1
|
Nogueira Silva Lima MT, Delayre-Orthez C, Howsam M, Jacolot P, Niquet-Léridon C, Okwieka A, Anton PM, Perot M, Barbezier N, Mathieu H, Ghinet A, Fradin C, Boulanger E, Jaisson S, Gillery P, Tessier FJ. Early- and life-long intake of dietary advanced glycation end-products (dAGEs) leads to transient tissue accumulation, increased gut sensitivity to inflammation, and slight changes in gut microbial diversity, without causing overt disease. Food Res Int 2024; 195:114967. [PMID: 39277266 DOI: 10.1016/j.foodres.2024.114967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
Dietary advanced glycation end-products (dAGEs) accumulate in organs and are thought to initiate chronic low-grade inflammation (CLGI), induce glycoxidative stress, drive immunosenescence, and influence gut microbiota. Part of the toxicological interest in glycation products such as dietary carboxymethyl-lysine (dCML) relies on their interaction with receptor for advanced glycation end-products (RAGE). It remains uncertain whether early or lifelong exposure to dAGEs contributes physiological changes and whether such effects are reversible or permanent. Our objective was to examine the physiological changes in Wild-Type (WT) and RAGE KO mice that were fed either a standard diet (STD - 20.8 ± 5.1 µg dCML/g) or a diet enriched with dCML (255.2 ± 44.5 µg dCML/g) from the perinatal period for up to 70 weeks. Additionally, an early age (6 weeks) diet switch (dCML→STD) was explored to determine whether potential harmful effects of dCML could be reversed. Previous dCML accumulation patterns described by our group were confirmed here, with significant RAGE-independent accumulation of dCML in kidneys, ileum and colon over the 70-week dietary intervention (respectively 3-fold, 17-fold and 20-fold increases compared with controls). Diet switching returned tissue dCML concentrations to their baseline levels. The dCML-enriched diet had no significative effect on endogenous glycation, inflammation, oxidative stress or senescence parameters. The relative expression of TNFα, VCAM1, IL6, and P16 genes were all upregulated (∼2-fold) in an age-dependent manner, most notably in the kidneys of WT animals. RAGE knockout seemed protective in this regard, diminishing age-related renal expression of TNFα. Significant increases in TNFα expression were detectable in the intestinal tract of the Switch group (∼2-fold), suggesting a higher sensitivity to inflammation perhaps related to the timing of the diet change. Minor fluctuations were observed at family level within the caecal microbiota, including Eggerthellaceae, Anaerovoracaceae and Marinifilaceae communities, indicating slight changes in composition. Despite chronic dCML consumption resulting in higher free CML levels in tissues, there were no substantial increases in parameters related to inflammageing. Age was a more important factor in inflammation status, notably in the kidneys, while the early-life dietary switch may have influenced intestinal susceptibility to inflammation. This study affirms the therapeutic potential of RAGE modulation and corroborates evidence for the disruptive effect of dietary changes occurring too early in life. Future research should prioritize the potential influence of dAGEs on disease aetiology and development, notably any exacerbating effects they may have upon existing health conditions.
Collapse
Affiliation(s)
- M T Nogueira Silva Lima
- U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France
| | - C Delayre-Orthez
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, Equipe PETALES, 60000 Beauvais, France
| | - M Howsam
- U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France
| | - P Jacolot
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, Equipe PETALES, 60000 Beauvais, France
| | - C Niquet-Léridon
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, Equipe PETALES, 60000 Beauvais, France
| | - A Okwieka
- University of Reims Champagne-Ardenne, Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR 7369 MEDyC, Faculté de Médecine, 51095 Reims, France
| | - P M Anton
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, Equipe PETALES, 60000 Beauvais, France
| | - M Perot
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, Equipe PETALES, 60000 Beauvais, France
| | - N Barbezier
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, Equipe PETALES, 60000 Beauvais, France
| | - H Mathieu
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, Equipe PETALES, 60000 Beauvais, France
| | - A Ghinet
- U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France; Junia, Health and Environment, Laboratory of Sustainable Chemistry and Health, 59000 Lille, France
| | - C Fradin
- U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France
| | - E Boulanger
- U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France
| | - S Jaisson
- University of Reims Champagne-Ardenne, Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR 7369 MEDyC, Faculté de Médecine, 51095 Reims, France; University Hospital of Reims, Laboratory of Biochemistry-Pharmacology-Toxicology, 51092 Reims, France
| | - P Gillery
- University of Reims Champagne-Ardenne, Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR 7369 MEDyC, Faculté de Médecine, 51095 Reims, France; University Hospital of Reims, Laboratory of Biochemistry-Pharmacology-Toxicology, 51092 Reims, France
| | - F J Tessier
- U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France.
| |
Collapse
|
2
|
Wang X, Liu H, Yue M, Wang J, Zhang C, Qin L, Wang S, Hu L. Dietary nitrate maintains intestinal epithelia homeostasis in aged mice. Biogerontology 2024; 25:1171-1187. [PMID: 39162978 PMCID: PMC11486781 DOI: 10.1007/s10522-024-10127-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
The intestinal tract, which is the primary site of digestion and absorption of nutrients, is one of the most vulnerable organs during aging. Dietary nitrate, which is mainly derived from the diet and absorbed in the intestinal tract, is a key messenger that connecting oral and general health. However, whether dietary nitrate regulates intestinal tract homeostasis remains unclear. Our data revealed that the serum and salivary nitrate levels decreased during mice aging. The functional proteins of the epithelial barrier (E-cadherin, Claudin-1 and Zonula Occludens-1) in the colon tissues decreased during the aging process. Long-term nitrate supplement in drinking water restored the serum and salivary nitrate levels and increased the functional proteins expression of the colon epithelial barrier. Dietary nitrates increase the relative abundance of some intestinal probiotics, particularly those associated with the production of short-chain fatty acids, such as Blautia, Alloprevotella, Butyricicoccus, and Ruminococcaceae, while promoting the butyric acid production in the colon. Moreover, the expression of Sialin (encoded by Slc17a5), which is a nitrate transporter, increased in the colon epithelial cells by nitrate supplementation. The epithelial cell-conditional Slc17a5-knockout mutant mice (K14-cre; Slc17a5fl/fl) revealed that the functional proteins expression of the colon epithelial barrier and the proliferation of PCNA-positive intestinal epithelial cells in the colon crypts was significantly decreased compared with those of the K14-cre; Slc17a5fl/+ mice. Taken together, our findings suggested that nitrate supplementations were associated with the increased expression of colonic epithelial barriers-related proteins and the increased Sialin expression. Nitrate may serve as a potential therapeutic approach in maintaining aged colonic homeostasis.
Collapse
Affiliation(s)
- Xue Wang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Huan Liu
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Mingwei Yue
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Jinsong Wang
- Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, 100069, China
| | - Chunmei Zhang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Lizheng Qin
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
- Department of Oral and Maxillofacial & Head and Neck Oncology, Capital Medical University School of Stomatology, Beijing, 100050, China
| | - Songlin Wang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China.
- Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, 100069, China.
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, You An Men Wai, Beijing, 100069, People's Republic of China.
| | - Lei Hu
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China.
- Department of Prosthodontics, Beijing Stomatological Hospital, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China.
| |
Collapse
|
3
|
Long J, Ren Z, Duan Y, Tao W, Li X, Li S, Li K, Huang Q, Chen J, Yang M, Li Y, Luo X, Liu D. Empagliflozin rescues lifespan and liver senescence in naturally aged mice. GeroScience 2024; 46:4969-4986. [PMID: 38922380 PMCID: PMC11336130 DOI: 10.1007/s11357-024-01250-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Empagliflozin is currently known to decrease blood glucose levels, delay renal failure, and reduce the risk of cardiovascular death and all-cause mortality in patients with type 2 diabetes with cardiovascular disease. However, the effects of empagliflozin on the lifespan and health of naturally aged organisms are unclear. This study was designed to investigate the impacts and potential mechanisms of empagliflozin on lifespan and liver senescence in naturally aged mice. Our study revealed that empagliflozin improved survival and health in naturally aged mice. Empagliflozin extended the median survival of male mice by 5.9%. Meanwhile, empagliflozin improved learning memory and motor balance, decreased body weight, and downregulated the hepatic protein expression of P21, P16, α-SMA, and COL1A1. Empagliflozin modulates the structure of the intestinal flora, increasing the relative abundance of Lachnospiraceae, Ruminococcaceae, Lactobacillus, Blautia, and Muribaculaceae and decreasing the relative abundance of Erysipelotrichaceae, Turicibacter, and Dubosiella in naturally aged mice. Further exploration discovered that empagliflozin increased the concentration of SCFAs, decreased the levels of the inflammatory factors TNF-α, IL-6, and CXCL9, and regulated the PI3K/AKT/P21 and AMPK/SIRT1/NF-κB pathways, which may represent the underlying mechanisms involved in these beneficial hepatic effects. Taken together, the above results indicated that empagliflozin intervention could be considered a potential strategy for extending lifespan and slowing liver senescence in naturally aged mice.
Collapse
Affiliation(s)
- Jiangchuan Long
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Ziyu Ren
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Yaqian Duan
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Wei Tao
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400010, China
| | - Xi Li
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, 400010, China
| | - Shengbing Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Ke Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Qixuan Huang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Jie Chen
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Mengliu Yang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Yang Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Xie Luo
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Dongfang Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
- Chongqing Clinical Research Center for Geriatrics and Gerontology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
4
|
Hong B. Gut flora reflects potential risk factors for cognitive dysfunction in patients with epilepsy. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:155. [PMID: 39342383 PMCID: PMC11439293 DOI: 10.1186/s41043-024-00639-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024]
Abstract
OBJECTIVE This cross-sectional study aims to analyze the differences in gut flora between patients with epilepsy with and without cognitive impairment and normal subjects. METHODS One hundred patients with epilepsy who came to our hospital from 2020.12 to 2022.12 (epilepsy group) were selected, and another 100 family members of the patients were selected as the control group (control group). Patients with epilepsy were further classified by the MMSE scale into 62 patients with combined cognitive impairment (Yes group) and 38 patients without cognitive impairment (No group). Detection of gut flora in feces by 16 S rRNA high-throughput sequencing. Logistic regression was used to analyze risk factors for cognitive dysfunction in patients with epilepsy. RESULTS There were more significant differences in the structure and composition of the gut flora between patients in the epilepsy group and the control group, but no significant differences in diversity analysis (P > 0.05). Actinobacteriota, Faecalibacterium and Collinsella were significantly lower in the Yes group than in the No group (P < 0.05), and the Alpha diversity index was numerically slightly smaller than in the No group, with the PCoA analysis demonstrating a more dispersed situation in both groups. Five metabolic pathways, including glycolysis and heterolactic fermentation, were upregulated in the Yes group. LEfSe analysis showed that five groups of bacteria, including Coriobacteriaceae and Collinsella, were selected as marker species for the presence or absence of comorbid cognitive impairment. Of these, Collinsella, Oscillospirales, and Ruminococcaceae have a greater impact on epilepsy combined with cognitive impairment. CONCLUSION There was an imbalance in the gut flora of patients with epilepsy compared to healthy controls. The gut flora of patients with epilepsy with cognitive dysfunction differs significantly from that of patients without cognitive dysfunction. Collinsella, Oscillospirales, and Ruminococcaceae have a greater impact on epilepsy with cognitive dysfunction and can be used as an indicator for the observation of epilepsy with cognitive dysfunction.
Collapse
Affiliation(s)
- BingCong Hong
- Department of Neurology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, China.
| |
Collapse
|
5
|
Zhou F, Liu Y, Shi Y, Wu N, Xie Y, Zhou X. Association between gut microbiota and acute pancreatitis: a bidirectional Mendelian randomization study. J Gastroenterol Hepatol 2024; 39:1895-1902. [PMID: 38888069 DOI: 10.1111/jgh.16658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/07/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND AND AIM The dysbiosis of gut microbiota has been reported in acute pancreatitis. However, the direction and magnitude between host microbiota and pancreas remains to be established. This study investigated the association between gut microbiota and acute pancreatitis using Mendelian randomization (MR) methods. METHODS Summary statistics of gut microbiota abundance and acute pancreatitis were extracted from genome-wide association studies (GWAS). The two-sample bidirectional MR design was employed to assess genetic association between the microbiota and pancreatitis, followed by a comprehensive sensitivity analysis to verify the robustness of the results. RESULTS Seven microbiota taxa have been identified as significantly associated with the development of pancreatitis. Host genetic-driven order Bacteroidales and class Bacteroidia are associated with an increased risk of pancreatitis. The genera Coprococcus and Eubacterium fissicatena group also exhibit a positive effect on the development of pancreatitis, while the genera Prevotella, Ruminiclostridium, and Ruminococcaceae act as protective factors against pancreatitis. In contrast, acute pancreatitis was positively correlated with phylum Proteobacteria and genus Lachnospiraceae and negatively correlated with genus Holdemania. CONCLUSIONS The bidirectional relationship between gut microbiota and acute pancreatitis suggests a critical role for host-microbiota crosstalk in the development of the disease. Targeted modulation of specific gut microbiota enables the prevention and treatment of acute pancreatitis.
Collapse
Affiliation(s)
- Feng Zhou
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Yang Liu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Yanqing Shi
- Department of Gastroenterology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi Province, China
| | - Nanzhen Wu
- Department of Gastrointestinal Surgery, Fengcheng People's Hospital, Fengcheng, Jiangxi Province, China
| | - Yong Xie
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Xiaojiang Zhou
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
6
|
Ho J, Puoplo N, Pokharel N, Hirdaramani A, Hanyaloglu AC, Cheng CW. Nutrigenomic underpinnings of intestinal stem cells in inflammatory bowel disease and colorectal cancer development. Front Genet 2024; 15:1349717. [PMID: 39280096 PMCID: PMC11393785 DOI: 10.3389/fgene.2024.1349717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Food-gene interaction has been identified as a leading risk factor for inflammatory bowel disease (IBD) and colorectal cancer (CRC). Accordingly, nutrigenomics emerges as a new approach to identify biomarkers and therapeutic targets for these two strongly associated gastrointestinal diseases. Recent studies in stem cell biology have further shown that diet and nutrition signal to intestinal stem cells (ISC) by altering nutrient-sensing transcriptional activities, thereby influencing barrier integrity and susceptibility to inflammation and tumorigenesis. This review recognizes the dietary factors related to both CRC and IBD and investigates their impact on the overlapping transcription factors governing stem cell activities in homeostasis and post-injury responses. Our objective is to provide a framework to study the food-gene regulatory network of disease-contributing cells and inspire new nutrigenomic approaches for detecting and treating diet-related IBD and CRC.
Collapse
Affiliation(s)
- Jennifer Ho
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York City, NY, United States
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York City, NY, United States
| | - Nicholas Puoplo
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York City, NY, United States
- Division of Neonatology-Perinatology, Department of Pediatrics, Columbia University Irving Medical Center, New York City, NY, United States
| | - Namrata Pokharel
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York City, NY, United States
| | - Aanya Hirdaramani
- Department of Metabolism, Digestion and Reproduction, Division of Digestive Diseases, Section of Nutrition, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Aylin C Hanyaloglu
- Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Chia-Wei Cheng
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York City, NY, United States
- Department of Genetics and Development, Columbia University Irving Medical Center, New York City, NY, United States
| |
Collapse
|
7
|
Zhao Y, Guo Y, Yang C, Song Z, Luo X. Differences in Milk Fatty Acids Profile of Two Breeds of Water Buffaloes Explained by Their Gastrointestinal Microbiota. Animals (Basel) 2024; 14:2146. [PMID: 39123672 PMCID: PMC11311110 DOI: 10.3390/ani14152146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/04/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
This experiment investigated gastrointestinal microbes' role in milk fatty acid differences between Murrah and Nili-Ravi buffaloes. After 30 days of a basal diet, rumen microbial diversity was similar, but Murrah buffaloes had greater partially unsaturated fatty acids like C18:2c9t11. Rumen bacteria like Acetobacter, Ruminococcus, and Prevotellaceae_YAB2003_group correlated positively with milk fatty acids C22:5n-6 and C18:3 in Murrah. Fecal microbial beta diversity differed, with UCG-005 and Prevolla positively correlated with C18:2c9t11 and C22:5n-6. The greater quantity of milk fatty acids C18:3, C18:2c9t11, and C22:5n-6 in Murrah milk was linked to rumen and fecal microbes. This suggests that gastrointestinal microbes like Acetobacter, Ruminococcus, and UCG_005 regulate milk fatty acid concentrations in buffaloes.
