1
|
Rizwan M, Cheng K, Gang Y, Hou Y, Wang C. Immunomodulatory Effects of Vitamin D and Zinc on Viral Infection. Biol Trace Elem Res 2025; 203:1-17. [PMID: 38451442 DOI: 10.1007/s12011-024-04139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
Several nutrients are crucial in enhancing the immune system and preserving the structural integrity of bodily tissue barriers. Vitamin D (VD) and zinc (Zn) have received considerable interest due to their immunomodulatory properties and ability to enhance the body's immune defenses. Due to their antiviral, anti-inflammatory, antioxidative, and immunomodulatory properties, the two nutritional powerhouses VD and Zn are crucial for innate and adaptive immunity. As observed with COVID-19, deficiencies in these micronutrients impair immune responses, increasing susceptibility to viral infections and severe disease. Ensuring an adequate intake of VD and Zn emerges as a promising strategy for fortifying the immune system. Ongoing clinical trials are actively investigating their potential therapeutic advantages. Beyond the immediate context of the pandemic, these micronutrients offer valuable tools for enhancing immunity and overall well-being, especially in the face of future viral threats. This analysis emphasizes the enduring significance of VD and Zn as both treatment and preventive measures against potential viral challenges beyond the current health crisis. The overview delves into the immunomodulatory potential of VD and Zn in combating viral infections, with particular attention to their effects on animals. It provides a comprehensive summary of current research findings regarding their individual and synergistic impacts on immune function, underlining their potential in treating and preventing viral infections. Overall, this overview underscores the need for further research to understand how VD and Zn can modulate the immune response in combatting viral diseases in animals.
Collapse
Affiliation(s)
- Muhammad Rizwan
- College of Fisheries, Huazhong Agriculture University, Wuhan, 430070, China
| | - Ke Cheng
- College of Fisheries, Huazhong Agriculture University, Wuhan, 430070, China
| | - Yang Gang
- College of Fisheries, Huazhong Agriculture University, Wuhan, 430070, China
| | - Yuntao Hou
- College of Fisheries, Huazhong Agriculture University, Wuhan, 430070, China
| | - Chunfang Wang
- College of Fisheries, Huazhong Agriculture University, Wuhan, 430070, China.
| |
Collapse
|
2
|
Li X, Hu S, Shen X, Zhang R, Liu C, Xiao L, Lin J, Huang L, He W, Wang X, Huang L, Zheng Q, Wu L, Sun C, Peng Z, Chen M, Li Z, Feng R, Zhu Y, Wang Y, Li Z, Mao R, Feng ST. Multiomics reveals microbial metabolites as key actors in intestinal fibrosis in Crohn's disease. EMBO Mol Med 2024; 16:2427-2449. [PMID: 39271960 PMCID: PMC11473649 DOI: 10.1038/s44321-024-00129-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Intestinal fibrosis is the primary cause of disability in patients with Crohn's disease (CD), yet effective therapeutic strategies are currently lacking. Here, we report a multiomics analysis of gut microbiota and fecal/blood metabolites of 278 CD patients and 28 healthy controls, identifying characteristic alterations in gut microbiota (e.g., Lachnospiraceae, Ruminococcaceae, Muribaculaceae, Saccharimonadales) and metabolites (e.g., L-aspartic acid, glutamine, ethylmethylacetic acid) in moderate-severe intestinal fibrosis. By integrating multiomics data with magnetic resonance enterography features, putative links between microbial metabolites and intestinal fibrosis-associated morphological alterations were established. These potential associations were mediated by specific combinations of amino acids (e.g., L-aspartic acid), primary bile acids, and glutamine. Finally, we provided causal evidence that L-aspartic acid aggravated intestinal fibrosis both in vitro and in vivo. Overall, we offer a biologically plausible explanation for the hypothesis that gut microbiota and its metabolites promote intestinal fibrosis in CD while also identifying potential targets for therapeutic trials.
Collapse
Affiliation(s)
- Xuehua Li
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Shixian Hu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road 2nd, 510080, Guangzhou, Guangdong, People's Republic of China
| | - Xiaodi Shen
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Ruonan Zhang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Caiguang Liu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Lin Xiao
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Jinjiang Lin
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Li Huang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Weitao He
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Xinyue Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Lili Huang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Qingzhu Zheng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Luyao Wu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Canhui Sun
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Zhenpeng Peng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Ziping Li
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Rui Feng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Yijun Zhu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road 2nd, 510080, Guangzhou, Guangdong, People's Republic of China
| | - Yangdi Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China.
| | - Zhoulei Li
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China.
| | - Ren Mao
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China.
| | - Shi-Ting Feng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China.
