1
|
Silva Lagos L, Klostermann CE, López-Velázquez G, Fernández-Lainez C, Leemhuis H, Oudhuis AACML, Buwalda P, Schols HA, de Vos P. Crystal type, chain length and polydispersity impact the resistant starch type 3 immunomodulatory capacity via Toll-like receptors. Carbohydr Polym 2024; 324:121490. [PMID: 37985084 DOI: 10.1016/j.carbpol.2023.121490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 11/22/2023]
Abstract
Food ingredients that can activate and improve immunological defense, against e.g., pathogens, have become a major field of research. Resistant starches (RSs) can resist enzymes in the upper gastrointestinal (GI) tract and induce health benefits. RS-3 physicochemical characteristics such as chain length (DP), A- or B-type crystal, and polydispersity index (PI) might be crucial for immunomodulation by activating human toll-like receptors (hTLRs). We hypothesize that crystal type, DP and PI, alone or in combination, impact the recognition of RS-3 preparations by hTLRs leading to different RS-3 immunomodulatory effects. We studied the activation of hTLR2, hTLR4, and hTLR5 by 0.5, 1 and 2 mg/mL of RS-3. We found strong activation of hTLR2-dependent NF-kB activation with PI <1.25, DP 18 as an A- or B-type crystal. At different doses, NF-kB activation was increased from 6.8 to 7.1 and 10-fold with A-type and 6.2 to 10.2 and 14.4-fold with B-type. This also resulted in higher cytokine production in monocytes. Molecular docking, using amylose-A and B, demonstrated that B-crystals bind hTLR2 promoting hTLR2-1 dimerization, supporting the stronger effects of B-type crystals. Immunomodulatory effects of RS-3 are predominantly hTLR2-dependent, and activation can be tailored by managing crystallinity, chain length, and PI.
Collapse
Affiliation(s)
- Luis Silva Lagos
- Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands.
| | - Cynthia E Klostermann
- Biobased Chemistry and Technology, Wageningen University & Research, Wageningen, the Netherlands
| | - Gabriel López-Velázquez
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Cuidad de México, Mexico
| | - Cynthia Fernández-Lainez
- Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands; Laboratorio de Errores innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Ciudad de México, Mexico
| | - Hans Leemhuis
- Innovation Center, Royal Avebe, Groningen, the Netherlands
| | | | - Piet Buwalda
- Biobased Chemistry and Technology, Wageningen University & Research, Wageningen, the Netherlands; Innovation Center, Royal Avebe, Groningen, the Netherlands
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Paul de Vos
- Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
2
|
Kong C, de Jong A, de Haan BJ, Kok J, de Vos P. Human milk oligosaccharides and non-digestible carbohydrates reduce pathogen adhesion to intestinal epithelial cells by decoy effects or by attenuating bacterial virulence. Food Res Int 2022; 151:110867. [PMID: 34980402 DOI: 10.1016/j.foodres.2021.110867] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/14/2021] [Accepted: 12/02/2021] [Indexed: 12/18/2022]
Abstract
This work investigated the effects of different chemical structures of human milk oligosaccharides (hMOs) and non-digestible carbohydrates (NDCs) on pathogen adhesion by serving as decoy receptors. Pre-exposure of pathogens to inulins and low degree of methylation (DM) pectin prevented binding to gut epithelial Caco2-cells, but effects were dependent on the molecules' chemistry, pathogen strain and growth phase. Pre-exposure to 3-fucosyllactose increased E. coli WA321 adhesion (28%, p < 0.05), and DM69 pectin increased E. coli ET8 (15 fold, p < 0.05) and E. coli WA321 (50%, p < 0.05) adhesion. Transcriptomics analysis revealed that DM69 pectin upregulated flagella and cell membrane associated genes. However, the top 10 downregulated genes were associated with lowering of bacteria virulence. DM69 pectin increased pathogen adhesion but bacterial virulence was attenuated illustrating different mechanisms may lower pathogen adhesion. Our study illustrates that both hMOs and NDCs can reduce adhesion or attenuate virulence of pathogens but that these effects are chemistry dependent.
