1
|
Li X, Wang C, Yanagita T, Xue C, Zhang T, Wang Y. Trimethylamine N-Oxide in Aquatic Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14498-14520. [PMID: 38885200 DOI: 10.1021/acs.jafc.4c01974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Trimethylamine N-oxide (TMAO), a characteristic nonprotein nitrogen compound, is widely present in seafood, which exhibits osmoregulatory effects for marine organisms in vivo and plays an important role in aquaculture and aquatic product preservation. However, much attention has been focused on the negative effect of TMAO since it has recently emerged as a putative promoter of chronic diseases. To get full knowledge and maximize our ability to balance the positive and negative aspects of TMAO, in this review, we comprehensively discuss the TMAO in aquatic products from the aspects of physiological functions for marine organisms, flavor, quality, the conversion of precursors, the influences on human health, and the seafood ingredients interaction consideration. Though the circulating TMAO level is inevitably enhanced after seafood consumption, dietary seafood still exhibits beneficial health effects and may provide nutraceuticals to balance the possible adverse effects of TMAO.
Collapse
Affiliation(s)
- Xiaoyue Li
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Chengcheng Wang
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Teruyoshi Yanagita
- Laboratory of Nutrition Biochemistry, Department of Applied Biochemistry and Food Science, Saga University, Saga 840-8502, Japan
| | - Changhu Xue
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Tiantian Zhang
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yuming Wang
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Sanya Institute of Oceanography, Ocean University of China, Sanya 572024, China
| |
Collapse
|
2
|
Sun Y, Liu X, Wang R, Liu R, Lv X, Ma Y, Li Q. Lacticaseibacillus rhamnosus HF01 fermented yogurt alleviated high-fat diet-induced obesity and hepatic steatosis via the gut microbiota-butyric acid-hepatic lipid metabolism axis. Food Funct 2024; 15:4475-4489. [PMID: 38563737 DOI: 10.1039/d3fo04985j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The objective of this study was to investigate the anti-obesity effects and underlying mechanism of Lacticaseibacillus rhamnosus HF01 fermented yogurt (HF01-Y). Herein, obesity was induced in mice through a high-fat diet and the changes in the gut microbiota were evaluated using 16S rRNA gene sequencing, combined with the expression levels of the liver AMPK signaling pathway to analyze the potential relationship between HF01-Y-mediated gut microbiota and obesity. The results showed that supplementation with HF01-Y improved obesity-related phenotypes in mice, including reduced body weight, improved serum lipid profiles, and decreased hepatic lipid droplet formation. In addition, HF01-Y altered the composition of the gut microbiota in obese mice, significantly upregulated norank_f__Muribaculaceae, unclassified_c__Clostridia, Blautia, unclassified_o__Bacteroidales, and Rikenellaceae_RC9_gut_group, while downregulating unclassified_f__Desulfovibrionaceae, Colidextribacter, and unclassified_f__Oscillospiraceae. These alterations led to an increase of the cecum butyric acid content, which in turn indirectly promoted the activation of the AMPK signaling pathway, subsequently, inhibited fat synthesis, and promoted fatty acid oxidation related gene expression. Therefore, HF01-Y was likely to alleviate hepatic fat and relieve obesity by modulating the gut microbiota-butyric acid-hepatic lipid metabolism axis, ultimately promoting host health.
Collapse
Affiliation(s)
- Yue Sun
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Xiaolin Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Rongchun Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Rongmei Liu
- Chengdu Molecular Power Biotechnology Co., Ltd, Chengdu, Sichuan, 610000, China
- National Center of Technology Innovation for Dairy, Hohhot, Inner Mongolia, 010110, China
- Sichuan Engineering Laboratory for High-quality Dairy Product Preparation and Quality Control Technology, Chengdu, Sichuan, 610000, China
| | - Xuepeng Lv
- Dairy Nutrition and Function, Key Laboratory of Sichuan Province, New Hope Dairy Co., Ltd, Chengdu, Sichuan, 610023, China.
- National Center of Technology Innovation for Dairy, Hohhot, Inner Mongolia, 010110, China
| | - Ying Ma
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Qiming Li
- Dairy Nutrition and Function, Key Laboratory of Sichuan Province, New Hope Dairy Co., Ltd, Chengdu, Sichuan, 610023, China.
