1
|
Schäfer L, Grundmann SM, Rühl M, Zorn H, Seel W, Simon MC, Schuchardt S, Most E, Ringseis R, Eder K. Effects of a biotechnologically produced Pleurotus sapidus mycelium on gut microbiome, liver transcriptome and plasma metabolome of broilers. Poult Sci 2024; 103:103975. [PMID: 38945001 PMCID: PMC11261454 DOI: 10.1016/j.psj.2024.103975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 07/02/2024] Open
Abstract
Submerged cultivation using low-value agro-industrial side streams allows large-scale and efficient production of fungal mycelia, which has a high nutritional value. As the dietary properties of fungal mycelia in poultry are largely unknown, the present study aimed to investigate the effect of feeding a Pleurotus sapidus (PSA) mycelium as a feed supplement on growth performance, composition of the cecal microbiota and several physiological traits including gut integrity, nutrient digestibility, liver lipids, liver transcriptome and plasma metabolome in broilers. 72 males, 1-day-old Cobb 500 broilers were randomly assigned to 3 different groups and fed 3 different adequate diets containing either 0% (PSA-0), 2.5% (PSA-2.5) and 5% (PSA-5.0) P. sapidus mycelium in a 3-phase feeding system for 35 d. Each group consisted of 6 cages (replicates) with 4 broilers/cage. Body weight gain, feed intake and feed:gain ratio and apparent ileal digestibility of crude protein, ether extract and amino acids were not different between groups. Metagenomic analysis of the cecal microbiota revealed no differences between groups, except that one α-diversity metric (Shannon index) and the abundance of 2 low-abundance bacterial taxa (Clostridia UCG 014, Eubacteriales) differed between groups (P < 0.05). Concentrations of total and individual short-chain fatty acids in the cecal digesta and concentrations of plasma lipopolysaccharide and mRNA levels of proinflammatory genes, tight-junction proteins, and mucins in the cecum mucosa did not differ between groups. None of the plasma metabolites analyzed using targeted-metabolomics differed across the groups. Hepatic transcript profiling revealed a total of 144 transcripts to be differentially expressed between group PSA-5.0 and group PSA-0 but none of these genes was regulated greater 2-fold. Considering either the lack of effects or the very weak effects of feeding the P. sapidus mycelium in the broilers it can be concluded that inclusion of a sustainably produced fungal mycelium in broiler diets at the expense of other feed components has no negative consequences on broilers´ performance and metabolism.
Collapse
Affiliation(s)
- Lea Schäfer
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Sarah M Grundmann
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Martin Rühl
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
| | - Holger Zorn
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
| | - Waldemar Seel
- University of Bonn, Nutrition and Microbiota, Institute of Nutrition and Food Sciences, Bonn, Germany
| | - Marie-Christine Simon
- University of Bonn, Nutrition and Microbiota, Institute of Nutrition and Food Sciences, Bonn, Germany
| | - Sven Schuchardt
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | - Erika Most
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Giessen, Germany; Center for Sustainable Food Systems, Justus Liebig University Giessen, Giessen, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Giessen, Germany; Center for Sustainable Food Systems, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
2
|
Marschall MJM, Grundmann SM, Seel W, Simon MC, Schuchardt S, Most E, Gessner DK, Wen G, Ringseis R, Eder K. Fat from Hermetia illucens Alters the Cecal Gut Microbiome and Lowers Hepatic Triglyceride Concentration in Comparison to Palm Oil in Obese Zucker Rats. J Nutr 2024; 154:455-468. [PMID: 37778509 DOI: 10.1016/j.tjnut.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND Palm oil (PO) is the most widely utilized plant oil for food production. Owing to the great ecologic problems associated with PO production, sustainably produced fats, such as insect fat, might be a suitable alternative. OBJECTIVES The hypothesis was tested that fat from Hermetia illucens larvae (HF) compared with PO and soybean oil (SO) has no adverse effects on hepatic lipid metabolism, plasma metabolome, and cecal microbiome in obese Zucker rats. METHODS Thirty male obese Zucker rats were randomly assigned to 3 groups (SO, PO, HF; n = 10 rats/group) and fed 3 different semisynthetic diets containing either SO, PO, or HF as the main fat source for 4 wk. The effects were evaluated by measurement of liver and plasma lipid concentrations, liver transcriptomics, targeted plasma metabolomics, and cecal microbiomics. RESULTS Supplementation of HF reduced hepatic triglyceride concentration and messenger ribonucleic acid concentrations of selected genes involved in fatty acid and triglyceride synthesis in comparison to PO (P < 0.05). Pairwise comparison of the Simpson index and Jaccard index showed a higher cecal microbial α- and β-diversity in rats fed the HF diet than in rats fed the PO diet (P = 0.015 and P = 0.027), but no difference between rats fed the diets with SO or PO. Taxonomic analysis of the cecal microbial community revealed a lower abundance of Clostridium_sensu_stricto_1 and a higher abundance of Blautia, Mucispirillum, Anaerotruncus, Harryflintia, and Peptococcus in rats supplemented with HF than in rats supplemented with PO (P < 0.05). CONCLUSIONS HF, compared with PO, has liver lipid-lowering effects in obese Zucker rats, which may be caused by a shift in the gut microbial community. Thus, HF might serve as a sustainably produced fat alternative to PO for food production.