| |
Collapse
|
3
|
Feng A, Li C, Su S, Liu Y. 1,25(OH)2D3 supplementation alleviates gut-vascular barrier disruption via inhibition of S100B/ADAM10 pathway. Tissue Barriers 2024; 12:2327776. [PMID: 38494646 PMCID: PMC11583585 DOI: 10.1080/21688370.2024.2327776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
Gut-vascular barrier (GVB) is the second barrier in mucosa to control systemic dissemination of gut bacteria. Severe burns induce enteroglial cells to produce S100B and endothelial cells to generate ADAM10 and cause vitamin D3 insufficiency/deficiency and GVB disruption. It is not clear whether vitamin D3 supplementation attenuates GVB damage via regulation of S100B/ADAM10 pathway. Here, GVB disruption was induced by 30% of total body surface area scalds. Rats were treated with 1,25(OH)2D3 (0.05, 0.5 or 5 μg/kg) or S100B monoclonal antibody (S100BmAb, 10 μg/kg) or GI254023X (ADAM10 inhibitor, 100 mg/kg). Rat enteric glial cell-line CRL2690 and rat intestinal microvascular endothelial cells (RIMECs) were treated with S100B (5 μM) or plus 1,25(OH)2D3 (0.05, 0.5 or 5 μM) or GI254023X (5 μM). S100B, TNF-α, 25(OH)D3 and 1,25(OH)2D3 in serum and gut mucosa were determined by enzyme-linked immunosorbent assay. The endothelial permeability was measured using FITC-dextran 70 kDa. ADAM10 and β-catenin expression was assayed by Western blot. The results showed that 1,25(OH)2D3 and 25(OH)D3 concentration in serum reduced whereas TNF-α and S100B in serum and gut mucosa increased in burned rats. S100BmAb, GI254023X and 1,25(OH)2D3 treatment lowered burns-increased GVB permeability. 1,25(OH)2D3 also decreased S100B concentration in serum and gut mucosa. 1,25(OH)2D3 inhibited S100B release from TNF-α-treated CRL2690 and raised β-catenin while decreasing ADAM10 protein in S100B-treated RIMECs. 1,25(OH)2D3 and GI254023X also decreased the endothelial permeability of S100B-treated RIMECs. Collectively, these findings provide evidence that severe burns lower serum 25(OH)D3 and 1,25(OH)2D3 concentration. 1,25(OH)2D3 supplementation alleviates burns-elicited GVB disruption via inhibition of S100B/ADAM10 signaling.
Collapse
Affiliation(s)
- Aiwen Feng
- Department of General Surgery, Maoming People's Hospital, Southern Medical University, Zhanjiang, China
- Department of General Surgery, Maoming People's Hospital, Guangdong Medical University, Guangzhou, China
| | - Cheng Li
- Department of General Surgery, Maoming People's Hospital, Southern Medical University, Zhanjiang, China
| | - Shaosheng Su
- Department of General Surgery, Maoming People's Hospital, Guangdong Medical University, Guangzhou, China
| | - Yingyan Liu
- Department of General Surgery, Maoming People's Hospital, Guangdong Medical University, Guangzhou, China
| |
Collapse
|
4
|
Li Y, Guo Y, Geng C, Song S, Yang W, Li X, Wang C. Vitamin D/vitamin D receptor protects intestinal barrier against colitis by positively regulating Notch pathway. Front Pharmacol 2024; 15:1421577. [PMID: 39130644 PMCID: PMC11310051 DOI: 10.3389/fphar.2024.1421577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
Objective Vitamin D/Vitamin D receptor (VD/VDR) signaling and the Notch pathway are involved in intestinal barrier restoration in colitis; however, their relationship and underlying mechanism are largely unknown. Therefore, this study aimed to investigate the role and mechanism of VD/VDR and the Notch pathways in intestinal barrier protection. Methods Genetic Vdr knockout (VDR KO) and VD deficient (VDd) mice were established, and colitis was induced by feeding 2.5% dextran sodium sulfate (DSS) water. Mechanistic studies, including real-time PCR, immunofluorescence, Western blotting and dual-luciferase reporter assays, were performed on cultured Caco-2 cells and intestinal organoids. Results VD deficiency and VDR genetical KO increased the severity of DSS-induced colitis in mice, which presented a higher disease activity index score, increased intestinal permeability, and more severe intestinal histological damage than controls, accompanied by decreased and disrupted claudin-1 and claudin-3. Moreover, inhibition of Notch pathway by LY411,575 aggravated the severity of DSS-induced colitis and intestinal injury. In Caco-2 cells and intestinal organoids, the expression of Notch-1, N1ICD and Hes1 decreased upon downregulation or KO of VDR but increased upon paricalcitol (PAR, a VDR agonist) treatment. Meanwhile, PAR rescued claudin-1 and claudin-3 impairments that resulted from TNF-α exposure but failed to restore claudin-3 upon Notch inhibition. The dual-luciferase reporter assay further suggested that VD/VDR positively regulated the Notch signaling pathway by modulating Notch-1 transcription. Conclusion VD/VDR positively modulates Notch activation by promoting Notch-1 transcription to maintain intestinal tight junction integrity and barrier function. This highlights the VD/VDR-Notch pathway as a potential new therapeutic target for protecting the intestinal barrier against ulcerative colitis.