Collapse
Affiliation(s)
- Yameng Zhao
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China;
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Nanning 530023, China; (Y.G.); (X.L.)
| | - Yanxia Guo
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Nanning 530023, China; (Y.G.); (X.L.)
| | - Chengjian Yang
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Nanning 530023, China; (Y.G.); (X.L.)
| | - Ziyi Song
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China;
| | - Xianqing Luo
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Nanning 530023, China; (Y.G.); (X.L.)
| |
Collapse
|
8
|
Zulkifli S, Mohd Nor NS, Sheikh Abdul Kadir SH, Mohd Ranai N, Abdul Khalil K. Distinct gut flora profile induced by postnatal trans-fat diet in gestationally bisphenol A-exposed rats. PLoS One 2024; 19:e0306741. [PMID: 38980850 PMCID: PMC11233015 DOI: 10.1371/journal.pone.0306741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/22/2024] [Indexed: 07/11/2024] Open
Abstract
There has been much evidence showing the repercussions of prenatal bisphenol A (BPA) exposure with a postnatal high fat-diet (HFD) on offspring's health. However, the information on how the interaction between these two variables affects the gut microbiome is rather limited. Hence, we investigated the impact of a postnatal trans fat diet (TFD) on the gut microbiome of offspring exposed to BPA during the prenatal period in an animal model. Pregnant rats were divided into 5 mg/kg/day BPA, vehicle Tween80 (P80) or control (CTL) drinking water until delivery (N = 6 per group). Then, weaned male pups were further subdivided into three normal diet (ND) groups (CTLND, P80ND, and BPAND) and three TFD groups (CTLTFD, P80TFD, and BPATFD) (n = 6 per group). 180-250 g of faecal samples were collected on days 50 and 100 to assess the composition of the offspring's intestinal flora using next-generation sequencing. The alpha diversity indices of TFD offspring with and without BPA were markedly lower than their ND counterparts (p<0.001-p<0.05). The beta diversity, hierarchical cluster and network analyses of the offspring's microbiome demonstrated that the microbiome species of the TFD group with and without BPA were distinctly different compared to the ND group. Consistently, TFD and ND offspring pairings exhibited a higher number of significantly different species (p<0.0001-p<0.05) compared to those exposed to prenatal BPA exposure and different life stages comparisons, as shown by the multivariate parametric analysis DESeq2. Predictive functional profiling of the offspring's intestinal flora demonstrated altered expressions of genes involved in metabolic pathways. In summary, the gut flora composition of the rat offspring may be influenced by postnatal diet instead of prenatal exposure to BPA. Our data indicate the possibility of perturbed metabolic functions and epigenetic modifications, in offspring that consumed TFD, which may theoretically lead to metabolic diseases in middle or late adulthood. Further investigation is necessary to fully understand these implications.
Collapse
Affiliation(s)
- Sarah Zulkifli
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Faculty of Medicine, Universiti Teknologi MARA (UiTM) Sungai Buloh Campus, Selangor, Malaysia
| | - Noor Shafina Mohd Nor
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Faculty of Medicine, Universiti Teknologi MARA (UiTM) Sungai Buloh Campus, Selangor, Malaysia
- Department of Paediatrics, Faculty of Medicine, Universiti Teknologi MARA (UiTM) Sungai Buloh Campus, Selangor, Malaysia
- Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA (UiTM) Sungai Buloh Campus, Selangor, Malaysia
| | - Siti Hamimah Sheikh Abdul Kadir
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Faculty of Medicine, Universiti Teknologi MARA (UiTM) Sungai Buloh Campus, Selangor, Malaysia
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM) Sungai Buloh Campus, Selangor, Malaysia
| | - Norashikin Mohd Ranai
- Department of Paediatrics, Faculty of Medicine, Universiti Teknologi MARA (UiTM) Sungai Buloh Campus, Selangor, Malaysia
| | - Khalilah Abdul Khalil
- Department of Biomolecular Sciences, Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM) Shah Alam, Selangor, Malaysia
| |
Collapse
|
9
|
Pan P, Wang Y, Nyirenda MH, Saiyed Z, Karimian Azari E, Sunderman A, Milling S, Harnett MM, Pineda M. Undenatured type II collagen protects against collagen-induced arthritis by restoring gut-joint homeostasis and immunity. Commun Biol 2024; 7:804. [PMID: 38961129 PMCID: PMC11222443 DOI: 10.1038/s42003-024-06476-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 06/20/2024] [Indexed: 07/05/2024] Open
Abstract
Oral administration of harmless antigens can induce suppression of reactive immune responses, a process that capitalises on the ability of the gastrointestinal tract to tolerate exposure to food and commensal microbiome without triggering inflammatory responses. Repeating exposure to type II collagen induces oral tolerance and inhibits induction of arthritis, a chronic inflammatory joint condition. Although some mechanisms underlying oral tolerance are described, how dysregulation of gut immune networks impacts on inflammation of distant tissues like the joints is unclear. We used undenatured type II collagen in a prophylactic regime -7.33 mg/kg three times/week- to describe the mechanisms associated with protective oral immune-therapy (OIT) in gut and joint during experimental Collagen-Induced Arthritis (CIA). OIT reduced disease incidence to 50%, with reduced expression of IL-17 and IL-22 in the joints of asymptomatic mice. Moreover, whilst the gut tissue of arthritic mice shows substantial damage and activation of tissue-specific immune networks, oral administration of undenatured type II collagen protects against gut pathology in all mice, symptomatic and asymptomatic, rewiring IL-17/IL-22 networks. Furthermore, gut fucosylation and microbiome composition were also modulated. These results corroborate the relevance of the gut-joint axis in arthritis, showing novel regulatory mechanisms linked to therapeutic OIT in joint disease.
Collapse
Affiliation(s)
- Piaopiao Pan
- Centre for the Cellular Microenvironment, School of Molecular Biology, University of Glasgow, Glasgow, UK
| | - Yilin Wang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, China
| | - Mukanthu H Nyirenda
- Institute of Infection and Immunity, University of Glasgow, Glasgow, UK
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Zainulabedin Saiyed
- Research and Development, Lonza Greenwood LLC, North Emerald Road, Greenwood, SC, USA
| | - Elnaz Karimian Azari
- Research and Development, Lonza Greenwood LLC, North Emerald Road, Greenwood, SC, USA
| | - Amy Sunderman
- Research and Development, Lonza Greenwood LLC, North Emerald Road, Greenwood, SC, USA
| | - Simon Milling
- Institute of Infection and Immunity, University of Glasgow, Glasgow, UK
| | | | - Miguel Pineda
- Centre for the Cellular Microenvironment, School of Molecular Biology, University of Glasgow, Glasgow, UK.
| |
Collapse
|
10
|
Wang H, Wei W, Liu F, Wang M, Zhang Y, Du S. Effects of fucoidan and synbiotics supplementation during bismuth quadruple therapy of Helicobacter pylori infection on gut microbial homeostasis: an open-label, randomized clinical trial. Front Nutr 2024; 11:1407736. [PMID: 39010853 PMCID: PMC11246856 DOI: 10.3389/fnut.2024.1407736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
Background The eradication regimen for Helicobacter pylori (H. pylori) infection can induce gut dysbiosis. In this open-label, prospective, and randomized clinical trial, we aimed to assess the effects of fucoidan supplementation on the eradication rate and gut microbial homeostasis in the context of quadruple therapy, as well as to investigate the combined effects of fucoidan and synbiotics supplementations. Methods Eighty patients with H. pylori infection were enrolled and randomly assigned to one of four treatment groups: the QT (a 2-week quadruple therapy alone), QF (quadruple therapy plus a 6-week fucoidan supplementation), QS (quadruple therapy plus a 6-week synbiotics supplementation), and QFS (quadruple therapy with a 6-week fucoidan and synbiotics supplementation), with 20 patients in each group. The QT regimen included rabeprazole, minocycline, amoxicillin, and bismuth potassium citrate. The synbiotics supplementation contained three strains of Bifidobacterium, three strains of Lactobacillus, along with three types of dietary fiber. All of the patients underwent 13C-urea breath test (13C-UBT) at baseline and at the end of the 6th week after the initiation of the interventions. Fresh fecal samples were collected at baseline and at the end of the 6th week for gut microbiota analysis via 16S rRNA gene sequencing. Results The eradication rates among the four groups showed no significant difference. In the QT group, a significant reduction in α-diversity of gut microbiota diversity and a substantial shift in microbial composition were observed, particularly an increase in Escherichia-Shigella and a decrease in the abundance of genera from the Lachnospiraceae and Ruminococcaceae families. The Simpson index was significantly higher in the QF group than in the QT group. Neither the QS nor QFS groups exhibited significant changes in α-diversity or β-diversity. The QFS group was the only one that did not show a significant increase in the relative abundance of Escherichia-Shigella, and the relative abundance of Klebsiella significantly decreased in this group. Conclusion The current study provided supporting evidence for the positive role of fucoidan and synbiotics supplementation in the gut microbiota. The combined use of fucoidan and synbioticss might be a promising adjuvant regimen to mitigate gut dysbiosis during H. pylori eradication therapy.
Collapse
Affiliation(s)
- Huifen Wang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Wei Wei
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
- Department of Clinical Nutrition, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fang Liu
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Miao Wang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Yanli Zhang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Shiyu Du
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
11
|
Armah A, Jackson C, Kolba N, Gracey PR, Shukla V, Padilla-Zakour OI, Warkentin T, Tako E. Effects of Pea ( Pisum sativum) Prebiotics on Intestinal Iron-Related Proteins and Microbial Populations In Vivo ( Gallus gallus). Nutrients 2024; 16:1856. [PMID: 38931211 PMCID: PMC11206367 DOI: 10.3390/nu16121856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Iron deficiency remains a public health challenge globally. Prebiotics have the potential to improve iron bioavailability by modulating intestinal bacterial population, increasing SCFA production, and stimulating expression of brush border membrane (BBM) iron transport proteins among iron-deficient populations. This study intended to investigate the potential effects of soluble extracts from the cotyledon and seed coat of three pea (Pisum sativum) varieties (CDC Striker, CDC Dakota, and CDC Meadow) on the expression of BBM iron-related proteins (DCYTB and DMT1) and populations of beneficial intestinal bacteria in vivo using the Gallus gallus model by oral gavage (one day old chicks) with 1 mL of 50 mg/mL pea soluble extract solutions. The seed coat treatment groups increased the relative abundance of Bifidobacterium compared to the cotyledon treatment groups, with CDC Dakota seed coat (dark brown pigmented) recording the highest relative abundance of Bifidobacterium. In contrast, CDC Striker Cotyledon (dark-green-pigmented) significantly increased the relative abundance of Lactobacillus (p < 0.05). Subsequently, the two dark-pigmented treatment groups (CDC Striker Cotyledon and CDC Dakota seed coats) recorded the highest expression of DCYTB. Our study suggests that soluble extracts from the pea seed coat and dark-pigmented pea cotyledon may improve iron bioavailability by affecting intestinal bacterial populations.
Collapse
Affiliation(s)
- Abigail Armah
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (A.A.); (C.J.); (N.K.); (P.R.G.); (V.S.); (O.I.P.-Z.)
| | - Cydney Jackson
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (A.A.); (C.J.); (N.K.); (P.R.G.); (V.S.); (O.I.P.-Z.)
| | - Nikolai Kolba
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (A.A.); (C.J.); (N.K.); (P.R.G.); (V.S.); (O.I.P.-Z.)
| | - Peter R. Gracey
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (A.A.); (C.J.); (N.K.); (P.R.G.); (V.S.); (O.I.P.-Z.)
| | - Viral Shukla
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (A.A.); (C.J.); (N.K.); (P.R.G.); (V.S.); (O.I.P.-Z.)
| | - Olga I. Padilla-Zakour
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (A.A.); (C.J.); (N.K.); (P.R.G.); (V.S.); (O.I.P.-Z.)
| | - Tom Warkentin
- Crop Development Centre, Department of Plant Sciences, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK S7N 5A8, Canada;
| | - Elad Tako
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (A.A.); (C.J.); (N.K.); (P.R.G.); (V.S.); (O.I.P.-Z.)
| |
Collapse
|
12
|
Leung HKM, Lo EKK, Zhang F, Felicianna, Ismaiah MJ, Chen C, El-Nezami H. Modulation of Gut Microbial Biomarkers and Metabolites in Cancer Management by Tea Compounds. Int J Mol Sci 2024; 25:6348. [PMID: 38928054 PMCID: PMC11203446 DOI: 10.3390/ijms25126348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Cancers are causing millions of deaths and leaving a huge clinical and economic burden. High costs of cancer drugs are limiting their access to the growing number of cancer cases. The development of more affordable alternative therapy could reach more patients. As gut microbiota plays a significant role in the development and treatment of cancer, microbiome-targeted therapy has gained more attention in recent years. Dietary and natural compounds can modulate gut microbiota composition while providing broader and more accessible access to medicine. Tea compounds have been shown to have anti-cancer properties as well as modulate the gut microbiota and their related metabolites. However, there is no comprehensive review that focuses on the gut modulatory effects of tea compounds and their impact on reshaping the metabolic profiles, particularly in cancer models. In this review, the effects of different tea compounds on gut microbiota in cancer settings are discussed. Furthermore, the relationship between these modulated bacteria and their related metabolites, along with the mechanisms of how these changes led to cancer intervention are summarized.
Collapse
Affiliation(s)
- Hoi Kit Matthew Leung
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
| | - Emily Kwun Kwan Lo
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
| | - Fangfei Zhang
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
| | - Felicianna
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
| | - Marsena Jasiel Ismaiah
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
| | - Congjia Chen
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
| | - Hani El-Nezami
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| |
Collapse
|
13
|
Shi R, Wang B. Nutrient metabolism in regulating intestinal stem cell homeostasis. Cell Prolif 2024; 57:e13602. [PMID: 38386338 PMCID: PMC11150145 DOI: 10.1111/cpr.13602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/23/2024] Open
Abstract
Intestinal stem cells (ISCs) are known for their remarkable proliferative capacity, making them one of the most active cell populations in the body. However, a high turnover rate of intestinal epithelium raises the likelihood of dysregulated homeostasis, which is known to cause various diseases, including cancer. Maintaining precise control over the homeostasis of ISCs is crucial to preserve the intestinal epithelium's integrity during homeostasis or stressed conditions. Recent research has indicated that nutrients and metabolic pathways can extensively modulate the fate of ISCs. This review will explore recent findings concerning the influence of various nutrients, including lipids, carbohydrates, and vitamin D, on the delicate balance between ISC proliferation and differentiation.
