1
|
Arroyo-Cruz LV, Sagardía-González S, Miller K, Ling T, Rivas F, Martínez-Montemayor MM. Selective Antineoplastic Potential of Fractionated Caribbean Native Ganoderma Species Extracts on Triple-Negative Breast Cancer Cells. Pharmaceuticals (Basel) 2024; 17:864. [PMID: 39065715 PMCID: PMC11279663 DOI: 10.3390/ph17070864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype characterized by the absence of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor type 2 expression. It is known for its high malignancy, invasiveness, and propensity for metastasis, resulting in a poor prognosis due to the absence of beneficial therapeutic targets. Natural products derived from mushrooms have gained significant attention in neoplastic therapy due to their potential medicinal properties. The therapeutic potential of Ganoderma lucidum in breast cancer has been highlighted by our group, suggesting its use as an adjuvant treatment. The present study aims to assess the potential antineoplastic capacity of two Caribbean native Ganoderma species found in Puerto Rico, Ganoderma multiplicatum (G. multiplicatum) and Ganoderma martinicense (G. martinicense). Antiproliferative studies were conducted via cell viability assays after cultivation, harvesting, and fractionation of both species. The obtained results indicate that most of the fractions show some cytotoxicity against all cell lines, but 33% of the fractions (F1, F2, F7, F12) display selectivity towards cancer cell models. We demonstrate for the first time that native Ganoderma species can generate metabolites with anti-TNBC properties. Future avenues will focus on structure elucidation of the most active fractions of these Ganoderma extracts.
Collapse
Affiliation(s)
- Luz V. Arroyo-Cruz
- Department of Biochemistry, School of Medicine, Universidad Central del Caribe, Bayamón 00960-6032, Puerto Rico;
| | | | - Kurt Miller
- Huerto Rico, Carolina 00987, Puerto Rico; (S.S.-G.); (K.M.)
| | - Taotao Ling
- Department of Chemistry, Louisiana State University, 133 Choppin Hall, Baton Rouge, LA 70803, USA; (T.L.); (F.R.)
| | - Fatima Rivas
- Department of Chemistry, Louisiana State University, 133 Choppin Hall, Baton Rouge, LA 70803, USA; (T.L.); (F.R.)
| | | |
Collapse
|
2
|
Solanki R, Jodha B, Prabina KE, Aggarwal N, Patel S. Recent advances in phytochemical based nano-drug delivery systems to combat breast cancer: A review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Zhang W, Liu C, Li J, Lu Y, Li H, Zhuang J, Ren X, Wang M, Sun C. Tanshinone IIA: New Perspective on the Anti-Tumor Mechanism of A Traditional Natural Medicine. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:209-239. [PMID: 34983327 DOI: 10.1142/s0192415x22500070] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The search for natural and efficacious antineoplastic drugs, with minimal toxicity and side effects, is an important part of antitumor drug research and development. Tanshinone IIA is the most evaluated lipophilic active component of Salvia miltiorrhiza. Tanshinone IIA is a path-breaking traditional drug applied in cardiovascular treatment. It has also been found that tanshinone IIA plays an important role in the digestive, respiratory and circulatory systems, as well as in other tumor diseases. Tanshinone IIA significantly inhibits the proliferation of several types of tumors, blocks the cell cycle, induces apoptosis and autophagic death, in addition to inhibiting cell migration and invasion. Among these, the regulation of tumor-cell apoptosis signaling pathways is the key breakthrough point in several modes of antitumor therapy. The PI3K/AKT/MTOR signaling pathway and the JNK pathway are the key pathways for tanshinone IIA to induce tumor cell apoptosis. In addition to glycolysis, reactive oxygen species and signal transduction all play an active role with the participation of tanshinone IIA. Endogenous apoptosis is considered the main mechanism of tumor apoptosis induced by tanshinone IIA. Multiple pathways and targets play a role in the process of endogenous apoptosis. Tanshinone IIA can protect chemotherapy drugs, which is mainly reflected in the protection of the side effects of chemotherapy drugs, such as neurotoxicity and inhibition of the hematopoietic system. Tanshinone IIA also has a certain regulatory effect on tumor angiogenesis, which is mainly manifested in the control of hypoxia. Our findings indicated that tanshinone IIA is an effective treatment agent in the cardiovascular field and plays a significant role in antitumor therapeutics. This paper reviews the pharmacological potential and inhibitory effect of tanshinone IIA on cancer. It is greatly anticipated that tanshinone IIA will be employed as an adjuvant in the treatment of various cancers.