Collapse
Affiliation(s)
- Magdalena J M Marschall
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring, Giessen, Germany
| | - Sarah M Grundmann
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring, Giessen, Germany
| | - Waldemar Seel
- Nutrition and Microbiota, Institute of Nutrition and Food Sciences, Faculty of Agriculture, University of Bonn, Germany
| | - Marie-Christine Simon
- Nutrition and Microbiota, Institute of Nutrition and Food Sciences, Faculty of Agriculture, University of Bonn, Germany
| | - Sven Schuchardt
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Nikolai-Fuchs-Straße, Hannover, Germany
| | - Erika Most
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring, Giessen, Germany
| | - Denise K Gessner
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring, Giessen, Germany
| | - Gaiping Wen
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring, Giessen, Germany
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring, Giessen, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring, Giessen, Germany; Center for Sustainable Food Systems, Justus Liebig University Giessen, Senckenbergstraße, Giessen, Germany.
| |
Collapse
|
3
|
Kang Y, Oba PM, Gaulke CA, Sánchez-Sánchez L, Swanson KS. Dietary Inclusion of Yellow Mealworms (T. molitor) and Lesser Mealworms (A. diaperinus) Modifies Intestinal Microbiota Populations of Diet-Induced Obesity Mice. J Nutr 2023; 153:3220-3236. [PMID: 37714334 DOI: 10.1016/j.tjnut.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Insect-based proteins are high-quality alternatives to support the shift toward more sustainable and healthy diets. Additionally, insects contain chitin and have unique fatty acid profiles. Studies have shown that mealworms may beneficially affect metabolism, but limited information is known regarding their effects on gut microbiota. OBJECTIVES We determined the effects of defatted yellow mealworm (Tenebrio molitor) and whole lesser mealworm (Alphitobius diaperinus) meals on the intestinal microbiota of diet-induced obesity mice. METHODS Male C57BL/6J mice were fed a high-fat diet (HFD; 46% kcal) to induce obesity. Obese mice were then randomly assigned to treatments (n = 10/group) and fed for 8 wk: HFD, HFD with casein protein; B50, HFD with 50% protein from whole lesser mealworm; B100, HFD with 100% protein from whole lesser mealworm; Y50, HFD with 50% protein from defatted yellow mealworm; Y100, HFD with 100% protein from defatted yellow mealworm. Lean mice (n = 10) fed a low-fat-diet (10% kcal) were included. Fresh feces were collected at baseline and every 2 wk, with cecal digesta collected at kill. Fecal and cecal DNA was analyzed for microbiota using 16S rRNA MiSeq Illumina sequencing. RESULTS In feces and cecal digesta, mice fed mealworms had greater (P < 0.05) bacterial alpha diversity, with changes occurring in a time-dependent manner (P < 0.05). Beta diversity analyses of cecal samples showed a clear separation of treatments, with a time-based separation shown in fecal samples. Widespread microbial differences were observed, with over 45 genera altered (P < 0.05) by diet in cecal digesta. In feces, over 50 genera and 40 genera were altered (P < 0.05) by diet and time, respectively. CONCLUSION Mealworm consumption changes the intestinal microbiota of obese mice, increasing alpha diversity measures and shifting bacterial taxa. More investigation is required to determine what mealworm components are responsible and how they may be linked with the metabolic benefits observed in mealworm-fed mice.
