1
|
Iramina H, Tsuneda M, Okamoto H, Kadoya N, Mukumoto N, Toyota M, Fukunaga J, Fujita Y, Tohyama N, Onishi H, Nakamura M. Multi-institutional questionnaire-based survey on online adaptive radiotherapy performed using commercial systems in Japan in 2023. Radiol Phys Technol 2024; 17:581-595. [PMID: 39028438 DOI: 10.1007/s12194-024-00828-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
In this study, we aimed to conduct a survey on the current clinical practice of, staffing for, commissioning of, and staff training for online adaptive radiotherapy (oART) in the institutions that installed commercial oART systems in Japan, and to share the information with institutions that will implement oART systems in future. A web-based questionnaire, containing 107 questions, was distributed to nine institutions in Japan. Data were collected from November to December 2023. Three institutions each with the MRIdian (ViewRay, Oakwood Village, OH, USA), Unity (Elekta AB, Stockholm, Sweden), and Ethos (Varian Medical Systems, Palo Alto, CA, USA) systems completed the questionnaire. One institution (MRIdian) had not performed oART by the response deadline. Each institution had installed only one oART system. Hypofractionation, and moderate hypofractionation or conventional fractionation were employed in the MRIdian/Unity and Ethos systems, respectively. The elapsed time for the oART process was faster with the Ethos than with the other systems. All institutions added additional staff for oART. Commissioning periods differed among the oART systems owing to provision of beam data from the vendors. Chambers used during commissioning measurements differed among the institutions. Institutional training was provided by all nine institutions. To the best of our knowledge, this was the first survey about oART performed using commercial systems in Japan. We believe that this study will provide useful information to institutions that installed, are installing, or are planning to install oART systems.
Collapse
Affiliation(s)
- Hiraku Iramina
- Adaptive Radiotherapy Working Group (ART-WG), QA/QC Committee, Japan Society of Medical Physics, Tokyo, Japan
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto-Shi, Kyoto, 606-8507, Japan
| | - Masato Tsuneda
- Adaptive Radiotherapy Working Group (ART-WG), QA/QC Committee, Japan Society of Medical Physics, Tokyo, Japan
- Department of Radiation Oncology, MR Linac ART Division, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba-Shi, Chiba, 260-8670, Japan
| | - Hiroyuki Okamoto
- Adaptive Radiotherapy Working Group (ART-WG), QA/QC Committee, Japan Society of Medical Physics, Tokyo, Japan
- Radiation Safety and Quality Assurance Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Noriyuki Kadoya
- Adaptive Radiotherapy Working Group (ART-WG), QA/QC Committee, Japan Society of Medical Physics, Tokyo, Japan
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-Machi, Aoba-Ku, Sendai-Shi, Miyagi, 980-8574, Japan
| | - Nobutaka Mukumoto
- Adaptive Radiotherapy Working Group (ART-WG), QA/QC Committee, Japan Society of Medical Physics, Tokyo, Japan
- Department of Radiation Oncology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-Machi, Abeno-Ku, Osaka-Shi, Osaka, 545-8585, Japan
| | - Masahiko Toyota
- Adaptive Radiotherapy Working Group (ART-WG), QA/QC Committee, Japan Society of Medical Physics, Tokyo, Japan
- Division of Radiology, Department of Clinical Technology, Kagoshima University Hospital, 8-35-1 Sakuragaoka, Kagoshima-Shi, Kagoshima, 890-8520, Japan
| | - Junichi Fukunaga
- Adaptive Radiotherapy Working Group (ART-WG), QA/QC Committee, Japan Society of Medical Physics, Tokyo, Japan
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-Ku, Fukuoka-Shi, Fukuoka, 812-8582, Japan
| | - Yukio Fujita
- Adaptive Radiotherapy Working Group (ART-WG), QA/QC Committee, Japan Society of Medical Physics, Tokyo, Japan
- Department of Radiation Oncology, MR Linac ART Division, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba-Shi, Chiba, 260-8670, Japan
- Department of Radiological Sciences, Komazawa University, 1-23-1 Komazawa, Setagaya-Ku, Tokyo, 154-8525, Japan
| | - Naoki Tohyama
- Department of Radiological Sciences, Komazawa University, 1-23-1 Komazawa, Setagaya-Ku, Tokyo, 154-8525, Japan
| | - Hiroshi Onishi
- Department of Radiology, University of Yamanashi, 1110 Shimokato, Chuo-Shi, Yamanashi, 409-3898, Japan
| | - Mitsuhiro Nakamura
- Adaptive Radiotherapy Working Group (ART-WG), QA/QC Committee, Japan Society of Medical Physics, Tokyo, Japan.
- Department of Advanced Medical Physics, Graduate School of Medicine, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto-Shi, Kyoto, 606-8507, Japan.