Collapse
Affiliation(s)
- Wenfeng Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P. R. China.,School of Traditional Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, P. R. China
| | - Cun Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P. R. China
| | - Jie Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P. R. China
| | - Yiping Lu
- Integrated Traditional Chinese and Western Medicine Center, Department of Medicine, Qingdao University, Qingdao Shandong 266000, P. R. China
| | - Huayao Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P. R. China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong 261041, P. R. China
| | - Xin Ren
- Clinical Medical Colleges, Weifang Medical University, Weifang, Shandong 261000, P. R. China
| | - Mengmeng Wang
- Clinical Medical Colleges, Weifang Medical University, Weifang, Shandong 261000, P. R. China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong 261041, P. R. China.,Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, P. R. China
| |
Collapse
|
4
|
Jiang Y, Zheng T, Jin W, Shi Y, Huang Q. Enhancing Intestinal Permeability of Theaflavin-3,3'-digallate by Chitosan-Caseinophosphopeptides Nanocomplexes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2029-2041. [PMID: 35108002 DOI: 10.1021/acs.jafc.1c07382] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Low intestinal permeability is an unfavorable feature that limits the bioavailability of many hydrophilic polyphenols. In this study, chitosan (CS) was used to complex with caseinophosphopeptides (CPPs), aiming to improve the intestinal permeability of theaflavin-3,3'-digallate (TF-3), a characteristic polyphenol in black tea with poor intestinal permeability. Complexation between CS and CPPs was systemically investigated by turbidimetric titration under various conditions, revealing that electrostatic interaction was the dominant force. The sizes, PDIs, and ζ potentials of CS-CPP nanocomplexes varied with their compositions. The optimized CS-CPP nanocomplex was subsequently used to encapsulate TF-3, which showed high encapsulation efficiency and low cytotoxicity. Microstructural studies showed strong intermolecular associations between CS, CPPs, and TF-3. Encapsulation of TF-3 maintained the globular unit structure of CS-CPP nanocomplexes, but high concentrations of TF-3 resulted in aggregation. Importantly, as proved using the Caco-2 monolayer model, the intestinal permeability of TF-3 was significantly enhanced by the CS-CPP nanocomplexes.
Collapse
Affiliation(s)
- Yike Jiang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Ting Zheng
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Weiping Jin
- College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu Road, Wuhan 430023, China
| | - Yuxin Shi
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
5
|
Ruiz-Manriquez LM, Estrada-Meza C, Benavides-Aguilar JA, Ledesma-Pacheco SJ, Torres-Copado A, Serrano-Cano FI, Bandyopadhyay A, Pathak S, Chakraborty S, Srivastava A, Sharma A, Paul S. Phytochemicals mediated modulation of microRNAs and long non-coding RNAs in cancer prevention and therapy. Phytother Res 2021; 36:705-729. [PMID: 34932245 DOI: 10.1002/ptr.7338] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/07/2021] [Accepted: 11/04/2021] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are two main categories of noncoding RNAs (ncRNAs) that can influence essential biological functions in various ways, as well as their expression and function are tightly regulated in physiological homeostasis. Additionally, the dysregulation of these ncRNAs seems to be crucial to the pathogenesis of human diseases. The latest findings indicate that ncRNAs execute vital roles in cancer initiation and progression, and the cancer phenotype can be reversed by modulating their expression. Available scientific discoveries suggest that phytochemicals such as polyphenols, alkaloids, terpenoids, and organosulfur compounds can significantly modulate multiple cancer-associated miRNAs and lncRNAs, thereby inhibiting cancer initiation and development. However, despite promising outcomes of experimental research, only a few clinical trials are currently being conducted to evaluate the therapeutic effectiveness of these compounds. Nevertheless, understanding phytochemical-mediated ncRNA regulation in cancer and the underlying molecular mechanisms on tumor pathophysiology can aid in the development of novel therapeutic strategies to combat this deadly disease.