Collapse
Affiliation(s)
- Yanni Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Yaoyu Guo
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Chong Geng
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Shuailing Song
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Wenjuan Yang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Chunhui Wang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Li X, Xu X, Tao S, Su Y, Wen L, Wang D, Liu J, Feng Q. Gut microbes combined with metabolomics reveal the protective effects of Qijia Rougan decoction against CCl 4-induced hepatic fibrosis. Front Pharmacol 2024; 15:1347120. [PMID: 38606180 PMCID: PMC11007057 DOI: 10.3389/fphar.2024.1347120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Background: The occurrence and development of Hepatic fibrosis (HF) are closely related to the gut microbial composition and alterations in host metabolism. Qijia Rougan decoction (QJ) is a traditional Chinese medicine compound utilized clinically for the treatment of HF with remarkable clinical efficacy. However, its effect on the gut microbiota and metabolite alterations is unknown. Therefore, our objective was to examine the impact of QJ on the gut microbiota and metabolism in Carbon tetrachloride (CCl4)-induced HF. Methods: 40% CCl4 was used to induce HF, followed by QJ administration for 6 weeks. Serum biochemical analyses, histopathology, immunohistochemistry, RT-PCR, 16S rRNA gene sequencing, and non-targeted metabolomics techniques were employed in this study to investigate the interventional effects of QJ on a CCl4-induced HF model in rats. Results: This study demonstrated that QJ could effectively ameliorate CCl4-induced hepatic inflammation and fibrosis. Moreover, QJ upregulated the expression of intestinal tight junction proteins (TJPs) and notably altered the abundance of some gut microbes, for example, 10 genera closely associated with HF-related indicators and TJPs. In addition, metabolomics found 37 key metabolites responded to QJ treatment and strongly associated with HF-related indices and TJPs. Furthermore, a tight relation between 10 genera and 37 metabolites was found post correlation analysis. Among them, Turicibacter, Faecalibaculum, Prevotellaceae UCG 001, and unclassified Peptococcaceae may serve as the core gut microbes of QJ that inhibit HF. Conclusion: These results suggest that QJ ameliorates hepatic inflammation and fibrosis, which may be achieved by improving intestinal tight junctions and modulating gut microbiota composition as well as modulating host metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | - Dong Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jibin Liu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Quansheng Feng
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Huo A, Wang F. Berberine alleviates ischemia reperfusion injury induced AKI by regulation of intestinal microbiota and reducing intestinal inflammation. BMC Complement Med Ther 2024; 24:66. [PMID: 38291383 PMCID: PMC10826000 DOI: 10.1186/s12906-023-04323-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 12/22/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND It has been found that a variety of host disease states can exacerbate intestinal inflammation, leading to disruption of intestinal barrier function. Changes in the composition of the intestine microbiota, which affect downstream metabolites in turn, ultimately react against the host. OBJECTIVES We revealed the mechanism of berberine as an intestinal protective agent in rats with renal ischemia-reperfusion injury acute kidney injury (AKI). METHODS HE staining was performed to evaluate the pathological changes in the colon and kidney. 16 S rRNA analysis was performed to assess the intestinal microbiota. Intestine TLR4/NF-κB expression was assessed by western blot. Q-RT-PCR was performed to detect TLR4 in intestine and IL-6 and KIM-1 gene expression in the kidney. SPSS 22.0 was used to compare the data. RESULTS Rats with AKI exhibited increased relative abundances of Proteobacteria and Bacteroidetes and decreased relative abundances of Lactobacillus, Ruminococcus and Lachnospiraceae belonging to the phylum Firmicutes. The Sirt1-NF-κB-TLR4 pathway was involved in the occurrence process, accompanied by intestinal inflammation and oxidation. Berberine reversed the appeal change. CONCLUSION Berberine inhibits the intestinal biological barrier of Proteobacteria, reduces LPS production, exerts an anti-inflammatory effect, and delays the progression of AKI.
Collapse
Affiliation(s)
- Aijing Huo
- Department of Nephropathy and Immunology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, The Third Central Hospital of Tianjin, Tianjin, China
| | - Fengmei Wang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, The Third Central Hospital of Tianjin, Tianjin, China.
- Department of Gastroenterology and Hepatology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
7
|
Shibamoto A, Kaji K, Nishimura N, Kubo T, Iwai S, Tomooka F, Suzuki J, Tsuji Y, Fujinaga Y, Kawaratani H, Namisaki T, Akahane T, Yoshiji H. Vitamin D deficiency exacerbates alcohol-related liver injury via gut barrier disruption and hepatic overload of endotoxin. J Nutr Biochem 2023; 122:109450. [PMID: 37777163 DOI: 10.1016/j.jnutbio.2023.109450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/16/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023]
Abstract
Endogenous lipopolysaccharide (LPS) that translocates via the disrupted intestinal barrier plays an essential role in the progression of alcohol-related liver disease (ALD). Vitamin D deficiency is observed in ALD, and it participates in regulating gut barrier function. The current study aimed to examine the association between vitamin D deficiency and endotoxemia in patients with ALD-related cirrhosis. Moreover, the effect of vitamin D deficiency on ethanol (EtOH)- and carbon tetrachloride (CCl4)-induced liver injury relevant to gut barrier disruption in mice was investigated. Patients with ALD-related cirrhosis (Child-Pugh Class A/B/C; n=56/15/7) had lower 25(OH)D levels and higher endotoxin activities than non-drinking healthy controls (n=19). The serum 25(OH)D levels were found to be negatively correlated with endotoxin activity (R=-0.481, P<.0001). The EtOH/CCl4-treated mice developed hepatic inflammation and fibrosis, which were significantly enhanced by vitamin D-deficient diet. Vitamin D deficiency enhanced gut hyperpermeability by inhibiting the intestinal expressions of tight junction proteins including ZO-1, occludin, and claudin-2/5/12/15 in the EtOH/CCl4-treated mice. Consequently, it promoted the accumulation of lipid peroxidases, increased the expression of NADPH oxidases, and induced Kupffer cell infiltration and LPS/toll-like receptor 4 signaling-mediated proinflammatory response. Based on the in vitro assay, vitamin D-mediated vitamin D receptor activation inhibited EtOH-stimulated paracellular permeability and the downregulation of tight junction proteins via the upregulation of caudal-type homeobox 1 in Caco-2 cells. Hence, vitamin D deficiency exacerbates the pathogenesis of ALD via gut barrier disruption and hepatic overload of LPS.
Collapse
Affiliation(s)
- Akihiko Shibamoto
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Kosuke Kaji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan.
| | - Norihisa Nishimura
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Takahiro Kubo
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Satoshi Iwai
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Fumimasa Tomooka
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Junya Suzuki
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Yuki Tsuji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Yukihisa Fujinaga
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Hideto Kawaratani
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Tadashi Namisaki
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Takemi Akahane
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Hitoshi Yoshiji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| |
Collapse
|
8
|
Fan L, Xia Y, Wang Y, Han D, Liu Y, Li J, Fu J, Wang L, Gan Z, Liu B, Fu J, Zhu C, Wu Z, Zhao J, Han H, Wu H, He Y, Tang Y, Zhang Q, Wang Y, Zhang F, Zong X, Yin J, Zhou X, Yang X, Wang J, Yin Y, Ren W. Gut microbiota bridges dietary nutrients and host immunity. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2466-2514. [PMID: 37286860 PMCID: PMC10247344 DOI: 10.1007/s11427-023-2346-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/05/2023] [Indexed: 06/09/2023]
Abstract
Dietary nutrients and the gut microbiota are increasingly recognized to cross-regulate and entrain each other, and thus affect host health and immune-mediated diseases. Here, we systematically review the current understanding linking dietary nutrients to gut microbiota-host immune interactions, emphasizing how this axis might influence host immunity in health and diseases. Of relevance, we highlight that the implications of gut microbiota-targeted dietary intervention could be harnessed in orchestrating a spectrum of immune-associated diseases.
