1
|
Gazza L, Menga V, Taddei F, Nocente F, Galassi E, Natale C, Lanzanova C, Paone S, Fares C. Nutritional Traits, Pasting Properties and Antioxidant Profile of Selected Genotypes of Sorghum, Oat and Maize Eligible for Gluten-Free Products. Foods 2024; 13:990. [PMID: 38611296 PMCID: PMC11011531 DOI: 10.3390/foods13070990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
The technological and nutritional traits of food-grade sorghum hybrids, hulled/naked oat varieties and maize genotypes of different colors were studied for novel and healthier gluten-free foods. Oat genotypes showed the highest protein content, followed by maize and sorghum. The total starch and the total dietary fiber content were quite similar among the three species. Great variation was found in the amylose content, and the highest was in sorghum (27.12%), followed by oat 16.71% and maize 10.59%. Regarding the pasting profile, the rank of Peak Viscosity was sorghum (742.8 Brabender Unit, BU), followed by maize (729.3 BU) and oat (685.9 BU). Oat and sorghum genotypes had similar average breakdown (407.7 and 419.9 BU, respectively) and setback (690.7 and 682.1 BU, respectively), whereas maize showed lower values for both parameters (384.1 BU and 616.2 BU, respectively). The total antioxidant capacity, only in maize, significantly correlated with total flavonoid, phenolic and proanthocyanidin contents, indicating that all the measured compounds contributed to antioxidant capacity. The study indicated the importance of sounding out the nutritional and technological characteristics of gluten-free cereals in order to select suitable cultivars to be processed in different gluten-free foods with better and healthier quality.
Collapse
Affiliation(s)
- Laura Gazza
- CREA-IT Consiglio Per la Ricerca in Agricoltura e L’analisi Dell’economia Agraria Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via Manziana, 30, 00189 Roma, Italy; (L.G.); (F.T.); (F.N.); (E.G.); (C.N.)
| | - Valeria Menga
- CREA-CI Consiglio Per la Ricerca in Agricoltura e L’analisi Dell’economia Agraria Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673, km 25.200, 71122 Foggia, Italy; (V.M.); (S.P.)
| | - Federica Taddei
- CREA-IT Consiglio Per la Ricerca in Agricoltura e L’analisi Dell’economia Agraria Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via Manziana, 30, 00189 Roma, Italy; (L.G.); (F.T.); (F.N.); (E.G.); (C.N.)
| | - Francesca Nocente
- CREA-IT Consiglio Per la Ricerca in Agricoltura e L’analisi Dell’economia Agraria Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via Manziana, 30, 00189 Roma, Italy; (L.G.); (F.T.); (F.N.); (E.G.); (C.N.)
| | - Elena Galassi
- CREA-IT Consiglio Per la Ricerca in Agricoltura e L’analisi Dell’economia Agraria Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via Manziana, 30, 00189 Roma, Italy; (L.G.); (F.T.); (F.N.); (E.G.); (C.N.)
| | - Chiara Natale
- CREA-IT Consiglio Per la Ricerca in Agricoltura e L’analisi Dell’economia Agraria Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via Manziana, 30, 00189 Roma, Italy; (L.G.); (F.T.); (F.N.); (E.G.); (C.N.)
| | - Chiara Lanzanova
- CREA-CI Consiglio Per la Ricerca in Agricoltura e L’analisi Dell’economia Agraria Centro di Ricerca Cerealicoltura e Colture Industriali, Via Stezzano, 24, 24126 Bergamo, Italy;
| | - Silvana Paone
- CREA-CI Consiglio Per la Ricerca in Agricoltura e L’analisi Dell’economia Agraria Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673, km 25.200, 71122 Foggia, Italy; (V.M.); (S.P.)
| | - Clara Fares
- CREA-CI Consiglio Per la Ricerca in Agricoltura e L’analisi Dell’economia Agraria Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673, km 25.200, 71122 Foggia, Italy; (V.M.); (S.P.)