Collapse
Affiliation(s)
- Ruicheng Shi
- Department of Comparative Biosciences, College of Veterinary MedicineUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Bo Wang
- Department of Comparative Biosciences, College of Veterinary MedicineUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Division of Nutritional Sciences, College of Agricultural, Consumer and Environmental SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Cancer Center at IllinoisUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
14
|
Hu Q, Luo J, Cheng F, Wang P, Gong P, Lv X, Wang X, Yang M, Wei P. Spatial profiles of the bacterial microbiota throughout the gastrointestinal tract of dairy goats. Appl Microbiol Biotechnol 2024; 108:356. [PMID: 38822843 PMCID: PMC11144141 DOI: 10.1007/s00253-024-13200-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
The gastrointestinal tract (GIT) is stationed by a dynamic and complex microbial community with functions in digestion, metabolism, immunomodulation, and reproduction. However, there is relatively little research on the composition and function of microorganisms in different GIT segments in dairy goats. Herein, 80 chyme samples were taken from ten GIT sites of eight Xinong Saanen dairy goats and then analyzed and identified the microbial composition via 16S rRNA V1-V9 amplicon sequencing. A total of 6669 different operational taxonomic units (OTUs) were clustered, and 187 OTUs were shared by ten GIT segments. We observed 264 species belonging to 23 different phyla scattered across ten GITs, with Firmicutes (52.42%) and Bacteroidetes (22.88%) predominating. The results revealed obvious location differences in the composition, diversity, and function of the GIT microbiota. In LEfSe analysis, unidentified_Lachnospiraceae and unidentified_Succinniclassicum were significantly enriched in the four chambers of stomach, with functions in carbohydrate fermentation to compose short-chain fatty acids. Aeriscardovia, Candidatus_Saccharimonas, and Romboutsia were significantly higher in the foregut, playing an important role in synthesizing enzymes, amino acids, and vitamins and immunomodulation. Akkermansia, Bacteroides, and Alistipes were significantly abundant in the hindgut to degrade polysaccharides and oligosaccharides, etc. From rumen to rectum, α-diversity decreased first and then increased, while β-diversity showed the opposite trend. Metabolism was the major function of the GIT microbiome predicted by PICRUSt2, but with variation in target substrates along the regions. In summary, GIT segments play a decisive role in the composition and functions of microorganisms. KEY POINTS: • The jejunum and ileum were harsh for microorganisms to colonize due to the presence of bile acids, enzymes, faster chyme circulation, etc., exhibiting the lowest α-diversity and the highest β-diversity. • Variability in microbial profiles between the three foregut segments was greater than four chambers of stomach and hindgut, with a higher abundance of Firmicutes dominating than others. • Dairy goats dominated a higher abundance of Kiritimatiellaeota than cows, which was reported to be associated with fatty acid synthesis.
Collapse
Affiliation(s)
- Qingyong Hu
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Jun Luo
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, People's Republic of China.
| | - Fei Cheng
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Ping Wang
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Ping Gong
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Husbandry Science, Urumqi Xinjiang, 830000, People's Republic of China
| | - Xuefeng Lv
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Husbandry Science, Urumqi Xinjiang, 830000, People's Republic of China
| | - Xinpei Wang
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Min Yang
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Pengbo Wei
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, People's Republic of China
| |
Collapse
|
15
|
Rosas-Campos R, Sandoval-Rodríguez AS, Rodríguez-Sanabria JS, Vazquéz-Esqueda ÁO, Alfaro-Martinez CR, Escutia-Gutiérrez R, Vega-Magaña N, Peña-Rodríguez M, Zepeda-Nuño JS, Andrade-Marcial M, Campos-Uscanga Y, Jave-Suárez LF, Santos A, Cerda-Reyes E, Almeida-López M, Martínez-López E, Herrera LA, Armendariz-Borunda J. A Novel Foodstuff Mixture Improves the Gut-Liver Axis in MASLD Mice and the Gut Microbiota in Overweight/Obese Patients. Antioxidants (Basel) 2024; 13:664. [PMID: 38929103 PMCID: PMC11200377 DOI: 10.3390/antiox13060664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Microbial community control is crucial for maintaining homeostasis of the gut-liver axis in metabolic dysfunction-associated steatotic liver disease (MASLD). Here, we show that supplementation with a mixture of Mexican foodstuffs (MexMix)-Opuntia ficus indica (nopal), Theobroma cacao (cocoa) and Acheta domesticus (crickets)-enriches several beneficial taxa in MASLD mice and overweight/obese humans. Thus, MexMix induces an important prebiotic effect. In mice, a restoration of intestinal health was observed due to the increased short-chain fatty acids (SCFAs) and intestinal crypt depth, Ocln and Cldn1 expression, and decreased Il6 and Tnfa expression. MexMix significantly reduced steatosis in the mice's liver and modified the expression of 1668 genes. By PCR, we corroborated a Tnfa and Pparg decrease, and a Cat and Sod increase. In addition, MexMix increased the hepatic NRF2 nuclear translocation and miRNA-34a, miRNA-103, and miRNA-33 decline. In overweight/obese humans, MexMix improved the body image satisfaction and reduced the fat intake. These findings indicate that this new food formulation has potential as a therapeutic approach to treat conditions associated with excessive consumption of fats and sugars.
Collapse
Affiliation(s)
- Rebeca Rosas-Campos
- Institute for Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Mexico; (R.R.-C.); (A.S.S.-R.); (J.S.R.-S.); (Á.O.V.-E.); (C.R.A.-M.); (R.E.-G.)
| | - Ana Soledad Sandoval-Rodríguez
- Institute for Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Mexico; (R.R.-C.); (A.S.S.-R.); (J.S.R.-S.); (Á.O.V.-E.); (C.R.A.-M.); (R.E.-G.)
| | - Jonathan Samael Rodríguez-Sanabria
- Institute for Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Mexico; (R.R.-C.); (A.S.S.-R.); (J.S.R.-S.); (Á.O.V.-E.); (C.R.A.-M.); (R.E.-G.)
- Departamento Académico de Ciencias Básicas, Universidad Autónoma de Guadalajara, Zapopan 45129, Mexico
| | - Ángel Omar Vazquéz-Esqueda
- Institute for Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Mexico; (R.R.-C.); (A.S.S.-R.); (J.S.R.-S.); (Á.O.V.-E.); (C.R.A.-M.); (R.E.-G.)
| | - Carlos Roberto Alfaro-Martinez
- Institute for Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Mexico; (R.R.-C.); (A.S.S.-R.); (J.S.R.-S.); (Á.O.V.-E.); (C.R.A.-M.); (R.E.-G.)
| | - Rebeca Escutia-Gutiérrez
- Institute for Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Mexico; (R.R.-C.); (A.S.S.-R.); (J.S.R.-S.); (Á.O.V.-E.); (C.R.A.-M.); (R.E.-G.)
| | - Natali Vega-Magaña
- Instituto de Investigación en Ciencias Biomédicas (IICB), Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Mexico;
| | - Marcela Peña-Rodríguez
- Laboratorio de Diagnóstico de Enfermedades Emergentes y Reemergentes (LaDEER), Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Mexico;
| | - José Sergio Zepeda-Nuño
- Centro de Investigación y Diagnóstico de Patología, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Mexico;
| | | | | | - Luis Felipe Jave-Suárez
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico;
| | - Arturo Santos
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Zapopan 45138, Mexico; (A.S.); (L.A.H.)
| | | | - Mónica Almeida-López
- Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Mexico;
| | - Erika Martínez-López
- Institute of Translational Nutrigenetics and Nutrigenomics, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Mexico;
| | - Luis Alonso Herrera
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Zapopan 45138, Mexico; (A.S.); (L.A.H.)
- Cancer Research Unit, National Institute of Cancerology-Institute of Biomedical Research, National Autonomous University of Mexico (UNAM), Mexico City 70228, Mexico
| | - Juan Armendariz-Borunda
- Institute for Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Mexico; (R.R.-C.); (A.S.S.-R.); (J.S.R.-S.); (Á.O.V.-E.); (C.R.A.-M.); (R.E.-G.)
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Zapopan 45138, Mexico; (A.S.); (L.A.H.)
| |
Collapse
|
16
|
Rahman MM, Wu H, Tollefsbol TO. A novel combinatorial approach using sulforaphane- and withaferin A-rich extracts for prevention of estrogen receptor-negative breast cancer through epigenetic and gut microbial mechanisms. Sci Rep 2024; 14:12091. [PMID: 38802425 PMCID: PMC11130158 DOI: 10.1038/s41598-024-62084-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Estrogen receptor-negative [ER(-)] mammary cancer is the most aggressive type of breast cancer (BC) with higher rate of metastasis and recurrence. In recent years, dietary prevention of BC with epigenetically active phytochemicals has received increased attention due to its feasibility, effectiveness, and ease of implementation. In this regard, combinatorial phytochemical intervention enables more efficacious BC inhibition by simultaneously targeting multiple tumorigenic pathways. We, therefore, focused on investigation of the effect of sulforaphane (SFN)-rich broccoli sprouts (BSp) and withaferin A (WA)-rich Ashwagandha (Ash) combination on BC prevention in estrogen receptor-negative [ER(-)] mammary cancer using transgenic mice. Our results indicated that combinatorial BSp + Ash treatment significantly reduced tumor incidence and tumor growth (~ 75%) as well as delayed (~ 21%) tumor latency when compared to the control treatment and combinatorial BSp + Ash treatment was statistically more effective in suppressing BC compared to single BSp or Ash intervention. At the molecular level, the BSp and Ash combination upregulated tumor suppressors (p53, p57) along with apoptosis associated proteins (BAX, PUMA) and BAX:BCL-2 ratio. Furthermore, our result indicated an expressional decline of epigenetic machinery HDAC1 and DNMT3A in mammary tumor tissue because of combinatorial treatment. Interestingly, we have reported multiple synergistic interactions between BSp and Ash that have impacted both tumor phenotype and molecular expression due to combinatorial BSp and Ash treatment. Our RNA-seq analysis results also demonstrated a transcriptome-wide expressional reshuffling of genes associated with multiple cell-signaling pathways, transcription factor activity and epigenetic regulations due to combined BSp and Ash administration. In addition, we discovered an alteration of gut microbial composition change because of combinatorial treatment. Overall, combinatorial BSp and Ash supplementation can prevent ER(-) BC through enhanced tumor suppression, apoptosis induction and transcriptome-wide reshuffling of gene expression possibly influencing multiple cell signaling pathways, epigenetic regulation and reshaping gut microbiota.
Collapse
Affiliation(s)
- Mohammad Mijanur Rahman
- Department of Biology, University of Alabama at Birmingham, 902 14th Street South, Birmingham, AL, 35294, USA
| | - Huixin Wu
- Department of Biology, University of Alabama at Birmingham, 902 14th Street South, Birmingham, AL, 35294, USA
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35205, USA
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 902 14th Street South, Birmingham, AL, 35294, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, 1824 6th Avenue South, Birmingham, AL, 35294, USA.
- Integrative Center for Aging Research, University of Alabama at Birmingham, 933 19th Street South, Birmingham, AL, 35294, USA.
- Nutrition Obesity Research Center, University of Alabama at Birmingham, 1675 University Blvd, Birmingham, AL, 35294, USA.
- Comprehensive Diabetes Center, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA.
- University of Alabama at Birmingham, 3100 East Science Hall, 902 14th Street South, Birmingham, AL, USA.
| |
Collapse
|
17
|
Zeng H, Xu J, Zheng L, Zhan Z, Fang Z, Li Y, Zhao C, Xiao R, Zheng Z, Li Y, Yang L. Traditional Chinese herbal formulas modulate gut microbiome and improve insomnia in patients with distinct syndrome types: insights from an interventional clinical study. Front Cell Infect Microbiol 2024; 14:1395267. [PMID: 38817449 PMCID: PMC11137223 DOI: 10.3389/fcimb.2024.1395267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024] Open
Abstract
Background Traditional Chinese medicine (TCM) comprising herbal formulas has been used for millennia to treat various diseases, such as insomnia, based on distinct syndrome types. Although TCM has been proposed to be effective in insomnia through gut microbiota modulation in animal models, human studies remain limited. Therefore, this study employs machine learning and integrative network techniques to elucidate the role of the gut microbiome in the efficacies of two TCM formulas - center-supplementing and qi-boosting decoction (CSQBD) and spleen-tonifying and yin heat-clearing decoction (STYHCD) - in treating insomnia patients diagnosed with spleen qi deficiency and spleen qi deficiency with stomach heat. Methods Sixty-three insomnia patients with these two specific TCM syndromes were enrolled and treated with CSQBD or STYHCD for 4 weeks. Sleep quality was assessed using the Pittsburgh Sleep Quality Index (PSQI) and Insomnia Severity Index (ISI) every 2 weeks. In addition, variations in gut microbiota were evaluated through 16S rRNA gene sequencing. Stress and inflammatory markers were measured pre- and post-treatment. Results At baseline, patients exhibiting only spleen qi deficiency showed slightly lesser severe insomnia, lower IFN-α levels, and higher cortisol levels than those with spleen qi deficiency with stomach heat. Both TCM syndromes displayed distinct gut microbiome profiles despite baseline adjustment of PSQI, ISI, and IFN-α scores. The nested stratified 10-fold cross-validated random forest classifier showed that patients with spleen qi deficiency had a higher abundance of Bifidobacterium longum than those with spleen qi deficiency with stomach heat, negatively associated with plasma IFN-α concentration. Both CSQBD and STYHCD treatments significantly improved sleep quality within 2 weeks, which lasted throughout the study. Moreover, the gut microbiome and inflammatory markers were significantly altered post-treatment. The longitudinal integrative network analysis revealed interconnections between sleep quality, gut microbes, such as Phascolarctobacterium and Ruminococcaceae, and inflammatory markers. Conclusion This study reveals distinct microbiome profiles associated with different TCM syndrome types and underscores the link between the gut microbiome and efficacies of Chinese herbal formulas in improving insomnia. These findings deepen our understanding of the gut-brain axis in relation to insomnia and pave the way for precision treatment approaches leveraging TCM herbal remedies.
Collapse
Affiliation(s)
- Huimei Zeng
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jia Xu
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Liming Zheng
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhi Zhan
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zenan Fang
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yunxi Li
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunyi Zhao
- The Second Clinical Medical College, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Rong Xiao
- Department of Rehabilitation, The Eighth People’s Hospital of Hefei, Hefei, China
| | - Zhuanfang Zheng
- Teaching and research Center, Guangdong Provincial Trade Union Cadre School, Guangzhou, China
| | - Yan Li
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingling Yang
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
18
|
Zhang F, Xiong Y, Zhang Y, Wu K, Zhang B. Genetically proxied intestinal microbiota and risk of erectile dysfunction. Andrology 2024; 12:793-800. [PMID: 37724714 DOI: 10.1111/andr.13534] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/09/2023] [Accepted: 09/09/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND The interaction between intestinal microbiota and erectile dysfunction (ED) is less investigated. This study was performed to explore the association between intestinal microbiota and ED. METHODS In this two-sample Mendelian randomization (MR) study, genetic variants of gut microbiota were obtained from MiBioGen consortium containing 18,340 individuals. Six methods including inverse variance weighting (IVW), MR-Egger, weighted median, maximum likelihood, MR robust adjusted profile score, and MR pleiotropy residual sum and outlier were used to investigate the causal links between intestinal microbiota and ED. Furthermore, reverse MR analysis was performed to exclude the causal impact of ED on gut microbiota. RESULTS As revealed by the IVW estimator, the risks of ED were raised by genetically proxied Lachnospiraceae (OR: 1.27), Lachnospiraceae NC2004 group (OR: 1.17), Oscillibacter (OR: 1.20), Senegalimassilia (OR: 1.32) (All P < 0.05) and Tyzzerella-3 (OR: 1.14, P < 0.05). It was observed that Ruminococcaceae UCG013 exerted protective effect against ED (OR: 0.77, P < 0.05). These results were consistent with other estimators in sensitivity analyses. In reverse MR analyses, genetic liability to ED did not alter the abundances of Lachnospiraceae, Lachnospiraceae NC2004 group, Oscillibacter, Senegalimassilia, Tyzzerella-3, and Ruminococcaceae UCG013 (All P > 0.05). No heterogeneity and pleiotropy were detected by Cochran's Q-test, MR-Egger, and global test (All P > 0.05). CONCLUSIONS This study provided novel evidence that genetically proxied Lachnospiraceae, Lachnospiraceae NC2004 group, Oscillibacter, Senegalimassilia, Tyzzerella-3, and Ruminococcaceae UCG013 had potentially causal effects on ED. Further studies are needed to clarify the biological mechanisms linking intestinal microbiota to ED.