- Chengdu Molecular Power Biotechnology Co., Ltd, Chengdu, Sichuan, 610000, China
- National Center of Technology Innovation for Dairy, Hohhot, Inner Mongolia, 010110, China
- Sichuan Engineering Laboratory for High-quality Dairy Product Preparation and Quality Control Technology, Chengdu, Sichuan, 610000, China
| |
Collapse
|
3
|
Aleksic M, Golic I, Jankovic A, Cvoro A, Korac A. ACOX-driven peroxisomal heterogeneity and functional compartmentalization in brown adipocytes of hypothyroid rats. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230109. [PMID: 37153362 PMCID: PMC10154930 DOI: 10.1098/rsos.230109] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023]
Abstract
We previously demonstrated that hypothyroidism increases peroxisomal biogenesis in rat brown adipose tissue (BAT). We also showed heterogeneity in peroxisomal origin and their unique structural association with mitochondria and/or lipid bodies to carry out β-oxidation, contributing thus to BAT thermogenesis. Distinctive heterogeneity creates structural compartmentalization within peroxisomal population, raising the question of whether it is followed by their functional compartmentalization regarding localization/colocalization of two main acyl-CoA oxidase (ACOX) isoforms, ACOX1 and ACOX3. ACOX is the first and rate-limiting enzyme of peroxisomal β-oxidation, and, to date, their protein expression patterns in BAT have not been fully defined. Therefore, we used methimazole-induced hypothyroidism to study ACOX1 and ACOX3 protein expression and their tissue immunolocalization. Additionally, we analysed their specific peroxisomal localization and colocalization in parallel with peroxisomal structural compartmentalization in brown adipocytes. Hypothyroidism caused a linear increase in ACOX1 expression, while a temporary decrease in ACOX3 levels is only recovered to the control level at day 21. Peroxisomal ACOX1 and ACOX3 localization and colocalization patterns entirely mirrored heterogeneous peroxisomal biogenesis pathways and structural compartmentalization, e.g. associations with mitochondria and/or lipid bodies. Hence, different ACOX isoforms localization/colocalization creates distinct functional heterogeneity of peroxisomes and drives their functional compartmentalization in rat brown adipocytes.
Collapse
Affiliation(s)
- Marija Aleksic
- Center for Electron Microscopy, Faculty of Biology, University of Belgrade, Belgrade 11000, Serbia
| | - Igor Golic
- Center for Electron Microscopy, Faculty of Biology, University of Belgrade, Belgrade 11000, Serbia
| | - Aleksandra Jankovic
- Institute for Biological Research 'Sinisa Stankovic'—National Institute of Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Aleksandra Cvoro
- Center for Electron Microscopy, Faculty of Biology, University of Belgrade, Belgrade 11000, Serbia
| | - Aleksandra Korac
- Center for Electron Microscopy, Faculty of Biology, University of Belgrade, Belgrade 11000, Serbia
| |
Collapse
|
4
|
Zou HY, Zhang HJ, Zhao YC, Li XY, Wang YM, Zhang TT, Xue CH. N-3 PUFA Deficiency Aggravates Streptozotocin-Induced Pancreatic Injury in Mice but Dietary Supplementation with DHA/EPA Protects the Pancreas via Suppressing Inflammation, Oxidative Stress and Apoptosis. Mar Drugs 2023; 21:md21010039. [PMID: 36662212 PMCID: PMC9861647 DOI: 10.3390/md21010039] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
It has been reported that dietary n-3 polyunsaturated fatty acids (n-3 PUFAs) exert therapeutic potential for the preservation of functional β-cell mass. However, the effect of dietary n-3 PUFA deficiency on pancreatic injury and whether the supplementation of n-3 PUFA could prevent the development of pancreatic injury are still not clear. In the present study, an n-3 PUFA deficiency mouse model was established by feeding them with n-3 PUFA deficiency diets for 30 days. Results showed that n-3 PUFA deficiency aggravated streptozotocin (STZ)-induced pancreas injury by reducing the insulin level by 18.21% and the HOMA β-cell indices by 31.13% and the area of islet by 52.58% compared with the STZ group. Moreover, pre-intervention with DHA and EPA for 15 days could alleviate STZ-induced pancreas damage by increasing the insulin level by 55.26% and 44.33%, the HOMA β-cell indices by 118.81% and 157.26% and reversed the area of islet by 196.75% and 205.57% compared to the n-3 Def group, and the effects were significant compared to γ-linolenic acid (GLA) and alpha-linolenic acid (ALA) treatment. The possible underlying mechanisms indicated that EPA and DHA significantly reduced the ration of n-6 PUFA to n-3 PUFA and then inhibited oxidative stress, inflammation and islet β-cell apoptosis levels in pancreas tissue. The results might provide insights into the prevention and alleviation of pancreas injury by dietary intervention with PUFAs and provide a theoretical basis for their application in functional foods.