Collapse
Affiliation(s)
- Luis M Ruiz-Manriquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, San Pablo, Mexico
| | - Carolina Estrada-Meza
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, San Pablo, Mexico
| | | | - S Janin Ledesma-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, San Pablo, Mexico
| | - Andrea Torres-Copado
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, San Pablo, Mexico
| | - Francisco I Serrano-Cano
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, San Pablo, Mexico
| | - Anindya Bandyopadhyay
- C4 Rice Center, International Rice Research Institute, Manila, Philippines.,Synthetic Biology, Biofuel and Genome Editing R&D, Reliance Industries Ltd, Navi Mumbai, India
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, India
| | - Samik Chakraborty
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, San Pablo, Mexico
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, San Pablo, Mexico
| |
Collapse
|
6
|
Sinan KI, Akpulat U, Aldahish AA, Celik Altunoglu Y, Baloğlu MC, Zheleva-Dimitrova D, Gevrenova R, Lobine D, Mahomoodally MF, Etienne OK, Zengin G, Mahmud S, Capasso R. LC-MS/HRMS Analysis, Anti-Cancer, Anti-Enzymatic and Anti-Oxidant Effects of Boerhavia diffusa Extracts: A Potential Raw Material for Functional Applications. Antioxidants (Basel) 2021; 10:2003. [PMID: 34943106 PMCID: PMC8698501 DOI: 10.3390/antiox10122003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/04/2021] [Accepted: 12/10/2021] [Indexed: 02/05/2023] Open
Abstract
Boerhavia diffusa is a great tropical plant and is widely used for various traditional purposes. In the present study, we examined the influence of solvents (dichloromethane, ethyl acetate, methanol and infusion (water)) on chemical composition and biological capabilities of B. diffusa. An UHPLC-HRMS method was used to determine the chemical characterization. The biological ability was examined for antioxidant, enzyme inhibitory and anti-cancer effects. To evaluate antioxidant effects, different chemical methods (ABTS, DPPH, CUPRAC, FRAP, metal chelating and phosphomolybdenum) were applied. With regard to enzyme inhibitory properties, cholinesterases, amylase, glucosidase and tyrosinase were used. The MDA-MB-231 breast cancer cell line was chosen to determine anticancer activity. Based on the UHPLC-HRMS analysis, 37 specialized metabolites were dereplicated and identified in the studied extracts. Results revealed the presence of 15 hydroxybenzoic, hydroxycinnamic, acylquinic acids, and their glycosides, one rotenoid, seven flavonoids, 12 fatty acids and two other glycosides. Among the tested extracts, the methanol extract showed a stronger antioxidant ability compared with other extracts. The methanol extract also showed the best inhibitory effects on tyrosinase and glucosidase. In the anti-cancer evaluation, the methanol extract showed stronger anticancer effects compared with water extract. In summary, our observations can contribute to the establishment of B. diffusa as a potential candidate for functional applications in the preparation.
Collapse
Affiliation(s)
- Kouadio Ibrahime Sinan
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey;
| | - Uğur Akpulat
- Department of Medical Biology, Faculty of Medicine, Kastamonu University, Kastamonu 37150, Turkey;
| | - Afaf A. Aldahish
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 62529, Asir, Saudi Arabia;
| | - Yasemin Celik Altunoglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu 37150, Turkey; (Y.C.A.); (M.C.B.)
| | - Mehmet Cengiz Baloğlu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu 37150, Turkey; (Y.C.A.); (M.C.B.)
| | - Dimitrina Zheleva-Dimitrova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University-Sofia, 1431 Soifa, Bulgaria; (D.Z.-D.); (R.G.)
| | - Reneta Gevrenova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University-Sofia, 1431 Soifa, Bulgaria; (D.Z.-D.); (R.G.)
| | - Devina Lobine
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit 80837, Mauritius; (D.L.); (M.F.M.)
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit 80837, Mauritius; (D.L.); (M.F.M.)
| | - Ouattara Katinan Etienne
- Laboratoire de Botanique, UFR Biosciences, Université Félix Houphouët-Boigny, Abidjan 00225, Côte d’Ivoire;
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey;
| | - Shafi Mahmud
- Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh;
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
7
|
Jiang Y, Jin W, Li J, Huang Q. Associations between caseinophosphopeptides and theaflavin-3,3'-digallate and their impact on cellular antioxidant activity. Food Funct 2021; 12:7390-7401. [PMID: 34190287 DOI: 10.1039/d1fo01413g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Caseinophosphopeptides (CPPs) are a group of bioactive polypeptides hydrolyzed from caseins. Theaflavin-3,3'-digallate (TF-3) is a characteristic biofunctional polyphenol in black tea. In the present study, the interactions between CPPs and TF-3 were systematically investigated with fluorescence quenching, quartz crystal microbalance with dissipation monitoring (QCM-D), circular dichroism (CD), and small-angle X-ray scattering (SAXS). Both fluorescence quenching and QCM-D studies demonstrated that TF-3 interacted with CPPs primarily through hydrogen bonding. Other forces were also involved. The addition of TF-3 did not change the secondary structures and the radius of gyration of CPPs, but it induced the aggregation of CPPs. The size of the aggregates increased with the concentration of TF-3. The impact of the association between TF-3 and CPPs on the antioxidant activity of TF-3 was studied by the cellular antioxidant activity (CAA) assay, which revealed that the cellular antioxidant activity of TF-3 was enhanced after binding to CPPs.