| |
Collapse
|
2
|
Episkopakis A, Margaroni V, Karaiskos P, Koutsouveli E, Marinos N, Pappas EP. Relative profile measurements in 1.5T MR-linacs: investigation of central axis deviations. Phys Med Biol 2024; 69:175015. [PMID: 39137816 DOI: 10.1088/1361-6560/ad6ed7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/13/2024] [Indexed: 08/15/2024]
Abstract
Objective. In 1.5 T MR-linacs, the absorbed dose central axis (CAX) deviates from the beam's CAX due to inherent profile asymmetry. In addition, a measured CAX deviation may be biased due to potential lateral (to the beam) effective point of measurement (EPOML) shifts of the detector employed. By investigating CAX deviations, the scope of this study is to determine a set ofEPOMLshifts for profile measurements in 1.5 T MR-linacs.Approach. The Semiflex 3D ion chamber and microDiamond detector (PTW, Germany) were considered in the experimental study while three more detectors were included in the Monte Carlo (MC) study. CAX deviations in the crossline and inline profiles were calculated based on inflection points of the 10×10 cm2field, at five centers. In MC simulations, the experimental setup was reproduced. A small water voxel was simulated to calculate CAX deviation without the impact of the detector-specificEPOMLshift.Main results. All measurements were consistent among the five centers. MC-based and experimental measurements were in agreement within uncertainties. Placing the microDiamond in the vertical orientation does not appear to affect the detector'sEPOML, which is on its central longitudinal axis. For the Semiflex 3D in the crossline direction, the CAX deviation was 2.3 mm, i.e. 1 mm larger than the ones measured using the microDiamond and simulated considering the ideal water detector. Thus, anEPOMLshift of 1 mm is recommended for crossline profile measurements under both Semiflex 3D orientations. For the inline profile, anEPOMLshift of -0.5 mm was determined only for the parallel configuration. In the MC study, CAX deviations were found detector- and orientation-dependent. The dead volume is responsible for theEPOMLshift only in the inline profile and under the parallel orientation.Significance. This work contributes to data availability on the correction or mitigation of the magnetic field-induced changes in the detectors' response.
Collapse
Affiliation(s)
- Anastasios Episkopakis
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 115 27 Athens, Greece
- Global Clinical Operations, Elekta Ltd, Fleming Way, RH10 99RR Crawley, West Sussex, United Kingdom
| | - Vasiliki Margaroni
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 115 27 Athens, Greece
| | - Pantelis Karaiskos
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 115 27 Athens, Greece
| | - Efi Koutsouveli
- Medical Physics Department, Hygeia Hospital, Kifisias Avenue and 4 Erythrou Stavrou, Marousi, 151 23 Athens, Greece
| | - Nikolas Marinos
- Global Clinical Operations, Elekta Ltd, Fleming Way, RH10 99RR Crawley, West Sussex, United Kingdom
| | - Eleftherios P Pappas
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 115 27 Athens, Greece
| |
Collapse
|
3
|
Rogers DWO. Minimum phantom size for megavoltage photon beam reference dosimetry. Med Phys 2024; 51:5663-5671. [PMID: 38669481 DOI: 10.1002/mp.17099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Water phantoms are required to perform reference dosimetry and beam quality measurements but there are no published studies about the size requirements for such phantoms. PURPOSE To investigate, using Monte Carlo techniques, the size requirements for water phantoms used in reference dosimetry and/or to measure the beam quality specifiers% d d ( 10 ) x $\%dd(10)_{\sf x}$ andT P R 10 20 $TPR^{20}_{10}$ . METHODS The EGSnrc application DOSXYZnrc is used to calculateD ( 10 ) $D(10)$ , the dose per incident fluence at 10 cm depth in a water phantom irradiated by incident10 × 10 cm 2 $10\,\times \,10 \, {\rm {cm}}^{2}$ beams of60 Co $^{60}{\rm {Co}}$ or 6 MV photons. The water phantom dimensions are varied from30 × 30 × 40 cm 3 $30 \,\times \, 30 \,\times \, 40 \, {\rm {cm}}^3$ to15 × 15 × 22 cm 3 $15 \,\times \, 15 \,\times \, 22 \, {\rm {cm}}^3$ and occasionally smaller. The% d d ( 10 ) x $\%dd(10)_{\sf x}$ andT P R 10 20 $TPR^{20}_{10}$ values are also calculated with care being taken to distinguishT P R 10 20 $TPR^{20}_{10}$ results when using Method A (changing depth of water in phantom) and Method B (moving entire phantom). Typical statistical uncertainties are 0.03%. RESULTS Phantom dimensions have only minor effects for phantoms larger than20 × 20 × 25 cm 3 $20 \,\times \, 20 \,\times \, 25 \, {\rm {cm}}^3$ . A table of corrections to the dose at 10 cm depth in10 × 10 cm 2 $10 \,\times \, 10 \, {\rm {cm}}^{2}$ beams of60 Co $^{60}{\rm {Co}}$ or 6 MV photons are provided and range from no correction to 0.75% for a60 Co $^{60}{\rm {Co}}$ beam incident on a20 × 20 × 15 cm 3 $20 \,\times \, 20 \,\times \, 15 \, {\rm {cm}}^3$ phantom. There can be distinct differences in theT P R 10 20 $TPR^{20}_{10}$ values measured using Method A or Method B, especially for smaller phantoms. It is explicitly demonstrated that, within ± $\pm$ 0.15%,T P R 10 20 $TPR^{20}_{10}$ values for a30 × 30 × 30 cm 3 $30 \,\times \, 30 \,\times \, 30 \, {\rm {cm}}^3$ phantom measured using Method A or B are independent of source detector distance between 40 and 200 cm. CONCLUSIONS The phantom sizes recommended in the TG-51 and IAEA TRS-398 reference dosimetry protocols are adequate for accurate reference dosimetry and in some cases are even conservative. Correction factors are necessary for accurate measurement of the dose at 10 cm depth in smaller phantoms and these factors are provided. Very accurate beam quality specifiers are not required for reference dosimetry itself, but for specifying beam stability and characteristics it is important to specify phantom sizes and also the method used forT P R 10 20 $TPR^{20}_{10}$ measurements.