| |
Collapse
|
2
|
Dias R, da Silva S, Monteiro B, Pérez-Gregorio R, Mateus N, Gianfrani C, Barone MV, Martinek P, Freitas V. Mass spectrometry-based quantification of immunostimulatory gliadin proteins and peptides in coloured wheat varieties: Implications for Celiac Disease. Food Res Int 2024; 178:114008. [PMID: 38309890 DOI: 10.1016/j.foodres.2024.114008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 02/05/2024]
Abstract
Pigmented wheat varieties (Triticum aestivum spp.) are getting increasingly popular in modern nutrition and thoroughly researched for their functional and nutraceutical value. The colour of these wheat grains is caused by the expression of natural pigments, including carotenoids and anthocyanins, that can be restricted to either the endosperm, pericarp and/or aleurone layers. While contrasts in phytochemical synthesis give rise to variations among purple, blue, dark and yellow grain's antioxidant and radical scavenging capacities, little is known about their influence on gluten proteins expression, digestibility and immunogenic potential in a Celiac Disease (CD) framework. Herein, it has been found that the expression profile and immunogenic properties of gliadin proteins in pigmented wheat grains might be affected by anthocyanins and carotenoids upregulation, and that the spectra of peptide released upon simulated gastrointestinal digestion is also significantly different. Interestingly, anthocyanin accumulation, as opposed to carotenoids, correlated with a lower immunogenicity and toxicity of gliadins at both protein and peptide levels. Altogether, this study provides first-level evidence on the impact modern breeding practices, seeking higher expression levels of health promoting phytochemicals at the grain level, may have on wheat crops functionality and CD tolerability.
Collapse
Affiliation(s)
- Ricardo Dias
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Porto, Portugal.
| | - Sara da Silva
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Porto, Portugal
| | - Bruna Monteiro
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Porto, Portugal
| | - Rosa Pérez-Gregorio
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Porto, Portugal; Department of Analytical and Food Chemistry. Nutrition and Bromatology Area. Faculty of Sciences of the University of Vigo, Ourense, Spain
| | - Nuno Mateus
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Porto, Portugal
| | - Carmen Gianfrani
- Institute of Biochemistry and Cell Biology, Department of Biomedical Sciences, National Research Council of Italy, Naples, Italy
| | - Maria Vittoria Barone
- ELFID (European Laboratory for the Investigation of Food Induced Diseases), Department of Translational Medical Science, Section of Paediatrics, University Federico II, Naples, Italy
| | | | - Victor Freitas
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Porto, Portugal
| |
Collapse
|
3
|
Afzal M, Sielaff M, Distler U, Schuppan D, Tenzer S, Longin CFH. Reference proteomes of five wheat species as starting point for future design of cultivars with lower allergenic potential. NPJ Sci Food 2023; 7:9. [PMID: 36966156 PMCID: PMC10039927 DOI: 10.1038/s41538-023-00188-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/06/2023] [Indexed: 03/27/2023] Open
Abstract
Wheat is an important staple food and its processing quality is largely driven by proteins. However, there is a sizable number of people with inflammatory reactions to wheat proteins, namely celiac disease, wheat allergy and the syndrome of non-celiac wheat sensitivity. Thus, proteome profiles should be of high importance for stakeholders along the wheat supply chain. We applied liquid chromatography-tandem mass spectrometry-based proteomics to establish the flour reference proteome for five wheat species, ancient to modern, each based on 10 cultivars grown in three diverse environments. We identified at least 2540 proteins in each species and a cluster analyses clearly separated the species based on their proteome profiles. Even more, >50% of proteins significantly differed between species - many of them implicated in products' quality, grain-starch synthesis, plant stress regulation and proven or potential allergic reactions in humans. Notably, the expression of several important wheat proteins was found to be mainly driven by genetics vs. environmental factors, which enables selection and refinement of improved cultivars for the wheat supply chain as long as rapid test methods will be developed. Especially einkorn expressed 5.4 and 7.2-fold lower quantities of potential allergens and immunogenic amylase trypsin inhibitors, respectively, than common wheat, whereas potential allergen content was intermediate in tetraploid wheat species. This urgently warrants well-targeted clinical studies, where the developed reference proteomes will help to design representative test diets.
Collapse
Affiliation(s)
- Muhammad Afzal
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstr. 21, 70599, Stuttgart, Germany
| | - Malte Sielaff
- Institute for Immunology and Research Center for Immune Therapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Ute Distler
- Institute for Immunology and Research Center for Immune Therapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immune Therapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Stefan Tenzer
- Institute for Immunology and Research Center for Immune Therapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - C Friedrich H Longin
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstr. 21, 70599, Stuttgart, Germany.