Collapse
Affiliation(s)
- Yike Jiang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, USA
| | | | | | | |
Collapse
|
8
|
Safi A, Bastami M, Delghir S, Ilkhani K, Seif F, Alivand MR. miRNAs Modulate the Dichotomy of Cisplatin Resistance or Sensitivity in Breast Cancer: An Update of Therapeutic Implications. Anticancer Agents Med Chem 2021; 21:1069-1081. [PMID: 32885760 DOI: 10.2174/1871520620666200903145939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/02/2020] [Accepted: 08/08/2020] [Indexed: 11/22/2022]
Abstract
Cisplatin has a broad-spectrum antitumor activity and is widely used for the treatment of various malignant tumors. However, acquired or intrinsic resistance of cisplatin is a major problem for patients during the therapy. Recently, it has been reported Cancer Stem Cell (CSC)-derived drug resistance is a great challenge of tumor development and recurrence; therefore, the sensitivity of Breast Cancer Stem Cells (BCSCs) to cisplatin is of particular importance. Increasing evidence has shown that there is a relationship between cisplatin resistance/sensitivity genes and related miRNAs. It is known that dysregulation of relevant miRNAs plays a critical role in regulating target genes of cisplatin resistance/sensitivity in various pathways such as cellular uptake/efflux, Epithelial-Mesenchymal Transition (EMT), hypoxia, and apoptosis. Furthermore, the efficacy of the current chemotherapeutic drugs, including cisplatin, for providing personalized medicine, can be improved by controlling the expression of miRNAs. Thus, potential targeting of miRNAs can lead to miRNA-based therapies, which will help overcome drug resistance and develop more effective personalized anti-cancer and cotreatment strategies in breast cancer. In this review, we summarized the general understandings of miRNAregulated biological processes in breast cancer, particularly focused on the role of miRNA in cisplatin resistance/ sensitivity.
Collapse
Affiliation(s)
- Asma Safi
- Clinical Research Development Unit, Shohada Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Bastami
- Clinical Research Development Unit, Shohada Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Delghir
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khandan Ilkhani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Seif
- Department of Immunology & Allergy, Academic Center for Education, Culture, and Research, Tehran, Iran
| | - Mohammad R Alivand
- Clinical Research Development Unit, Shohada Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Chen M, Gowd V, Wang M, Chen F, Cheng KW. The apple dihydrochalcone phloretin suppresses growth and improves chemosensitivity of breast cancer cells via inhibition of cytoprotective autophagy. Food Funct 2021; 12:177-190. [PMID: 33291138 DOI: 10.1039/d0fo02362k] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The inhibitory effect and mechanism of the apple dihydrochalcone, phloretin, on breast cancer cell growth were evaluated in in vitro conditions simulating complete nutrition and glucose-restriction, respectively. In two breast cancer cell lines with different histological backgrounds, phloretin consistently exhibited much stronger activity against cell growth in glucose-limiting than in full media. RNA-seq analysis showed that key autophagy-related genes were downregulated upon phloretin treatment in both estrogen-receptor-positive MCF7 and triple-negative MDA-MB-231 cells. Immunoblotting verified significantly decreased expression of LC3B-II by phloretin in low-glucose and glucose-free media, but not in full medium. Together with the use of two pharmacological autophagy inhibitors, chloroquine and 3-methyladenine, and confocal microscopy of breast cancer cell lines transfected with GFP-LC3B, phloretin demonstrated a strong capability to suppress autophagic flux, which was likely mediated through downregulation of mTOR/ULK1 signaling, whereas the expression of canonical autophagy regulators ATG5 and ATG7 was not significantly affected. Phloretin also reversed tamoxifen- and doxorubicin-induced cytoprotective autophagy in the breast cancer cell lines, and this was manifested in its synergistic growth inhibitory effect with these chemotherapeutic agents. Furthermore, it was able to restore or enhance the chemosensitivity of a tamoxifen-resistant cell line. Taken together, our study has, for the first time, revealed that phloretin could effectively suppress glucose-starvation- and chemotherapeutic-induced cytoprotective autophagy in breast cancer cell lines likely through downregulation of mTOR/ULK1 signaling.
Collapse
Affiliation(s)
- Ming Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China. and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Vemana Gowd
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China. and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Mingfu Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China. and School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P.R. China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China. and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China and Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Ka-Wing Cheng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China. and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
10
|
Chrysoeriol Prevents TNFα-Induced CYP19 Gene Expression via EGR-1 Downregulation in MCF7 Breast Cancer Cells. Int J Mol Sci 2020; 21:ijms21207523. [PMID: 33053908 PMCID: PMC7588959 DOI: 10.3390/ijms21207523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 01/06/2023] Open
Abstract
Estrogen overproduction is closely associated with the development of estrogen receptor-positive breast cancer. Aromatase, encoded by the cytochrome P450 19 (CYP19) gene, regulates estrogen biosynthesis. This study aimed to identify active flavones that inhibit CYP19 expression and to explore the underlying mechanisms. CYP19 expression was evaluated using reverse transcription PCR, quantitative real-time PCR, and immunoblot analysis. The role of transcription factor early growth response gene 1 (EGR-1) in CYP19 expression was assessed using the short-hairpin RNA (shRNA)-mediated knockdown of EGR-1 expression in estrogen receptor-positive MCF-7 breast cancer cells. We screened 39 flavonoids containing 26 flavones and 13 flavanones using the EGR1 promoter reporter activity assay and observed that chrysoeriol exerted the highest inhibitory activity on tumor necrosis factor alpha (TNFα)-induced EGR-1 expression. We further characterized and demonstrated that chrysoeriol inhibits TNFα-induced CYP19 expression through inhibition of extracellular signal-regulated kinase 1/2 (ERK1/2)-mediated EGR-1 expression. Chrysoeriol may be beneficial as a dietary supplement for the prevention of estrogen receptor-positive breast cancer, or as a chemotherapeutic adjuvant in the treatment of this condition.
