1
|
Yang Z, Chen S, Sun W, Yang Y, Xu Y, Tang Y, Jiang W, Li J, Zhang Y. Study on the mechanisms by which pumpkin polysaccharides regulate abnormal glucose and lipid metabolism in diabetic mice under oxidative stress. Int J Biol Macromol 2024; 270:132249. [PMID: 38729500 DOI: 10.1016/j.ijbiomac.2024.132249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Pumpkin polysaccharide (PPe-H) can perform physiological functions through its antioxidative and hypoglycemic effects; however, the mechanisms through which PPe-H regulates abnormal glucose and lipid metabolism caused by oxidative stress injury remain unclear. In the present study, streptozotocin was used to generate an acute diabetic mouse model, and the effects of PPe-H on glucose and lipid metabolism impaired by oxidative stress in diabetic mice were studied. PPe-H significantly reduced blood glucose levels and enhanced the oral glucose tolerance of diabetic mice under stress injury (p < 0.05). The analysis of liver antioxidant enzymes showed that PPe-H significantly enhanced the activities of SOD and CAT (p < 0.05), increased the GSH level, and decreased the level of MDA (p < 0.05). Transcriptomic and metabolomic analyses of the liver tissues of mice revealed characteristic differences in the genetic and metabolic levels of the samples, which showed that PPe-H treatment may play a positive role in regulating the metabolism of methionine, cysteine, glycerol phospholipid, and linoleic acid. These results indicated that PPe-H alleviated the symptoms of hyperglycemia by regulating metabolites related to oxidative stress and glycolipid metabolism in diabetic mice.
Collapse
Affiliation(s)
- Zeen Yang
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Shengdong Chen
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Wenxuan Sun
- Liang Xin College, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Yechen Yang
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Yuxuan Xu
- Liang Xin College, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Yuxuan Tang
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Wen Jiang
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Jia Li
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Yongjun Zhang
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China.
| |
Collapse
|
2
|
Hu Z, Luo Y, Wu Y, Qin D, Yang F, Luo F, Lin Q. Extraction, structures, biological effects and potential mechanisms of Momordica charantia polysaccharides: A review. Int J Biol Macromol 2024; 268:131498. [PMID: 38614167 DOI: 10.1016/j.ijbiomac.2024.131498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 03/18/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Momordica charantia L. is a kind of vegetable with medicinal value. As the main component of the vegetable, Momordica charantia polysaccharides (MCPs) mainly consist of galactose, galacturonic acid, xylose, rhamnose, mannose and the molecular weight range is 4.33 × 103-1.16 × 106 Da. MCPs have been found to have various biological activities in recent years, such as anti-oxidation, anti-diabetes, anti-brain injury, anti-obesity, immunomodulatory and anti-inflammation. In this review, we systematically summarized the extraction methods, structural characteristics and physicochemical properties of MCPs. Especially MCPs modulate gut microbiota and cause the alterations of metabolic products, which can regulate different signaling pathways and target gene expressions to exert various functions. Meanwhile, the potential structure-activity relationships of MCPs were analyzed to provide a scientific basis for better development or modification of MCPs. Future researches on MCPs should focus on industrial extraction and molecular mechanisms. In East Asia, Momordica charantia L. is used as both food and medicine. It is not clear whether MCP has its unique biological effects. Further study on the difference between MCPs and other food-derived polysaccharides will be helpful to the development and potential application of Momordica charantia L.
Collapse
Affiliation(s)
- Zuomin Hu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Yidan Luo
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Yuchi Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Dandan Qin
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Feiyan Yang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Feijun Luo
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Qinlu Lin
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| |
Collapse
|
3
|
Trigueros E, Benito-Román Ó, Oliveira AP, Videira RA, Andrade PB, Sanz MT, Beltrán S. Onion ( Allium cepa L.) Skin Waste Valorization: Unveiling the Phenolic Profile and Biological Potential for the Creation of Bioactive Agents through Subcritical Water Extraction. Antioxidants (Basel) 2024; 13:205. [PMID: 38397803 PMCID: PMC10886289 DOI: 10.3390/antiox13020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Onion skin waste (OSW), the primary non-edible byproduct from onion processing, offers a renewable source of bioactive compounds. This study aims to valorize OSW through subcritical water extraction (SWE), aligning with a circular economy and biorefinery principles. SWE was carried out at 145 °C and 50 bar for 50 min in a discontinuous reactor, producing a phenolic-rich extract (32.3 ± 2.6 mg/g) dominated by protocatechuic acid (20.3 ± 2.5 mg/g), quercetin-4'-O-glucoside (7.5 ± 0.2 mg/g), and quercetin (3.2 ± 0.6 mg/g). Additionally, the extract contains sugars (207.1 ± 20.3 mg sucrose-Eq/g), proteins (22.8 ± 1.6 mg BSA-Eq/g), and free amino acids (20.4 ± 1.2 mg arginine-Eq/g). Its phenolic richness determines its scavenging activity against ●NO and O2●- radicals and its α-glucosidase and aldose-reductase inhibition without affecting α-amylase. Notably, the extract demonstrates significant α-glucosidase inhibition (IC50 = 75.6 ± 43.5 µg/mL), surpassing acarbose (IC50 = 129.5 ± 1.0 µg/mL) in both pure enzyme and cell culture tests without showing cytotoxicity to AGS, HepG2, and Caco-2 human cell lines. The extract's bioactivity and nutritional content make it suitable for developing antioxidant and antidiabetic nutraceutical/food components, highlighting SWE's potential for OSW valorization without using organic solvents.