Collapse
Affiliation(s)
- D W O Rogers
- Carleton Laboratory for Radiotherapy Physics, Department of Physics, Carleton University, Ottawa, Canada
| |
Collapse
|
4
|
Yip E, Tari SY, Reynolds MW, Sinn D, Murray BR, Fallone BG, Oliver PA. Clinical reference dosimetry for the 0.5 T inline rotating biplanar Linac-MR. Med Phys 2024; 51:2933-2940. [PMID: 38308821 DOI: 10.1002/mp.16951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/13/2023] [Accepted: 12/26/2023] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND The world's first clinical 0.5 T inline rotating biplanar Linac-MR system is commissioned for clinical use. For reference dosimetry, unique features to device, including an SAD = 120 cm, bore clearance of 60 cm × 110 cm, as well as 0.5 T inline magnetic field, provide some challenges to applying a standard dosimetry protocol (i.e., TG-51). PURPOSE In this work, we propose a simple and practical clinical reference dosimetry protocol for the 0.5T biplanar Linac-MR and validated its results. METHODS Our dosimetry protocol for this system is as follows: tissue phantom ratios at 20 and 10 cm are first measured and converted into %dd10x beam quality specifier using equations provided and Kalach and Rogers. The converted %dd10x is used to determine the ion chamber correction factor, using the equations in the TG-51 addendum for the Exradin A12 farmer chamber used, which is cross-calibrated with one calibrated at a standards laboratory. For a 0.5 T parallel field, magnetic field effect on chamber response is assumed to have no effect and is not explicitly corrected for. Once the ion chamber correction factor for a non-standard SAD (kQ,msr) is determined, TG-51 is performed to obtain dose at a depth of 10 cm at SAD = 120 cm. The dosimetry protocol is repeated with the magnetic field ramped down. To validate our dosimetry protocol, Monte Carlo (EGSnrc) simulations are performed to confirm the determined kQ,msr values. MC Simulations and magnetic Field On versus Field Off measurements are performed to confirm that the magnetic field has no effect. To validate our overall dosimetry protocol, external dose audits, based on optical simulated luminescent dosimeters, thermal luminescent dosimeters, and alanine dosimeters are performed on the 0.5 T Linac-MR system. RESULTS Our EGSnrc results confirm our protocol-determined kQ,msr values, as well as our assumptions about magnetic field effects (kB = 1) within statistical uncertainty for the A-12 chamber. Our external dosimetry procedures also validated our overall dosimetry protocol for the 0.5 T biplanar Linac-MR hybrid. Ramping down the magnetic field has resulted in a dosimetric difference of 0.1%, well within experimental uncertainty. CONCLUSION With the 0.5 T parallel magnetic field having minimal effect on the ion chamber response, a TPR20,10 approach to determine beam quality provides an accurate method to perform clinical dosimetry for the 0.5 T biplanar Linac-MR.
Collapse
Affiliation(s)
- Eugene Yip
- Department of Oncology, Medical Physics Division, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Shima Y Tari
- Department of Oncology, Medical Physics Division, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Michael W Reynolds
- Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
- Department of Radiation Oncology, BC Cancer - Victoria, Victoria, British Columbia, Canada
| | - David Sinn
- Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
- Department of Radiaiton Oncology, The Queen's Medical Centre, Honolulu, Hawaii, USA
| | - Brad R Murray
- MagnetTx Oncology Solutions, Edmonton, Alberta, Canada
| | - B Gino Fallone
- Department of Oncology, Medical Physics Division, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
- MagnetTx Oncology Solutions, Edmonton, Alberta, Canada
| | - Patricia Ak Oliver
- Department of Oncology, Medical Physics Division, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
- Department of Medical Physics, Nova Scotia Health, Halifax, Nova Scotia, Canada
| |
Collapse
|
5
|
Orlando N, Crosby J, Glide-Hurst C, Culberson W, Keller B, Sarfehnia A. Experimental determination of magnetic field quality conversion factors for eleven ionization chambers in 1.5 T and 0.35 T MR-linac systems. Med Phys 2024; 51:2998-3009. [PMID: 38060696 PMCID: PMC11330643 DOI: 10.1002/mp.16858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/05/2023] [Accepted: 11/02/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The static magnetic field present in magnetic resonance (MR)-guided radiotherapy systems can influence dose deposition and charged particle collection in air-filled ionization chambers. Thus, accurately quantifying the effect of the magnetic field on ionization chamber response is critical for output calibration. Formalisms for reference dosimetry in a magnetic field have been proposed, whereby a magnetic field quality conversion factor kB,Q is defined to account for the combined effects of the magnetic field on the radiation detector. Determination of kB,Q in the literature has focused on Monte Carlo simulation studies, with experimental validation limited to only a few ionization chamber models. PURPOSE The purpose of this study is to experimentally measure kB,Q for 11 ionization chamber models in two commercially available MR-guided radiotherapy systems: Elekta Unity and ViewRay MRIdian. METHODS Eleven ionization chamber models were characterized in this study: Exradin A12, A12S, A28, and A26, PTW T31010, T31021, and T31022, and IBA FC23-C, CC25, CC13, and CC08. The experimental method to measure kB,Q utilized cross-calibration against a reference Exradin A1SL chamber. Absorbed dose to water was measured for the reference A1SL chamber positioned parallel to the magnetic field with its centroid placed at the machine isocenter at a depth of 10 cm in water for a 10 × 10 cm2 field size at that depth. Output was subsequently measured with the test chamber at the same point of measurement. kB,Q for the test chamber was computed as the ratio of reference dose to test chamber output, with this procedure repeated for each chamber in each MR-guided radiotherapy system. For the high-field 1.5 T Elekta Unity system, the dependence of kB,Q on the chamber orientation relative to the magnetic field was quantified by rotating the chamber about the machine isocenter. RESULTS Measured kB,Q values for our test dataset of ionization chamber models ranged from 0.991 to 1.002, and 0.995 to 1.004 for the Elekta Unity and ViewRay MRIdian, respectively, with kB,Q tending to increase as the chamber sensitive volume increased. Measured kB,Q values largely agreed within uncertainty to published Monte Carlo simulation data and available experimental data. kB,Q deviation from unity was minimized for ionization chamber orientation parallel or antiparallel to the magnetic field, with increased deviations observed at perpendicular orientations. Overall (k = 1) uncertainty in the experimental determination of the magnetic field quality conversion factor, kB,Q was 0.71% and 0.72% for the Elekta Unity and ViewRay MRIdian systems, respectively. CONCLUSIONS For a high-field MR-linac, the characterization of ionization chamber performance as angular orientation varied relative to the magnetic field confirmed that the ideal orientation for output calibration is parallel. For most of these chamber models, this study represents the first experimental characterization of chamber performance in clinical MR-linac beams. This is a critical step toward accurate output calibration for MR-guided radiotherapy systems and the measured kB,Q values will be an important reference data source for forthcoming MR-linac reference dosimetry protocols.