| |
Collapse
|
4
|
Mamone G, Di Stasio L, Vitale S, Picascia S, Gianfrani C. Analytical and functional approaches to assess the immunogenicity of gluten proteins. Front Nutr 2023; 9:1049623. [PMID: 36741992 PMCID: PMC9890883 DOI: 10.3389/fnut.2022.1049623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/15/2022] [Indexed: 01/19/2023] Open
Abstract
Gluten proteins are the causative agents of celiac disease (CD), a lifelong and worldwide spread food intolerance, characterized by an autoimmune enteropathy. Gluten is a complex mixture of high homologous water-insoluble proteins, characterized by a high content of glutamine and proline amino acids that confers a marked resistance to degradation by gastrointestinal proteases. As a consequence of that, large peptides are released in the gut lumen with the potential to activate inflammatory T cells, in CD predisposed individuals. To date, several strategies aimed to detoxify gluten proteins or to develop immunomodulatory drugs to recover immune tolerance to gluten are under investigation. This review overviews the state of art of both analytical and functional methods currently used to assess the immunogenicity potential of gluten proteins from different cereal sources, including native raw seed flours and complex food products, as well as drug-treated samples. The analytical design to assess the content and profile of gluten immunogenic peptides, described herein, is based on the oral-gastro-intestinal digestion (INFOGEST model) followed by extensive characterization of residual gluten peptides by proteomic and immunochemical analyses. These approaches include liquid chromatography-high-resolution mass spectrometry (LC-MS/MS) and R5/G12 competitive ELISA. Functional studies to assess the immune stimulatory capabilities of digested gluten peptides are based on gut mucosa T cells or peripheral blood cells obtained from CD volunteers after a short oral gluten challenge.
Collapse
Affiliation(s)
- Gianfranco Mamone
- Institute of Food Science, Department of Biology, Agriculture and Food Sciences, National Research Council of Italy, Avellino, Italy
| | - Luigia Di Stasio
- Institute of Food Science, Department of Biology, Agriculture and Food Sciences, National Research Council of Italy, Avellino, Italy
| | - Serena Vitale
- Institute of Biochemistry and Cell Biology, Department of Biomedical Sciences, National Research Council of Italy, Naples, Italy
| | - Stefania Picascia
- Institute of Biochemistry and Cell Biology, Department of Biomedical Sciences, National Research Council of Italy, Naples, Italy
| | - Carmen Gianfrani
- Institute of Biochemistry and Cell Biology, Department of Biomedical Sciences, National Research Council of Italy, Naples, Italy,*Correspondence: Carmen Gianfrani,
| |
Collapse
|
5
|
Cooking Quality and Chemical and Technological Characteristics of Wholegrain Einkorn Pasta Obtained from Micronized Flour. Foods 2022; 11:foods11182905. [PMID: 36141038 PMCID: PMC9498463 DOI: 10.3390/foods11182905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
The increased demand for healthier foods, the recognition of dry pasta as an ideal carrier of functional ingredients, and the current interest for ancient wheats such as einkorn motivated the present research. Two varieties of Triticum monococcum, namely cv Norberto and the free-threshing cv Hammurabi, were milled by ultra-fine milling process (micronization) to produce wholegrain spaghetti. Einkorn pasta was assessed in terms of technological and biochemical properties and cooking and sensorial quality and compared to durum wheat semolina pasta. Wholewheat einkorn pasta showed a threefold increase in total dietary fibre content as well as in total antioxidant capacity in comparison to the control. The level of resistant starch in cv Norberto resulted significantly higher respect to semolina and einkorn cv Hammurabi pasta. Despite the very weak einkorn gluten network, the sensory and instrumental assessment of pasta quality highlighted that einkorn spaghetti presented good sensorial properties related to their technological quality, in particular, for the overall judgment and firmness. Cultivar Hammurabi emerged as the preeminent compromise on the basis of technological performances together with chemical and sensorial aspects.