Collapse
Affiliation(s)
- Hong-Yu Zou
- College of Food Science and Engineering, Ocean University of China, No.1299 Sansha Road, Qingdao 266404, China
| | - Hui-Juan Zhang
- College of Food Science and Engineering, Ocean University of China, No.1299 Sansha Road, Qingdao 266404, China
| | - Ying-Cai Zhao
- College of Food Science and Engineering, Ocean University of China, No.1299 Sansha Road, Qingdao 266404, China
| | - Xiao-Yue Li
- College of Food Science and Engineering, Ocean University of China, No.1299 Sansha Road, Qingdao 266404, China
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, No.1299 Sansha Road, Qingdao 266404, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, No.1299 Sansha Road, Qingdao 266404, China
- Correspondence: (T.-T.Z.); (C.-H.X.)
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, No.1299 Sansha Road, Qingdao 266404, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- Correspondence: (T.-T.Z.); (C.-H.X.)
| |
Collapse
|
5
|
Lin P, Shen N, Yin F, Guo SD. Sea cucumber-derived compounds for treatment of dyslipidemia: A review. Front Pharmacol 2022; 13:1000315. [PMID: 36188620 PMCID: PMC9515789 DOI: 10.3389/fphar.2022.1000315] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/29/2022] [Indexed: 11/23/2022] Open
Abstract
Dyslipidemias are disorders of plasma levels of lipids, such as elevated levels of total cholesterol and triglyceride, that are associated with various human diseases including cardiovascular disease (CVD) and non-alcoholic fatty liver disease (NAFLD). Statins are the first-line drugs for treatment of dyslipidemia. However, a substantial proportion of patients cannot reach the recommended LDL-c level even with the highest tolerated doses of statins, and there is no available drug specifically for NAFLD therapy. Sea cucumbers are one of the widely distributed invertebrates, and are an important resource of food and medicine. Sea cucumbers have many valuable nutrients including saponins, fatty acids, phospholipids, cerebrosides, sulfated polysaccharides, as well as proteins and peptides. In recent years, these natural products derived from sea cucumbers have attracted attentions for treatment of CVD and NAFLD because of their lipid-lowering effect and low toxicity. However, the hypolipidemic mechanisms of action and the structure-activity relationship of these bioactive components have not been well-documented in literature. This review article summarizes the signaling pathways and the potential structure-activity relationship of sea cucumber-derived bioactive compounds including saponins, lipids, carbohydrates as well as peptides and proteins. This article will provide information useful for the development of sea cucumber-derived lipid-lowering compounds as well as for investigation of hypolipidemic compounds that are derived from other natural resources.
