traditional de novo drug discovery process which is time-consuming and costly. In this review, we summarize status of repurposed inhibitors of various UPS components, including 20S proteasomes, 19S-associated DUBs, and ubiquitin ligase E3s. The original and new mechanisms of action, molecular targets, and potential anticancer activities of these repurposed UPS inhibitors are reviewed, and their new uses including combinational therapies for cancer treatment are discussed.
Collapse
|
10
|
Shi Y, Yan C, Li Y, Zhang Y, Zhang G, Li M, Li B, Zhao X. Expression signature of miRNAs and the potential role of miR-195-5p in high-glucose-treated rat cardiomyocytes. J Biochem Mol Toxicol 2019; 34:e22423. [PMID: 31729781 DOI: 10.1002/jbt.22423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 10/10/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022]
Abstract
MicroRNAs are endogenous small noncoding RNAs that posttranscriptionally regulate the expression of target genes and play crucial roles in diverse physiopathologic processes. In the current study, we examined the microRNA (miRNA) expression profile of high-glucose-treated neonatal rat cardiomyocytes and the potential mechanisms. Differentially expressed miRNAs were analyzed by a miRNA microarray and validated by a quantitative real-time polymerase chain reaction in high-glucose-treated rat cardiomyocytes. Based on the results of our previous study and the bioinformatics prediction, we identified miR-195-5p/SGK1/Nedd4-2/hERG as the top-ranked signal pathway in diabetes cell model in vitro. In summary, our present study provides novel insights into the regulatory mechanism of miR-195-5p/SGK1/Nedd4-2/hERG in rat cardiomyocytes under high-glucose stress, which may provide a novel idea for the development of diagnostic and therapeutic strategies for diabetic cardiomyopathy in the future.
Collapse
Affiliation(s)
- Yuanqi Shi
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Caichuan Yan
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China.,Department of Cancer Molecular and Biology, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Yang Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yuhao Zhang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Guocui Zhang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Mingzhu Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Baoxin Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xin Zhao
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
11
|
Lee CF, Chiang NN, Lu YH, Huang YS, Yang JS, Tsai SC, Lu CC, Chen FA. Benzyl isothiocyanate (BITC) triggers mitochondria-mediated apoptotic machinery in human cisplatin-resistant oral cancer CAR cells. Biomedicine (Taipei) 2018; 8:15. [PMID: 30141402 PMCID: PMC6108226 DOI: 10.1051/bmdcn/2018080315] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/12/2018] [Indexed: 01/23/2023] Open
Abstract
Benzyl isothiocyanate (BITC), a component of dietary food, possesses a powerful anticancer activity. Previous studies have shown that BITC produces a large number of intracellular reactive oxygen species (ROS) and increases intracellular Ca2+ release from endoplasmic reticulum (ER), leading to the activation of the apoptotic mechanism in tumor cells. However, there is not much known regarding the inhibitory effect of BITC on cisplatin-resistant oral cancer cells. The purpose of this study was to examine the anticancer effect and molecular mechanism of BITC on human cisplatin-resistant oral cancer CAR cells. Our results demonstrated that BITC significantly reduced cell viability of CAR cells in a concentration- and time-dependent manner. BITC was found to cause apoptotic cell shrinkage and DNA fragmentation by morphologic observation and TUNEL/DAPI staining. Pretreatment of cells with a specific inhibitor of pan-caspase significantly reduced cell death caused by BITC. Colorimetric assay analyses also showed that the activities of caspase-3 and caspase-9 were elevated in BITC-treated CAR cells. An increase in ROS production and loss of mitochondria membrane potential (ΔΨm) occurred due to BITC exposure and was observed via flow cytometric analysis. Western blotting analyses demonstrated that the protein levels of Bax, Bad, cytochrome c, and cleaved caspase-3 were up-regulated, while those of Bcl-2, Bcl-xL and pro-caspase-9 were down-regulated in CAR cells after BITC challenge. In sum, the mitochondria-dependent pathway might contribute to BITC-induced apoptosis in human cisplatin-resistant oral cancer CAR cells.
Collapse
Affiliation(s)
- Chiu-Fang Lee
- Department of Pharmacy, Kaohsiung Veterans General Hospital Pingtung Branch, Pingtung 912, Taiwan
| | - Ni-Na Chiang
- Department of Pharmacy, Kaohsiung Veterans General Hospital Pingtung Branch, Pingtung 912, Taiwan
| | - Yao-Hua Lu
- Department of Pharmacy and Master Program, Tajen University, Pingtung 907, Taiwan
| | - Yu-Syuan Huang
- Department of Pharmacy and Master Program, Tajen University, Pingtung 907, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| | - Shih-Chang Tsai
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan
| | - Chi-Cheng Lu
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan - Department of Sport Performance, National Taiwan University of Sport, Taichung 404, Taiwan
| | - Fu-An Chen
- Department of Pharmacy and Master Program, Tajen University, Pingtung 907, Taiwan
| |
Collapse
|