Collapse
Affiliation(s)
- Nathan Orlando
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5T 1P5, Canada
| | - Jennie Crosby
- Carbone Cancer Center, Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin 53792, USA
| | - Carri Glide-Hurst
- Carbone Cancer Center, Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin 53792, USA
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Wesley Culberson
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Brian Keller
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5T 1P5, Canada
| | - Arman Sarfehnia
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5T 1P5, Canada
| |
Collapse
|
6
|
Ullah Khan A, DeWerd LA, Yadav P. Beam quality correction factors for ionization chambers in a 0.35 T magnetic resonance (MR)-linac - A Monte Carlo study. Phys Med 2024; 119:103314. [PMID: 38335742 DOI: 10.1016/j.ejmp.2024.103314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024] Open
Abstract
PURPOSE The purpose of this study was to directly calculate [Formula: see text] correction factors for four cylindrical ICs for a 0.35 T MR-linac using the Monte Carlo (MC) method. METHODS A previously-validated TOPAS/GEANT4 MC head model of the 0.35 T MR-linac was employed. The MR-compatible Exradin A12, A1SL, A26, and A28 cylindrical ICs were modeled considering the dead volume in the air cavity. The [Formula: see text] correction factor was determined for initial electron energies of 5-7 MeV. The correction factor was calculated for all four angular orientations in the lateral plane. The impact of the 0.35 T magnetic field on the IC response was also investigated. RESULTS The maximum beam quality dependence in the [Formula: see text] exhibited by the A12, A1SL, A26, and A28 ICs was 1.10 %, 2.17 %, 0.81 %, and 1.75 %, respectively, considering all angular orientations. The magnetic field dependence was < 1 % and the maximum [Formula: see text] correction was < 2 % when the detector was aligned along the direction of the magnetic field at 0° and 180° angles. The A12 IC over-responded up to 5.40 % for the orthogonal orientation. An asymmetry in the response of up to 8.30 % was noted for the A28 IC aligned at 90° and 270° angles. CONCLUSIONS A parallel orientation for the IC, with respect to the magnetic field, is recommended for reference dosimetry in MRgRT. Both over and under-response in the IC signal was noted for the orthogonal orientations, which is highly dependent on the cavity diameter, cavity length, and the dead volume.
Collapse
Affiliation(s)
- Ahtesham Ullah Khan
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Larry A DeWerd
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Poonam Yadav
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
7
|
Gebauer B, Baumann KS, Fuchs H, Georg D, Oborn BM, Looe HK, Lühr A. Proton dosimetry in a magnetic field: Measurement and calculation of magnetic field correction factors for a plane-parallel ionization chamber. Med Phys 2024; 51:2293-2305. [PMID: 37898105 DOI: 10.1002/mp.16797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND The combination of magnetic resonance imaging and proton therapy offers the potential to improve cancer treatment. The magnetic field (MF)-dependent change in the dosage of ionization chambers in magnetic resonance imaging-integrated proton therapy (MRiPT) is considered by the correction factork B ⃗ , M , Q $k_{\vec{B},M,Q}$ , which needs to be determined experimentally or computed via Monte Carlo (MC) simulations. PURPOSE In this study,k B ⃗ , M , Q $k_{\vec{B},M,Q}$ was both measured and simulated with high accuracy for a plane-parallel ionization chamber at different clinical relevant proton energies and MF strengths. MATERIAL AND METHODS The dose-response of the Advanced Markus chamber (TM34045, PTW, Freiburg, Germany) irradiated with homogeneous 10 × $\times$ 10 cm2 $^2$ quasi mono-energetic fields, using 103.3, 128.4, 153.1, 223.1, and 252.7 MeV proton beams was measured in a water phantom placed in the MF of an electromagnet with MF strengths of 0.32, 0.5, and 1 T. The detector was positioned at a depth of 2 g/cm2 $^2$ in water, with chamber electrodes parallel to the MF lines and perpendicular to the proton beam incidence direction. The measurements were compared with TOPAS MC simulations utilizing COMSOL-calculated 0.32, 0.5, and 1 T MF maps of the electromagnet.k B ⃗ , M , Q $k_{\vec{B},M,Q}$ was calculated for the measurements for all energies and MF strengths based on the equation:k B ⃗ , M , Q = M Q M Q B ⃗ $k_{\vec{B},M,Q}=\frac{M_\mathrm{Q}}{M_\mathrm{Q}^{\vec{B}}}$ , whereM Q B ⃗ $M_\mathrm{Q}^{\vec{B}}$ andM Q $M_\mathrm{Q}$ were the temperature and air-pressure corrected detector readings with and without the MF, respectively. MC-based correction factors were determined ask B ⃗ , M , Q = D det D det B ⃗ $k_{\vec{B},M,Q}=\frac{D_\mathrm{det}}{D_\mathrm{det}^{\vec{B}}}$ , whereD det B ⃗ $D_\mathrm{det}^{\vec{B}}$ andD det $D_\mathrm{det}$ were the doses deposited in the air cavity of the ionization chamber model with and without the MF, respectively. Furthermore, MF effects on the chamber dosimetry are studied using MC simulations, examining the impact on the absorbed dose-to-water (D W $D_{W}$ ) and the shift in depth of the Bragg peak. RESULTS The detector showed a reduced dose-response for all measured energies and MF strengths, resulting in experimentally determinedk B ⃗ , M , Q $k_{\vec{B},M,Q}$ values larger than unity. For all energies and MF strengths examined,k B ⃗ , M , Q $k_{\vec{B},M,Q}$ ranged between 1.0065 and 1.0205. The dependence on the energy and the MF strength was found to be non-linear with a maximum at 1 T and 252.7 MeV. The MC simulatedk B ⃗ , M , Q $k_{\vec{B},M,Q}$ values agreed with the experimentally determined correction factors within their standard deviations with a maximum difference of 0.6%. The MC calculated impact onD W $D_{W}$ was smaller 0.2 %. CONCLUSION For the first time, measurements and simulations were compared for proton dosimetry within MFs using an Advanced Markus chamber. Good agreement ofk B ⃗ , M , Q $k_{\vec{B},M,Q}$ was found between experimentally determined and MC calculated values. The performed benchmarking of the MC code allows for calculatingk B ⃗ , M , Q $k_{\vec{B},M,Q}$ for various ionization chamber models, MF strengths and proton energies to generate the data needed for a proton dosimetry protocol within MFs and is, therefore, a step towards MRiPT.