Collapse
|
6
|
Wang K, Fu Z, Li X, Hong H, Zhan X, Guo X, Luo Y, Tan Y. Whey protein hydrolysate alleviated atherosclerosis and hepatic steatosis by regulating lipid metabolism in apoE -/- mice fed a Western diet. Food Res Int 2022; 157:111419. [PMID: 35761665 DOI: 10.1016/j.foodres.2022.111419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/05/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022]
Abstract
Whey protein hydrolysate (WPH) has been proved to possess various biological activities associated with the amelioration of cardiovascular disease (CVD). The objective of this study was to investigate the anti-atherosclerotic and hepatoprotective effects of WPH on apolipoprotein E knockout (apoE-/-) mice fed with a Western diet for 15 weeks. Results revealed that WPH markedly inhibited the development of atherosclerotic lesions in the aorta and steatosis injury in the liver. The serum lipid and inflammation levels were both reduced after WPH supplemented in apoE-/- mice. In addition, WPH inhibited the lipid accumulation in the liver, thereby decreasing the hepatic inflammation level and oxidative stress injury. Mechanism investigation revealed that WPH down-regulated the expression of cholesterol biosynthesis genes while up-regulated the expression of cholesterol uptake and excretion genes in the liver. Meanwhile, the de novo lipogenesis was inhibited while the fatty acids β-oxidation was activated in the liver by WPH supplementation. Notably, the n-3 polyunsaturated fatty acid (PUFA)/n-6 PUFA ratio in serum and liver of the WPH-H group were 2.69-fold (p < 0.01) and 3.64-fold (p < 0.01) higher than that of the Model group. Collectively, our results proved WPH possesses potent anti-atherosclerotic and hepatoprotective activities and has the potential to be used as a novel functional ingredient for the management of CVD.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Zixin Fu
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Xiaoyi Li
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Hui Hong
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Xin Zhan
- Tianjin Milkyway Import and Export Corp, Tianjin 300457, China.
| | - Xiaohong Guo
- Hebei Dongkang Dairy Co., Ltd, Shijiazhuang 052160, China.
| | - Yongkang Luo
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Yuqing Tan
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
7
|
Wei Q, Guo JS. Developing natural marine products for treating liver diseases. World J Clin Cases 2022; 10:2369-2381. [PMID: 35434070 PMCID: PMC8968605 DOI: 10.12998/wjcc.v10.i8.2369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/14/2021] [Accepted: 01/29/2022] [Indexed: 02/06/2023] Open
Abstract
In recent years, marine-derived bioactive compounds have gained increasing attention because of their higher biodiversity vs land-derived compounds. A number of marine-derived compounds are proven to improve lipid metabolism, modulate the gut microbiota, and possess anti-inflammatory, antioxidant, antibacterial, antiviral, and antitumor activities. With the increasing understanding of the molecular landscape underlying the pathogenesis of chronic liver diseases, interest has spiked in developing new therapeutic drugs and medicine food homology from marine sources for the prevention and treatment of liver diseases.
Collapse
Affiliation(s)
- Qian Wei
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jin-Sheng Guo
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
8
|
Wen XY, Jing P. Dietary cerebrosides in seven edible mushrooms: One step detection, quantification, and Si-SPE assisted isolation. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Jack A, Mohd MA, Kamaruddin NN, Mohd Din LH, Hajri NA, Tengku Muhammad TS. Acaudina molpadioides mediates lipid uptake by suppressing PCSK9 transcription and increasing LDL receptor in human liver cells. Saudi J Biol Sci 2021; 28:7105-7116. [PMID: 34867013 PMCID: PMC8626262 DOI: 10.1016/j.sjbs.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 11/09/2022] Open
Abstract
Acaudina molpadioides has been long used as traditional medicinal resources and reported to demonstrate various important bioactivities such as anticoagulation, antithrombosis, anti-hyperglycemia and anticancer. However, its lipid lowering activity is yet to be fully explored. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is an enzyme that enhances the lysosomal degradation of hepatic low density lipoprotein receptor (LDLR) resulting in excessive accumulation of the plasma levels of LDL-cholesterols (LDL-C) which subsequently accelerate atherosclerosis. In the present study, A. molpadioides fractions were subjected to promoter-reporter luciferase assay to determine its role as PCSK9 inhibitors. It was found both fractions (EFA and EFB) reduced the transcriptional activity of PCSK9 promoter. Among the seven 5′end deletion constructs of PCSK9 promoter, fragments D1 (−1,711/−94), D3 (−709/−94) and D4 (−440/−94), were suppressed in the presence of both fractions whereas D2 (−1,214/−94), and, D6 (−351/−94) as well as D7 (−335/−94) were inhibited only by EFA and EFB, respectively. Further transcription factor binding sites prediction using MatInspector software discovered various potential cis-regulatory elements namely, PPAR, KLFs, RBPJ-kappa and SREBP that may potentially be involved in ameliorating the transcriptional activity of PCSK9. Immunofluorescence staining was used to evaluate the effects of both fractions on LDL-C and LDLR. Results showed that levels of LDL-C uptake in EFA-treated cells were 69.1% followed by EFB at 32.6%, as compared to untreated control after 24 h treatment. The LDLR protein distribution was induced by 62.41% and 32.2%, which corresponded to an increase in LDL-C uptake in both EFA and EFB treatment, respectively. Hence, the inhibition of PCSK9 by bioactive compounds in EFA and EFB could be another promising therapeutic agent in reducing the cholesterol levels and atherosclerosis by targeting PCSK9.