Collapse
Affiliation(s)
- Fuxun Zhang
- Department of Urology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Yang Xiong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yangchang Zhang
- Department of Public Health, Capital Medical University, Beijing, China
| | - Kan Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bo Zhang
- Department of Urology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
19
|
Yamamoto K, Honda T, Inukai Y, Yokoyama S, Ito T, Imai N, Ishizu Y, Nakamura M, Kawashima H. Identification of the Microbiome Associated with Prognosis in Patients with Chronic Liver Disease. Microorganisms 2024; 12:610. [PMID: 38543661 PMCID: PMC10974311 DOI: 10.3390/microorganisms12030610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 07/05/2024] Open
Abstract
We investigated the prognostic role of the gut microbiome and clinical factors in chronic liver disease (hepatitis, cirrhosis, and hepatocellular carcinoma [HCC]). Utilizing data from 227 patients whose stool samples were collected over the prior 3 years and a Cox proportional hazards model, we integrated clinical attributes and microbiome composition based on 16S ribosomal RNA sequencing. HCC was the primary cause of mortality, with the Barcelona Clinic Liver Cancer staging system-derived B/C significantly increasing the mortality risk (hazard ratio [HR] = 8.060; 95% confidence interval [CI]: 3.6509-17.793; p < 0.001). Cholesterol levels < 140 mg/dL were associated with higher mortality rates (HR = 4.411; 95% CI: 2.0151-9.6555; p < 0.001). Incertae sedis from Ruminococcaceae showed a protective effect, reducing mortality risk (HR = 0.289; 95% CI: 0.1282 to 0.6538; p = 0.002), whereas increased Veillonella presence was associated with a higher risk (HR = 2.733; 95% CI: 1.1922-6.2664; p = 0.017). The potential of specific bacterial taxa as independent prognostic factors suggests that integrating microbiome data could improve the prognosis and treatment of chronic liver disease. These microbiome-derived markers have prognostic significance independently and in conjunction with clinical factors, suggesting their utility in improving a patient's prognosis.
Collapse
Affiliation(s)
| | - Takashi Honda
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan (S.Y.)
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Hsiao YK, Lee BH, Wu SC. Lactiplantibacillus plantarum-encapsulated microcapsules prepared from okra polysaccharides improved intestinal microbiota in Alzheimer's disease mice. Front Microbiol 2024; 15:1305617. [PMID: 38562470 PMCID: PMC10982412 DOI: 10.3389/fmicb.2024.1305617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Background Okra contains a viscous substance rich in water-soluble material, including fibers, pectin, proteoglycans, gum, and polysaccharides. This study explored the use of okra polysaccharides by microorganisms and their potential to improve microbiota. Methods The regulation of microcapsules prepared from okra polysaccharides with or without L. plantarum encapsulation on intestinal microbiota was assessed through 16S metagenomic analysis and short-chain fatty acids (SCFAs) in AppNL-G-F/NL-G-F mice (Alzheimer's disease; AD model). Results We found that Lactobacillaceae and Lactobacillus were majorly regulated by microcapsules prepared from okra polysaccharides in AD mice. Similarly, microcapsules prepared from okra polysaccharides with L. plantarum encapsulation markedly elevated the abundance of Lactobacillaceae and Lactobacillus and increased SCFAs in AD mice. Conclusion Our results suggest that microcapsules prepared from okra polysaccharides with or without L. plantarum encapsulation may improve intestinal microbiota by elevating Lactobacillus levels in AD mice.
Collapse
Affiliation(s)
- Yao-Kun Hsiao
- King Long Guan Company Ltd., Chiayi, Taiwan
- Department of Food Sciences, National Chiayi University, Chiayi, Taiwan
| | - Bao-Hong Lee
- Department of Horticultural Science, National Chiayi University, Chiayi, Taiwan
| | - She-Ching Wu
- Department of Food Sciences, National Chiayi University, Chiayi, Taiwan
| |
Collapse
|
21
|
Yang Z, Chen X, Yu M, Jing R, Bao L, Zhao X, Pan K, Chao B, Qu M. Metagenomic sequencing identified microbial species in the rumen and cecum microbiome responsible for niacin treatment and related to intramuscular fat content in finishing cattle. Front Microbiol 2024; 15:1334068. [PMID: 38529181 PMCID: PMC10961399 DOI: 10.3389/fmicb.2024.1334068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction Niacin is one of the essential vitamins for mammals. It plays important roles in maintaining rumen microecological homeostasis. Our previous study indicated that dietary niacin significantly elevated intramuscular fat content (IMF) in castrated finishing steers. Whether niacin affects fat deposition by regulating the microbial composition and functional capacities of gastrointestinal microbiome has been unknown yet. Methods In this study, 16 castrated Xiangzhong Black cattle were randomly assigned into either control group fed with a basal concentrate diet (n = 8) or niacin group fed with a basal concentrate diet added 1000 mg/kg niacin (n = 8). Seven rumen samples and five cecum content samples were randomly collected from each of control and niacin groups for metagenomic sequencing analysis. Results A total of 2,981,786 non-redundant microbial genes were obtained from all tested samples. Based on this, the phylogenetic compositions of the rumen and cecum microbiome were characterized. We found that bacteria dominated the rumen and cecum microbiome. Prevotella ruminicola and Ruminococcus flavefaciens were the most abundant bacterial species in the rumen microbiome, while Clostridiales bacterium and Eubacterium rectale were predominant bacterial species in the cecum microbiome. Rumen microbiome had significantly higher abundances of GHs, GTs, and PLs, while cecum microbiome was enriched by CBMs and AAs. We found a significant effect of dietary niacin on rumen microbiome, but not on cecum microbiome. Dietary niacin up-regulated the abundances of bacterial species producing lactic acid and butyrate, fermenting lactic acid, and participating in lipid hydrolysis, and degradation and assimilation of nitrogen-containing compounds, but down-regulated the abundances of several pathogens and bacterial species involved in the metabolism of proteins and peptides, and methane emissions. From the correlation analysis, we suggested that niacin improved nutrient digestion and absorption, but reduced energy loss, and Valine, leucine and isoleucine degradation of rumen microbiome, which resulted in the increased host IMF. Conclusion The results suggested that dietary manipulation, such as the supplementation of niacin, should be regarded as the effective and convenient way to improve IMF of castrated finishing steers by regulating rumen microbiome.
Collapse
Affiliation(s)
- Zhuqing Yang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Provincial Key Laboratory for Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Xiao Chen
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Mingjin Yu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Ruixue Jing
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Linbin Bao
- Jiangxi Provincial Key Laboratory for Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
- Animal Husbandry and Veterinary Bureau of Guangchang County, Fuzhou, China
| | - Xianghui Zhao
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Provincial Key Laboratory for Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Ke Pan
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Provincial Key Laboratory for Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Bihui Chao
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Mingren Qu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Provincial Key Laboratory for Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
22
|
Yokoyama Y, Ichiki T, Yamakawa T, Tsuji Y, Kuronuma K, Takahashi S, Narimatsu E, Katanuma A, Nakase H. Gut microbiota and metabolites in patients with COVID-19 are altered by the type of SARS-CoV-2 variant. Front Microbiol 2024; 15:1358530. [PMID: 38505560 PMCID: PMC10948395 DOI: 10.3389/fmicb.2024.1358530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/21/2024] [Indexed: 03/21/2024] Open
Abstract
Introduction Patients with COVID-19 have dysbiosis of the intestinal microbiota with altered metabolites in the stool. However, it remains unclear whether the differences among SARS-CoV-2 variants lead to differences in intestinal microbiota and metabolites. Thus, we compared the microbiome and metabolome changes for each SARS-CoV-2 variant in patients with COVID-19. Materials and methods We conducted a multicenter observational study of patients with COVID-19 and performed fecal microbiome, metabolome, and calprotectin analyses and compared the results among the different SARS-CoV-2 variants. Results Twenty-one patients with COVID-19 were enrolled and stratified according to the SARS-CoV-2 strain: six with the Alpha, 10 with the Delta, and five with the Omicron variant. Fecal microbiome analysis showed that α-diversity was reduced in the order of the Omicron, Delta, and Alpha variants (p = 0.07). Linear discriminant analysis revealed differences in the abundance of short-chain fatty acid-producing gut microbiota for each SARS-CoV-2 variant. Fecal metabolome analysis showed that the Omicron and Delta variants had markedly reduced propionic and lactic acid levels compared to the Alpha strain (p < 0.05). Conclusion The intestinal microbiota of patients with COVID-19 varies depending on the SARS-CoV-2 variant. Dysbiosis of the intestinal microbiota due to differences in SARS-CoV-2 variants causes a decrease in intestinal short-chain fatty acids.
Collapse
Affiliation(s)
- Yoshihiro Yokoyama
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tomoko Ichiki
- Department of General Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Tsukasa Yamakawa
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yoshihisa Tsuji
- Department of General Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Koji Kuronuma
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Satoshi Takahashi
- Department of Infection Control and Laboratory Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Eichi Narimatsu
- Department of Intensive Care Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akio Katanuma
- Center for Gastroenterology, Teine-Keijinkai Hospital, Sapporo, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
23
|
Peled S, Freilich S, Hanani H, Kashi Y, Livney YD. Next-generation prebiotics: Maillard-conjugates of 2'-fucosyllactose and lactoferrin hydrolysates beneficially modulate gut microbiome composition and health promoting activity in a murine model. Food Res Int 2024; 177:113830. [PMID: 38225111 DOI: 10.1016/j.foodres.2023.113830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024]
Abstract
Current prebiotics are predominantly carbohydrates. However, great competition exists among gut microbes for the scarce protein in the colon, as most consumed protein is digested and absorbed in the small intestine. Herein we evaluated in-vivo novel next-generation prebiotics: protein-containing-prebiotics, for selectively-targeted delivery of protein to colonic probiotics, to boost their growth. This system is based on micellar-particles, composed of Maillard-glycoconjugates of 2'-Fucosyllactose (2'-FL, human-milk-oligosaccharide) shell, engulfing lactoferrin peptic-then-tryptic hydrolysate (LFH) core. This core-shell structure lowers protein-core digestibility, while the prebiotic glycans are hypothesized to serve as molecular-recognition ligands for selectively targeting probiotics. To study the efficacy of this novel prebiotic, we fed C57BL/6JRccHsd mice with either 2'-FL-LFH Maillard-glycoconjugates, unconjugated components (control), or saline (blank). Administration of 2'-FL-LFH significantly increased the levels of short-chain-fatty-acids (SCFAs)-producing bacterial families (Ruminococcaceae, Lachnospiraceae) and genus (Odoribacter) and the production of the health-related metabolites, SCFAs, compared to the unconjugated components and to saline. The SCFAs-producing genus Prevotella significantly increased upon 2'-FL-LFH consumption, compared to only moderate increase in the unconjugated components. Interestingly, the plasma-levels of inflammation-inducing lipopolysaccharides (LPS), which indicate increased gut-permeability, were significantly lower in the 2'-FL-LFH group compared to the unconjugated-components and the saline groups. We found that Maillard-glycoconjugates of 2'-FL-LFH can serve as novel protein-containing prebiotics, beneficially modulating gut microbial composition and its metabolic activity, thereby contributing to host health more effectively than the conventional carbohydrate-only prebiotics.
Collapse
Affiliation(s)
- Stav Peled
- Laboratory of Biopolymers for Food and Health, Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Shay Freilich
- Laboratory of Applied Genomics, Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Hila Hanani
- Laboratory of Applied Genomics, Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Yechezkel Kashi
- Laboratory of Applied Genomics, Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Yoav D Livney
- Laboratory of Biopolymers for Food and Health, Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
24
|
Yang Z, Bao L, Song W, Zhao X, Liang H, Yu M, Qu M. Nicotinic acid changes rumen fermentation and apparent nutrient digestibility by regulating rumen microbiota in Xiangzhong black cattle. Anim Biosci 2024; 37:240-252. [PMID: 37905319 PMCID: PMC10766483 DOI: 10.5713/ab.23.0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/25/2023] [Accepted: 09/06/2023] [Indexed: 11/02/2023] Open
Abstract
OBJECTIVE The aim of this study was to investigate the impact of dietary nicotinic acid (NA) on apparent nutrient digestibility, rumen fermentation, and rumen microbiota in uncastrated Xiangzhong black cattle. METHODS Twenty-one uncastrated Xiangzhong black cattle (385.08±15.20 kg) aged 1.5 years were randomly assigned to the control group (CL, 0 mg/kg NA in concentrate diet), NA1 group (800 mg/kg NA in concentrate diet) and NA2 group (1,200 mg/kg NA in concentrate diet). All animals were fed a 60% concentrate diet and 40% dried rice straw for a 120-day feeding experiment. RESULTS Supplemental NA not only enhanced the apparent nutrient digestibility of acid detergent fiber (p<0.01), but also elevated the rumen acetate and total volatile fatty acid concentrations (p<0.05). 16S rRNA gene sequencing analysis of rumen microbiota revealed that dietary NA changed the diversity of rumen microbiota (p<0.05) and the abundance of bacterial taxa in the rumen. The relative abundances of eight Erysipelotrichales taxa, five Ruminococcaceae taxa, and five Sphaerochaetales taxa were decreased by dietary NA (p< 0.05). However, the relative abundances of two taxa belonging to Roseburia faecis were increased by supplemental 800 mg/kg NA, and the abundances of seven Prevotella taxa, three Paraprevotellaceae taxa, three Bifidobacteriaceae taxa, and two operational taxonomic units annotated to Fibrobacter succinogenes were increased by 1,200 mg/kg NA in diets. Furthermore, the correlation analysis found significant correlations between the concentrations of volatile fatty acids in the rumen and the abundances of bacterial taxa, especially Prevotella. CONCLUSION The results from this study suggest that dietary NA plays an important role in regulating apparent digestibility of acid detergent fiber, acetate, total volatile fatty acid concentrations, and the composition of rumen microbiota.
Collapse
Affiliation(s)
- Zhuqing Yang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045,
China
| | - Linbin Bao
- Animal Husbandry and Veterinary Bureau of Guangchang County, Fuzhou, Jiangxi, 344900,
China
| | - Wanming Song
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045,
China
| | - Xianghui Zhao
- Jiangxi Provincial Key Laboratory for Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, 330045,
China
| | - Huan Liang
- Jiangxi Provincial Key Laboratory for Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, 330045,
China
| | - Mingjin Yu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045,
China
| | - Mingren Qu
- Jiangxi Provincial Key Laboratory for Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, 330045,
China
| |
Collapse
|
25
|
Zhu L, Ming Y, Wu M, Zhang X, Wang X, Li H, Lin Z, Gao F, Zhu Y. Effect of Fiber-Rich Diet and Rope Skipping on Memory, Executive Function, and Gut Microbiota in Young Adults: A Randomized Controlled Trial. Mol Nutr Food Res 2024; 68:e2300673. [PMID: 38072647 DOI: 10.1002/mnfr.202300673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/17/2023] [Indexed: 02/10/2024]
Abstract
SCOPE To investigate the effects of fiber-rich diets (FDs), rope skipping (RS), and the combination of these two interventions (fiber-rich diet with rope skipping [FD-RS]) on memory, executive function in young adults, and to explore their relationship with gut microbiota. MATERIALS AND RESULTS The study is a 12-week parallel-design randomized controlled trial in which 120 undergraduates (19 ± 1 years) are randomized to FD (fiber ≥ 20 g day-1 ), RS (3 × 2000 times per week), FD-RS or control group (n = 30 per group). Memory and executive function are assessed by scales, and stool samples are collected at baseline and after the intervention. FD group and FD-RS group show fewer prospective and retrospective subjective memory impairments than the control group, but there is no significant difference between FD-RS and the intervention alone (FD or RS). No obvious change in executive function is observed throughout the trial. In terms of the gut microbiota, the α-diversity does not increase, but the microbial community evenness improves after the RS and FD intervention. Additionally, the relative abundance of phylum Firmicutes and genera Faecalibacterium, Eubacterium_coprostanoligenes_group in the RS group and NK4A214_group in the FD group significantly increase. In the RS group, a correlation is found between the increase in microbial evenness and the improvement in retrospective memory. CONCLUSION The FD and FD-RS have beneficial effects on memory in young adults. Meanwhile, FD and RS can improve the microbial evenness and increase several beneficial genera of phylum Firmicutes.