Collapse
|
11
|
Andrijauskaite K, Wargovich MJ. Role of natural products in breast cancer related symptomology: Targeting chronic inflammation. Semin Cancer Biol 2020; 80:370-378. [PMID: 32891720 DOI: 10.1016/j.semcancer.2020.08.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 08/03/2020] [Accepted: 08/16/2020] [Indexed: 02/06/2023]
Abstract
Breast cancer is the most common cancer in women worldwide. There have been many advancements in the treatment of breast cancer leading to an increased population of patients living with this disease. Accumulating evidence suggests that cancer diagnosis and aftermath experienced stress could not only affect the quality of life of cancer patients, but it could also influence their disease outcome. The magnitude of stress experienced by breast cancer patients is often compared to the post-traumatic stress disorder-like symptoms suggested to be mediated by the chronic inflammation including NF-κB, AKt, p53 and other inflammatory pathways. Here, we describe the symptomology of PTSD-like symptoms in breast cancer patients and argue that they may in fact be caused by or maintained through aspects of chronic inflammation mediated by the pro-inflammatory markers. Evidence exists that natural products that might attenuate or lessen the effects of chronic inflammation abound in the diet. We summarize some possible agents that might abate the genesis of symptoms experienced by breast cancer patients while mitigating the effect of inflammation.
Collapse
Affiliation(s)
- Kristina Andrijauskaite
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX, 78229, United States.
| | - Michael J Wargovich
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX, 78229, United States
| |
Collapse
|
12
|
Compound Opening Arrow Mixture exerts anti-tumor effects in a mouse model of breast cancer. Sci Rep 2020; 10:8175. [PMID: 32424152 PMCID: PMC7235040 DOI: 10.1038/s41598-020-64561-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/13/2020] [Indexed: 11/09/2022] Open
Abstract
Compound Opening Arrow Mixture (COAM) has demonstrated therapeutic effects in patients with breast cancer. We explored the underlying molecular mechanisms of COAM using a mouse model of breast cancer. Luciferase-labeled 4T1-Luc2 cells were inoculated into the breast pad of BALB/c-nu mice, which were divided into model group (saline), COAM (6 g/ml high-dose, 3 g/ml medium-dose, and 1.5 g/ml low-dose) groups, and low-molecular-weight heparin (LMWH, 1500 U/Kg) group. The number and distribution of 4T1-luc2 tumors were measured by an in vivo imaging system. Tumor cell apoptosis was measured through TUNEL and quantitating the expression of Caspase-3 mRNA and protein. Compared with the model group, in vivo tumor growth was lower in the LMWH- and COAM-treated groups. Tumor apoptosis was time-dependent and dose-dependent, as shown by a higher TUNEL apoptotic index and higher Caspase-3 mRNA and Caspase-3/cleaved-Caspase-3 proteins levels on the 14th day than the 7th day. The COAM high-dose group had the highest apoptotic index and the most activation of Caspase-3. Collectively, COAM significantly inhibits the growth of 4T1-luc2 breast cancer in mice and induces tumor apoptosis by activating Caspase-3, which provides a preliminary explanation of therapeutic effects of COAM.
Collapse
|
13
|
Kwak JH, Kim Y, Ryu SI, Lee M, Lee H, Lim YP, Paik JK. Anti-inflammatory effect from extracts of Red Chinese cabbage and Aronia in LPS-stimulated RAW 264.7 cells. Food Sci Nutr 2020; 8:1898-1903. [PMID: 32328255 PMCID: PMC7174213 DOI: 10.1002/fsn3.1472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/21/2022] Open
Abstract
A chronic inflammatory environment facilitates tumor growth and proliferation. Fruits and vegetables are important sources of anthocyanins, polyphenols, and other biologically active substances that can favorably affect the pathogenesis of cancer. The objective of the study was to investigate the anti-inflammatory effects of Red Chinese cabbage (RC) and mixture of commercial Red Chinese cabbage leaves and Aronia fruits (ARC) in LPS-stimulated RAW 264.7 cells. The RAW 264.7 cells were cultured and measured the cytotoxicity by using an MTT assay. The inflammatory markers, such as nitrite, IL-6, and TNF-alpha expression, were evaluated using ELISA, and protein expression of inflammatory markers like iNOS and COX-2 was analyzed using Western blot. MTT assays showed that pretreatment of RAW 264.7 cells with RC and ARC did not change cell growth or cytotoxicity. We also found that ARC extracts reduced inflammation-related biomarker (TNF-a, IL-6, and NO) production and gene expression (iNOS, COX-2). Our results suggested that ARC has good anti-inflammatory properties compared with RC that maybe used as potential nutrients for treating inflammatory diseases.