Collapse
Affiliation(s)
- Allicia Jack
- Nutrition & Food Safety Programme, Food Science & Technology Research Centre, Malaysian Agricultural Research & Development Institute (MARDI), Persiaran MARDI-UPM, 43400 Serdang, Selangor, Malaysia.,Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Muzaida Aminah Mohd
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | | | - Lukman Hakim Mohd Din
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Nor Azwin Hajri
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | | |
Collapse
|
10
|
Yang JY, Zhang TT, Dong Z, Shi HH, Xu J, Mao XZ, Wang YM, Xue CH. Dietary Supplementation with Exogenous Sea-Cucumber-Derived Ceramides and Glucosylceramides Alleviates Insulin Resistance in High-Fructose-Diet-Fed Rats by Upregulating the IRS/PI3K/Akt Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9178-9187. [PMID: 33560835 DOI: 10.1021/acs.jafc.0c06831] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Endogenous ceramide is considered to be associated with the progress of insulin resistance. However, the effects of dietary exogenous glucosylceramides and ceramides on insulin resistance are unclear. A model of fructose-induced male Sprague Dawley rats was used to compare the effects of sea-cucumber-derived glucosylceramides and ceramides on insulin resistance. Both glucosylceramides and ceramides significantly improved glucose tolerance, reduced the concentrations of serum glucose and glycosylated hemoglobin, and alleviated the accompanied hypertension. Ceramides significantly enhanced glycogen levels in skeletal muscle, whereas glucosylceramides significantly increased the hepatic glycogen levels. Moreover, glucosylceramides alleviated insulin resistance by inhibiting gluconeogenesis, promoting glycogen synthesis and insulin signal transduction in the liver; meanwhile, ceramides were mainly due to the promotion of glycogen synthesis and insulin signal transduction in skeletal muscle. Additionally, glucosylceramides and ceramides effectively attenuated inflammation in adipose tissue. These results indicate that glucosylceramides and ceramides have potential value in the prevention and alleviation of insulin resistance.
Collapse
Affiliation(s)
- Jin-Yue Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Zhe Dong
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Hao-Hao Shi
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Xiang-Zhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Laboratory of Marine Drugs & Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong 266237, People's Republic of China
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Laboratory of Marine Drugs & Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong 266237, People's Republic of China
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Laboratory of Marine Drugs & Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong 266237, People's Republic of China
| |
Collapse
|
11
|
Na J, Hwang HJ, Shin MS, Kang M, Lee J, Bang G, Kim YJ, Hwang YJ, Hwang KA, Park YH. Extract of radish (R. Sativus Linn) promotes anti-atherosclerotic effect using urine metabolomics in ApoE−/− mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
12
|
Horie K, Nanashima N, Maeda H, Tomisawa T, Oey I. Blackcurrant ( Ribes nigrum L.) Extract Exerts Potential Vasculoprotective Effects in Ovariectomized Rats, Including Prevention of Elastin Degradation and Pathological Vascular Remodeling. Nutrients 2021; 13:nu13020560. [PMID: 33567796 PMCID: PMC7915542 DOI: 10.3390/nu13020560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 12/19/2022] Open
Abstract
Estrogen exerts cardioprotective effects in menopausal women. Phytoestrogens are plant-derived substances exhibiting estrogenic activity that could beneficially affect vascular health. We previously demonstrated that blackcurrant (Ribes nigrum L.) extract (BCE) treatment exerted beneficial effects on vascular health via phytoestrogenic activity in ovariectomized (OVX) rats, which are widely used as menopausal animal models. Here, we examined whether BCE treatment reduced elastin degradation and prevented pathological vascular remodeling in OVX rats fed a regular diet (OVX Control) or a 3% BCE-supplemented diet (OVX BCE), compared with sham surgery rats fed a regular diet (Sham) for 3 months. The results indicated a lower staining intensity of elastic fibers, greater elastin fragmentation, and higher α-smooth muscle actin protein expression in OVX Control rats than in OVX BCE and Sham rats. Pathological vascular remodeling was only observed in OVX Control rats. Additionally, we investigated matrix metalloproteinase (MMP)-12 mRNA expression levels to elucidate the mechanism underlying elastin degradation, revealing significantly upregulated MMP-12 mRNA expression in OVX Control rats compared with that in Sham and OVX BCE rats. Together, we identify BCE as exerting a vascular protective effect through reduced MMP-12 expression and vascular smooth muscle cell proliferation. To our knowledge, this is the first report indicating that BCE might protect against elastin degradation and pathological vascular remodeling during menopause.