Collapse
Affiliation(s)
- Yifei Kang
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Patricia M Oba
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Christopher A Gaulke
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | | | - Kelly S Swanson
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
4
|
Kang Y, Applegate CC, He F, Oba PM, Vieson MD, Sánchez-Sánchez L, Swanson KS. Yellow Mealworm (Tenebrio molitor) and Lesser Mealworm (Alphitobius diaperinus) Proteins Slowed Weight Gain and Improved Metabolism of Diet-Induced Obesity Mice. J Nutr 2023; 153:2237-2248. [PMID: 37331631 DOI: 10.1016/j.tjnut.2023.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023] Open
Abstract
BACKGROUND High-protein diets not only meet amino acid needs but also modulate satiety and energy metabolism. Insect-based proteins are sustainable, high-quality proteins. Mealworms have been studied, but limited information is known about their ability to impact metabolism and obesity. OBJECTIVE We determined the effects of defatted yellow mealworm (Tenebrio molitor)- and whole lesser mealworm (Alphitobius diaperinus)-based proteins on the body weight (BW), serum metabolites, and liver and adipose tissue (AT) histology and gene expression of diet-induced obesity mice. METHODS Male C57BL/6J mice were fed a high-fat diet (HFD; 46% kcal) to induce obesity and metabolic syndrome. Obese mice were then assigned to treatments (n = 10/group) and fed for 8 wk: HFD: HFD with casein protein; B50: HFD with 50% protein from whole lesser mealworm; B100: HFD with 100% protein from whole lesser mealworm; Y50: HFD with 50% protein from defatted yellow mealworm; Y100: HFD with 100% protein from defatted yellow mealworm. Lean mice (n = 10) fed a low-fat-diet (LFD; 10% kcal) were included. Longitudinal food intake, BW, body composition, and glucose response were measured. At time of killing, serum metabolites, tissue histopathology and gene expression, and hepatic triglycerides were analyzed. RESULTS After 8 wk, HFD, B50, and B100 had greater (P < 0.05) weight gain than LFD, whereas Y50 and Y100 did not. Y50, B100, and Y100 had a lower (P < 0.05) BW change rate than HFD. Mealworm-based diets led to increased (P < 0.05) serum high-density lipoprotein (HDL) and reduced (P < 0.05) serum low-density lipoprotein (LDL) concentrations and reduced (P<0.05) LDL/HDL ratio. Mealworm-based diets led to increased (P < 0.05) hepatic expression of genes related to energy balance, immune response, and antioxidants and reduced (P < 0.05) AT expression of genes associated with inflammation and apoptosis. Mealworm-based diets altered (P < 0.05) hepatic and AT expression of glucose and lipid metabolism genes. CONCLUSIONS In addition to serving as an alternative protein source, mealworms may confer health benefits to obese patients.
Collapse
Affiliation(s)
- Yifei Kang
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Catherine C Applegate
- The Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Fei He
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Patricia M Oba
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Miranda D Vieson
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | | | - Kelly S Swanson
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
5
|
Feeding of Hermetia illucens Larvae Meal Attenuates Hepatic Lipid Synthesis and Fatty Liver Development in Obese Zucker Rats. Nutrients 2023; 15:nu15020287. [PMID: 36678159 PMCID: PMC9861802 DOI: 10.3390/nu15020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/08/2023] Open
Abstract
The present study tested the hypothesis that dietary insect meal from Hermetia illucens (HI) larvae attenuates the development of liver steatosis and hyperlipidemia in the obese Zucker rat. To test the hypothesis, a 4-week trial with male, obese Zucker rats (n = 30) and male, lean Zucker rats (n = 10) was performed. The obese rats were assigned to three obese groups (group O-C, group O-HI25, group O-HI50) of 10 rats each. The lean rats served as a lean control group (L-C). Group L-C and group O-C were fed a control diet with 20% casein as protein source, whereas 25% and 50% of the protein from casein was replaced with protein from HI larvae meal in the diets of group O-HI25 and O-HI50, respectively. The staining of liver sections with Oil red O revealed an excessive lipid accumulation in the liver of group O-C compared to group L-C, whereas liver lipid accumulation in group O-HI25 and O-HI50 was markedly reduced compared to group O-C. Hepatic concentrations of triglycerides, cholesterol, C14:0, C16:0, C16:1, C18:0, C18:1, the sum of total fatty acids and hepatic mRNA levels of several genes associated with lipid synthesis and plasma concentration of cholesterol were markedly higher in group O-C than in group L-C, but lower in group O-HI50 than in group O-C (p < 0.05). In conclusion, partial replacement of casein by HI larvae meal attenuates liver steatosis and dyslipidemia in obese Zucker rats. This suggests that HI larvae meal serves as a functional food protecting from obesity-induced metabolic disorders.