Collapse
Affiliation(s)
- Benjamin Gebauer
- OncoRay National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Institute of Radiooncology-OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Kilian-Simon Baumann
- Department of Radiotherapy and Radiooncology, University Medical Center Giessen-Marburg, Marburg, Germany
- University of Applied Sciences, Institute of Medical Physics and Radiation Protection, Giessen, Germany
- Ion-Beam Therapy Center, Marburg, Germany
| | - Hermann Fuchs
- Department of Radiation Oncology, Medical University of Vienna, Wien, Austria
- MedAustron Iontherapy centre, Wiener Neustadt, Austria
| | - Dietmar Georg
- Department of Radiation Oncology, Medical University of Vienna, Wien, Austria
- MedAustron Iontherapy centre, Wiener Neustadt, Austria
| | - Brad M Oborn
- Institute of Radiooncology-OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia
- Illawarra Cancer Care Centre, Wollongong, New South Wales, Australia
| | - Hui-Khee Looe
- Department for Radiotherapy and Radiooncology, Pius Hospital, Medical Campus Carl von Ossietzky University, Oldenburg, Germany
| | - Armin Lühr
- Department of Physics, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
8
|
Episkopakis A, Margaroni V, Kanellopoulou S, Marinos N, Koutsouveli E, Karaiskos P, Pappas EP. Dose-response dependencies of OSL dosimeters in conventional linacs and 1.5T MR-linacs: an experimental and Monte Carlo study. Phys Med Biol 2023; 68:225002. [PMID: 37857285 DOI: 10.1088/1361-6560/ad051e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/19/2023] [Indexed: 10/21/2023]
Abstract
Objective. This work focuses on the optically stimulated luminescence dosimetry (OSLD) dose-response characterization, with emphasis on 1.5T MR-Linacs.Approach. Throughout this study, the nanoDots OSLDs (Landauer, USA) were considered. In groups of three, the mean OSLD response was measured in a conventional linac and an MR-Linac under various irradiation conditions to investigate (i) dose-response linearity with and without the 1.5T magnetic field, (ii) signal fading rate and its dependencies, (iii) beam quality, detector orientation and dose rate dependencies in a conventional linac, (iii) potential MR imaging related effects on OSLD response and (iv) detector orientation dependence in an MR-Linac. Monte Carlo calculations were performed to further quantify angular dependence after rotating the detector around its central axis parallel to the magnetic field, and determine the magnetic field correction factors,kB,Q,for all cardinal detector orientations.Main results. OSLD dose-response supralinearity in an MR-Linac setting was found to agree within uncertainties with the corresponding one in a conventional linac, for the axial detector orientation investigated. Signal fading rate does not depend on irradiation conditions for the range of 3-30 d considered. OSLD angular (orientation) dependence is more pronounced under the presence of a magnetic field. OSLDs irradiated with and without real-time T2w MR imaging enabled during irradiation yielded the same response within uncertainties.kB,Qvalues were determined for all three cardinal orientations. Corrections needed reached up to 6.4%. However, if OSLDs are calibrated in the axial orientation and then irradiated in an MR-Linac placed again in the axial orientation (perpendicular to the magnetic field), then simulations suggest thatkB,Qcan be considered unity within uncertainties, irrespective of the incident beam angle.Significance. This work contributes towards OSLD dose-response characterization and relevant correction factors availability. OSLDs are suitable for QA checks in MR-based beam gating applications andin vivodosimetry in MR-Linacs.