Collapse
Affiliation(s)
- Lijuan Fan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yaoyao Xia
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Youxia Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Jiahuan Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Fu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Leli Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Zhending Gan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Bingnan Liu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jian Fu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Congrui Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenhua Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hui Han
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hao Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiwen He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yulong Tang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Qingzhuo Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yibin Wang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Fan Zhang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Xin Zong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China.
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Wenkai Ren
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
9
|
Luo M, Xu Y, Li J, Luo D, Zhu L, Wu Y, Liu X, Wu P. Vitamin D protects intestines from liver cirrhosis-induced inflammation and oxidative stress by inhibiting the TLR4/MyD88/NF-κB signaling pathway. Open Med (Wars) 2023; 18:20230714. [PMID: 37273916 PMCID: PMC10238812 DOI: 10.1515/med-2023-0714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 03/14/2023] [Accepted: 04/15/2023] [Indexed: 06/06/2023] Open
Abstract
Liver cirrhosis affects the structures and physiological functions of the intestine. Our previous study revealed that liver injury inhibited 25-hydroxylation of vitamin D (25(OH)-VD). The aim of this study was to investigate the roles and mechanisms of vitamin D in liver cirrhosis-induced intestinal injury. The rat liver cirrhosis model was established through the administration of carbon tetrachloride (CCl4) for 8 weeks. Hematoxylin-eosin staining was performed to unveil the intestinal injury induced by liver cirrhosis. Enzyme-linked immunosorbent and reverse transcription PCR (RT-PCR) analysis were used to determine the levels of 25(OH)-VD, vitamin D receptor, Cytochrome P450 24A1 (CYP24A1), and α-defensin 5 (DEFA5) in rat and human serum of liver cirrhosis. Furthermore, liver cirrhosis rats were treated with low-dose (500 IU/kg) and high-dose (2,000 IU/kg) vitamin D intraperitoneally. The expression levels of TLR4/MyD88/NF-κB signaling pathway were evaluated by RT-PCR and Western blot. In conclusion, we determined the deficiency of vitamin D and down-regulation of DEFA5 and intestinal damage induced by liver cirrhosis. Moreover, vitamin D effectively inhibited liver cirrhosis-induced intestinal inflammation and oxidative stress through the TLR4/MyD88/NF-κB pathway. Vitamin D might be a promising therapeutic strategy for future treatment of liver-induced intestinal injury.
Collapse
Affiliation(s)
- Mei Luo
- Infectious Disease Laboratory, Chengdu Public Health Clinical Center, Chengdu, 610061, China
| | - Yuanhong Xu
- Clinical Laboratory, Chengdu Public Health Clinical Center, Chengdu, 610061, China
| | - Jike Li
- Infectious Disease Laboratory, Chengdu Public Health Clinical Center, Chengdu, 610061, China
| | - Dongxia Luo
- Infectious Disease Laboratory, Chengdu Public Health Clinical Center, Chengdu, 610061, China
| | - Li Zhu
- Hepatology Clinic, Chengdu Public Health Clinical Center, Chengdu, 610061, China
| | - Yanxi Wu
- Infectious Disease Laboratory, Chengdu Public Health Clinical Center, Chengdu, 610061, China
| | - Xiaodong Liu
- Clinical Laboratory, Chengdu Public Health Clinical Center, Chengdu, 610061, China
| | - Pengfei Wu
- Infectious Disease Laboratory, Chengdu Public Health Clinical Center, Chengdu, 610061, China
| |
Collapse
|
10
|
Guo Y, Zhang T, Xu Y, Karrar E, Cao M, Sun X, Liu R, Chang M, Wang X. Effects of Medium- and Long-Chain Structured Triacylglycerol on the Therapeutic Efficacy of Vitamin D on Ulcerative Colitis: A Consideration for Efficient Lipid Delivery Systems. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4101-4112. [PMID: 36847830 DOI: 10.1021/acs.jafc.2c07437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Due to intestinal malabsorption and poor water solubility, vitamin D (VitD) deficiency in ulcerative colitis (UC) continues to increase. Medium- and long-chain triacylglycerols (MLCT), as novel lipids, have been widely applied in the field of functional food and medicine nutrition. Our previous studies showed that the difference in MLCT structure could affect VitD bioaccessibility in vitro. In this study, our results further indicate that, although identical in fatty acid composition, structured triacylglycerol (STG) had a higher VitD bioavailability (AUC = 15470.81 μg/L × h) and metabolism efficacy [s-25(OH)D, p < 0.05] than physical mixtures of triacylglycerol (PM), which further affect the amelioration efficiency in UC mice. Compared with PM, the damage of colonic tissues, intestinal barrier proteins, and inflammatory cytokines in STG showed better amelioration at the same dose of VitD. This study provides a comprehensive understanding of the mechanism of nutrients in different carriers and a solution for developing nutrients with high absorption efficiency.