Collapse
|
6
|
Saeb A, Grundmann SM, Gessner DK, Schuchardt S, Most E, Wen G, Eder K, Ringseis R. Feeding of cuticles from Tenebrio molitor larvae modulates the gut microbiota and attenuates hepatic steatosis in obese Zucker rats. Food Funct 2022; 13:1421-1436. [PMID: 35048923 DOI: 10.1039/d1fo03920b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Insect biomass obtained from large-scale mass-rearing of insect larvae has gained considerable attention in recent years as an alternative and sustainable source of food and feed. A byproduct from mass-rearing of insect larvae is the shed cuticles - the most external components of insects which are a relevant source of the polysaccharide chitin. While it has been shown that chitin modulates the gut microbiota and ameliorates lipid metabolic disorders in obese rodent models, feeding studies dealing with isolated insects' cuticles are completely lacking. Thus, the present study tested the hypothesis that dietary insects' cuticles modulate the gut microbiome and improve hepatic lipid metabolism in obese Zucker rats. To test this hypothesis, three groups of obese Zucker rats were fed a nutrient-adequate, semisynthetic basal diet which was supplemented with either 0% (group O), 1.5% (group O1.5) or 3.0% (group O3.0) Tenebrio molitor cuticles at the expense of cellulose. Oil red O-stained liver sections showed a marked lipid accumulation, but lipid accumulation was clearly less in group O3.0 than in groups O and O1.5. In line with this, hepatic lipid concentrations were 30% lower in group O3.0 than in group O (p < 0.05). No differences were observed across the obese groups regarding liver concentrations of methionine, S-adenosylmethionine and homocysteine. Analysis of cecal microbial community at the family level revealed that the relative abundances of Bifidobacteriaceae, Coriobacteriaceae Erysipelotrichaceae, Lactobacillaceae, Prevotellaceae, Sutterellaceae, unknown Deltaproteobacteria and unknown Firmicutes were higher and those of Anaeroplasmataceae, Desulfovibrionaceae, Eubacteriaceae, Ruminococcaceae, Saccharibacteria and unknown Clostridiales were lower in group O3.0 compared to group O (p < 0.05). Cecal digesta concentrations of total short-chain fatty acids, acetate and butyrate were higher in group O3.0 than in group O (p < 0.05). Targeted plasma metabolomics revealed 53 metabolites differing between groups, amongst which two indole metabolites, indole-3-propionic acid and 3-indoxylsulfate, were markedly elevated in group O3.0 compared to groups O1.5 and O. Regarding that increased abundances of bacteria of the Actinobacteria phylum and Lactobacillaceae family in the gut have been reported to be associated with antisteatotic, hepatoprotective and antiinflammatory effects, the pronounced increases of Bifidobacteriaceae and Coriobacteriaceae (both Actinobacteria), and of Lactobacillaceae in group O3.0 might have contributed to the amelioration of fatty liver.
Collapse
Affiliation(s)
- Armaghan Saeb
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | - Sarah M Grundmann
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | - Denise K Gessner
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | - Sven Schuchardt
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Str. 1, 30625 Hannover, Germany
| | - Erika Most
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | - Gaiping Wen
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| |
Collapse
|
7
|
Zhang R, Cao YY, Du J, Thakur K, Tang SM, Hu F, Wei ZJ. Transcriptome Analysis Reveals the Gene Expression Changes in the Silkworm ( Bombyx mori) in Response to Hydrogen Sulfide Exposure. INSECTS 2021; 12:insects12121110. [PMID: 34940198 PMCID: PMC8706860 DOI: 10.3390/insects12121110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/27/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022]
Abstract
Simple Summary The fat body is one of the most important tissues in the body of insects due to its number of functions. Nowadays the new physiological function of H2S has gained attention as a novel signaling molecule. H2S performs crucial regulatory functions involving growth, the cardiovascular system, oxidative stress, and inflammation in many organisms. In this study, RNA-seq technology was used to investigate the fat body of the silkworm at the transcriptional level after H2S exposure during the 5th larvae stage. A total of 1200 (DEGs) was identified after 7.5 µM H2S treatment, of which 977 DEGs were up-regulated and 223 DEGs were down-regulated. DEGs were mainly involved in the transport pathway, cellular community, carbohydrate metabolism, and immune-associated signal transduction. Present research provides new insights on the gene expression changes in the fat body of silkworms after H2S exposure. Abstract Hydrogen sulfide (H2S) has been recognized for its beneficial influence on physiological alterations. The development (body weight) and economic characteristics (cocoon weight, cocoon shell ratio, and cocoon shell weight) of silkworms were increased after continuous 7.5 µM H2S treatment. In the present study, gene expression changes in the fat body of silkworms at the 5th instar larvae in response to the H2S were investigated through comparative transcriptome analysis. Moreover, the expression pattern of significant differentially expressed genes (DEGs) at the 5th instar larvae was confirmed by quantitative real-time PCR (qRT-PCR) after H2S exposure. A total of 1200 (DEGs) was identified, of which 977 DEGs were up-regulated and 223 DEGs were down-regulated. Most of the DEGs were involved in the transport pathway, cellular community, carbohydrate metabolism, and immune-associated signal transduction. The up regulated genes under H2S exposure were involved in endocytosis, glycolysis/gluconeogenesis, the citrate cycle (TCA cycle), and the synthesis of fibroin, while genes related to inflammation were down-regulated, indicating that H2S could promote energy metabolism, the transport pathway, silk synthesis, and inhibit inflammation in the silkworm. In addition, the expression levels of these genes were increased or decreased in a time-dependent manner during the 5th instar larvae. These results provided insight into the effects of H2S on silkworms at the transcriptional level and a substantial foundation for understanding H2S function.