Collapse
Affiliation(s)
- Anastasios Episkopakis
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 115 27 Athens, Greece
- Global Clinical Operations, Elekta Ltd., Fleming way, RH10 99RR Crawley, West Sussex, United Kingdom
| | - Vasiliki Margaroni
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 115 27 Athens, Greece
| | | | - Nikolas Marinos
- Global Clinical Operations, Elekta Ltd., Fleming way, RH10 99RR Crawley, West Sussex, United Kingdom
| | - Efi Koutsouveli
- Medical Physics Department, Hygeia Hospital, Kifissias Avenue & 4 Erythrou Stavrou, Marousi, 151 23 Athens, Greece
| | - Pantelis Karaiskos
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 115 27 Athens, Greece
| | - Eleftherios P Pappas
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 115 27 Athens, Greece
| |
Collapse
|
9
|
Iakovenko V, Keller B, Malkov VN, Sahgal A, Sarfehnia A. Quantifying uncertainties associated with reference dosimetry in an MR-Linac. J Appl Clin Med Phys 2023; 24:e14087. [PMID: 37354202 PMCID: PMC10647966 DOI: 10.1002/acm2.14087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND Magnetic resonance (MR)-guided radiation therapy provides capabilities to utilize high-resolution and real-time MR imaging before and during treatment, which is critical for adaptive radiotherapy. This emerging modality has been promptly adopted in the clinic settings in advance of adaptations to reference dosimetry formalism that are needed to account for the presence of strong magnetic fields. In particular, the influence of magnetic field on the uncertainty of parameters in the reference dosimetry equation needs to be determined in order to fully characterize the uncertainty budget for reference dosimetry in MR-guided radiation therapy systems. PURPOSE To identify and quantify key sources of uncertainty in the reference dosimetry of external high energy radiotherapy beams in the presence of a strong magnetic field. METHODS In the absence of a formalized Task Group report for reference dosimetry in MR-integrated linacs, the currently suggested formalism follows the TG-51 protocol with the addition of a quality conversion factor kBQ accounting for the effects of the magnetic field on ionization chamber response. In this work, we quantify various sources of uncertainty that impact each of the parameters in the formalism, and evaluate their overall contribution to the final dose. Measurements are done in a 1.5 T MR-Linac (Unity, Elekta AB, Stockholm, Sweden) which integrates a 1.5 T Philips MR scanner and a 7 MVFFF linac. The responses of several reference-class small volume ionization chambers (Exradin:A1SL, IBA:CC13, PTW:Semiflex-3D) and Farmer type ionization chambers (Exradin:A19, IBA:FC65-G) were evaluated throughout this process. Long-term reproducibility and stability of beam quality,TPR 10 20 ${\mathrm{TPR}}_{10}^{20}$ , was also measured with an in-house built phantom. RESULTS Relative to the conventional external high energy linacs, the uncertainty on overall reference dose in MR-linac is more significantly affected by the chamber setup: A translational displacement along y-axis of ± 3 mm results in dose variation of < |0.20| ± 0.02% (k = 1), while rotation of ± 5° in horizontal and vertical parallel planes relative to relative to the direction of magnetic field, did not exceed variation of < |0.44| ± 0.02% for all 5 ionization chambers. We measured a larger dose variation for xy-plane (horizontal) rotations (< |0.44| ± 0.02% (k = 1)) than for yz-plane (vertical) rotations (< ||0.28| ± 0.02% (k = 1)), which we associate with the gradient of kB,Q as a function of chamber orientation with respect to direction of the B0 -field. Uncertainty in Pion (for two depths), Ppol (with various sub-studies including effects of cable length, cable looping in the MRgRT bore, connector type in magnetic environment), and Prp were determined. Combined conversion factor kQ × kB,Q was provided for two reference depths at four cardinal angle orientations. Over a two-year period, beam quality was quite stable withTPR 10 20 ${\mathrm{TPR}}_{10}^{20}$ being 0.669 ± 0.01%. The actual magnitude ofTPR 10 20 ${\mathrm{TPR}}_{10}^{20}$ was measured using identical equipment and compared between two different Elekta Unity MR-Linacs with results agreeing to within 0.21%. CONCLUSION In this work, the uncertainty of a number of parameters influencing reference dosimetry was quantified. The results of this work can be used to identify best practice guidelines for reference dosimetry in the presence of magnetic fields, and to evaluate an uncertainty budget for future reference dosimetry protocols for MR-linac.
Collapse
Affiliation(s)
- Viktor Iakovenko
- Division of Medical Physics and EngineeringDepartment of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Brian Keller
- Department of Radiation OncologySunnybrook Health Sciences CentreUniversity of TorontoTorontoOntarioCanada
| | | | - Arjun Sahgal
- Department of Radiation OncologySunnybrook Health Sciences CentreUniversity of TorontoTorontoOntarioCanada
| | - Arman Sarfehnia
- Department of Radiation OncologySunnybrook Health Sciences CentreUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
10
|
Alissa M, Zink K, Czarnecki D. Investigation of Monte Carlo simulations of the electron transport in external magnetic fields using Fano cavity test. Z Med Phys 2023; 33:499-510. [PMID: 36030166 PMCID: PMC10751718 DOI: 10.1016/j.zemedi.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/01/2022] [Accepted: 07/04/2022] [Indexed: 10/15/2022]
Abstract
PURPOSE Monte Carlo simulations are crucial for calculating magnetic field correction factors kB for the dosimetry in external magnetic fields. As in Monte Carlo codes the charged particle transport is performed in straight condensed history (CH) steps, the curved trajectories of these particles in the presence of external magnetic fields can only be approximated. In this study, the charged particle transport in presence of a strong magnetic field B→ was investigated using the Fano cavity test. The test was performed in an ionization chamber and a diode detector, showing how the step size restrictions must be adjusted to perform a consistent charged particle transport within all geometrical regions. METHODS Monte Carlo simulations of the charged particle transport in a magnetic field of 1.5 T were performed using the EGSnrc code system including an additional EMF-macro for the transport of charged particle in electro-magnetic fields. Detailed models of an ionization chamber and a diode detector were placed in a water phantom and irradiated with a so called Fano source, which is a monoenergetic, isotropic electron source, where the number of emitted particles is proportional to the local density. RESULTS The results of the Fano cavity test strongly depend on the energy of charged particles and the density within the given geometry. By adjusting the maximal length of the charged particle steps, it was possible to calculate the deposited dose in the investigated regions with high accuracy (<0.1%). The Fano cavity test was performed in all regions of the detailed detector models. Using the default value for the step size in the external magnetic field, the maximal deviation between Monte Carlo based and analytical dose value in the sensitive volume of the ion chamber and diode detector was 8% and 0.1%, respectively. CONCLUSIONS The Fano cavity test is a crucial validation method for the modeled detectors and the transport algorithms when performing Monte Carlo simulations in a strong external magnetic field. Special care should be given, when calculating dose in volumes of low density. This study has shown that the Fano cavity test is a useful method to adapt particle transport parameters for a given simulation geometry.