Collapse
Affiliation(s)
- Yiwen Guo
- International Joint Research Laboratory for Oil Nutrition and Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tao Zhang
- International Joint Research Laboratory for Oil Nutrition and Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- European Research Institute for the Biology of Aging, University Medical Centre Groningen, University of Groningen, Groningen 9713 AV, The Netherlands
| | - Ying Xu
- International Joint Research Laboratory for Oil Nutrition and Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Emad Karrar
- International Joint Research Laboratory for Oil Nutrition and Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Minjie Cao
- International Joint Research Laboratory for Oil Nutrition and Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaotian Sun
- International Joint Research Laboratory for Oil Nutrition and Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ruijie Liu
- International Joint Research Laboratory for Oil Nutrition and Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ming Chang
- International Joint Research Laboratory for Oil Nutrition and Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xingguo Wang
- International Joint Research Laboratory for Oil Nutrition and Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
11
|
Vitamin A- and D-Deficient Diets Disrupt Intestinal Antimicrobial Peptide Defense Involving Wnt and STAT5 Signaling Pathways in Mice. Nutrients 2023; 15:nu15020376. [PMID: 36678247 PMCID: PMC9863741 DOI: 10.3390/nu15020376] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/14/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Vitamin A and D deficiencies are associated with immune modulatory effects and intestinal barrier impairment. However, the underlying mechanisms remain unclear. C57BL/6J mice were fed either a diet lacking in vitamin A (VAd), vitamin D (VDd) or a control diet (CD) for 12 weeks. Gut barrier function, antimicrobial peptide (AMP) defense and regulatory pathways were assessed. VAd mice compared to CD mice showed a reduced villus length in the ileum (p < 0.01) and decreased crypt depth in the colon (p < 0.05). In both VAd- and VDd-fed mice, ileal α-defensin 5 (p < 0.05/p < 0.0001 for VAd/VDd) and lysozyme protein levels (p < 0.001/p < 0.0001) were decreased. Moreover, mRNA expression of lysozyme (p < 0.05/p < 0.05) and total cryptdins (p < 0.001/p < 0.01) were reduced compared to controls. Furthermore, matrix metalloproteinase-7 (Mmp7) mRNA (p < 0.0001/p < 0.001) as well as components of the Wnt signaling pathway were decreased. VAd- and VDd-fed mice, compared to control mice, exhibited increased expression of pro-inflammatory markers and β-defensins in the colon. Organoid cell culture confirmed that vitamins A and D regulate AMP expression, likely through the Jak/STAT5 signaling pathway. In conclusion, our data show that vitamin A and D regulate intestinal antimicrobial peptide defense through Wnt and STAT5 signaling pathways.
Collapse
|
12
|
Aggeletopoulou I, Thomopoulos K, Mouzaki A, Triantos C. Vitamin D–VDR Novel Anti-Inflammatory Molecules—New Insights into Their Effects on Liver Diseases. Int J Mol Sci 2022; 23:ijms23158465. [PMID: 35955597 PMCID: PMC9369388 DOI: 10.3390/ijms23158465] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 02/05/2023] Open
Abstract
There is consistent evidence that vitamin D deficiency is strongly associated with liver dysfunction, disease severity, and poor prognosis in patients with liver disease. Vitamin D and its receptor (VDR) contribute to the regulation of innate and adaptive immune responses. The presence of genetic variants of vitamin D- and VDR-associated genes has been associated with liver disease progression. In our recent work, we summarized the progress in understanding the molecular mechanisms involved in vitamin D–VDR signaling and discussed the functional significance of VDR signaling in specific cell populations in liver disease. The current review focuses on the complex interaction between immune and liver cells in the maintenance of liver homeostasis and the development of liver injury, the interplay of vitamin D and VDR in the development and outcome of liver disease, the role of vitamin D- and VDR-associated genetic variants in modulating the occurrence and severity of liver disease, and the therapeutic value of vitamin D supplementation in various liver diseases. The association of the vitamin D–VDR complex with liver dysfunction shows great potential for clinical application and supports its use as a prognostic index and diagnostic tool.
Collapse
Affiliation(s)
- Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, GR-26504 Patras, Greece; (I.A.); (C.T.)
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, GR-26504 Patras, Greece;
| | - Konstantinos Thomopoulos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, GR-26504 Patras, Greece; (I.A.); (C.T.)
- Correspondence:
| | - Athanasia Mouzaki
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, GR-26504 Patras, Greece;
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, GR-26504 Patras, Greece; (I.A.); (C.T.)
| |
Collapse
|
13
|
Zhou Y, Li R, Zheng Y, Song M, Zhang S, Sun Y, Wei M, Fan X. Diosgenin Ameliorates Non-alcoholic Fatty Liver Disease by Modulating the Gut Microbiota and Related Lipid/Amino Acid Metabolism in High Fat Diet-Fed Rats. Front Pharmacol 2022; 13:854790. [PMID: 35548355 PMCID: PMC9081533 DOI: 10.3389/fphar.2022.854790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/01/2022] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a metabolic disease closely associated with dietary habits. Diosgenin is abundant in yam, a common food and traditional Chinese medicine. The molecular mechanism of diosgenin on NAFLD has been preliminarily explored. However, the effect of diosgenin on metabolism and gut microbiota in NAFLD has not been reported. This study confirmed that diosgenin could suppress excessive weight gain, reduce serum levels of total cholesterol and triglycerides, and decrease liver fat accumulation in high-fat diet-induced NAFLD rats. Moreover, fecal metabolomics analysis suggested diosgenin improved abnormal lipid and amino acid metabolism. Bile acids, including lithocholic acid and ursodeoxycholic acid 3-sulfate that function as excretion, absorption, and transport of fats, were remarkably regulated by diosgenin. Aromatic amino acid and lysine metabolism was regulated by diosgenin as well. 16S rRNA gene sequencing analysis demonstrated that diosgenin restored gut microbiota disorder, especially Globicatella, Phascolarctobacterium, Pseudochrobactrum, and uncultured_bacterium_f_Prevotellaceae at the genus level. Additionally, these regulated bacterial genera showed significant correlations with lipid and amino acid metabolism-related biomarkers. This study further confirmed the significant effect of diosgenin on NAFLD, and provided a new perspective for the mechanism.