Collapse
Affiliation(s)
- Jung Hyun Kwak
- Department of Food and NutritionEulji UniversitySeongnamKorea
| | - Yoonji Kim
- Department of Food and NutritionEulji UniversitySeongnamKorea
- Nutrition TeamWonkwang University Sanbon HospitalGunpoKorea
| | - Soo In Ryu
- Department of Food Technology and ServicesEulji UniversitySeongnamKorea
| | - Minho Lee
- Department of Food Technology and ServicesEulji UniversitySeongnamKorea
| | - Hyo‐Jeong Lee
- Department of Science in Korean MedicineGraduate SchoolKyung Hee UniversitySeoulKorea
| | - Yong Pyo Lim
- Molecular Genetics and Genomics LaboratoryDepartment of HorticultureChungnam National UniversityDaejeonKorea
| | - Jean Kyung Paik
- Department of Food and NutritionEulji UniversitySeongnamKorea
| |
Collapse
|
14
|
Zafar S, Akhter S, Garg N, Selvapandiyan A, Kumar Jain G, Ahmad FJ. Co-encapsulation of docetaxel and thymoquinone in mPEG-DSPE-vitamin E TPGS-lipid nanocapsules for breast cancer therapy: Formulation optimization and implications on cellular and in vivo toxicity. Eur J Pharm Biopharm 2020; 148:10-26. [PMID: 31923585 DOI: 10.1016/j.ejpb.2019.12.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/15/2019] [Accepted: 12/29/2019] [Indexed: 02/06/2023]
Abstract
Rationally designed combination nano-therapy approaches have emerged as a promising strategy for resistant breast cancer treatment. This research reports the combination of Docetaxel (DTX) and Thymoquinone (THQ) co-encapsulated within long circulating sub-100 nm mPEG-DSPE-Vitamin E TPGS-Lipid nanocapsules (DxTq-LNCs). DxTq-LNCs with sufficient drug loading exhibited controlled drug release, enhanced protein binding resistance (confirming its long circulation in physiological environment and suitability for iv application) and retained the antioxidant effects of THQ. DxTq-LNCs were further subjected to cytotoxicity analysis against human breast cancer cells (MCF-7 & MDA-MB-231). The presence of multidrug resistance (MDR) reversal agents; Vitamin E TPGS and THQ, along with the nanoencapsulation, re-sensitized the resistant triple negative breast cancer (TNBC) cells to the anticancer effects of DTX. Greater inhibition of cell migration indicated improved anti-metastatic effects. Drastic changes in cellular morphology indicated by nuclear fragmentation (the hall marks of apoptosis), were observed upon DxTq-LNCs treatment to the breast cancer cells. In vivo toxicity studies indicated no substantial blood biochemical and histological changes with near normal appearance of kidney and liver tissue sections upon DxTq-LNCs treatment in contrast to free drug that showed parenchymal degeneration, areas of interstitial haemorrhage, glomerular atrophy and other histological changes, indicating hepato- and nephro-protective potential of DxTq-LNCs. Furthermore, enhanced antitumor efficacy was observed with DxTq-LNCs treatment to mice bearing ehrlich ascites carcinoma. Thus, nanocapsules presents a simple yet effective approach for successful combination chemotherapy with reduced unwanted toxicity.
Collapse
Affiliation(s)
- Sobiya Zafar
- Nanomedicine Research Lab, School of Pharmaceutical Education & Research, Jamia Hamdard, 110062 New Delhi, India
| | - Sohail Akhter
- Nanomedicine Research Lab, School of Pharmaceutical Education & Research, Jamia Hamdard, 110062 New Delhi, India; Nucleic Acids Transfer by Non-viral Methods, Centre de Biophysique Moléculaire, CNRS UPR4301, Rue Charles Sadron, 45071 Orléans Cedex 2, France; LE STUDIUM® Loire Valley Institute for Advanced Studies, Centre-Val de Loire Region, France; Yousef Abdullatif Jameel Chair of Prophetic Medical Applications (YAJCPMA), Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Nupur Garg
- Nanomedicine Research Lab, School of Pharmaceutical Education & Research, Jamia Hamdard, 110062 New Delhi, India
| | | | - Gaurav Kumar Jain
- Nanomedicine Research Lab, School of Pharmaceutical Education & Research, Jamia Hamdard, 110062 New Delhi, India
| | - Farhan Jalees Ahmad
- Nanomedicine Research Lab, School of Pharmaceutical Education & Research, Jamia Hamdard, 110062 New Delhi, India.