Collapse
Affiliation(s)
- Rui Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (R.Z.); (Y.-Y.C.); (K.T.)
| | - Yu-Yao Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (R.Z.); (Y.-Y.C.); (K.T.)
| | - Juan Du
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China;
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (R.Z.); (Y.-Y.C.); (K.T.)
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China;
| | - Shun-Ming Tang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China;
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Fei Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (R.Z.); (Y.-Y.C.); (K.T.)
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China;
- Correspondence: (F.H.); (Z.-J.W.)
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (R.Z.); (Y.-Y.C.); (K.T.)
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China;
- Correspondence: (F.H.); (Z.-J.W.)
| |
Collapse
|
8
|
Marschall MJM, Ringseis R, Gessner DK, Grundmann SM, Most E, Wen G, Maheshwari G, Zorn H, Eder K. Effect of Ecdysterone on the Hepatic Transcriptome and Lipid Metabolism in Lean and Obese Zucker Rats. Int J Mol Sci 2021; 22:5241. [PMID: 34063487 PMCID: PMC8156757 DOI: 10.3390/ijms22105241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 11/16/2022] Open
Abstract
Conflicting reports exist with regard to the effect of ecdysterone, the predominating representative of steroid hormones in insects and plants, on hepatic and plasma lipid concentrations in different rodent models of obesity, fatty liver, and diabetes, indicating that the effect is dependent on the rodent model used. Here, the hypothesis was tested for the first time that ecdysterone causes lipid-lowering effects in genetically obese Zucker rats. To test this hypothesis, two groups of male obese Zucker rats (n = 8) were fed a nutrient-adequate diet supplemented without or with 0.5 g ecdysterone per kg diet. To study further if ecdysterone is capable of alleviating the strong lipid-synthetic activity in the liver of obese Zucker rats, the study included also two groups of male lean Zucker rats (n = 8) which also received either the ecdysterone-supplemented or the non-supplemented diet. While hepatic and plasma concentrations of triglycerides and cholesterol were markedly higher in the obese compared to the lean rats (p < 0.05), hepatic and plasma triglyceride and cholesterol concentrations did not differ between rats of the same genotype fed the diets without or with ecdysterone. In conclusion, the present study clearly shows that ecdysterone supplementation does not exhibit lipid-lowering actions in the liver and plasma of lean and obese Zucker rats.
Collapse
Affiliation(s)
- Magdalena J. M. Marschall
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; (M.J.M.M.); (D.K.G.); (S.M.G.); (E.M.); (G.W.); (G.M.); (K.E.)
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; (M.J.M.M.); (D.K.G.); (S.M.G.); (E.M.); (G.W.); (G.M.); (K.E.)
| | - Denise K. Gessner
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; (M.J.M.M.); (D.K.G.); (S.M.G.); (E.M.); (G.W.); (G.M.); (K.E.)
| | - Sarah M. Grundmann
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; (M.J.M.M.); (D.K.G.); (S.M.G.); (E.M.); (G.W.); (G.M.); (K.E.)
| | - Erika Most
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; (M.J.M.M.); (D.K.G.); (S.M.G.); (E.M.); (G.W.); (G.M.); (K.E.)
| | - Gaiping Wen
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; (M.J.M.M.); (D.K.G.); (S.M.G.); (E.M.); (G.W.); (G.M.); (K.E.)
| | - Garima Maheshwari
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; (M.J.M.M.); (D.K.G.); (S.M.G.); (E.M.); (G.W.); (G.M.); (K.E.)