Collapse
Affiliation(s)
- Lewei Zhu
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| | - Yingan Ming
- Department of Physical Education, Sun Yat-sen University, Guangzhou, 510275, China
| | - Miao Wu
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| | - Xin Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Xiaotong Wang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| | - Hailin Li
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| | - Zongyu Lin
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| | - Fei Gao
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yanna Zhu
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, China
| |
Collapse
|
26
|
Xiang L, Du T, Zhang J, Zhang Y, Zhou Y, Zhao Y, Zhou Y, Ma L. Vitamin D 3 supplementation shapes the composition of gut microbiota and improves some obesity parameters induced by high-fat diet in mice. Eur J Nutr 2024; 63:155-172. [PMID: 37740812 DOI: 10.1007/s00394-023-03246-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/01/2023] [Indexed: 09/25/2023]
Abstract
PURPOSE Individuals with vitamin D (VD) insufficiency have a greater tendency to develop obesity and have increased systemic inflammation. Gut microbiota are involved in the regulation of host inflammation and energy metabolism, which plays a role in the pathogenesis of obesity. Thus, we aimed to evaluate the effects of different doses of VD3 on body weight, serum lipids, inflammatory factors, and intestinal barrier function in obese mice and to explore the regulatory effect of VD3 on gut microbiota in obese mice. METHODS Male C57BL/6 J mice received a normal chow diet (NCD, 10% fat) or high-fat diet (HFD, 60% fat) to induce obesity within 10 weeks. Then, HFD mice were supplemented with 5650, 8475, or 11,300 IU VD3/kg diet for 8 weeks. Finally, 16 s rRNA analysis was performed to analyze gut microbiota composition in cecal contents. In addition, body weight, serum lipids, inflammatory factors, and intestinal barrier function were analyzed. RESULTS VD3 supplementation reduced body weight and the levels of TG, TC, HDL-C, TNF-α, IL-1β and LPS, and increased ZO-1 in HFD-fed mice. Moreover, it increased α-diversity, reduced F/B ratio and altered microbiota composition by increasing relative abundance of Bacteroidetes, Proteobacteria, Desulfovibrio, Dehalobacterium, Odoribacter, and Parabacteroides and reducing relative abundance of Firmicutes and Ruminococcus. There were significant differences between HFD and NCD groups in several metabolic pathways, including endotoxin biosynthesis, tricarboxylic acid cycle, lipid synthesis and metabolism, and glycolysis. CONCLUSIONS Low, medium, and high doses of VD3 inhibited weight gain, reduced levels of blood lipids and inflammatory factors, and improved endotoxemia and gut barrier function in obese mice. It also increased the α-diversity of gut microbiota in obese mice and reduced the relative abundance of some intestinal pathogenic bacteria, increased the relative abundance of some beneficial bacteria, and corrected the intestinal flora disorder of obese mice, with the low- and high-dose groups showing better effects than the medium-dose group.
Collapse
Affiliation(s)
- Lian Xiang
- Department of Nutrition and Food Hygiene, School of Public Health, Southwest Medical University, Luzhou, China
| | - Tingwan Du
- Department of Nutrition and Food Hygiene, School of Public Health, Southwest Medical University, Luzhou, China
| | - Jingjing Zhang
- Department of Clinical Nutrition, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuanfan Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Southwest Medical University, Luzhou, China
| | - Yanqiu Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Southwest Medical University, Luzhou, China
| | - Yueying Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Southwest Medical University, Luzhou, China
| | - Yong Zhou
- Department of Medical Cell Biology and Genetics, School of Basic Medical Science, Southwest Medical University, Luzhou, China.
| | - Ling Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Southwest Medical University, Luzhou, China.
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, China.
| |
Collapse
|
27
|
Ni M, He H, Chen M, Li Z, Cai H, Chen Z, Li M, Xu H. Supplementation of sodium acetate improves the growth performance and intestinal health of rabbits through Wnt/β-catenin signaling pathway. J Anim Sci 2024; 102:skae197. [PMID: 39037212 PMCID: PMC11337008 DOI: 10.1093/jas/skae197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/21/2024] [Indexed: 07/23/2024] Open
Abstract
Acetic acid, which is one of the most abundant short-chain fatty acids (SCFA) in rabbits' cecum, has been reported to play an important function during various physiological metabolic processes. The present study was conducted to elucidate the effects of sodium acetate on growth performance and intestinal health by evaluating feed intake and efficiency, diarrhea score, serum and cecum metabolites, cecal pH and SCFA, histological staining, nutritional composition of meat and gene expression profile of cecum in rabbits. As a result of sodium acetate supplement, the feed conversion ratio, diarrhea score, and diameter of muscle fiber were significantly decreased (P < 0.05). Additionally, dietary sodium acetate significantly increased in total area of muscle fibers and content of crude ash (P < 0.05). Dietary sodium acetate significantly increased serum glucose, total bile acid, and total cholesterol levels and decreased amylase, lipase, and tCO2 content (P < 0.05). Further examination suggested that sodium acetate supplementation enhanced the micro-environment of cecum, evidenced by significantly increased levels of total antioxidant capacity, total superoxide dismutase, and glutathione peroxidase, and decreased pH and amylase levels (P < 0.05). According to transcriptome sequencing of cecal tissues, differentially expressed genes were predominantly enriched in cell cycle, ABC transporters, and chemokine signaling pathways. Sodium acetate was further suggested to stimulate the proliferation and migration of rabbits' cecum epithelial cells by activating Wnt/β-catenin pathway both in vivo and in vitro. In conclusion, dietary sodium acetate supplementation improved growth performance and intestinal health in rabbits.
Collapse
Affiliation(s)
- Mengke Ni
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Hui He
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Mengjuan Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Zhichao Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Hanfang Cai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Huifen Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
28
|
Bleich RM, Li C, Sun S, Ahn JH, Dogan B, Barlogio CJ, Broberg CA, Franks AR, Bulik-Sullivan E, Carroll IM, Simpson KW, Fodor AA, Arthur JC. A consortia of clinical E. coli strains with distinct in vitro adherent/invasive properties establish their own co-colonization niche and shape the intestinal microbiota in inflammation-susceptible mice. MICROBIOME 2023; 11:277. [PMID: 38124090 PMCID: PMC10731797 DOI: 10.1186/s40168-023-01710-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/26/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) patients experience recurrent episodes of intestinal inflammation and often follow an unpredictable disease course. Mucosal colonization with adherent-invasive Escherichia coli (AIEC) are believed to perpetuate intestinal inflammation. However, it remains unclear if the 24-year-old AIEC in vitro definition fully predicts mucosal colonization in vivo. To fill this gap, we have developed a novel molecular barcoding approach to distinguish strain variants in the gut and have integrated this approach to explore mucosal colonization of distinct patient-derived E. coli isolates in gnotobiotic mouse models of colitis. RESULTS Germ-free inflammation-susceptible interleukin-10-deficient (Il10-/-) and inflammation-resistant WT mice were colonized with a consortium of AIEC and non-AIEC strains, then given a murine fecal transplant to provide niche competition. E. coli strains isolated from human intestinal tissue were each marked with a unique molecular barcode that permits identification and quantification by barcode-targeted sequencing. 16S rRNA sequencing was used to evaluate the microbiome response to E. coli colonization. Our data reveal that specific AIEC and non-AIEC strains reproducibly colonize the intestinal mucosa of WT and Il10-/- mice. These E. coli expand in Il10-/- mice during inflammation and induce compositional dysbiosis to the microbiome in an inflammation-dependent manner. In turn, specific microbes co-evolve in inflamed mice, potentially diversifying E. coli colonization patterns. We observed no selectivity in E. coli colonization patterns in the fecal contents, indicating minimal selective pressure in this niche from host-microbe and interbacterial interactions. Because select AIEC and non-AIEC strains colonize the mucosa, this suggests the in vitro AIEC definition may not fully predict in vivo colonization potential. Further comparison of seven E. coli genomes pinpointed unique genomic features contained only in highly colonizing strains (two AIEC and two non-AIEC). Those colonization-associated features may convey metabolic advantages (e.g., iron acquisition and carbohydrate consumption) to promote efficient mucosal colonization. CONCLUSIONS Our findings establish the in vivo mucosal colonizer, not necessarily AIEC, as a principal dysbiosis driver through crosstalk with host and associated microbes. Furthermore, we highlight the utility of high-throughput screens to decode the in vivo colonization dynamics of patient-derived bacteria in murine models. Video Abstract.
Collapse
Affiliation(s)
- Rachel M Bleich
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biology, Appalachian State University, Boone, NC, USA
| | - Chuang Li
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shan Sun
- College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Ju-Hyun Ahn
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Belgin Dogan
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Cassandra J Barlogio
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christopher A Broberg
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adrienne R Franks
- Center for Gastrointestinal Biology & Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emily Bulik-Sullivan
- Center for Gastrointestinal Biology & Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ian M Carroll
- Center for Gastrointestinal Biology & Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth W Simpson
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Anthony A Fodor
- College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Janelle C Arthur
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Center for Gastrointestinal Biology & Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
29
|
Ma J, Yuan T, Gao Y, Zeng X, Liu Z, Gao J. Torreya grandis oil attenuates cognitive impairment in scopolamine-induced mice. Food Funct 2023; 14:10520-10534. [PMID: 37946597 DOI: 10.1039/d3fo03800a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The oil of Torreya grandis (TGO), a common nut in China, is considered to be a bioactive edible oil and has a great value in functional food development. In this study, the neuroprotective effects of TGO were investigated on a scopolamine (SCOP)-induced C57BL/6J mouse model. The mice were pretreated with TGO for 30 days (1000 mg per kg per day and 3000 mg per kg per day, i.g.). Behavioral tests showed that the supplementation of TGO could prevent the cognitive deficits induced by SCOP. TGO rebalanced the disorder of the cholinergic system by upgrading the level of acetylcholine. TGO also alleviated the over-activation of microglia and inhibited neuroinflammation and oxidative stress. Additionally, TGO could regulate the composition of gut microbiota, increase the production of short-chain fatty acids, and decrease the content of lipopolysaccharides in the serum. In conclusion, TGO has the potential to prevent loss of memory and impairment of cognition, which may be related to its regulation of the gut microbiota-metabolite-brain axis.
Collapse
Affiliation(s)
- Jiachen Ma
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tian Yuan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuqi Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoming Zeng
- Anhui Kangxinxiang Agricultural Technology Co., Ltd, Yuexi 246600, Anhui, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jinming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
30
|
Gong H, Yuan Q, Du M, Mao X. Polar lipid-enriched milk fat globule membrane supplementation in maternal high-fat diet promotes intestinal barrier function and modulates gut microbiota in male offspring. Food Funct 2023; 14:10204-10220. [PMID: 37909908 DOI: 10.1039/d2fo04026c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Intestinal development plays a critical role in physiology and disease in early life and has long-term effects on the health status throughout the lifespan. Maternal high-fat diet (HFD) fuels the inflammatory reaction and metabolic syndrome, disrupts intestinal barrier function, and alters gut microbiota in offspring. The aim of this study was to evaluate whether polar lipid-enriched milk fat globule membrane (MFGM-PL) supplementation in maternal HFD could promote intestinal barrier function and modulate gut microbiota in male offspring. Obese female rats induced by HFD were supplemented with MFGM-PL during pregnancy and lactation. The offspring were fed HFD for 11 weeks after weaning. MFGM-PL supplementation to dams fed HFD decreased the body weight gain and ameliorated abnormalities of serum insulin, lipids, and inflammatory cytokines in offspring at weaning. Maternal MFGM-PL supplementation promoted the intestinal barrier by increasing the expression of Ki-67, lysozyme, mucin 2, zonula occludens-1, claudin-3, and occludin. Additionally, MFGM-PL supplementation to HFD dams improved gut dysbiosis in offspring. MFGM-PL increased the relative abundance of Akkermansiaceae, Ruminococcaceae, and Blautia. Concomitantly, maternal MFGM-PL treatment increased short-chain fatty acids of colonic contents and G-protein-coupled receptor (GPR) 41 and GPR 43 expressions in the colon of offspring. Importantly, the beneficial effects of maternal MFGM-PL intervention persisted to offspring's adulthood, as evidenced by increased relative abundance of norank_f_Muribaculaceae, Peptostreptococcaceae and Romboutsia and modulated the taxonomic diversity of gut microbiota in adult offspring. In summary, maternal MFGM-PL supplementation improved intestinal development in the offspring of dams fed with HFD, which exerted long-term beneficial effects on offspring intestinal health.
Collapse
Affiliation(s)
- Han Gong
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Qichen Yuan
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Xueying Mao
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
31
|
Zhou C, Wei J, Yu P, Yang J, Liu T, Jia R, Wang S, Sun P, Yang L, Xiao H. Convergent application of traditional Chinese medicine and gut microbiota in ameliorate of cirrhosis: a data mining and Mendelian randomization study. Front Cell Infect Microbiol 2023; 13:1273031. [PMID: 38029250 PMCID: PMC10657829 DOI: 10.3389/fcimb.2023.1273031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Objective Traditional Chinese medicine (TCM) has been used for the treatment of chronic liver diseases for a long time, with proven safety and efficacy in clinical settings. Previous studies suggest that the therapeutic mechanism of TCM for hepatitis B cirrhosis may involve the gut microbiota. Nevertheless, the causal relationship between the gut microbiota, which is closely linked to TCM, and cirrhosis remains unknown. This study aims to utilize two-sample Mendelian randomization (MR) to investigate the potential causal relationship between gut microbes and cirrhosis, as well as to elucidate the synergistic mechanisms between botanical drugs and microbiota in treating cirrhosis. Methods Eight databases were systematically searched through May 2022 to identify clinical studies on TCM for hepatitis B cirrhosis. We analyzed the frequency, properties, flavors, and meridians of Chinese medicinals based on TCM theories and utilized the Apriori algorithm to identify the core botanical drugs for cirrhosis treatment. Cross-database comparison elucidated gut microbes sharing therapeutic targets with these core botanical drugs. MR analysis assessed consistency between gut microbiota causally implicated in cirrhosis and microbiota sharing therapeutic targets with key botanicals. Results Our findings revealed differences between the Chinese medicinals used for compensated and decompensated cirrhosis, with distinct frequency, dosage, properties, flavors, and meridian based on TCM theory. Angelicae Sinensis Radix, Salviae Miltiorrhizae Radix Et Rhizoma, Poria, Paeoniae Radix Alba, Astragali Radix, Atrctylodis Macrocephalae Rhizoma were the main botanicals. Botanical drugs and gut microbiota target MAPK1, VEGFA, STAT3, AKT1, RELA, JUN, and ESR1 in the treatment of hepatitis B cirrhosis, and their combined use has shown promise for cirrhosis treatment. MR analysis demonstrated a positive correlation between increased ClostridialesvadinBB60 and Ruminococcustorques abundance and heightened cirrhosis risk. In contrast, Eubacteriumruminantium, Lachnospiraceae, Eubacteriumnodatum, RuminococcaceaeNK4A214, Veillonella, and RuminococcaceaeUCG002 associated with reduced cirrhosis risk. Notably, Lachnospiraceae shares key therapeutic targets with core botanicals, which can treat cirrhosis at a causal level. Conclusion We identified 6 core botanical drugs for managing compensated and decompensated hepatitis B cirrhosis, despite slight prescription differences. The core botanical drugs affected cirrhosis through multiple targets and pathways. The shared biological effects between botanicals and protective gut microbiota offer a potential explanation for the therapeutic benefits of these key herbal components in treating cirrhosis. Elucidating these mechanisms provides crucial insights to inform new drug development and optimize clinical therapy for hepatitis B cirrhosis.