Collapse
Affiliation(s)
- Chunli Kong
- School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, 100048 Beijing, China; Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands.
| | - Anne de Jong
- Groningen Biomolecular Sciences and Biotechnology Institute, Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Bart J de Haan
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Jan Kok
- Groningen Biomolecular Sciences and Biotechnology Institute, Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| |
Collapse
|
3
|
Basak S, Gokhale J. Immunity boosting nutraceuticals: Current trends and challenges. J Food Biochem 2021; 46:e13902. [PMID: 34467553 DOI: 10.1111/jfbc.13902] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/23/2022]
Abstract
The immune function of the human body is highly influenced by the dietary intake of certain nutrients and bioactive compounds present in foods. The preventive effects of these bioactive ingredients against various diseases have been well investigated. Functional foods are consumed across various diverse cultures, in some form or the other, which provide benefits greater than the basic nutritional needs. Novel functional foods are being developed using novel bioactive ingredients such as probiotics, polyunsaturated fatty acids, and various phytoconstituents, which have a range of immunomodulatory properties. Apart from immunomodulation, these ingredients also affect immunity by their antioxidant, antibacterial, and antiviral properties. The global pandemic of Severe Acute Respiratory Syndrome Coronavirus-2 has forced the scientific community to race against time to find a proper and effective drug or a vaccine. In this review, various non-pharmacological interventions using nutraceuticals and functional foods have been discussed. PRACTICAL APPLICATIONS: Despite a plethora of research being undertaken to understand the immunity boosting properties of the various bioactive present in food, the findings are not translating to nutraceutical products in the market. Immunity has proved to be one of the most important factors for the health and well-being of an individual, especially when the world has been under the grip of the novel coronavirus Severe Acute Respiratory Syndrome Coronavirus-2. The anti-inflammatory properties of various nutraceuticals can come out as potential inhibitors of the various inflammatory processes such as cytokine storms, usually being observed in COVID 19. This review gives an insight into how various nutraceuticals can help in the prevention of various diseases through different mechanisms. The lack of awareness and proper clinical trials pose a challenge to the nutraceutical industry. This review will help and encourage researchers to further design and develop various functional foods, which might help in building immunity.
Collapse
Affiliation(s)
- Somnath Basak
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, India
| | - Jyoti Gokhale
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
4
|
Rein D, Ternes P, Demin R, Gierke J, Helgason T, Schön C. Artificial intelligence identified peptides modulate inflammation in healthy adults. Food Funct 2019; 10:6030-6041. [PMID: 31483433 DOI: 10.1039/c9fo01398a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dietary bioactive peptides have been, among many functionalities, associated with immune modulation and thereby may improve resolution of inflammation. The goals of this research were to assess (1) whether specific peptides with immune-modulating activity consumed as part of a rice protein hydrolysate could be absorbed into blood and (2) whether they modulate inflammation markers. Artificial intelligence algorithms were applied to target, predict and unlock inflammation-modulating peptides from rice protein. A food application was developed containing four bioactive peptides. Protein docking simulation studies revealed high binding energies of these peptides with inflammation markers. In a small kinetic study 10 healthy subjects consumed the peptides with a single bolus of 20 g protein hydrolysate. Although absorption of the four predicted peptides at plasma concentrations deemed biologically relevant could not be confirmed (quantitative LC-MS/MS), several cytokines responded (ELISA kits). The 24-hour kinetic study revealed a slight suppression of pro-inflammatory TNF-α, IP-10 and NOx, whereas IL-6 increased temporarily (timepoints 2-12 hours). These markers returned to the baseline after 24 hours whereas others were not affected significantly (IL-10, hs-CRP, IL-8, and MCP-1). Consumption of a single dose protein hydrolysate containing immune modulatory peptides induced a mild temporary response most likely through intestinal signaling. Forthcoming studies will examine dietary supplementation in situations of stress.
Collapse
Affiliation(s)
| | | | - Rodion Demin
- BASF Metabolome Solutions GmbH, Berlin, Germany.
| | - Jürgen Gierke
- BASF Personal Care and Nutrition GmbH, Illertissen, Germany.
| | | | | |
Collapse
|
5
|
Kong C, Elderman M, Cheng L, de Haan BJ, Nauta A, de Vos P. Modulation of Intestinal Epithelial Glycocalyx Development by Human Milk Oligosaccharides and Non-Digestible Carbohydrates. Mol Nutr Food Res 2019; 63:e1900303. [PMID: 31140746 PMCID: PMC6771538 DOI: 10.1002/mnfr.201900303] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 03/26/2019] [Indexed: 12/11/2022]
Abstract
SCOPE The epithelial glycocalyx development is of great importance for microbial colonization. Human milk oligosaccharides (hMOs) and non-digestible carbohydrates (NDCs) may modulate glycocalyx development. METHODS AND RESULTS The effects of hMOs and NDCs on human gut epithelial cells (Caco2) are investigated by quantifying thickness and area coverage of adsorbed albumin, heparan sulfate (HS), and hyaluronic acid (HA) in the glycocalyx. Effects of hMOs (2'-FL and 3-FL) and NDCs [inulins with degrees of polymerization (DP) (DP3-DP10, DP10-DP60, DP30-DP60) and pectins with degrees of methylation (DM) (DM7, DM55, DM69)] are tested using immunofluorescence staining at 1 and 5 days stimulation. HMOs show a significant enhancing effect on glycocalyx development but effects are structure-dependent. 3-FL induces a stronger albumin adsorption and increases HS and HA stronger than 2'-FL. The DP3-DP10, DP30-60 inulins also increase glycocalyx development in a structure-dependent manner as DP3-DP10 selectively increases HS, while DP30-DP60 specifically increases HA. Pectins have less effects, and only increase albumin adsorption. CONCLUSION Here, it is shown that 2'-FL and 3-FL and inulins stimulate glycocalyx development in a structure-dependent fashion. This may contribute to formulation of effective hMO and NDC formulations in infant formulas to support microbial colonization and gut barrier function.