Collapse
|
6
|
Mamone G, Comelli MC, Vitale S, Di Stasio L, Kessler K, Mottola I, Siano F, Cavaletti L, Gianfrani C. E40 glutenase detoxification capabilities of residual gluten immunogenic peptides in in vitro gastrointestinal digesta of food matrices made of soft and durum wheat. Front Nutr 2022; 9:974771. [PMID: 36159465 PMCID: PMC9493446 DOI: 10.3389/fnut.2022.974771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
Gluten degrading enzymes, which are commonly referred to as “glutenases,” represent attractive candidates for the development of a pharmacological treatment of gluten related disorders, such as coeliac disease (CeD). Endoprotease-40 (E40), a novel glutenase secreted by the actinomycete Actinoallomurus A8 and recombinantly produced in S. lividans TK24, was shown to be active at pH 3 to 6 (optimum pH 5), resistant to pepsin and trypsin degradation, able to destroy immunotoxicity of both gliadin 33-mer peptide and whole proteins and to strongly reduce the response of specific T cells when added to gliadin in in vitro gastrointestinal digestion. This study aims to functionally assess the capabilities of Endoprotease-40 (E40) to detoxify residual gluten immunogenic peptides in gastrointestinal digesta of food matrices made of soft and durum wheat. The INFOGEST harmonized protocols were applied to the multicompartmental model of simulated human gastrointestinal digestion, for the quantitative assessment of residual gluten in liquid (beer) and solid (bread and pasta) foods, made of either soft or durum wheat. Proteomic and immunological techniques, and functional assays on intestinal T cell lines from celiac disease patients were used to identify gluten-derived immunogenic peptide sequences surviving in gastric and gastrointestinal digesta after the addition of E40 at increasing enzyme: wheat proteins ratios. During the gastric phase (2 h incubation time), the addition of E40 demonstrated an extensive (≥ 95%) dose-dependent detoxification of whole gluten in real food matrices. Overall, the residual gluten content was found at, or even below, the 20 ppm gluten-free threshold for soft and durum wheat-based food. Furthermore, unlike in untreated gastrointestinal digesta, none of the immunodominant α-gliadin peptides survived in E40-treated digesta. Traces of ω- and γ-gliadin derived immunogenic peptides were still detected in E40-treated digesta, but unable to stimulate celiac-intestinal T cells. In conclusion, E40 is a promising candidate for the oral enzymatic therapy of CeD, as a stand-alone enzyme being efficient along the complete gastrointestinal digestion of gluten.
Collapse
Affiliation(s)
- Gianfranco Mamone
- Institute of Food Science, National Research Council of Italy, Avellino, Italy
- *Correspondence: Gianfranco Mamone,
| | | | - Serena Vitale
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Naples, Italy
| | - Luigia Di Stasio
- Institute of Food Science, National Research Council of Italy, Avellino, Italy
| | | | - Ilaria Mottola
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Naples, Italy
| | - Francesco Siano
- Institute of Food Science, National Research Council of Italy, Avellino, Italy
| | - Linda Cavaletti
- Fondazione Istituto Insubrico Ricerca per la Vita, Varese, Italy
| | - Carmen Gianfrani
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Naples, Italy
| |
Collapse
|
7
|
Rotondi Aufiero V, Sapone A, Mazzarella G. Diploid Wheats: Are They Less Immunogenic for Non-Celiac Wheat Sensitive Consumers? Cells 2022; 11:2389. [PMID: 35954233 PMCID: PMC9368055 DOI: 10.3390/cells11152389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Non-celiac wheat sensitivity (NCWS) is a clinical entity induced by the ingestion of gluten that leads to intestinal and/or extraintestinal symptoms, and is diagnosed when celiac disease and wheat allergy have been ruled out. In addition to gluten, other grains' components, including amylase trypsin inhibitors (ATIs) and fermentable short-chain carbohydrates (FODMAPs), may trigger symptoms in NCWS subjects. Several studies suggest that, compared with tetraploid and hexaploid modern wheats, ancient diploid wheats species could possess a lower immunogenicity for subjects suffering from NCWS. This review aims to discuss available evidence related to the immunological features of diploid wheats compared to common wheats, and at outlining new dietary opportunities for NCWS subjects.
Collapse
Affiliation(s)
| | - Anna Sapone
- Center for Celiac Research and Treatment, Massachusetts General Hospital, Boston, MA 02114, USA;
| | | |
Collapse
|
8
|
Nocente F, Galassi E, Taddei F, Natale C, Gazza L. Ancient Caucasian Wheats: A Contribution for Sustainable Diets and Food Diversity. Foods 2022; 11:foods11091209. [PMID: 35563931 PMCID: PMC9104265 DOI: 10.3390/foods11091209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 12/10/2022] Open
Abstract
Through the centuries, the domestication and modern breeding of wheat led to a significant loss of genetic variation in the cultivated gene pool with a consequent decrease in food diversity. Current trends towards low-input and sustainable agriculture call for the revitalization and exploitation of ancient wheats, which represent a reservoir of biodiversity useful to ensure sustainable wheat production in the context of climate change and low-input farming systems. Ancient Caucasian wheat species, such as the hulled wheats Triticum timopheevii (tetraploid AuAuGG) and Triticum zhukovskyi (hexaploid AuAuAmAmGG), are still grown to a limited extent in the Caucasus for the production of traditional foods. These Caucasian wheats were grown in Italy and were analyzed for physical, nutritional and technological characteristics and compared to durum wheat. Both Caucasian species revealed a high protein content (on average 18.5%) associated with a low gluten index, mainly in T. zhukovskyi, and test weight values comparable to commercial wheats. The total antioxidant capacity was revealed to be the double of that in durum wheat, suggesting the use of ancient Caucasian wheats for the production of healthy foods. Finally, the technological and rheological results indicated that Caucasian wheats could be potential raw material for the formulation of flat breads, biscuits and pasta.