Collapse
Affiliation(s)
- Yuan Zhou
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruoqi Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yingyi Zheng
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meiying Song
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shanshan Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yunxia Sun
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengying Wei
- Department of Pharmacology and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Xiang Fan,
| |
Collapse
|
14
|
Tsiantas K, Konteles SJ, Kritsi E, Sinanoglou VJ, Tsiaka T, Zoumpoulakis P. Effects of Non-Polar Dietary and Endogenous Lipids on Gut Microbiota Alterations: The Role of Lipidomics. Int J Mol Sci 2022; 23:ijms23084070. [PMID: 35456888 PMCID: PMC9024800 DOI: 10.3390/ijms23084070] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/25/2022] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
Advances in sequencing technologies over the past 15 years have led to a substantially greater appreciation of the importance of the gut microbiome to the health of the host. Recent outcomes indicate that aspects of nutrition, especially lipids (exogenous or endogenous), can influence the gut microbiota composition and consequently, play an important role in the metabolic health of the host. Thus, there is an increasing interest in applying holistic analytical approaches, such as lipidomics, metabolomics, (meta)transcriptomics, (meta)genomics, and (meta)proteomics, to thoroughly study the gut microbiota and any possible interplay with nutritional or endogenous components. This review firstly summarizes the general background regarding the interactions between important non-polar dietary (i.e., sterols, fat-soluble vitamins, and carotenoids) or amphoteric endogenous (i.e., eicosanoids, endocannabinoids-eCBs, and specialized pro-resolving mediators-SPMs) lipids and gut microbiota. In the second stage, through the evaluation of a vast number of dietary clinical interventions, a comprehensive effort is made to highlight the role of the above lipid categories on gut microbiota and vice versa. In addition, the present status of lipidomics in current clinical interventions as well as their strengths and limitations are also presented. Indisputably, dietary lipids and most phytochemicals, such as sterols and carotenoids, can play an important role on the development of medical foods or nutraceuticals, as they exert prebiotic-like effects. On the other hand, endogenous lipids can be considered either prognostic indicators of symbiosis or dysbiosis or even play a role as specialized mediators through dietary interventions, which seem to be regulated by gut microbiota.
Collapse
Affiliation(s)
- Konstantinos Tsiantas
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (K.T.); (S.J.K.); (E.K.); (V.J.S.)
| | - Spyridon J. Konteles
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (K.T.); (S.J.K.); (E.K.); (V.J.S.)
| | - Eftichia Kritsi
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (K.T.); (S.J.K.); (E.K.); (V.J.S.)
| | - Vassilia J. Sinanoglou
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (K.T.); (S.J.K.); (E.K.); (V.J.S.)
| | - Thalia Tsiaka
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (K.T.); (S.J.K.); (E.K.); (V.J.S.)
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vas. Constantinou Ave., 11635 Athens, Greece
- Correspondence: (T.T.); (P.Z.)
| | - Panagiotis Zoumpoulakis
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (K.T.); (S.J.K.); (E.K.); (V.J.S.)
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vas. Constantinou Ave., 11635 Athens, Greece
- Correspondence: (T.T.); (P.Z.)
| |
Collapse
|
15
|
Vitamin D Receptor Influences Intestinal Barriers in Health and Disease. Cells 2022; 11:cells11071129. [PMID: 35406694 PMCID: PMC8997406 DOI: 10.3390/cells11071129] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
Vitamin D receptor (VDR) executes most of the biological functions of vitamin D. Beyond this, VDR is a transcriptional factor regulating the expression levels of many target genes, such as genes for tight junction proteins claudin-2, -5, -12, and -15. In this review, we discuss the progress of research on VDR that influences intestinal barriers in health and disease. We searched PubMed and Google Scholar using key words vitamin D, VDR, tight junctions, cancer, inflammation, and infection. We summarize the literature and progress reports on VDR regulation of tight junction distribution, cellular functions, and mechanisms (directly or indirectly). We review the impacts of VDR on barriers in various diseases, e.g., colon cancer, infection, inflammatory bowel disease, and chronic inflammatory lung diseases. We also discuss the limits of current studies and future directions. Deeper understanding of the mechanisms by which the VDR signaling regulates intestinal barrier functions allow us to develop efficient and effective therapeutic strategies based on levels of tight junction proteins and vitamin D/VDR statuses for human diseases.
Collapse
|
16
|
Preventing Bacterial Translocation in Patients with Leaky Gut Syndrome: Nutrition and Pharmacological Treatment Options. Int J Mol Sci 2022; 23:ijms23063204. [PMID: 35328624 PMCID: PMC8949204 DOI: 10.3390/ijms23063204] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 12/11/2022] Open
Abstract
Leaky gut syndrome is a medical condition characterized by intestinal hyperpermeability. Since the intestinal barrier is one of the essential components maintaining homeostasis along the gastrointestinal tract, loss of its integrity due to changes in bacterial composition, decreased expression levels of tight junction proteins, and increased concentration of pro-inflammatory cytokines may lead to intestinal hyperpermeability followed by the development of gastrointestinal and non-gastrointestinal diseases. Translocation of microorganisms and their toxic metabolites beyond the gastrointestinal tract is one of the fallouts of the leaky gut syndrome. The presence of intestinal bacteria in sterile tissues and distant organs may cause damage due to chronic inflammation and progression of disorders, including inflammatory bowel diseases, liver cirrhosis, and acute pancreatitis. Currently, there are no medical guidelines for the treatment or prevention of bacterial translocation in patients with the leaky gut syndrome; however, several studies suggest that dietary intervention can improve barrier function and restrict bacteria invasion. This review contains current literature data concerning the influence of diet, dietary supplements, probiotics, and drugs on intestinal permeability and bacterial translocation.