| |
Collapse
|
15
|
Pham DC, Shibu MA, Mahalakshmi B, Velmurugan BK. Effects of phytochemicals on cellular signaling: reviewing their recent usage approaches. Crit Rev Food Sci Nutr 2019; 60:3522-3546. [PMID: 31822111 DOI: 10.1080/10408398.2019.1699014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Most of the previous studies in last three decades report evidence of interactions between the different phytochemicals and the proteins involved in signal transduction pathways using in silico, in vitro, ex vivo, and in vivo analyses. However, extrapolation of these findings for clinical purposes has not been that fruitful. The efficacy of the phytochemicals in vivo studies is limited by parameters such as solubility, metabolic degradation, excretion, etc. Various approaches have now been devised to circumvent these limitations. Recently, chemical modification of the phytochemicals are demonstrated to reduce some of the limitations and improve their efficacy. Similar to traditional medicines several combinatorial phytochemical formulations have shown to be more efficient. Further, phytochemicals have been reported to be even more efficient in the form of nanoparticles. However, systematic evaluation of their efficacy, mode of action in pathway modulation, usage and associated challenges is required to be done. The present review begins with basic understanding of how signaling cascades regulate cellular response and the consequences of their dysregulation further summarizing the developments and problems associated with the dietary phytochemicals and also discuss recent approaches in strengthening these compounds in pharmacological applications. Only context relevant studies have been reviewed. Considering the limitations and scope of the article, authors do not claim inclusion of all the early and recent studies.
Collapse
Affiliation(s)
- Dinh-Chuong Pham
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - M A Shibu
- Cardiovascular and Mitochondria Related Diseases Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - B Mahalakshmi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Bharath Kumar Velmurugan
- Toxicology and Biomedicine Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
16
|
Samec M, Liskova A, Kubatka P, Uramova S, Zubor P, Samuel SM, Zulli A, Pec M, Bielik T, Biringer K, Kudela E, Benacka J, Adamek M, Rodrigo L, Ciccocioppo R, Kwon TK, Baranenko D, Kruzliak P, Büsselberg D. The role of dietary phytochemicals in the carcinogenesis via the modulation of miRNA expression. J Cancer Res Clin Oncol 2019; 145:1665-1679. [PMID: 31127362 DOI: 10.1007/s00432-019-02940-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/20/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE Phytochemicals are naturally occurring plant-derived compounds and some of them have the potential to serve as anticancer drugs. Based on recent evidence, aberrantly regulated expression of microRNAs (miRNAs) is closely associated with malignancy. MicroRNAs are characterized as small non-coding RNAs functioning as posttranscriptional regulators of gene expression. Accordingly, miRNAs regulate various target genes, some of which are involved in the process of carcinogenesis. RESULTS This comprehensive review emphasizes the anticancer potential of phytochemicals, either isolated or in combination, mediated by miRNAs. The ability to modulate the expression of miRNAs demonstrates their importance as regulators of tumorigenesis. Phytochemicals as anticancer agents targeting miRNAs are widely studied in preclinical in vitro and in vivo research. Unfortunately, their anticancer efficacy in targeting miRNAs is less investigated in clinical research. CONCLUSIONS Significant anticancer properties of phytochemicals as regulators of miRNA expression have been proven, but more studies investigating their clinical relevance are needed.
Collapse
Affiliation(s)
- Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 03601, Martin, Slovak Republic.
- Division of Oncology, Department of Experimental Carcinogenesis, Jessenius Faculty of Medicine, Biomedical Center Martin, Comenius University in Bratislava, Martin, Slovakia.
| | - Sona Uramova
- Division of Oncology, Department of Experimental Carcinogenesis, Jessenius Faculty of Medicine, Biomedical Center Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Pavol Zubor
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 03601, Martin, Slovak Republic
| | - Tibor Bielik
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Erik Kudela
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Jozef Benacka
- Faculty of Health Science and Social Work, Trnava University, Trnava, Slovakia
| | - Mariusz Adamek
- Department of Thoracic Surgery, Faculty of Medicine and Dentistry, Medical University of Silesia, Katowice, Poland
| | - Luis Rodrigo
- Faculty of Medicine, Central University Hospital of Asturias (HUCA), University of Oviedo, Oviedo, Spain
| | - Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, AOUI Policlinico G.B. Rossi, University of Verona, Verona, Italy
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-Gu, Daegu, Korea
| | - Denis Baranenko
- International Research Centre "Biotechnologies of the Third Millennium", ITMO University, Saint-Petersburg, Russian Federation
| | - Peter Kruzliak
- 2nd Department of Surgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Brno, Czech Republic.
- Department of Internal Medicine, Brothers of Mercy Hospital, Polni 553/3, 63900, Brno, Czech Republic.