Collapse
|
9
|
Birinyi Z, Réder D, Diós Á, Korponay-Szabó IR, Hunyadi-Gulyás É, Florides CG, Juhász A, Gell G. Immunoanalytic investigation of grain proteins antigenic for celiac disease patients in an einkorn collection. Food Chem 2022; 371:131148. [PMID: 34808760 DOI: 10.1016/j.foodchem.2021.131148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 08/10/2021] [Accepted: 09/13/2021] [Indexed: 11/30/2022]
Abstract
Our study focuses on the complex characterization of a wild and cultivated einkorn collection of the Cereal Gene Bank of Agriculture Research Institute in Hungary, using proteomics, immune analytics and bioinformatics analyses. In a serological ELISA pre-screen of 208 different Triticum monococcum L. ssp. monococcum and Triticum monococcum L. ssp. aegilopoides genotypes with celiac disease samples high diversity was observed in the immune response. Based on the immune analytic results, four genotypes with significantly reduced immune reactivity were selected for detailed proteomics characterization. Our results confirm the benefits of high-throughput/large-scale pre-screening and the use of a complex examination platform to get relevant information about the genetic diversity of celiac disease-relevant proteins in the analyzed einkorn genotypes. These genotypes cannot be incorporated into the daily diet of celiac patients; however, they may represent candidates - especially in combination with enzymatic treatments - to improve the lifestyle of individuals suffering from other clinical conditions like non-celiac wheat sensitivity.
Collapse
Affiliation(s)
- Zsófia Birinyi
- Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Martonvásár, HU 2462, Hungary; Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dalma Réder
- Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Martonvásár, HU 2462, Hungary; Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ádám Diós
- Department of Pediatrics, Faculty of Medicine and Clinical Center, University of Debrecen, Debrecen, HU 4032, Hungary; Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, HU 4032, Debrecen, Hungary
| | - Ilma R Korponay-Szabó
- Department of Pediatrics, Faculty of Medicine and Clinical Center, University of Debrecen, Debrecen, HU 4032, Hungary; Coeliac Disease Center, Heim Pál National Paediatric Institute, Budapest, HU 1089, Hungary
| | - Éva Hunyadi-Gulyás
- Laboratory of Proteomics Research, Biological Research Centre (BRC), Eötvös Loránd Research Network (ELKH), Szeged, HU 6726, Hungary
| | | | - Angéla Juhász
- Edith Cowan University, School of Science, 270 Joondalup Drive, 6027 Joondalup, Western Australia.
| | - Gyöngyvér Gell
- Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Martonvásár, HU 2462, Hungary; Department of Applied Biotechnology and Food Science, Research Group of Cereal Science and Food Quality, Budapest University of Technology and Economics, Budapest, HU 1111, Hungary.
| |
Collapse
|
10
|
Guzmán-López MH, Sánchez-León S, Marín-Sanz M, Comino I, Segura V, Vaquero L, Rivero-Lezcano OM, Pastor J, Sousa C, Vivas S, Barro F. Oral Consumption of Bread from an RNAi Wheat Line with Strongly Silenced Gliadins Elicits No Immunogenic Response in a Pilot Study with Celiac Disease Patients. Nutrients 2021; 13:nu13124548. [PMID: 34960101 PMCID: PMC8708050 DOI: 10.3390/nu13124548] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 02/07/2023] Open
Abstract
Celiac disease (CD) is a genetically predisposed, T cell-mediated and autoimmune-like disorder caused by dietary exposure to the storage proteins of wheat and related cereals. A gluten-free diet (GFD) is the only treatment available for CD. The celiac immune response mediated by CD4+ T-cells can be assessed with a short-term oral gluten challenge. This study aimed to determine whether the consumption of bread made using flour from a low-gluten RNAi wheat line (named E82) can activate the immune response in DQ2.5-positive patients with CD after a blind crossover challenge. The experimental protocol included assessing IFN-γ production by peripheral blood mononuclear cells (PBMCs), evaluating gastrointestinal symptoms, and measuring gluten immunogenic peptides (GIP) in stool samples. The response of PBMCs was not significant to gliadin and the 33-mer peptide after E82 bread consumption. In contrast, PBMCs reacted significantly to Standard bread. This lack of immune response is correlated with the fact that, after E82 bread consumption, stool samples from patients with CD showed very low levels of GIP, and the symptoms were comparable to those of the GFD. This pilot study provides evidence that bread from RNAi E82 flour does not elicit an immune response after a short-term oral challenge and could help manage GFD in patients with CD.