Collapse
|
17
|
Micronutrient Improvement of Epithelial Barrier Function in Various Disease States: A Case for Adjuvant Therapy. Int J Mol Sci 2022; 23:ijms23062995. [PMID: 35328419 PMCID: PMC8951934 DOI: 10.3390/ijms23062995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
The published literature makes a very strong case that a wide range of disease morbidity associates with and may in part be due to epithelial barrier leak. An equally large body of published literature substantiates that a diverse group of micronutrients can reduce barrier leak across a wide array of epithelial tissue types, stemming from both cell culture as well as animal and human tissue models. Conversely, micronutrient deficiencies can exacerbate both barrier leak and morbidity. Focusing on zinc, Vitamin A and Vitamin D, this review shows that at concentrations above RDA levels but well below toxicity limits, these micronutrients can induce cell- and tissue-specific molecular-level changes in tight junctional complexes (and by other mechanisms) that reduce barrier leak. An opportunity now exists in critical care—but also medical prophylactic and therapeutic care in general—to consider implementation of select micronutrients at elevated dosages as adjuvant therapeutics in a variety of disease management. This consideration is particularly pointed amidst the COVID-19 pandemic.
Collapse
|
18
|
Wang H, He X, Liang S, Chen X. Role of vitamin D in ulcerative colitis: an update on basic research and therapeutic applications. Expert Rev Gastroenterol Hepatol 2022; 16:251-264. [PMID: 35236213 DOI: 10.1080/17474124.2022.2048817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Vitamin D deficiency is common in patients with ulcerative colitis (UC). Moreover, vitamin D supplementation seems to contribute to disease relief. Nevertheless, the exact etiological link between vitamin D deficiency and UC is far from clear, and an agreement has not been reached on the frequency and dosage of vitamin D supplementation required. AREAS COVERED This review will outline the possible role of vitamin D in the pathogenesis of UC and summarize the current state of clinical research on vitamin D. Literature was searched on PUBMED, with 'Vitamin D,' 'Ulcerative colitis,' 'Vitamin D receptor,' and 'disease activity' as MeSH Terms. Relevant information is presented in figures or tables. EXPERT OPINION The etiological relationship between vitamin D and the onset of UC is still being researched. More high-quality double-blind randomized clinical studies are needed to determine the efficacy of vitamin D supplementation in the treatment of UC, whether as the main treatment or as an adjuvant treatment. Importantly, determining the dosage and frequency of vitamin D supplementation should be the main research direction in the future, and regional factors should also be fully considered in this respect.
Collapse
Affiliation(s)
- HongQian Wang
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui China
| | - Xue He
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui China
| | - ShiMin Liang
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui China
| | - Xi Chen
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui China
| |
Collapse
|
19
|
Berthelot JM, Bandiaky ON, Le Goff B, Amador G, Chaux AG, Soueidan A, Denis F. Another Look at the Contribution of Oral Microbiota to the Pathogenesis of Rheumatoid Arthritis: A Narrative Review. Microorganisms 2021; 10:59. [PMID: 35056507 PMCID: PMC8778040 DOI: 10.3390/microorganisms10010059] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 12/17/2022] Open
Abstract
Although autoimmunity contributes to rheumatoid arthritis (RA), several lines of evidence challenge the dogma that it is mainly an autoimmune disorder. As RA-associated human leukocyte antigens shape microbiomes and increase the risk of dysbiosis in mucosae, RA might rather be induced by epigenetic changes in long-lived synovial presenting cells, stressed by excessive translocations into joints of bacteria from the poorly cultivable gut, lung, or oral microbiota (in the same way as more pathogenic bacteria can lead to "reactive arthritis"). This narrative review (i) lists evidence supporting this scenario, including the identification of DNA from oral and gut microbiota in the RA synovium (but in also healthy synovia), and the possibility of translocation through blood, from mucosae to joints, of microbiota, either directly from the oral cavity or from the gut, following an increase of gut permeability worsened by migration within the gut of oral bacteria such as Porphyromonas gingivalis; (ii) suggests other methodologies for future works other than cross-sectional studies of periodontal microbiota in cohorts of patients with RA versus controls, namely, longitudinal studies of oral, gut, blood, and synovial microbiota combined with transcriptomic analyses of immune cells in individual patients at risk of RA, and in overt RA, before, during, and following flares of RA.
Collapse
Affiliation(s)
- Jean-Marie Berthelot
- Rheumatology Unit, Nantes University Hospital, Place Alexis Ricordeau, CEDEX 01, 44093 Nantes, France; (J.-M.B.); (B.L.G.)
| | - Octave Nadile Bandiaky
- Division of Fixed Prosthodontics, University of Nantes, 1 Place Alexis Ricordeau, 44042 Nantes, France;
| | - Benoit Le Goff
- Rheumatology Unit, Nantes University Hospital, Place Alexis Ricordeau, CEDEX 01, 44093 Nantes, France; (J.-M.B.); (B.L.G.)