Collapse
Affiliation(s)
- Esther Trigueros
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Chemical Department, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 228, 4050–313 Porto, Portugal; (A.P.O.); (R.A.V.); (P.B.A.)
- Department of Biotechnology and Food Science, Chemical Engineering Division, University of Burgos, Plza. Misael Bañuelos s/n, 09001 Burgos, Spain; (Ó.B.-R.); (M.T.S.); (S.B.)
| | - Óscar Benito-Román
- Department of Biotechnology and Food Science, Chemical Engineering Division, University of Burgos, Plza. Misael Bañuelos s/n, 09001 Burgos, Spain; (Ó.B.-R.); (M.T.S.); (S.B.)
| | - Andreia P. Oliveira
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Chemical Department, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 228, 4050–313 Porto, Portugal; (A.P.O.); (R.A.V.); (P.B.A.)
| | - Romeu A. Videira
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Chemical Department, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 228, 4050–313 Porto, Portugal; (A.P.O.); (R.A.V.); (P.B.A.)
| | - Paula B. Andrade
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Chemical Department, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 228, 4050–313 Porto, Portugal; (A.P.O.); (R.A.V.); (P.B.A.)
| | - María Teresa Sanz
- Department of Biotechnology and Food Science, Chemical Engineering Division, University of Burgos, Plza. Misael Bañuelos s/n, 09001 Burgos, Spain; (Ó.B.-R.); (M.T.S.); (S.B.)
| | - Sagrario Beltrán
- Department of Biotechnology and Food Science, Chemical Engineering Division, University of Burgos, Plza. Misael Bañuelos s/n, 09001 Burgos, Spain; (Ó.B.-R.); (M.T.S.); (S.B.)
| |
Collapse
|
4
|
He LY, Li Y, Niu SQ, Bai J, Liu SJ, Guo JL. Polysaccharides from natural resource: ameliorate type 2 diabetes mellitus via regulation of oxidative stress network. Front Pharmacol 2023; 14:1184572. [PMID: 37497112 PMCID: PMC10367013 DOI: 10.3389/fphar.2023.1184572] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/04/2023] [Indexed: 07/28/2023] Open
Abstract
Diabetes mellitus (DM) is a group of metabolic diseases characterized by hyperglycemia that can occur in children, adults, elderly people, and pregnant women. Oxidative stress is a significant adverse factor in the pathogenesis of DM, especially type 2 diabetes mellitus (T2DM), and metabolic syndrome. Natural polysaccharides are macromolecular compounds widely distributed in nature. Some polysaccharides derived from edible plants and microorganisms were reported as early as 10 years ago. However, the structural characterization of polysaccharides and their therapeutic mechanisms in diabetes are relatively shallow, limiting the application of polysaccharides. With further research, more natural polysaccharides have been reported to have antioxidant activity and therapeutic effects in diabetes, including plant polysaccharides, microbial polysaccharides, and polysaccharides from marine organisms and animals. Therefore, this paper summarizes the natural polysaccharides that have therapeutic potential for diabetes in the past 5 years, elucidating their pharmacological mechanisms and identified primary structures. It is expected to provide some reference for the application of polysaccharides, and provide a valuable resource for the development of new diabetic drugs.
Collapse
Affiliation(s)
- Li-Ying He
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Li
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shu-Qi Niu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing, China
| | - Jing Bai
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Si-Jing Liu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing, China
| | - Jin-Lin Guo
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing, China
| |
Collapse
|