- Institute of Food Chemistry and Food Biotechnology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany;
| | - Holger Zorn
- Institute of Food Chemistry and Food Biotechnology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany;
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; (M.J.M.M.); (D.K.G.); (S.M.G.); (E.M.); (G.W.); (G.M.); (K.E.)
| |
Collapse
|
9
|
Maheshwari G, Gessner DK, Meyer S, Ahlborn J, Wen G, Ringseis R, Zorn H, Eder K. Characterization of the Nutritional Composition of a Biotechnologically Produced Oyster Mushroom and its Physiological Effects in Obese Zucker Rats. Mol Nutr Food Res 2020; 64:e2000591. [PMID: 32997875 DOI: 10.1002/mnfr.202000591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/24/2020] [Indexed: 01/14/2023]
Abstract
SCOPE Sustainable protein sources are needed to meet the increasing protein demands of a continuously growing world population. This study is focused on the biotechnological production of a protein rich oyster mushroom (Pleurotus sajor-caju; PSC) by valorization of an agricultural side stream and the evaluation of the physiological effects of PSC in a rat model of metabolic syndrome. METHODS AND RESULTS PSC is produced via submerged cultivation in a 150 L bioreactor that utilizes isomaltulose molasses as its sole carbon source, and is further analyzed for its nutritional composition. A feeding trial is performed using Zucker rats which are fed a 5% PSC supplemented diet, for 4 weeks. Biochemical analyses reveal a significant reduction of the liver lipid concentrations and liver inflammation in the PSC fed obese rats in comparison to the obese rats from the control group. Hepatic qPCR analyses, differential transcript profiling, and enzyme activity measurements reveal a number of altered pathways that may be responsible for these anti-steatotic and anti-inflammatory effects of the mushroom. CONCLUSION Bioconversion of a low quality agricultural side stream to an improved protein source is performed by submerged cultured PSC, and the obtained mycelium shows strong anti-steatotic and anti-inflammatory effects.
Collapse
Affiliation(s)
- Garima Maheshwari
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.,Institute of Food Chemistry and Food Biotechnology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Denise K Gessner
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Sandra Meyer
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Jenny Ahlborn
- Institute of Food Chemistry and Food Biotechnology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Gaiping Wen
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Holger Zorn
- Institute of Food Chemistry and Food Biotechnology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392, Giessen, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| |
Collapse
|
10
|
Tenebrio molitor Larvae Meal Affects the Cecal Microbiota of Growing Pigs. Animals (Basel) 2020; 10:ani10071151. [PMID: 32645939 PMCID: PMC7401588 DOI: 10.3390/ani10071151] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 12/16/2022] Open
Abstract
The hypothesis tested was that dietary inclusion of insect meal (IM) causes an alteration in the cecal microbiota composition and its fermentation activity of growing pigs. Five-week-old male crossbred pigs were randomly assigned to three groups of 10 pigs each, and fed isonitrogenous diets either without (CON) or with 5% IM (IM5) or 10% IM (IM10) from Tenebrio molitor larvae for four weeks. The relative abundance of the phylum Bacteroidetes was lower in group IM10 than in group CON (p < 0.05), whereas the relative abundance of Firmicutes and the Firmicutes:Bacteroidetes-ratio tended to be higher in groups IM10 and IM5 than in group CON (p < 0.1). The relative abundance of the Proteobacteria tended to be higher in group IM10 than in groups CON and IM5 (p < 0.1). The concentrations of the total short-chain fatty acids in the cecal digesta did not differ between the three groups, but the concentrations of the branched-chain fatty acids in the cecal digesta were higher in group IM5 and IM10 than in group CON (p < 0.05). The present study shows for the first time that the replacement of soybean meal by Tenebrio molitor larvae meal causes a shift of the cecal microbial community and its fermentation activity in growing pigs.