| | - Gilles Amador
- Department of Dental Public Health, Faculty of Dental Surgery, University of Nantes, 44093 Nantes, France;
- Nantes Teaching Hospital, 44000 Nantes, France;
| | - Anne-Gaelle Chaux
- Nantes Teaching Hospital, 44000 Nantes, France;
- Department of Oral Surgery, Faculty of Dental Surgery, University of Nantes, 44000 Nantes, France
| | - Assem Soueidan
- Department of Periodontology, Faculty of Dental Surgery, UIC 11, Rmes U1229, CHU de Nantes, 44000 Nantes, France;
| | - Frederic Denis
- Department of Dental Public Health, Faculty of Dental Surgery, University of Nantes, 44093 Nantes, France;
- Tours Teaching Hospital, 37000 Tours, France
| |
Collapse
|
20
|
Valle M, Mitchell PL, Pilon G, Varin T, Hénault L, Rolin J, McLeod R, Gill T, Richard D, Vohl MC, Jacques H, Gagnon C, Bazinet L, Marette A. Salmon peptides limit obesity-associated metabolic disorders by modulating a gut-liver axis in vitamin D-deficient mice. Obesity (Silver Spring) 2021; 29:1635-1649. [PMID: 34449134 DOI: 10.1002/oby.23244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE This study investigated the effects of a low-dose salmon peptide fraction (SPF) and vitamin D3 (VitD3 ) in obese and VitD3 -deficient mice at risk of metabolic syndrome (MetS). METHODS Obese and VitD3 -deficient low-density lipoprotein receptor (LDLr)-/- /apolipoprotein B100 (ApoB)100/100 mice were treated with high-fat high-sucrose diets, with 25% of dietary proteins replaced by SPF or a nonfish protein mix (MP). The SPF and MP groups received a VitD3 -deficient diet or a supplementation of 15,000 IU of VitD3 per kilogram of diet. Glucose homeostasis, atherosclerosis, nonalcoholic fatty liver disease, and gut health were assessed. RESULTS VitD3 supplementation increased plasma 25-hydroxyvitamin D to optimal status whereas the VitD3 -deficient diet maintained moderate deficiency. SPF-treated groups spent more energy and accumulated less visceral fat in association with an improved adipokine profile. SPF lowered homeostatic model assessment of insulin resistance compared with MP, suggesting that SPF can improve insulin sensitivity. SPF alone blunted hepatic and colonic inflammation, whereas VitD3 supplementation attenuated ileal inflammation. These effects were associated with changes in gut microbiota such as increased Mogibacterium and Muribaculaceae. CONCLUSIONS SPF treatment improves MetS by modulating hepatic and gut inflammation along with gut microbiota, suggesting that SPF operates through a gut-liver axis. VitD3 supplementation has limited influence on MetS in this model.
Collapse
Affiliation(s)
- Marion Valle
- Faculty of Medicine, Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Québec City, Québec, Canada
| | - Patricia L Mitchell
- Faculty of Medicine, Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Québec City, Québec, Canada
| | - Geneviève Pilon
- Faculty of Medicine, Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Québec City, Québec, Canada
| | - Thibault Varin
- Faculty of Medicine, Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Québec City, Québec, Canada
| | - Loïc Hénault
- Institute of Nutrition and Functional Foods, Laval University, Québec City, Québec, Canada
- Department of Food Sciences, Laboratory of Food Processing and ElectroMembrane Processes, Laval University, Québec City, Québec, Canada
| | - Jonathan Rolin
- Process Engineering and Applied Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Roger McLeod
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Tom Gill
- Process Engineering and Applied Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Denis Richard
- Faculty of Medicine, Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada
| | - Marie-Claude Vohl
- Institute of Nutrition and Functional Foods, Laval University, Québec City, Québec, Canada
- School of Nutrition, Laval University, Québec, Québec, Canada
| | - Hélène Jacques
- Institute of Nutrition and Functional Foods, Laval University, Québec City, Québec, Canada
- School of Nutrition, Laval University, Québec, Québec, Canada
| | - Claudia Gagnon
- Faculty of Medicine, Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Québec City, Québec, Canada
- Endocrinology and Nephrology Unit, CHU de Québec Research Centre, Québec City, Québec, Canada
| | - Laurent Bazinet
- Institute of Nutrition and Functional Foods, Laval University, Québec City, Québec, Canada
- Department of Food Sciences, Laboratory of Food Processing and ElectroMembrane Processes, Laval University, Québec City, Québec, Canada
| | - André Marette
- Faculty of Medicine, Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Québec City, Québec, Canada
| |
Collapse
|
21
|
Anderson G, Carbone A, Mazzoccoli G. Tryptophan Metabolites and Aryl Hydrocarbon Receptor in Severe Acute Respiratory Syndrome, Coronavirus-2 (SARS-CoV-2) Pathophysiology. Int J Mol Sci 2021; 22:ijms22041597. [PMID: 33562472 PMCID: PMC7915649 DOI: 10.3390/ijms22041597] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
The metabolism of tryptophan is intimately associated with the differential regulation of diverse physiological processes, including in the regulation of responses to severe acute respiratory syndrome, coronavirus-2 (SARS-CoV-2) infection that underpins the COVID-19 pandemic. Two important products of tryptophan metabolism, viz kynurenine and interleukin (IL)4-inducible1 (IL41)-driven indole 3 pyruvate (I3P), activate the aryl hydrocarbon receptor (AhR), thereby altering the nature of immune responses to SARS-CoV-2 infection. AhR activation dysregulates the initial pro-inflammatory cytokines production driven by neutrophils, macrophages, and mast cells, whilst AhR activation suppresses the endogenous antiviral responses of natural killer cells and CD8+ T cells. Such immune responses become further dysregulated by the increased and prolonged pro-inflammatory cytokine suppression of pineal melatonin production coupled to increased gut dysbiosis and gut permeability. The suppression of pineal melatonin and gut microbiome-derived butyrate, coupled to an increase in circulating lipopolysaccharide (LPS) further dysregulates the immune response. The AhR mediates its effects via alterations in the regulation of mitochondrial function in immune cells. The increased risk of severe/fatal SARS-CoV-2 infection by high risk conditions, such as elderly age, obesity, and diabetes are mediated by these conditions having expression levels of melatonin, AhR, butyrate, and LPS that are closer to those driven by SARS-CoV-2 infection. This has a number of future research and treatment implications, including the utilization of melatonin and nutraceuticals that inhibit the AhR, including the polyphenols, epigallocatechin gallate (EGCG), and resveratrol.
Collapse
Affiliation(s)
- George Anderson
- CRC Scotland & London, Eccleston Square, London SW1V 1PX, UK
| | - Annalucia Carbone
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013 San Giovanni Rotondo, Italy
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013 San Giovanni Rotondo, Italy
| |
Collapse
|