Collapse
Affiliation(s)
- Cheng Zhou
- The First College of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jingjing Wei
- The First College of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Peng Yu
- The First College of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jinqiu Yang
- The First College of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Tong Liu
- The First College of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ran Jia
- The First College of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Siying Wang
- The First College of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Pengfei Sun
- Department of Orthopaedics, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Lin Yang
- Department of Hepatobiliary Surgery, Xianyang Central Hospital Affiliated to Shaanxi University of Chinese Medicine, Xianyang, China
| | - Haijuan Xiao
- Department of Oncology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
32
|
Shen R, Li Z, Wang H, Wang Y, Li X, Yang Q, Fu Y, Li M, Gao LN. Chinese Materia Medica in Treating Depression: The Role of Intestinal Microenvironment. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1927-1955. [PMID: 37930334 DOI: 10.1142/s0192415x23500854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Depression is a highly heterogeneous mental illness. Drug treatment is currently the main therapeutic strategy used in the clinic, but its efficacy is limited by the modulation of a single target, slow onset, and side effects. The gut-brain axis is of increasing interest because intestinal microenvironment disorders increase susceptibility to depression. In turn, depression affects intestinal microenvironment homeostasis by altering intestinal tissue structure, flora abundance and metabolism, hormone secretion, neurotransmitter transmission, and immune balance. Depression falls into the category of "stagnation syndrome" according to Traditional Chinese Medicine (TCM), which further specifies that "the heart governs the spirit and is exterior-interior with the small intestine". However, the exact mechanisms of the means by which the disordered intestinal microenvironment affects depression are still unclear. Here, we present an overview of how the Chinese materia medica (CMM) protects against depression by repairing intestinal microenvironment homeostasis. We review the past five years of research progress in classical antidepressant TCM formulae and single CMMs on regulating the intestinal microenvironment for the treatment of depression. We then analyze and clarify the multitarget functions of CMM in repairing intestinal homeostasis and aim to provide a new theoretical basis for CMM clinical application in the treatment of depression.
Collapse
Affiliation(s)
- Ruhui Shen
- College of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, P. R. China
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
| | - Zhipeng Li
- College of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, P. R. China
| | - Huiyun Wang
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, Shandong 272067, P. R. China
| | - Yongchao Wang
- Rizhao Hospital of Traditional Chinese Medicine, Rizhao, Shandong 276800, P. R. China
| | - Xiaofang Li
- Rizhao Hospital of Traditional Chinese Medicine, Rizhao, Shandong 276800, P. R. China
| | - Qian Yang
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
| | - Yingjie Fu
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
| | - Ming Li
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
| | - Li-Na Gao
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, Shandong 272067, P. R. China
- Jining Key Laboratory of Depression Prevention and Treatment, Jining Medical University, Jining, Shandong 272067, P. R. China
| |
Collapse
|
33
|
Fan H, Wu J, Yang K, Xiong C, Xiong S, Wu X, Fang Z, Zhu J, Huang J. Dietary regulation of intestinal stem cells in health and disease. Int J Food Sci Nutr 2023; 74:730-745. [PMID: 37758199 DOI: 10.1080/09637486.2023.2262780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Diet is a critical regulator for physiological metabolism and tissue homeostasis, with a close relation to health and disease. As an important organ for digestion and absorption, the intestine comes into direct contact with many dietary components. The rapid renewal of its mucosal epithelium depends on the continuous proliferation and differentiation of intestinal stem cells (ISCs). The function and metabolism of ISCs can be controlled by a variety of dietary patterns including calorie restriction, fasting, high-fat, ketogenic, and high-sugar diets, as well as different nutrients including vitamins, amino acids, dietary fibre, and probiotics. Therefore, dietary interventions targeting ISCs may make it possible to prevent and treat intestinal disorders such as colon cancer, inflammatory bowel disease, and radiation enteritis. This review summarised recent research on the role and mechanism of diet in regulating ISCs, and discussed the potential of dietary modulation for intestinal diseases.
Collapse
Affiliation(s)
- Hancheng Fan
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Women's Reproductive Health, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
- Department of Histology and Embryology, School of Basic Medicine, Nanchang University, Nanchang, China
| | - Jiaqiang Wu
- The Second Clinical Medical College of Nanchang University, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kangping Yang
- The Second Clinical Medical College of Nanchang University, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chaoyi Xiong
- Department of Pathology, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Siyi Xiong
- Department of Pathology, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Xingwu Wu
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Women's Reproductive Health, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Zheng Fang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jing Zhu
- Center for Reproductive Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jialyu Huang
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Women's Reproductive Health, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| |
Collapse
|
34
|
Yan W, Jiang M, Hu W, Zhan X, Liu Y, Zhou J, Ji J, Wang S, Tai J. Causality Investigation between Gut Microbiota, Derived Metabolites, and Obstructive Sleep Apnea: A Bidirectional Mendelian Randomization Study. Nutrients 2023; 15:4544. [PMID: 37960197 PMCID: PMC10648878 DOI: 10.3390/nu15214544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Various studies have highlighted the important associations between obstructive sleep apnea (OSA) and gut microbiota and related metabolites. Nevertheless, the establishment of causal relationships between these associations remains to be determined. Multiple mendelian randomization (MR) analyses were performed to genetically predict the causative impact of 196 gut microbiota and 83 metabolites on OSA. Two-sample MR was used to assess the potential association, and causality was evaluated using inverse variance weighted (IVW), MR-Egger, and weighted median (WM) methods. Multivariable MR (MVMR) was employed to ascertain the causal independence between gut microbiota and the metabolites linked to OSA. Additionally, Cochran's Q test, the MR Egger intercept test and the MR Steiger test were used for the sensitivity analyses. The analysis of the 196 gut microbiota revealed that genus_Ruminococcaceae (UCG009) (PIVW = 0.010) and genus_Subdoligranulum (PIVW = 0.041) were associated with an increased risk of OSA onset. Conversely, Family_Ruminococcaceae (PIVW = 0.030), genus_Coprococcus2 (PWM = 0.025), genus_Eggerthella (PIVW = 0.011), and genus_Eubacterium (xylanophilum_group) (PIVW = 0.001) were negatively related to the risk of OSA. Among the 83 metabolites evaluated, 3-dehydrocarnitine, epiandrosterone sulfate, and leucine were determined to be potential independent risk factors associated with OSA. Moreover, the reverse MR analysis demonstrated a suggestive association between OSA exposure and six microbiota taxa. This study offers compelling evidence regarding the potential beneficial or detrimental causative impact of the gut microbiota and its associated metabolites on OSA risk, thereby providing new insights into the mechanisms of gut microbiome-mediated OSA development.
Collapse
Affiliation(s)
- Weiheng Yan
- Department of Otolaryngology, Head and Neck Surgery, Children’s Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100020, China; (W.Y.); (J.Z.)
| | - Miaomiao Jiang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100091, China;
| | - Wen Hu
- Department of Otolaryngology, Head and Neck Surgery, Children’s Hospital Capital Institute of Pediatrics, Beijing 100020, China; (W.H.); (X.Z.); (Y.L.)
| | - Xiaojun Zhan
- Department of Otolaryngology, Head and Neck Surgery, Children’s Hospital Capital Institute of Pediatrics, Beijing 100020, China; (W.H.); (X.Z.); (Y.L.)
| | - Yifan Liu
- Department of Otolaryngology, Head and Neck Surgery, Children’s Hospital Capital Institute of Pediatrics, Beijing 100020, China; (W.H.); (X.Z.); (Y.L.)
| | - Jiayi Zhou
- Department of Otolaryngology, Head and Neck Surgery, Children’s Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100020, China; (W.Y.); (J.Z.)
| | - Jie Ji
- Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China;
| | - Shan Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Jun Tai
- Department of Otolaryngology, Head and Neck Surgery, Children’s Hospital Capital Institute of Pediatrics, Beijing 100020, China; (W.H.); (X.Z.); (Y.L.)
| |
Collapse
|
35
|
Zhang YR, Li FY, Lu ZJ, Wang XF, Yan HC, Wang XQ, Gao CQ. l-Malic Acid Facilitates Stem Cell-Driven Intestinal Epithelial Renewal through the Amplification of β-Catenin Signaling by Targeting Frizzled7 in Chicks. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13079-13091. [PMID: 37632443 DOI: 10.1021/acs.jafc.3c01332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2023]
Abstract
l-Malic acid (l-MA) contributes to energy metabolism and nutrient digestion, which is an alternative to antibiotics for livestock; however, it is not clear whether l-MA can replace antibiotics to promote intestinal development in chicks. To investigate the effects of l-MA on intestinal stem cells (ISCs) driving epithelial renewal, we employed in vivo chick feeding experiments, chick intestinal organoid (IO) models, and in vitro chick intestinal epithelial cell models. The results showed that the feed conversion rate and diarrhea scores were decreased with improved jejunal morphology and barrier function in the 0.5% l-MA group. l-MA promoted the proliferation and differentiation of ISCs, inhibited the cell apoptosis, increased the IO formation efficiency, surface area, budding efficiency, and number of buds, suggesting that l-MA promoted the expansion of ISCs. Furthermore, l-MA treatment dramatically upregulated the Wnt/β-catenin signaling pathway in the jejunum. Importantly, Wnt transmembrane receptor Frizzled7 (FZD7) mRNA abundance was increased in response to dietary 0.5% l-MA. In addition, molecular docking analysis using Autodock software and isothermal titration calorimetry revealed that l-MA binds to Lys91 of FZD7 with high affinity, indicating a spontaneous interaction. The chick intestinal epithelial cells treated with 10 μM l-MA significantly increased cell viability, and the Wnt/β-catenin signaling pathway was activated, but l-MA failed to upregulate the Wnt/β-catenin signaling when treated with the FZD7-specific inhibitor Fz7-21 in chick intestinal epithelial cells, indicating that FZD7 is indispensable for l-MA activation of the Wnt/β-catenin signaling. Collectively, l-MA stimulated β-catenin signaling by targeting transmembrane receptor FZD7, which promoted ISC expansion and inhibited cell apoptosis to accelerate intestinal epithelial renewal in chicks.
Collapse
Affiliation(s)
- Ya-Ru Zhang
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control/Guangdong Laboratory for Lingnan Modern Agriculture/State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Fu-Yong Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Zhu-Jin Lu
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control/Guangdong Laboratory for Lingnan Modern Agriculture/State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Fan Wang
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control/Guangdong Laboratory for Lingnan Modern Agriculture/State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Hui-Chao Yan
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control/Guangdong Laboratory for Lingnan Modern Agriculture/State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Xiu-Qi Wang
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control/Guangdong Laboratory for Lingnan Modern Agriculture/State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Chun-Qi Gao
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control/Guangdong Laboratory for Lingnan Modern Agriculture/State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
36
|
Feitelson MA, Arzumanyan A, Medhat A, Spector I. Short-chain fatty acids in cancer pathogenesis. Cancer Metastasis Rev 2023; 42:677-698. [PMID: 37432606 PMCID: PMC10584782 DOI: 10.1007/s10555-023-10117-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/05/2023] [Indexed: 07/12/2023]
Abstract
Cancer is a multi-step process that can be viewed as a cellular and immunological shift away from homeostasis in response to selected infectious agents, mutations, diet, and environmental carcinogens. Homeostasis, which contributes importantly to the definition of "health," is maintained, in part by the production of short-chain fatty acids (SCFAs), which are metabolites of specific gut bacteria. Alteration in the composition of gut bacteria, or dysbiosis, is often a major risk factor for some two dozen tumor types. Dysbiosis is often characterized by diminished levels of SCFAs in the stool, and the presence of a "leaky gut," permitting the penetration of microbes and microbial derived molecules (e.g., lipopolysaccharides) through the gut wall, thereby triggering chronic inflammation. SCFAs attenuate inflammation by inhibiting the activation of nuclear factor kappa B, by decreasing the expression of pro-inflammatory cytokines such as tumor necrosis factor alpha, by stimulating the expression of anti-inflammatory cytokines such as interleukin-10 and transforming growth factor beta, and by promoting the differentiation of naïve T cells into T regulatory cells, which down-regulate immune responses by immunomodulation. SCFA function epigenetically by inhibiting selected histone acetyltransferases that alter the expression of multiple genes and the activity of many signaling pathways (e.g., Wnt, Hedgehog, Hippo, and Notch) that contribute to the pathogenesis of cancer. SCFAs block cancer stem cell proliferation, thereby potentially delaying or inhibiting cancer development or relapse by targeting genes and pathways that are mutated in tumors (e.g., epidermal growth factor receptor, hepatocyte growth factor, and MET) and by promoting the expression of tumor suppressors (e.g., by up-regulating PTEN and p53). When administered properly, SCFAs have many advantages compared to probiotic bacteria and fecal transplants. In carcinogenesis, SCFAs are toxic against tumor cells but not to surrounding tissue due to differences in their metabolic fate. Multiple hallmarks of cancer are also targets of SCFAs. These data suggest that SCFAs may re-establish homeostasis without overt toxicity and either delay or prevent the development of various tumor types.
Collapse
Affiliation(s)
- Mark A Feitelson
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA.
| | - Alla Arzumanyan
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Arvin Medhat
- Department of Molecular Cell Biology, Islamic Azad University Tehran North Branch, Tehran, 1975933411, Iran
| | - Ira Spector
- SFA Therapeutics, Jenkintown, PA, 19046, USA
| |
Collapse
|
37
|
Xu J, Liu X, Geng H, Liu R, Li F, Ma J, Liu M, Liu B, Sun H, Ma S, Wang Z, Zhu X, Li D, Wang C, Shi Y, Cui Y. Alfalfa Silage Diet Improves Meat Quality by Remodeling the Intestinal Microbes of Fattening Pigs. Foods 2023; 12:3209. [PMID: 37685141 PMCID: PMC10486512 DOI: 10.3390/foods12173209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Because the demand for pork is increasing, it is crucial to devise efficient and green methods to improve the quality and quantity of meat. This study investigated the improvement in pork quality after the inclusion of alfalfa meal or alfalfa silage in pig diet. Our results indicated that alfalfa silage improved meat quality more effectively in terms of water-holding capacity, drip loss, and marbling score. Besides, an alfalfa silage diet can affect the level of fatty acids and amino acids in pork. Further, alfalfa silage was found to improve meat quality by remodeling intestinal microbiota and altering the level of SCFAs, providing a viable option for improving meat quality through forage.
Collapse
Affiliation(s)
- Junying Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (J.X.)
| | - Xiao Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (J.X.)
| | - Hongmin Geng
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450002, China
| | - Rui Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (J.X.)
| | - Fang Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (J.X.)
| | - Jixiang Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (J.X.)
| | - Mengqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (J.X.)
| | - Boshuai Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (J.X.)
| | - Hao Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (J.X.)
| | - Sen Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (J.X.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Zhichang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (J.X.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Xiaoyan Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (J.X.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Defeng Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (J.X.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Chengzhang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (J.X.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (J.X.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Yalei Cui
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (J.X.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| |
Collapse
|
38
|
Zou W, Hong J, Yu W, Ma Y, Gan J, Liu Y, Luo X, You W, Ke C. Comprehensive Comparison of Effects of Antioxidant (Astaxanthin) Supplementation from Different Sources in Haliotis discus hannai Diet. Antioxidants (Basel) 2023; 12:1641. [PMID: 37627636 PMCID: PMC10451870 DOI: 10.3390/antiox12081641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Dietary antioxidant supplementation, especially astaxanthin, has shown great results on reproductive aspects, egg quality, growth, survival, immunity, stress tolerance, and disease resistance in aquatic animals. However, the effects of dietary astaxanthin supplementation from different sources are still unknown. A comprehensive comparison of survival, growth, immune response, antioxidant activity, thermal resistance, disease resistance, and intestinal microbial structure was conducted in dietary antioxidant supplementation from the sources of Gracilaria lemaneiformis (GL), industrial synthetic astaxanthin (80 mg/kg astaxanthin actual weight, named as group 'SA80'), Phaffia rhodozyma (80 mg/kg astaxanthin actual weight, named as group 'PR80') and Haematococcus pluvialis (120 mg/kg astaxanthin actual weight, named as group 'HP120') at their optimal supplementation amounts. Furthermore, the SA80, PR80, and HP120 groups performed better in all aspects, including survival, growth, immune response, antioxidant activity, thermal resistance, and disease resistance, compared with the GL group. The PR80 and HP120 group also had a better growth performance than the SA80 group. In terms of heat stress and bacterial challenge, abalone in the PR80 group showed the strongest resistance. Overall, 80 mg/kg astaxanthin supplementation from Phaffia rhodozyma was recommended to obtain a more effective and comprehensive outcome. This study contributes to the discovery of the optimum dietary astaxanthin supplementation source for abalone, which is helpful to improve the production efficiency and economic benefits of abalone. Future research can further explore the action mechanism and the method of application of astaxanthin to better exploit its antioxidant role.