Collapse
|
11
|
Meyer S, Schäfer L, Röhrig J, Maheshwari G, Most E, Zorn H, Ringseis R, Eder K, Gessner DK. Supplementation of Sulfur-Containing Amino Acids or Essential Amino Acids Does Not Reverse the Hepatic Lipid-Lowering Effect of a Protein-Rich Insect Meal in Obese Zucker Rats. Nutrients 2020; 12:nu12040987. [PMID: 32252339 PMCID: PMC7230462 DOI: 10.3390/nu12040987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 01/16/2023] Open
Abstract
The present study tested the hypothesis that the liver lipid-lowering effect of insect meal (IM) is caused by its low methionine concentration. A total of fifty, male obese Zucker rats were randomly assigned to five groups of 10 rats each (casein (C), IM, IM + Met, IM + Cys, and IM + EAA). While group C received a diet with casein, the IM-fed groups received a diet with IM as the protein source. In groups IM + Met, IM + Cys and IM + EAA, the diets were additionally supplemented with methionine, cysteine and essential amino acids (EAA), respectively. Hepatic concentrations of triacylglycerols and cholesterol, and hepatic mRNA levels and activities of lipogenic and cholesterogenic enzymes were markedly lower in the IM-fed groups than in group C (p < 0.05). All of these parameters either did not differ across the IM-fed groups or were only slightly higher in groups IM + Met, IM + Cys and IM+EAA than in the group IM. In conclusion, the results indicate that a difference in the amino acid composition between IM and casein, a low concentration of methionine in IM and a reduced cysteine synthesis secondary to a decreased methionine availability resulting from feeding IM are not causative for the lipid-lowering effect of IM.
Collapse
Affiliation(s)
- Sandra Meyer
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; (S.M.); (L.S.); (J.R.); (G.M.); (E.M.); (K.E.); (D.K.G.)
| | - Lea Schäfer
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; (S.M.); (L.S.); (J.R.); (G.M.); (E.M.); (K.E.); (D.K.G.)
| | - Julia Röhrig
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; (S.M.); (L.S.); (J.R.); (G.M.); (E.M.); (K.E.); (D.K.G.)
| | - Garima Maheshwari
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; (S.M.); (L.S.); (J.R.); (G.M.); (E.M.); (K.E.); (D.K.G.)
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany;
| | - Erika Most
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; (S.M.); (L.S.); (J.R.); (G.M.); (E.M.); (K.E.); (D.K.G.)
| | - Holger Zorn
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany;
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Str. 2, 35394 Giessen, Germany
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; (S.M.); (L.S.); (J.R.); (G.M.); (E.M.); (K.E.); (D.K.G.)
- Correspondence: ; Tel./Fax: +49-641-9939231
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; (S.M.); (L.S.); (J.R.); (G.M.); (E.M.); (K.E.); (D.K.G.)
| | - Denise K. Gessner
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; (S.M.); (L.S.); (J.R.); (G.M.); (E.M.); (K.E.); (D.K.G.)
| |
Collapse
|
12
|
Comprehensive evaluation of the metabolic effects of insect meal from Tenebrio molitor L. in growing pigs by transcriptomics, metabolomics and lipidomics. J Anim Sci Biotechnol 2020; 11:20. [PMID: 32158542 PMCID: PMC7055059 DOI: 10.1186/s40104-020-0425-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/06/2020] [Indexed: 12/13/2022] Open
Abstract
Background The hypothesis was tested that insect meal (IM) as protein source influences intermediary metabolism of growing pigs. To test this, 30 male, 5-week-old crossbred pigs were randomly assigned to 3 groups of 10 pigs each with similar body weights (BW) and fed isonitrogenous diets either without (CON) or with 5% IM (IM5) or 10% IM (IM10) from Tenebrio molitor L. for 4 weeks and key metabolic tissues (liver, muscle, plasma) were analyzed using omics-techniques. Results Most performance parameters did not differ across the groups, whereas ileal digestibilities of most amino acids were 6.7 to 15.6%-units lower in IM10 than in CON (P < 0.05). Transcriptomics of liver and skeletal muscle revealed a total of 166 and 198, respectively, transcripts differentially expressed between IM10 and CON (P < 0.05). Plasma metabolomics revealed higher concentrations of alanine, citrulline, glutamate, proline, serine, tyrosine and valine and a lower concentration of asparagine in IM10 than in CON (P < 0.05). Only one out of fourteen quantifiable amino acid metabolites, namely methionine sulfoxide (MetS), in plasma was elevated by 45% and 71% in IM5 and IM10, respectively, compared to CON (P < 0.05). Plasma concentrations of both, major carnitine/acylcarnitine species and bile acids were not different across groups. Lipidomics of liver and plasma demonstrated no differences in the concentrations of triacylglycerols, cholesterol and the main phospholipids, lysophospholipids and sphingolipids between groups. The percentages of all individual phosphatidylcholine (PC) and phosphatidylethanolamine (PE) species in the liver showed no differences between groups, except those with 6 double bonds (PC 38:6, PC 40:6, PE 38:6, PE 40:6), which were markedly lower in IM10 than in CON (P < 0.05). In line with this, the percentage of C22:6n-3 in hepatic total lipids was lower in IM10 than in the other groups (P < 0.05). Conclusions Comprehensive analyzes of the transcriptome, lipidome and metabolome of key metabolic tissues indicate that partial or complete replacement of a conventional protein source by IM in the diet has only a weak impact on the intermediary metabolism of growing pigs. Thus, it is concluded that IM from Tenebrio molitor L. can be used as a dietary source of protein in pigs without causing adverse effects on metabolism.