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar.
| |
Collapse
|
17
|
Ma X, Ning S. Shikimic acid promotes estrogen receptor(ER)-positive breast cancer cells proliferation via activation of NF-κB signaling. Toxicol Lett 2019; 312:65-71. [PMID: 31048002 DOI: 10.1016/j.toxlet.2019.04.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/21/2019] [Accepted: 04/26/2019] [Indexed: 12/24/2022]
Abstract
Shikimic acid (SA), a widely-known hydroaromatic compound enriched in Bracken fern and Illicium verum (also known as Chinese star anise), increases the risk of gastric and esophageal carcinoma, nevertheless, the influence of SA on breast cancer remains indistinct. Herein we found that, with models in vitro, SA significantly promoted estrogen receptor(ER) positive cells proliferation and NF-κB activation was involved in it. Moreover, our data showed that IκBα, a critically endogenous inhibitor of NF-κB, was repressed. Subsequently, we found increase of miR-300 by SA treatment sand miR-300 could target IκBα mRNA. Additionally, inhibition of miR-300 abrogated the repression of IκBα by SA. As a result, miR-300 was also involved in NF-κB activation and breast cancer cells proliferation promotion due to SA exposure. Taken together, with ER-positive breast cancer cell models in vitro, MCF-7 and T47D, our results implied that SA promoted breast cancer cells proliferation via a miR-300-induced NF-κB dependent pathway controlling cell cycle proteins.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Health Education and Administration, Jinhua Municipal Central Hospital, Jinhua, 321000, China
| | - Shilong Ning
- Department of Clinical Nutrition, Jinhua Municipal Central Hospital, Jinhua, 321000, China.
| |
Collapse
|
18
|
Pattanayak S, Bose P. Herniarin, a natural coumarin, inhibits mammary carcinogenesis by modulating liver X receptor-α/β-PI3K-Akt-Maf1 Pathway in sprague-dawley rats. Pharmacogn Mag 2019. [DOI: 10.4103/pm.pm_264_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
19
|
Phytochemicals: Current strategy to sensitize cancer cells to cisplatin. Biomed Pharmacother 2018; 110:518-527. [PMID: 30530287 DOI: 10.1016/j.biopha.2018.12.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/11/2018] [Accepted: 12/02/2018] [Indexed: 12/15/2022] Open
Abstract
Cisplatin-based chemotherapeutic regimens are the most frequently used adjuvant treatments for many types of cancer. However, the development of chemoresistance to cisplatin results in treatment failure. Despite the significant developments in understanding the mechanisms of cisplatin resistance, effective strategies to enhance the chemosensitivity of cisplatin are lacking. Phytochemicals are naturally occurring plant-based compounds that can augment the anti-cancer activity of cisplatin, with minimal side effects. Notably, some novel phytochemicals, such as curcumin, not only increase the efficacy of cisplatin but also decrease toxicity induced by cisplatin. However, the exact mechanisms underlying this process remain unclear. In this review, we discussed the progress made in utilizing phytochemicals to enhance the anti-cancer efficacy of cisplatin. We also presented some ideal phytochemicals as novel agents for counteracting cisplatin-induced organ damage.
Collapse
|
20
|
Chirumbolo S, Bjørklund G, Lysiuk R, Vella A, Lenchyk L, Upyr T. Targeting Cancer with Phytochemicals via Their Fine Tuning of the Cell Survival Signaling Pathways. Int J Mol Sci 2018; 19:ijms19113568. [PMID: 30424557 PMCID: PMC6274856 DOI: 10.3390/ijms19113568] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 02/07/2023] Open
Abstract
The role of phytochemicals as potential prodrugs or therapeutic substances against tumors has come in the spotlight in the very recent years, thanks to the huge mass of encouraging and promising results of the in vitro activity of many phenolic compounds from plant raw extracts against many cancer cell lines. Little but important evidence can be retrieved from the clinical and nutritional scientific literature, where flavonoids are investigated as major pro-apoptotic and anti-metastatic compounds. However, the actual role of these compounds in cancer is still far to be fully elucidated. Many of these phytochemicals act in a pleiotropic and poorly specific manner, but, more importantly, they are able to tune the reactive oxygen species (ROS) signaling to activate a survival or a pro-autophagic and pro-apoptosis mechanism, depending on the oxidative stress-responsive endowment of the targeted cell. This review will try to focus on this issue.
Collapse
Affiliation(s)
- Salvatore Chirumbolo
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy.
- Scientific Secretary-Council for Nutritional and Environmental Medicine (CONEM), 8610 Mo i Rana, Norway.
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), 8610 Mo i Rana, Norway.
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, DanyloHalytskyLviv National Medical University, 79007 Lviv, Ukraine.
| | - Antonio Vella
- AOUI Verona, University Hospital, Section of Immunology, 37134 Verona, Italy.
| | - Larysa Lenchyk
- Department of Chemistry of Natural Compounds, National University of Pharmacy, 61168 Kharkiv, Ukraine.
| | - Taras Upyr
- Department of Pharmacognosy, National University of Pharmacy, 61168 Kharkiv, Ukraine.
| |
Collapse
|