Collapse
Affiliation(s)
- Mohamad Alissa
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences Giessen (THM), Giessen, Germany; Department of Radiotherapy and Radiation Oncology, University Medical Center Giessen and Marburg, Marburg, Germany.
| | - Klemens Zink
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences Giessen (THM), Giessen, Germany; Department of Radiotherapy and Radiation Oncology, University Medical Center Giessen and Marburg, Marburg, Germany; Marburg Ionbeam Therapycenter (MIT) Marburg, Germany
| | - Damian Czarnecki
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences Giessen (THM), Giessen, Germany
| |
Collapse
|
11
|
Marot M, Jäger F, Greilich S, Karger CP, Jäkel O, Burigo LN. Monte Carlo simulation for proton dosimetry in magnetic fields: Fano test and magnetic field correction factors kBfor Farmer-type ionization chambers. Phys Med Biol 2023; 68:175037. [PMID: 37567226 DOI: 10.1088/1361-6560/acefa1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/10/2023] [Indexed: 08/13/2023]
Abstract
Objective. In this contribution we present a special Fano test for charged particles in presence of magnetic fields in the MC code TOol for PArticle Simulation (TOPAS), as well as the determination of magnetic field correction factorskBfor Farmer-type ionization chambers using proton beams.Approach. Customized C++ extensions for TOPAS were implemented to model the special Fano tests in presence of magnetic fields for electrons and protons. The Geant4-specific transport parameters,DRoverRandfinalRange,were investigated to optimize passing rate and computation time. ThekBwas determined for the Farmer-type PTW 30013 ionization chamber, and 5 custom built ionization chambers with same geometry but varying inner radius, testing magnetic flux density ranging from 0 to 1.0 T and two proton beam energies of 157.43 and 221.05 MeV.Main results. Using the investigated parameters, TOPAS passed the Fano test within 0.39 ± 0.15% and 0.82 ± 0.42%, respectively for electrons and protons. The chamber response (kB,M,Q) gives a maximum at different magnetic flux densities depending of the chamber size, 1.0043 at 1.0 T for the smallest chamber and 1.0051 at 0.2 T for the largest chamber. The local dose differencecBremained ≤ 0.1% for both tested energies. The magnetic field correction factorkB, for the chamber PTW 30013, varied from 0.9946 to 1.0036 for both tested energies.Significance. The developed extension for the special Fano test in TOPAS MC code with the adjusted transport parameters, can accurately transport electron and proton particles in magnetic field. This makes TOPAS a valuable tool for the determination ofkB. The ionization chambers we tested showed thatkBremains small (≤0.72%). To the best of our knowledge, this is the first calculations ofkBfor proton beams. This work represents a significant step forward in the development of MRgPT and protocols for proton dosimetry in presence of magnetic field.
Collapse
Affiliation(s)
- M Marot
- German Cancer Research Center (DKFZ), Medical Physics in Radiation Oncology, Heidelberg, Germany
- University of Heidelberg, Faculty of Medicine, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - F Jäger
- German Cancer Research Center (DKFZ), Medical Physics in Radiation Oncology, Heidelberg, Germany
- University of Heidelberg, Faculty of Physics and Astronomy, Heidelberg, Germany
| | - S Greilich
- Berthold Technologies GmbH & Co. KG, Business Units Radiation Protection/Bioanalytics, Bad Wildbad, Germany
| | - C P Karger
- German Cancer Research Center (DKFZ), Medical Physics in Radiation Oncology, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - O Jäkel
- German Cancer Research Center (DKFZ), Medical Physics in Radiation Oncology, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), University Hospital Heidelberg, Heidelberg, Germany
| | - L N Burigo
- German Cancer Research Center (DKFZ), Medical Physics in Radiation Oncology, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| |
Collapse
|
12
|
Alissa M, Zink K, Kapsch RP, Schoenfeld AA, Frick S, Czarnecki D. Experimental and Monte Carlo-based determination of magnetic field correction factors k B , Q $k_{B,Q}$ in high-energy photon fields for two ionization chambers. Med Phys 2023. [PMID: 36897832 DOI: 10.1002/mp.16345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND The integration of magnetic resonance tomography into clinical linear accelerators provides high-contrast, real-time imaging during treatment and facilitates online-adaptive workflows in radiation therapy treatments. The associated magnetic field also bends the trajectories of charged particles via the Lorentz force, which may alter the dose distribution in a patient or a phantom and affects the dose response of dosimetry detectors. PURPOSE To perform an experimental and Monte Carlo-based determination of correction factors k B , Q $k_{B,Q}$ , which correct the response of ion chambers in the presence of external magnetic fields in high-energy photon fields. METHODS The response variation of two different types of ion chambers (Sun Nuclear SNC125c and SNC600c) in strong external magnetic fields was investigated experimentally and by Monte Carlo simulations. The experimental data were acquired at the German National Metrology Institute, PTB, using a clinical linear accelerator with a nominal photon energy of 6 MV and an external electromagnet capable of generating magnetic flux densities of up to 1.5 T in opposite directions. The Monte Carlo simulation geometries corresponded to the experimental setup and additionally to the reference conditions of IAEA TRS-398. For the latter, the Monte Carlo simulations were performed with two different photon spectra: the 6 MV spectrum of the linear accelerator used for the experimental data acquisition and a 7 MV spectrum