Collapse
Affiliation(s)
- Weiguang Zou
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.Z.); (J.H.); (W.Y.); (Y.M.); (J.G.); (Y.L.); (W.Y.)
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen 361102, China
- National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou 363400, China
| | - Jiawei Hong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.Z.); (J.H.); (W.Y.); (Y.M.); (J.G.); (Y.L.); (W.Y.)
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen 361102, China
- National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou 363400, China
| | - Wenchao Yu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.Z.); (J.H.); (W.Y.); (Y.M.); (J.G.); (Y.L.); (W.Y.)
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen 361102, China
- National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou 363400, China
| | - Yaobin Ma
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.Z.); (J.H.); (W.Y.); (Y.M.); (J.G.); (Y.L.); (W.Y.)
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen 361102, China
- National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou 363400, China
| | - Jiacheng Gan
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.Z.); (J.H.); (W.Y.); (Y.M.); (J.G.); (Y.L.); (W.Y.)
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen 361102, China
- National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou 363400, China
| | - Yanbo Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.Z.); (J.H.); (W.Y.); (Y.M.); (J.G.); (Y.L.); (W.Y.)
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen 361102, China
- National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou 363400, China
| | - Xuan Luo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.Z.); (J.H.); (W.Y.); (Y.M.); (J.G.); (Y.L.); (W.Y.)
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen 361102, China
- National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou 363400, China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.Z.); (J.H.); (W.Y.); (Y.M.); (J.G.); (Y.L.); (W.Y.)
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen 361102, China
- National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou 363400, China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.Z.); (J.H.); (W.Y.); (Y.M.); (J.G.); (Y.L.); (W.Y.)
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen 361102, China
- National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou 363400, China
| |
Collapse
|
39
|
Buhaș MC, Candrea R, Gavrilaș LI, Miere D, Tătaru A, Boca A, Cătinean A. Transforming Psoriasis Care: Probiotics and Prebiotics as Novel Therapeutic Approaches. Int J Mol Sci 2023; 24:11225. [PMID: 37446403 DOI: 10.3390/ijms241311225] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease with autoimmune pathological characteristics. Recent research has found a link between psoriasis, inflammation, and gut microbiota dysbiosis, and that probiotics and prebiotics provide benefits to patients. This 12-week open-label, single-center clinical trial evaluated the efficacy of probiotics (Bacillus indicus (HU36), Bacillus subtilis (HU58), Bacillus coagulans (SC208), Bacillus licheniformis (SL307), and Bacillus clausii (SC109)) and precision prebiotics (fructooligosaccharides, xylooligosaccharides, and galactooligosaccharides) in patients with psoriasis receiving topical therapy, with an emphasis on potential metabolic, immunological, and gut microbiota changes. In total, 63 patients were evaluated, with the first 42 enrolled patients assigned to the intervention group and the next 21 assigned to the control group (2:1 ratio; non-randomized). There were between-group differences in several patient characteristics at baseline, including age, psoriasis severity (the incidence of severe psoriasis was greater in the intervention group than in the control group), the presence of nail psoriasis, and psoriatic arthritis, though it is not clear whether or how these differences may have affected the study findings. Patients with psoriasis receiving anti-psoriatic local therapy and probiotic and prebiotic supplementation performed better in measures of disease activity, including Psoriasis Area and Severity Index, Dermatology Life Quality Index, inflammatory markers, and skin thickness compared with those not receiving supplementation. Furthermore, in the 15/42 patients in the intervention group who received gut microbiota analysis, the gut microbiota changed favorably following 12 weeks of probiotic and prebiotic supplementation, with a shift towards an anti-inflammatory profile.
Collapse
Affiliation(s)
- Mihaela Cristina Buhaș
- Department of Dermatology, Toxicology and Clinical Pharmacology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400423 Cluj-Napoca, Romania
| | - Rareș Candrea
- Master Program in Nutrition and Quality of Life, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400423 Cluj-Napoca, Romania
| | - Laura Ioana Gavrilaș
- Department of Bromatology, Hygiene, Nutrition, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Doina Miere
- Department of Bromatology, Hygiene, Nutrition, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Alexandru Tătaru
- Department of Dermatology, Toxicology and Clinical Pharmacology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400423 Cluj-Napoca, Romania
| | - Andreea Boca
- Department of Pharmacology, Toxicology and Clinical Pharmacology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Adrian Cătinean
- Department of Internal Medicine, Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Phamacy, 400423 Cluj-Napoca, Romania
| |
Collapse
|
40
|
Li H, Christman LM, Yagiz Y, Washington TL, Wang GP, Gu L. Dealcoholized muscadine wine was partially effective in preventing and treating dextran sulfate sodium-induced colitis and restoring gut dysbiosis in mice. Food Funct 2023; 14:5994-6011. [PMID: 37310366 DOI: 10.1039/d3fo00047h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Muscadine wine has a unique polyphenol profile consisting of anthocyanins, ellagic acids, and flavonols. This study aims to compare the prevention, treatment, and combined activity (P + T) of dealcoholized muscadine wine (DMW) on DSS-induced colitis in mice and its impact on the gut microbiome. Male C57BL/6 mice in the healthy and colitis group received an AIN-93M diet for 28 days. In the prevention, treatment, and P + T (prevention + treatment) groups, mice received an AIN-93M diet containing 2.79% (v/w) DMW on days 1-14, 15-28, and 1-28, respectively. Except for mice in the healthy group, all mice were given water with 2.5% (w/v) DSS on days 8-14 to induce colitis. DMW in all three receiving groups reduced myeloperoxidase activity, histology scores, and phosphorylation of Iκb-α in the colon. Colon shortening, serum IL-6, and colonic mRNA of TNF-α were blunted only in the P + T group. Gut permeability was reduced in the treatment and P + T groups. DMW in P + T group showed higher activity to increase microbiome evenness, modulate β-diversity, elevate the cecal content of SCFAs, and enrich SCFA-producing bacteria, including Lactobacillaceae, Lachnospiraceae, Ruminococcaceae, and Peptococcaceae. This was accompanied by a decrease in pathogenic Burkholderiaceae in mice. This study suggests that muscadine wine has partial preventive and therapeutic effects against inflammatory bowel disease. The combination of prevention and treatment using DMW showed better activities than either prevention or treatment.
Collapse
Affiliation(s)
- Hao Li
- Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, USA.
| | - Lindsey M Christman
- Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, USA.
| | - Yavuz Yagiz
- Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, USA.
| | - Taylor L Washington
- Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, USA.
| | - Gary P Wang
- Division of Infectious Diseases and Global Medicine, College of Medicine, University of Florida, Gainesville, Florida 32611, USA
| | - Liwei Gu
- Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, USA.
| |
Collapse
|
41
|
Bleich RM, Li C, Sun S, Barlogio CJ, Broberg CA, Franks AR, Bulik-Sullivan E, Dogan B, Simpson KW, Carroll IM, Fodor AA, Arthur JC. A consortia of clinical E. coli strains with distinct in-vitro adherent/invasive properties establish their own co-colonization niche and shape the intestinal microbiota in inflammation-susceptible mice. RESEARCH SQUARE 2023:rs.3.rs-2899665. [PMID: 37214858 PMCID: PMC10197778 DOI: 10.21203/rs.3.rs-2899665/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Background Inflammatory bowel disease (IBD) patients experience recurrent episodes of intestinal inflammation and often follow an unpredictable disease course. Mucosal colonization with adherent-invasive Escherichia coli (AIEC) are believed to perpetuate intestinal inflammation. However, it remains unclear if the 24-year-old AIEC in-vitro definition fully predicts mucosal colonization in-vivo. To fill this gap, we have developed a novel molecular barcoding approach to distinguish strain variants in the gut and have integrated this approach to explore mucosal colonization of distinct patient-derived E. coli isolates in gnotobiotic mouse models of colitis. Results Germ-free inflammation-susceptible interleukin-10-deficient (Il10-/-) and inflammation-resistant WT mice were colonized with a consortia of AIEC and non-AIEC strains, then given a murine fecal transplant to provide niche competition. E. coli strains isolated from human intestinal tissue were each marked with a unique molecular barcode that permits identification and quantification by barcode-targeted sequencing. 16S rRNA sequencing was used to evaluate the microbiome response to E. coli colonization. Our data reveal that specific AIEC and non-AIEC strains reproducibly colonize the intestinal mucosa of WT and Il10-/- mice. These E. coli expand in Il10-/- mice during inflammation and induce compositional dysbiosis to the microbiome in an inflammation-dependent manner. In turn, specific microbes co-evolve in inflamed mice, potentially diversifying E. coli colonization patterns. We observed no selectivity in E. coli colonization patterns in the fecal contents, indicating minimal selective pressure in this niche from host-microbe and interbacterial interactions. Because select AIEC and non-AIEC strains colonize the mucosa, this suggests the in vitro AIEC definition may not fully predict in vivo colonization potential. Further comparison of seven E. coli genomes pinpointed unique genomic features contained only in highly colonizing strains (two AIEC and two non-AIEC). Those colonization-associated features may convey metabolic advantages (e.g., iron acquisition and carbohydrate consumption) to promote efficient mucosal colonization. Conclusions Our findings establish the in-vivo mucosal colonizer, not necessarily AIEC, as a principal dysbiosis driver through crosstalk with host and associated microbes. Furthermore, we highlight the utility of high-throughput screens to decode the in-vivo colonization dynamics of patient-derived bacteria in murine models.
Collapse
Affiliation(s)
| | - Chuang Li
- University of North Carolina at Chapel Hill
| | - Shan Sun
- University of North Carolina at Charlotte
| | | | | | | | | | - Belgin Dogan
- Cornell University College of Veterinary Medicine
| | | | | | | | | |
Collapse
|
42
|
Shahbazi A, Sepehrinezhad A, Vahdani E, Jamali R, Ghasempour M, Massoudian S, Sahab Negah S, Larsen FS. Gut Dysbiosis and Blood-Brain Barrier Alteration in Hepatic Encephalopathy: From Gut to Brain. Biomedicines 2023; 11:1272. [PMID: 37238943 PMCID: PMC10215854 DOI: 10.3390/biomedicines11051272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 05/28/2023] Open
Abstract
A common neuropsychiatric complication of advanced liver disease, hepatic encephalopathy (HE), impacts the quality of life and length of hospital stays. There is new evidence that gut microbiota plays a significant role in brain development and cerebral homeostasis. Microbiota metabolites are providing a new avenue of therapeutic options for several neurological-related disorders. For instance, the gut microbiota composition and blood-brain barrier (BBB) integrity are altered in HE in a variety of clinical and experimental studies. Furthermore, probiotics, prebiotics, antibiotics, and fecal microbiota transplantation have been shown to positively affect BBB integrity in disease models that are potentially extendable to HE by targeting gut microbiota. However, the mechanisms that underlie microbiota dysbiosis and its effects on the BBB are still unclear in HE. To this end, the aim of this review was to summarize the clinical and experimental evidence of gut dysbiosis and BBB disruption in HE and a possible mechanism.
Collapse
Affiliation(s)
- Ali Shahbazi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran; (A.S.); (S.M.)
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran;
| | - Ali Sepehrinezhad
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran; (A.S.); (S.M.)
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran;
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad 9919191778, Iran
| | - Edris Vahdani
- Department of Microbiology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 4815733971, Iran;
| | - Raika Jamali
- Research Development Center, Sina Hospital, Tehran University of Medical Sciences, Tehran 1417653761, Iran
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Monireh Ghasempour
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran;
| | - Shirin Massoudian
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran; (A.S.); (S.M.)
| | - Sajad Sahab Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad 9919191778, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9919191778, Iran
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 9815733169, Iran
| | - Fin Stolze Larsen
- Department of Intestinal Failure and Liver Diseases, Rigshospitalet, Inge Lehmanns Vej 5, 2100 Copenhagen, Denmark
| |
Collapse
|
43
|
Nemoto S, Kubota T, Ohno H. Exploring body weight-influencing gut microbiota by elucidating the association with diet and host gene expression. Sci Rep 2023; 13:5593. [PMID: 37019989 PMCID: PMC10076326 DOI: 10.1038/s41598-023-32411-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
We aimed to identify gut microbiota that influences body weight by elucidating the association with diets and host genes. Germ-free (GF) mice with and without fecal microbiota transplant (FMT) were fed a normal, high-carbohydrate, or high-fat diet. FMT mice exhibited greater total body weight; adipose tissue and liver weights; blood glucose, insulin, and total cholesterol levels; and oil droplet size than the GF mice, regardless of diet. However, the extent of weight gain and metabolic parameter levels associated with gut microbiota depended on the nutrients ingested. For example, a disaccharide- or polysaccharide-rich diet caused more weight gain than a monosaccharide-rich diet. An unsaturated fatty acid-rich diet had a greater microbial insulin-increasing effect than a saturated fatty acid-rich diet. Perhaps the difference in microbial metabolites produced from substances taken up by the host created metabolic differences. Therefore, we analyzed such dietary influences on gut microbiota, differentially expressed genes between GF and FMT mice, and metabolic factors, including body weight. The results revealed a correlation between increased weight gain, a fat-rich diet, increased Ruminococcaceae abundance, and decreased claudin 22 gene expression. These findings suggest that weight regulation might be possible through the manipulation of the gut microbiota metabolism using the host's diet.
Collapse
Affiliation(s)
- Shino Nemoto
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.
| | - Tetsuya Kubota
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Division of Diabetes and Metabolism, The Institute of Medical Science, Asahi Life Foundation, Tokyo, Japan
- Department of Clinical Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
- Division of Cardiovascular Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Laboratory for Immune Regulation, Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba, Japan
- Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| |
Collapse
|
44
|
Gong R, Song S, Ai Y, Wang S, Dong X, Ren Z, Xie H, Jiang B, Zhao L. Exploring the growing forest musk deer (Moschus berezovskii) dietary protein requirement based on gut microbiome. Front Microbiol 2023; 14:1124163. [PMID: 36970665 PMCID: PMC10033606 DOI: 10.3389/fmicb.2023.1124163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
It is necessary to assess the appropriate dietary protein level of the forest musk deer (FMD), as nutritional needs are unclear. The microbiome in gastrointestinal tracts plays an important role in regulating nutrient utilization, absorption and host growth or development. Thus, we aimed to evaluate growth performance, nutrient digestibility and fecal microbiome of growing FMD supplied with different protein levels of diets. Eighteen 6-month-old male FMD with an initial weight 5.0 ± 0.2 kg were used in a 62-day trial. The animals were randomly distributed to three groups, the dietary crude protein (CP) level was 11.51% (L), 13.37% (M), and 15.48% (H). The results showed that the CP digestibility decreased as dietary CP level increased (p < 0.01). Compared with group L and H, FMD in M group has higher average daily gain, feed efficiency and neutral detergent fiber digestibility. For the fecal bacterial community, the percentage of Firmicutes was increased, Bacteroidetes was decreased and the diversity of microbiota significantly reduced (p < 0.05) with the increasing of dietary protein. The proportion of Ruminococcaceae_005, Ruminococcaceae_UCG-014 and uncultured_bacterium_f_Lachnospiraceae were significantly increased wtih rising CP, the proportions of Bacteroides and Rikenellaceae_RC9_gut_group were significantly decrease nevertheless at the genus level. The higher abundance of f_Prevotellaceae and g_Prevotellaceae_UCG_004 were found at M group by LEfSe analysis. The relative abundance of uncultured_bacterium_f_Ruminococcaceae was positively correlated with the average daily gain and feed conversion ratio (p < 0.05), whereas Family_XIII_AD3011_group was negatively correlated with feed conversion ratio (p < 0.05). The UPGMA tree showed L and M groups were closer in clustering relationship, while H group was clustered separately into a branch, which indicated that the bacterial structure had changed greatly with protein level increased from 13.37 to 15.48%. Overall, our results indicated that the optimum dietary CP for the growing FMD was 13.37%.