Collapse
Affiliation(s)
- María H. Guzmán-López
- Department of Plant Breeding, Institute for Sustainable Agriculture—Spanish National Research Council (IAS-CSIC), 14004 Córdoba, Spain; (M.H.G.-L.); (S.S.-L.); (M.M.-S.)
| | - Susana Sánchez-León
- Department of Plant Breeding, Institute for Sustainable Agriculture—Spanish National Research Council (IAS-CSIC), 14004 Córdoba, Spain; (M.H.G.-L.); (S.S.-L.); (M.M.-S.)
| | - Miriam Marín-Sanz
- Department of Plant Breeding, Institute for Sustainable Agriculture—Spanish National Research Council (IAS-CSIC), 14004 Córdoba, Spain; (M.H.G.-L.); (S.S.-L.); (M.M.-S.)
| | - Isabel Comino
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, 41012 Sevilla, Spain; (I.C.); (V.S.); (C.S.)
| | - Verónica Segura
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, 41012 Sevilla, Spain; (I.C.); (V.S.); (C.S.)
| | - Luis Vaquero
- Department of Gastroenterology, University Hospital of León, University of León, 24071 León, Spain; (L.V.); (S.V.)
| | | | - Jorge Pastor
- Novapan, S.L., C/Chopo, 68-70, La Puebla de Alfindén, 50171 Zaragoza, Spain;
| | - Carolina Sousa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, 41012 Sevilla, Spain; (I.C.); (V.S.); (C.S.)
| | - Santiago Vivas
- Department of Gastroenterology, University Hospital of León, University of León, 24071 León, Spain; (L.V.); (S.V.)
| | - Francisco Barro
- Department of Plant Breeding, Institute for Sustainable Agriculture—Spanish National Research Council (IAS-CSIC), 14004 Córdoba, Spain; (M.H.G.-L.); (S.S.-L.); (M.M.-S.)
- Correspondence:
| |
Collapse
|
11
|
Gao J, Du H, Zhou Z, Liang Z, Liang H, Zhang P, Wei X, Liu S, Fu L, Wang Y, Che H, Xue W, Xin F, Yang D. Thermal and Acidic Treatments of Gluten Epitopes Affect Their Recognition by HLA-DQ2 in silico. Front Nutr 2021; 8:647750. [PMID: 34095188 PMCID: PMC8169964 DOI: 10.3389/fnut.2021.647750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
Celiac disease (CD) is a prevalent disorder with autoimmune features. Dietary exposure of wheat gluten (including gliadins and glutenins) to the small intestine activates the gluten-reactive CD4+ T cells and controls the disease development. While the human leukocyte antigen (HLA) is the single most important genetic factor of this polygenic disorder, HLA-DQ2 recognition of gluten is the major biological step among patients with CD. Gluten epitopes are often rich in Pro and share similar primary sequences. Here, we simulated the solution structures changes of a variety of gluten epitopes under different pH and temperatures, to mimic the fermentation and baking/cooking processes. Based on the crystal structure of HLA-DQ2, binding of differently processed gluten epitopes to DQ2 was studied in silico. This study revealed that heating and pH change during the fermentation process impact the solution structure of gluten epitope. However, binding of differently treated gluten epitope peptide (GEP) to HLA-DQ2 mainly depended on its primary amino acid sequence, especially acidic amino acid residues that play a pivotal role in their recognition by HLA-DQ2.