Collapse
Affiliation(s)
- Kayo Horie
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki 036-8564, Japan;
- Correspondence: ; Tel.: +81-172-39-5527
| | - Naoki Nanashima
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki 036-8564, Japan;
| | - Hayato Maeda
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan;
| | - Toshiko Tomisawa
- Department of Nursing Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki 036-8564, Japan;
| | - Indrawati Oey
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand;
- Riddet Institute, Palmerston North 4442, New Zealand
| |
Collapse
|
13
|
Wang DD, Wu F, Zhang LY, Zhao YC, Wang CC, Xue CH, Yanagita T, Zhang TT, Wang YM. Effects of dietary n-3 PUFA levels in early life on susceptibility to high-fat-diet-induced metabolic syndrome in adult mice. J Nutr Biochem 2020; 89:108578. [PMID: 33388352 DOI: 10.1016/j.jnutbio.2020.108578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/14/2020] [Accepted: 12/24/2020] [Indexed: 02/09/2023]
Abstract
The maternal nutritional status during pregnancy and lactation was closely related to the growth and development of the fetus and infants, which had a profound impact on the health of the offspring. N-3 polyunsaturated fatty acid (PUFA) had been proved to have beneficial effects on glucolipid metabolism. However, the effects of dietary different n-3 PUFA levels for mother during pregnancy and lactation on susceptibility to high-fat-diet-induced metabolic syndrome for offspring in adulthood are still unclear. The maternal mice were fed with control, n-3 PUFA-deficient or fish oil-contained n-3 PUFA-rich diets during pregnancy and lactation, and the weaned offspring were fed with high-fat or low-fat diet for 13 weeks, then were subjected to oral glucose tolerance tests. The results showed that dietary n-3 PUFA-deficiency in early life could aggravate the high-fat-diet-induced glucolipid metabolism disorders, including glucose intolerance, insulin resistance, obesity, and dyslipidemia, thus increased the susceptibility to metabolic syndrome of adult mice. Notably, nutritional supplementation with n-3 PUFA in early life could significantly alleviate the glucose metabolism disorders by increasing insulin sensitivity, inhibiting gluconeogenesis and promoting glycogenesis. In addition, administration with n-3 PUFA in early life remarkably reduced serum and hepatic lipid profiles by mediating the expression of genes related to lipogenesis and β-oxidation of fatty acids. Dietary n-3 PUFA-deficiency in early life increases the susceptibility to metabolic syndrome of adult offspring, and nutritional supplementation with n-3 PUFA enhances the tolerance to a high-fat diet of adult offspring.
Collapse
Affiliation(s)
- Dan-Dan Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Fang Wu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Ling-Yu Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Ying-Cai Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Cheng-Cheng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, China
| | - Teruyoshi Yanagita
- Laboratory of Nutrition Biochemistry, Department of Applied Biochemistry and Food Science, Saga University, Saga, Japan
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China.