Collapse
Affiliation(s)
- Ruiguang Gong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Shengjie Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaotian Ai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuhui Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xianggui Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhanjun Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- *Correspondence: Zhanjun Ren,
| | - Hui Xie
- Qinba Ecological Protection Center of Chenggu County, Baoji, Shaanxi, China
| | - Benmo Jiang
- Baoji Fengchun Forest Musk Breeding Base, Baoji, Shaanxi, China
| | - Lixia Zhao
- Shaanxi Shenglinyuan Biotechnology Co., Ltd., Baoji, Shaanxi, China
| |
Collapse
|
45
|
Wu L, Gao L, Jin X, Chen Z, Qiao X, Cui X, Gao J, Zhang L. Ethanol Extract of Mao Jian Green Tea Attenuates Gastrointestinal Symptoms in a Rat Model of Irritable Bowel Syndrome with Constipation via the 5-hydroxytryptamine Signaling Pathway. Foods 2023; 12:foods12051101. [PMID: 36900618 PMCID: PMC10000491 DOI: 10.3390/foods12051101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
In a previous study, we demonstrated that the hydro extract of Mao Jian Green Tea (MJGT) promotes gastrointestinal motility. In this study, the effect of MJGT ethanol extract (MJGT_EE) in treating irritable bowel syndrome with constipation (IBS-C) in a rat model constructed via maternal separation combined with an ice water stimulation was investigated. First, a successful model construction was confirmed through the determination of the fecal water content (FWC) and the smallest colorectal distension (CRD) volume. Then, the overall regulatory effects of MJGT_EE on the gastrointestinal tract were preliminarily evaluated through gastric emptying and small intestinal propulsion tests. Our findings indicated that MJGT_EE significantly increased FWC (p < 0.01) and the smallest CRD volume (p < 0.05) and promoted gastric emptying and small intestinal propulsion (p < 0.01). Furthermore, mechanistically, MJGT_EE reduced intestinal sensitivity by regulating the expression of proteins related to the serotonin (5-hydroxytryptamine; 5-HT) pathway. More specifically, it decreased tryptophan hydroxylase (TPH) expression (p < 0.05) and increased serotonin transporter (SERT) expression (p < 0.05), thereby decreasing 5-HT secretion (p < 0.01), activating the calmodulin (CaM)/myosin light chain kinase (MLCK) pathway, and increasing 5-HT4 receptor (5-HT4R) expression (p < 0.05). Moreover, MJGT_EE enhanced the diversity of gut microbiota, increased the proportion of beneficial bacteria, and regulated the number of 5-HT-related bacteria. Flavonoids may play the role of being active ingredients in MJGT_EE. These findings suggest that MJGT_EE could serve as a potential therapeutic pathway for IBS-C.
Collapse
Affiliation(s)
- Lei Wu
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Liming Gao
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Xiang Jin
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Zhikang Chen
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Xutong Qiao
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Xiting Cui
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Jianhua Gao
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
- Correspondence: (J.G.); (L.Z.)
| | - Liwei Zhang
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
- Correspondence: (J.G.); (L.Z.)
| |
Collapse
|
46
|
Jakubauskas M, Jakubauskiene L, Leber B, Horvath A, Strupas K, Stiegler P, Schemmer P. Probiotic Supplementation Attenuates Chemotherapy-Induced Intestinal Mucositis in an Experimental Colorectal Cancer Liver Metastasis Rat Model. Nutrients 2023; 15:nu15051117. [PMID: 36904117 PMCID: PMC10005486 DOI: 10.3390/nu15051117] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
The use of chemotherapeutic agents is of paramount importance when treating colorectal cancer (CRC). Unfortunately, one of the most frequent chemotherapy (CTx) side effects is intestinal mucositis (IM), which may present with several clinical symptoms such as nausea, bloating, vomiting, pain, and diarrhea and even can result in life-threatening complications. There is a focused scientific effort towards developing new therapies to prevent and treat IM. The aim of this study was to assess the outcomes of probiotic supplementation on CTx-induced IM in a CRC liver metastasis rat model. Six-week-old male Wistar rats received either a multispecies probiotic or placebo mixture. On the 28th experiment day, rats received FOLFOX CTx, and afterwards, the severity of diarrhea was evaluated twice daily. Stool samples were collected for further microbiome analysis. Additionally, immunohistochemical stainings of ileum and colon samples with were performed with MPO, Ki67, and Caspase-3 antibodies. Probiotic supplementation alleviates the severity and length of CTx-induced diarrhea. Additionally, probiotics significantly reduced FOLFOX-induced weight and blood albumin loss. Furthermore, probiotic supplementation mitigated CTx-induced histological changes in the gut and promoted intestinal cell regeneration. This study shows that multispecies probiotic supplementation attenuates FOLFOX-induced IM symptoms by inhibiting apoptosis and promoting intestinal cell proliferation.
Collapse
Affiliation(s)
- Matas Jakubauskas
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio str. 21, 03101 Vilnius, Lithuania
| | - Lina Jakubauskiene
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio str. 21, 03101 Vilnius, Lithuania
| | - Bettina Leber
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria
| | - Angela Horvath
- Division of Gastroenterology and Hepatology, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria
| | - Kestutis Strupas
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio str. 21, 03101 Vilnius, Lithuania
| | - Philipp Stiegler
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria
- Correspondence: ; Tel.: +43-316-385-84094
| | - Peter Schemmer
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria
| |
Collapse
|
47
|
Wang Y, Wang B, Zeng Z, Liu R, Tang L, Meng X, Li W. Bacillus amyloliquefaciens SC06 attenuated high-fat diet induced anxiety-like behavior and social withdrawal of male mice by improving antioxidant capacity, intestinal barrier function and modulating intestinal dysbiosis. Behav Brain Res 2023; 438:114172. [PMID: 36280009 DOI: 10.1016/j.bbr.2022.114172] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
Abstract
Anxiety-like behavior and social withdrawal induced by obesity and oxidative stress are significant health concerns in contemporary society. Our previously study found that Bacillus amyloliquefaciens SC06 (SC06) decreased the body weight of high-fat diet (HFD)-fed male mice and protected porcine intestinal epithelial cells against oxidative stress. The present study further investigated the effect of SC06 on HFD-induced obesity, anxiety-like behavior and social withdrawal of male mice and explored its mechanism. Results showed that SC06 significantly decreased HFD-induced obesity as evidenced by the decreased body weight, weight of liver and epididymal fat. Meanwhile, SC06 attenuated the anxiety-like behavior of HFD-fed male mice as illustrated by the more exploration time in both the open arms of elevated plus maze and the central area of open field and the reversed their social withdrawal tested in the three-chamber social choice task. SC06 also reduced reactive oxygen species (ROS) concentration and normalized the mitochondrial morphology in the hippocampus. SC06 reduced the systemic inflammation and increased the expression of intestinal tight junctions (ZO-1 and Claudin1). Furthermore, SC06 also altered the microbial diversity and composition, and decreased Firmicutes to Bacteroidetes ratio of HFD-fed male mice. These findings suggest SC06 attenuate HFD-induced anxiety-like behavior and social withdrawal of male mice by attenuating hippocampal oxidation stress, systemic inflammation, dysbiosis and improving intestinal barrier function.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, 310058 Hangzhou, China; College of Animal Science and Technology, Qingdao Agricultural University, 266109 Qingdao, China
| | - Baikui Wang
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, 310058 Hangzhou, China
| | - Zhonghua Zeng
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, 310058 Hangzhou, China
| | - Rongrong Liu
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, 310058 Hangzhou, China
| | - Li Tang
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, 310058 Hangzhou, China
| | - Xiaolu Meng
- Department of Psychology, School of Medical Humanitarians, Guizhou Medical University, 550025 Guiyang, China.
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, 310058 Hangzhou, China.
| |
Collapse
|
48
|
Yao Y, Feng S, Li X, Liu T, Ye S, Ma L, Man S. Litchi procyanidins inhibit colon cancer proliferation and metastasis by triggering gut-lung axis immunotherapy. Cell Death Dis 2023; 14:109. [PMID: 36774343 PMCID: PMC9922286 DOI: 10.1038/s41419-022-05482-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 02/13/2023]
Abstract
Litchi chinensis seed, as a valuable by-product of the subtropical fruit litchi (Litchi chinensis Sonn.), has been confirmed to be rich in procyanidins (LPC). The anticarcinogenic properties of procyanidins has been primarily attributed to their antioxidant and anti-inflammatory activities. However, there is a comparative paucity of information on if and how LPC inhibits colon cancer. Here, LPC significantly inhibited CT26 colon cancer cells proliferation and metastasis in vivo and in vitro. In CT26 lung metastatic mice, the anti-metastatic effect of LPC relied on its regulation of gut microbiota such as increase of Lachnospiraceae UCG-006, Ruminococcus, and their metabolites such as acetic acid, propionic acid and butyric acid. In addition, LPC significantly inhibited CT26 colon cancer cells metastasis through increasing CD8+ cytotoxic T lymphocytes infiltration and decreasing the number of macrophages. Antibiotics treatment demonstrated that the therapeutic effect of LPC depended on the gut microbiota, which regulated T cells immune response. Taken together, LPC had strong inhibitory effects on colon cancer pulmonary metastasis by triggering gut-lung axis to influence the T cells immune response. Our research provides a novel finding for the utilization of procyanidins in the future, that is, supplementing more fruits and vegetables rich in procyanidins is beneficial to the treatment of colon cancer, or it can be used as an adjuvant drug in clinical anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Yuan Yao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Suya Feng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xuejiao Li
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Taohua Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Shengying Ye
- Department of Pharmacy, The 983th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Tianjin, 300142, China.
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| |
Collapse
|
49
|
Hua Q, Zhang H, Xu R, Tian C, Gao T, Yuan Y, Han Y, Li Y, Qi C, Zhong F, Ma A. Lacticaseibacillus casei ATCC334 Ameliorates Radiation-Induced Intestinal Injury in Rats by Targeting Microbes and Metabolites. Mol Nutr Food Res 2023; 67:e2200337. [PMID: 36408889 DOI: 10.1002/mnfr.202200337] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/13/2022] [Indexed: 11/22/2022]
Abstract
SCOPE Gastrointestinal side effects are frequently observed in patients receiving medical radiation therapy. As Lacticaseibacillus casei ATCC334 potentially affects microbial ecosystem, the study hypothesizes that it may improve radiation-induced intestinal injury in rats by modulating the "gut microbiota-metabolite-barrier axis." METHODS AND RESULTS Rats are fed one of three or no doses of L. casei ATCC334 for 7 days and then expose to a single dose of 9 Gy X-ray total abdominal irradiation. Supplementation with L. casei ATCC334 promote the proliferation of intestinal stem cells (ISCs), increase the expression of tight junction proteins, reduce intestinal permeability, and protect intestinal barrier integrity. Moreover, 16S rRNA sequencing show that medium and high doses of L. casei ATCC334 inhibit the growth of Escherichia/Shigella and favor Akkermansia proliferation. L. casei ATCC334 intervention reprogram the metabolic profile and inhibit putrescine production but promote alpha-linolenic acid (ALA) production. Notably, a decrease in putrescine and an increase in ALA are significantly correlated with the proliferation of ISCs and enhanced intestinal barrier function following L. casei ATCC334 intervention. CONCLUSION These results highlight that medium and high doses of L. casei ATCC334 alleviate radiation-induced intestinal damage by enhancing the mucosal barrier and remodeling the gut microbiota structure and metabolic activity.
Collapse
Affiliation(s)
- Qinglian Hua
- School of Public health, Qingdao University, Qingdao, 266071, China
| | - Haowen Zhang
- Institute of Nutrition & Health, Qingdao University, Qingdao, 266071, China
| | - Rui Xu
- Nanan District Center for Disease Control and Prevention, Chongqing, 400000, China
| | | | - Tianlin Gao
- School of Public health, Qingdao University, Qingdao, 266071, China
| | - Yanlei Yuan
- School of Public health, Qingdao University, Qingdao, 266071, China
| | - Yaling Han
- School of Public health, Qingdao University, Qingdao, 266071, China
| | - Yue Li
- School of Public health, Qingdao University, Qingdao, 266071, China
| | - Ce Qi
- Institute of Nutrition & Health, Qingdao University, Qingdao, 266071, China
| | - Feng Zhong
- School of Public health, Qingdao University, Qingdao, 266071, China
| | - Aiguo Ma
- Institute of Nutrition & Health, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
50
|
Zhou J, Ren Y, Wen X, Yue S, Wang Z, Wang L, Peng Q, Hu R, Zou H, Jiang Y, Hong Q, Xue B. Comparison of coated and uncoated trace elements on growth performance, apparent digestibility, intestinal development and microbial diversity in growing sheep. Front Microbiol 2022; 13:1080182. [PMID: 36605519 PMCID: PMC9808050 DOI: 10.3389/fmicb.2022.1080182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
The suitable supplement pattern affects the digestion and absorption of trace minerals by ruminants. This study aimed to compare the effects of coated and uncoated trace elements on growth performance, apparent digestibility, intestinal development and microbial diversity in growing sheep. Thirty 4-month-old male Yunnan semi-fine wool sheep were randomly assigned to three treatments (n = 10) and fed with following diets: basal diet without adding exogenous trace elements (CON), basal diet plus 400 mg/kg coated trace elements (CTE, the rumen passage rate was 65.87%) and basal diet plus an equal amount of trace elements in uncoated form (UTE). Compared with the CON group, the average daily weight gain and apparent digestibility of crude protein were higher (P < 0.05) in the CTE and UTE groups, while there was no difference between the CTE and UTE groups. The serum levels of selenium, iodine and cobalt were higher (P < 0.05) in the CTE and UTE groups than those in the CON group, the serum levels of selenium and cobalt were higher (P < 0.05) in the CTE group than those in the UTE group. Compared with the CON and UTE groups, the villus height and the ratio of villus height to crypt depth in duodenum and ileum were higher (P < 0.05) in the CTE groups. The addition of trace minerals in diet upregulated most of the relative gene expression of Ocludin, Claudin-1, Claudin-2, ZO-1, and ZO-2 in the duodenum and jejunum and metal ion transporters (FPN1 and ZNT4) in small intestine. The relative abundance of the genera Christensenellaceae R-7 group, Ruminococcus 1, Lachnospiraceae NK3A20 group, and Ruminococcaceae in ileum, and Ruminococcaceae UCG-014 and Lactobacillus in colon was higher in the CTE group that in the CON group. These results indicated that dietary trace mineral addition improved the growth performance and intestinal development, and altered the structure of intestinal bacteria in growing sheep. Compared to uncoated form, offering trace mineral elements to sheep in coated form had a higher absorption efficiency, however, had little effect on improving growth performance of growing sheep.
Collapse
Affiliation(s)
- Jia Zhou
- 1Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yifan Ren
- 1Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiao Wen
- 1Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Shuangming Yue
- 2Department of Bioengineering, Sichuan Water Conservancy Vocational College, Chengdu, China
| | - Zhisheng Wang
- 1Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Lizhi Wang
- 1Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Quanhui Peng
- 1Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Rui Hu
- 1Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Huawei Zou
- 1Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yahui Jiang
- 3College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qionghua Hong
- 4Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Bai Xue
- 1Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China,*Correspondence: Bai Xue,
| |
Collapse
|