Collapse
Affiliation(s)
- Jihui Gao
- Beijing Key Laboratory of Functional Food From Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Haolan Du
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zekun Zhou
- Beijing Key Laboratory of Functional Food From Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhongxin Liang
- Beijing Key Laboratory of Functional Food From Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hongrui Liang
- Beijing Key Laboratory of Functional Food From Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - PeiAo Zhang
- Beijing Key Laboratory of Functional Food From Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xue Wei
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shujun Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Huilian Che
- Beijing Key Laboratory of Functional Food From Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Wentong Xue
- Beijing Key Laboratory of Functional Food From Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Fengjiao Xin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dong Yang
- Beijing Key Laboratory of Functional Food From Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Iacomino G, Rotondi Aufiero V, Di Stasio L, Picascia S, Iannaccone N, Giardullo N, Troncone R, Gianfrani C, Mamone G, Mazzarella G. Triticum monococcum amylase trypsin inhibitors possess a reduced potential to elicit innate immune response in celiac patients compared to Triticum aestivum. Food Res Int 2021; 145:110386. [PMID: 34112389 DOI: 10.1016/j.foodres.2021.110386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 04/08/2021] [Accepted: 05/02/2021] [Indexed: 12/19/2022]
Abstract
SCOPE Several studies reported a role of amylase/trypsin-inhibitors (ATIs) of common wheat species in promoting immune reactions. Here, we investigated in celiac disease (CD), the immunogenic properties of ATIs from diploid compared to common hexaploid wheats after an in vitro proteolytic hydrolysis. METHODS AND RESULTS ATIs purified from two lines of diploid Triticum monococcum (TM), Monlis and Norberto-ID331, and from Triticum aestivum (TA), Sagittario, were digested with pepsin-chymotrypsin (PC) enzymes and analyzed using a proteomic approach, and subsequently their immune stimulatory properties were investigated on jejunal biopsies and T-cell lines from CD patients. No significant expression of IL-8 and TNF-α were detected on biopsies cultured with ATIs from TM in comparison with ATIs from TA. No significant IFN-γ production was observed in intestinal gliadin- raised T-cells in response to ATIs from both TM and TA wheats. Proteomic results revealed that both TM ATIs showed reduced stability to proteolytic enzymes compared to TA ones. CONCLUSION TM ATIs are substantially different from those of TA, showing a reduced ability to trigger the innate immunity in CD and a higher susceptibility to enzymatic hydrolysis.
Collapse
Affiliation(s)
| | | | | | - Stefania Picascia
- Institute of Biochemistry and Cell Biology, CNR, Napoli, Italy; E.L.F.I.D, University "Federico II" Napoli, Italy
| | | | - Nicola Giardullo
- Gastroenterology Department, S. G. Moscati Hospital, Avellino, Italy
| | - Riccardo Troncone
- Department of Translational Medical Science and E.L.F.I.D, University "Federico II" Napoli, Italy
| | - Carmen Gianfrani
- Institute of Biochemistry and Cell Biology, CNR, Napoli, Italy; E.L.F.I.D, University "Federico II" Napoli, Italy
| | | | - Giuseppe Mazzarella
- Institute of Food Sciences, CNR, Avellino, Italy; E.L.F.I.D, University "Federico II" Napoli, Italy.
| |
Collapse
|
13
|
Colombo F, Di Lorenzo C, Biella S, Bani C, Restani P. Ancient and Modern Cereals as Ingredients of the Gluten-Free Diet: Are They Safe Enough for Celiac Consumers? Foods 2021; 10:foods10040906. [PMID: 33924221 PMCID: PMC8074585 DOI: 10.3390/foods10040906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 02/05/2023] Open
Abstract
Celiac disease is an autoimmune disorder that occurs in genetically predisposed individuals after consuming prolamins from some cereals. Although the products available for celiac subjects have increased significantly in quality and quantity over the last few decades, research still focuses on identifying new ingredients to improve the nutritional, sensorial and functional qualities of gluten-free products. In terms of toxicity for people with celiac disease, there is a wide variability between ancient and modern grains. The most contradictory results are related to the role of oats in the gluten-free diet. In order to clarify the role of minor cereals (such as oat) and ancient grains in the diets of celiac patients, this review discusses recent in vitro and in vivo studies performed on those cereals for which the toxicity for celiac subjects is still controversial. According to in vivo studies, selected oat varieties could be tolerated by celiac patients. On the other hands, although some wheat-ancient grains (Triticum monococcum, Triticum aestivum ssp. spelta and Kamut®) showed a reduced in vitro toxicity, to date, these grains are still considered toxic for celiac patients. Contradictory results underline the importance of studying the safety of "unusual" cereals in more detail.
Collapse
|
14
|
Kurki A, Kemppainen E, Laurikka P, Kaukinen K, Lindfors K. The use of peripheral blood mononuclear cells in celiac disease diagnosis and treatment. Expert Rev Gastroenterol Hepatol 2021; 15:305-316. [PMID: 33176106 DOI: 10.1080/17474124.2021.1850262] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Celiac disease is characterized by an abnormal immune activation driven by the ingestion of gluten from wheat, barley, and rye. Gluten-specific CD4+ T cells play an important role in disease pathogenesis and are detectable among peripheral blood mononuclear cells (PBMCs). Areas covered: This review summarizes the use of celiac disease patient PBMCs in clinical applications focusing on their exploitation in the development of diagnostic approaches and novel drugs to replace or complement gluten-free diet. Expert opinion: The most used PBMC-based methods applied in celiac disease research include ELISpot and HLA-DQ:gluten tetramer technology. ELISpot has been utilized particularly in research aiming to develop a celiac disease vaccine and in studies addressing the toxicity of different grains in celiac disease. HLA-DQ:gluten tetramer technology on the other hand initially focused on improving current diagnostics but in combination with additional markers it is also a useful outcome measure in clinical trials to monitor the efficacy of drug candidates. In addition, the technology serves well in the more detailed characterization of celiac disease-specific T cells, thereby possibly revealing novel therapeutic targets. Future studies may also reveal clinical applications for PBMC microRNAs and/or dendritic cells or monocytes present among PBMCs.