Collapse
Affiliation(s)
- Chunli Kong
- Immunoendocrinology GroupDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity Medical Center Groningen, University of GroningenHanzeplein 19700 RBGroningenThe Netherlands
| | - Marlies Elderman
- Immunoendocrinology GroupDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity Medical Center Groningen, University of GroningenHanzeplein 19700 RBGroningenThe Netherlands
| | - Lianghui Cheng
- Immunoendocrinology GroupDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity Medical Center Groningen, University of GroningenHanzeplein 19700 RBGroningenThe Netherlands
| | - Bart J. de Haan
- Immunoendocrinology GroupDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity Medical Center Groningen, University of GroningenHanzeplein 19700 RBGroningenThe Netherlands
| | - Arjen Nauta
- FrieslandCampinaStationsplein 43818 LEAmersfoortThe Netherlands
| | - Paul de Vos
- Immunoendocrinology GroupDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity Medical Center Groningen, University of GroningenHanzeplein 19700 RBGroningenThe Netherlands
| |
Collapse
|
6
|
Kiewiet MBG, Dekkers R, van Gool MP, Ulfman LH, Groeneveld A, Faas MM, de Vos P. Identification of a TLR2 Inhibiting Wheat Hydrolysate. Mol Nutr Food Res 2018; 62:e1800716. [PMID: 30354027 PMCID: PMC6646915 DOI: 10.1002/mnfr.201800716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/01/2018] [Indexed: 12/25/2022]
Abstract
SCOPE Wheat hydrolysates are used in medical nutrition to provide undernourished patients a readily digestible protein source, for instance to recover from chemotherapy-induced intestinal mucosal inflammation. Since many hydrolysates of different sources can modulate the immune system, likely via Toll-like receptors (TLRs), it is hypothesized that also wheat hydrolysates might interact with TLR signaling, which could be a way to prevent intestinal inflammation and damage. METHODS AND RESULTS The capacity of three wheat hydrolysates to modulate immunity by interfering with TLR signaling is determined. All wheat hydrolysates have TLR modulating effects but only one has strong TLR2 inhibiting effects, attenuating both TLR2/1 and TLR2/6 signaling in a reporter cell system. This is likely induced by direct TLR2-ectodomain binding, as confirmed by ELISA. Furthermore, this TLR2 blocking hydrolysate reduces IL-6 production in human dendritic cells. Application of reversed-phase-ultra HPLC combined with MS reveals that the presence of peptide WQIPEQSR is associated with the observed TLR2 inhibiting capacity. CONCLUSION The study demonstrates TLR2-inhibiting capacities of a wheat hydrolysate. The findings provide a good start for further research to investigate whether this hydrolysate might contribute to the management of intestinal mucosal inflammation in cancer patients receiving chemotherapy.
Collapse
Affiliation(s)
- Mensiena B. G. Kiewiet
- ImmunoendocrinologyDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity of GroningenUniversity Medical Center GroningenHanzeplein 19700RBGroningenThe Netherlands
| | - Renske Dekkers
- FrieslandCampinaStationsplein 43818LEAmersfoortThe Netherlands
| | | | | | | | - Marijke M. Faas
- ImmunoendocrinologyDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity of GroningenUniversity Medical Center GroningenHanzeplein 19700RBGroningenThe Netherlands
- Department of Obstetrics and GynecologyUniversity of GroningenUniversity Medical Center Groningen9713GZGroningenThe Netherlands
| | - Paul de Vos
- ImmunoendocrinologyDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity of GroningenUniversity Medical Center GroningenHanzeplein 19700RBGroningenThe Netherlands
| |
Collapse
|