Collapse
|
13
|
How is the acyl chain composition of phosphoinositides created and does it matter? Biochem Soc Trans 2020; 47:1291-1305. [PMID: 31657437 PMCID: PMC6824679 DOI: 10.1042/bst20190205] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022]
Abstract
The phosphoinositide (PIPn) family of signalling phospholipids are central regulators in membrane cell biology. Their varied functions are based on the phosphorylation pattern of their inositol ring, which can be recognized by selective binding domains in their effector proteins and be modified by a series of specific PIPn kinases and phosphatases, which control their interconversion in a spatial and temporal manner. Yet, a unique feature of PIPns remains largely unexplored: their unusually uniform acyl chain composition. Indeed, while most phospholipids present a range of molecular species comprising acyl chains of diverse length and saturation, PIPns in several organisms and tissues show the predominance of a single hydrophobic backbone, which in mammals is composed of arachidonoyl and stearoyl chains. Despite evolution having favoured this specific PIPn configuration, little is known regarding the mechanisms and functions behind it. In this review, we explore the metabolic pathways that could control the acyl chain composition of PIPns as well as the potential roles of this selective enrichment. While our understanding of this phenomenon has been constrained largely by the technical limitations in the methods traditionally employed in the PIPn field, we believe that the latest developments in PIPn analysis should shed light onto this old question.
Collapse
|
14
|
Ochiai M, Inada M, Horiguchi S. Nutritional and safety evaluation of locust (Caelifera) powder as a novel food material. J Food Sci 2020; 85:279-288. [PMID: 31976553 DOI: 10.1111/1750-3841.15024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/28/2019] [Accepted: 11/25/2019] [Indexed: 01/22/2023]
Abstract
Insects are considered edible food resources with sufficient nutrients, but their nutrient composition and safety evaluation have not been fully investigated yet. In this study, we investigated the nutrient composition and the acute and sub-chronic toxicity of locust powder in male rats. In the acute oral toxicological experiment, rats were administered locust powder at a dose of 10 or 20 g/kg/dose, followed by monitoring general signs of toxicity for 14 days. In the sub-chronic toxicological experiments, rats were fed with a diet containing 1% and 3% locust powder for 28 and 90 days. General signs of toxicity, body weight, plasma and blood components, weight and fat accumulation in tissues, and fecal fat excretion were investigated. The locust powder was rich in proteins, essential amino acids, minerals, and polyunsaturated fatty acids. In the acute toxicological experiment, no general signs of acute toxicity were observed at a dose of 20 g/kg. In the sub-chronic toxicological experiments, parameters related to red blood cell were lowered by the 3% locust powder for 28 days, but not for 90 days. Liver lipid accumulation and fecal fat excretion were increased by the 3% locust powder for 90 days, but the liver lipids contents were considered to be within a nontoxic level. Cecum contents and cecum short-chain fatty acids were lowered by the locust powder, which can be caused by its fiber and fiber-like components. In conclusion, acute and sub-chronic intake of locust powder had little effect on general, biochemical, and hematological signs of toxicity in rats. PRACTICAL APPLICATION: Edible insects are increasingly viewed as new sustainable protein sources for human foods and livestock feeds worldwide because of their high nutritional balance, high food conversion rate, and environmental merits. Here, we have clarified that a locust powder contains high levels of protein, polyunsaturated functional fatty acids, and minerals (iron, zinc, and magnesium), and intake of locust powder (3% in diet) had little effects on general, biochemical, and hematological signs of toxicity in male rats. Locust as an edible insect, in powder form, can contribute to human dietary needs.
Collapse
Affiliation(s)
- Masaru Ochiai
- School of Veterinary Medicine, Kitasato Univ., Higashi 23-35-1 Towada, Aomori, 034-8628, Japan
| | - Mako Inada
- School of Veterinary Medicine, Kitasato Univ., Higashi 23-35-1 Towada, Aomori, 034-8628, Japan
| | - Seiya Horiguchi
- School of Veterinary Medicine, Kitasato Univ., Higashi 23-35-1 Towada, Aomori, 034-8628, Japan
| |
Collapse
|