Collapse
Affiliation(s)
- Alma Kurki
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University , Tampere, Finland
| | - Esko Kemppainen
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University , Tampere, Finland
| | - Pilvi Laurikka
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University , Tampere, Finland
| | - Katri Kaukinen
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University , Tampere, Finland.,Department of Internal Medicine, Tampere University Hospital , Tampere, Finland
| | - Katri Lindfors
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University , Tampere, Finland
| |
Collapse
|
15
|
Pilolli R, De Angelis M, Lamonaca A, De Angelis E, Rizzello CG, Siragusa S, Gadaleta A, Mamone G, Monaci L. Prototype Gluten-Free Breads from Processed Durum Wheat: Use of Monovarietal Flours and Implications for Gluten Detoxification Strategies. Nutrients 2020; 12:E3824. [PMID: 33327648 PMCID: PMC7765144 DOI: 10.3390/nu12123824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022] Open
Abstract
In this investigation, we reported the production of prototype breads from the processed flours of three specific Triticum turgidum wheat genotypes that were selected in our previous investigation for their potential low toxic/immunogenic activity for celiac disease (CD) patients. The flours were subjected to sourdough fermentation with a mixture of selected Lactobacillus strains, and in presence of fungal endoproteases. The breads were characterized by R5 competitive enzyme linked immunosorbent assay in order to quantify the residual gluten, and the differential efficacy in gluten degradation was assessed. In particular, two of them were classified as gluten-free (<20 ppm) and very low-gluten content (<100 ppm) breads, respectively, whereas the third monovarietal prototype retained a gluten content that was well above the safety threshold prescribed for direct consumption by CD patients. In order to investigate such a genotype-dependent efficiency of the detoxification method applied, an advanced proteomic characterization by high-resolution tandem mass spectrometry was performed. Notably, to the best of our knowledge, this is the first proteomic investigation which benefitted, for protein identification, from the full sequencing of the Triticum turgidum ssp. durum genome. The differences of the proteins' primary structures affecting their susceptibility to hydrolysis were investigated. As a confirmation of the previous immunoassay-based results, two out of the three breads made with the processed flours presented an exhaustive degradation of the epitopic sequences that are relevant for CD immune stimulatory activity. The list of the detected epitopes was analyzed and critically discussed in light of their susceptibility to the detoxification strategy applied. Finally, in-vitro experiments of human gastroduodenal digestion were carried out in order to assess, in-silico, the toxicity risk of the prototype breads under investigation for direct consumption by CD patients. This approach allowed us to confirm the total degradation of the epitopic sequences upon gastro-duodenal digestion.
Collapse
Affiliation(s)
- Rosa Pilolli
- Institute of Sciences of Food Production, CNR-ISPA, 70126 Bari, Italy; (A.L.); (E.D.A.); (L.M.)
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy; (M.D.A.); (C.G.R.); (S.S.)
| | - Antonella Lamonaca
- Institute of Sciences of Food Production, CNR-ISPA, 70126 Bari, Italy; (A.L.); (E.D.A.); (L.M.)
| | - Elisabetta De Angelis
- Institute of Sciences of Food Production, CNR-ISPA, 70126 Bari, Italy; (A.L.); (E.D.A.); (L.M.)
| | - Carlo Giuseppe Rizzello
- Department of Soil, Plant and Food Science, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy; (M.D.A.); (C.G.R.); (S.S.)
| | - Sonya Siragusa
- Department of Soil, Plant and Food Science, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy; (M.D.A.); (C.G.R.); (S.S.)
| | - Agata Gadaleta
- Department of Agricultural and Environmental Sciences, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy;
| | | | - Linda Monaci
- Institute of Sciences of Food Production, CNR-ISPA, 70126 Bari, Italy; (A.L.); (E.D.A.); (L.M.)
| |
Collapse
|