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, China.
| |
Collapse
|
14
|
Wang X, Wang Y, Xu J, Xue C. Sphingolipids in food and their critical roles in human health. Crit Rev Food Sci Nutr 2020; 61:462-491. [PMID: 32208869 DOI: 10.1080/10408398.2020.1736510] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sphingolipids (SLs) are ubiquitous structural components of cell membranes and are essential for cell functions under physiological conditions or during disease progression. Abundant evidence supports that SLs and their metabolites, including ceramide (Cer), ceramide-1-phosphate (C1P), sphingosine (So), sphingosine-1-phosphate (S1P), are signaling molecules that regulate a diverse range of cellular processes and human health. However, there are limited reviews on the emerging roles of exogenous dietary SLs in human health. In this review, we discuss the ubiquitous presence of dietary SLs, highlighting their structures and contents in foodstuffs, particularly in sea foods. The digestion and metabolism of dietary SLs is also discussed. Focus is given to the roles of SLs in both the etiology and prevention of diseases, including bacterial infection, cancers, neurogenesis and neurodegenerative diseases, skin integrity, and metabolic syndrome (MetS). We propose that dietary SLs represent a "functional" constituent as emerging strategies for improving human health. Gaps in research that could be of future interest are also discussed.
Collapse
Affiliation(s)
- Xiaoxu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| |
Collapse
|
15
|
Wang CC, Guo Y, Zhou MM, Xue CH, Chang YG, Zhang TT, Wang YM. Comparative studies of DHA-enriched phosphatidylcholine and recombination of DHA-ethyl ester with egg phosphatidylcholine on ameliorating memory and cognitive deficiency in SAMP8 mice. Food Funct 2019; 10:938-950. [DOI: 10.1039/c8fo01822g] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DHA-PLs (DHA-PC) could not be substituted by recombination of commercial fish oil with DHA-free PC in alleviating age-related memory loss and cognitive deficiency in SAMP8 mice.
Collapse
Affiliation(s)
- Cheng-Cheng Wang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- P. R. China
| | - Ying Guo
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- P. R. China
| | - Miao-Miao Zhou
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- P. R. China
| | - Chang-Hu Xue
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology
| | - Yao-Guang Chang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- P. R. China
| | - Tian-Tian Zhang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- P. R. China
| | - Yu-Ming Wang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology
| |
Collapse
|
16
|
Li Q, Che H, Wang C, Zhang L, Ding L, Xue C, Zhang T, Wang Y. Cerebrosides from Sea Cucumber Improved Aβ1–42‐Induced Cognitive Deficiency in a Rat Model of Alzheimer's Disease. Mol Nutr Food Res 2018; 63:e1800707. [DOI: 10.1002/mnfr.201800707] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/23/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Qian Li
- College of Food Science and EngineeringOcean University of China Qingdao 266003 Shandong China
| | - Hong‐Xia Che
- College of Food Science and EngineeringOcean University of China Qingdao 266003 Shandong China
- College of Marine Science and Biological EngineeringQingdao University of Science and Technology Qingdao 266042 Shandong China
| | - Cheng‐Cheng Wang
- College of Food Science and EngineeringOcean University of China Qingdao 266003 Shandong China
| | - Ling‐Yu Zhang
- College of Food Science and EngineeringOcean University of China Qingdao 266003 Shandong China
| | - Lin Ding
- College of Food Science and EngineeringOcean University of China Qingdao 266003 Shandong China
| | - Chang‐Hu Xue
- College of Food Science and EngineeringOcean University of China Qingdao 266003 Shandong China
- Qingdao National Laboratory for Marine Science and TechnologyLaboratory of Marine Drugs and Biological Products Qingdao 266237 Shandong China
| | - Tian‐Tian Zhang
- College of Food Science and EngineeringOcean University of China Qingdao 266003 Shandong China
| | - Yu‐Ming Wang
- College of Food Science and EngineeringOcean University of China Qingdao 266003 Shandong China
- Qingdao National Laboratory for Marine Science and TechnologyLaboratory of Marine Drugs and Biological Products Qingdao 266237 Shandong China
| |
Collapse
|
17
|
Wang T, Xue C, Zhang T, Wang Y. The improvements of functional ingredients from marine foods in lipid metabolism. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|