of a commercial MRI-linear accelerator. In each simulation geometry, three different orientations of the external magnetic field, the beam direction and the chamber orientation were investigated. RESULTS Good agreement was achieved between Monte Carlo simulations and measurements with the SNC125c and SNC600c ionization chambers, with a mean deviation of 0.3% and 0.6%, respectively. The magnitude of the correction factor k B , Q $k_{B,Q}$ strongly depends on the chamber volume and on the orientation of the chamber axis relative to the external magnetic field and the beam directions. It is greater for the SNC600c chamber with a volume of 0.6 cm3 than for the SNC125c chamber with a volume of 0.1 cm3 . When the magnetic field direction and the chamber axis coincide, and they are perpendicular to the beam direction, the ion chambers exhibit a calculated overresponse of less than 0.7(6)% (SNC600c) and 0.3(4)% (SNC125c) at 1.5 T and less than 0.3(0)% (SNC600c) and 0.1(3)% (SNC125c) for 0.35 T for nominal beam energies of 6 MV and 7 MV. This chamber orientation should be preferred, as k B , Q $k_{B,Q}$ may increase significantly in other chamber orientations. Due to the special geometry of the guard ring, no dead-volume effects have been observed in any orientation studied. The results show an intra-type variation of 0.17% and 0.07% standard uncertainty (k=1) for the SNC125c and SNC600c, respectively. CONCLUSION Magnetic field correction factors k B , Q $k_{B,Q}$ for two different ion chambers and for typical clinical photon beam qualities were presented and compared with the few data existing in the literature. The correction factors may be applied in clinical reference dosimetry for existing MRI-linear accelerators.
Collapse
Affiliation(s)
- Mohamad Alissa
- Institute for Medical Physics and Radiation Protection, University of Applied Sciences Giessen, Giessen, Germany
- Department of Radiotherapy and Radiation Oncology, University Medical Center Giessen and Marburg, Marburg, Germany
| | - Klemens Zink
- Institute for Medical Physics and Radiation Protection, University of Applied Sciences Giessen, Giessen, Germany
- Department of Radiotherapy and Radiation Oncology, University Medical Center Giessen and Marburg, Marburg, Germany
- Marburg Ionbeam Therapy Center (MIT), Marburg, Germany
| | | | | | - Stephan Frick
- German National Metrology Institute (PTB), Braunschweig, Germany
| | - Damian Czarnecki
- Institute for Medical Physics and Radiation Protection, University of Applied Sciences Giessen, Giessen, Germany
| |
Collapse
|
13
|
Begg J, Jelen U, Moutrie Z, Oliver C, Holloway L, Brown R. ACPSEM position paper: dosimetry for magnetic resonance imaging linear accelerators. Phys Eng Sci Med 2023; 46:1-17. [PMID: 36806156 PMCID: PMC10030536 DOI: 10.1007/s13246-023-01223-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2023] [Indexed: 02/23/2023]
Abstract
Consistency and clear guidelines on dosimetry are essential for accurate and precise dosimetry, to ensure the best patient outcomes and to allow direct dose comparison across different centres. Magnetic Resonance Imaging Linac (MRI-linac) systems have recently been introduced to Australasian clinics. This report provides recommendations on reference dosimetry measurements for MRI-linacs on behalf of the Australiasian College of Physical Scientists and Engineers in Medicine (ACPSEM) MRI-linac working group. There are two configurations considered for MRI-linacs, perpendicular and parallel, referring to the relative direction of the magnetic field and radiation beam, with different impacts on dose deposition in a medium. These recommendations focus on ion chambers which are most commonly used in the clinic for reference dosimetry. Water phantoms must be MR safe or conditional and practical limitations on phantom set-up must be considered. Solid phantoms are not advised for reference dosimetry. For reference dosimetry, IAEA TRS-398 recommendations cannot be followed completely due to physical differences between conventional linac and MRI-linac systems. Manufacturers' advice on reference conditions should be followed. Beam quality specification of TPR20,10 is recommended. The configuration of the central axis of the ion chamber relative to the magnetic field and radiation beam impacts the chamber response and must be considered carefully. Recommended corrections to delivered dose are [Formula: see text], a correction for beam quality and [Formula: see text], for the impact of the magnetic field on dosimeter response in the magnetic field. Literature based values for [Formula: see text] are given. It is important to note that this is a developing field and these recommendations should be used together with a review of current literature.
Collapse
Affiliation(s)
- Jarrad Begg
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centre, Liverpool, NSW, 2170, Australia.
- Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia.
- South Western Sydney Clinical School, University of New South Wales, Liverpool, NSW, 2170, Australia.
| | - Urszula Jelen
- St Vincents Clinic, GenesisCare, Darlinghurst, NSW, 2010, Australia
| | - Zoe Moutrie
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centre, Liverpool, NSW, 2170, Australia
| | - Chris Oliver
- Primary Standards Dosimetry Laboratory, Australian Radiation Protection and Nuclear Safety Agency, Yallambie, VIC, 3085, Australia
| | - Lois Holloway
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centre, Liverpool, NSW, 2170, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia
- South Western Sydney Clinical School, University of New South Wales, Liverpool, NSW, 2170, Australia
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
- Institute of Medical Physics, University of Sydney, Camperdown, NSW, 2505, Australia
| | - Rhonda Brown
- Australian Clinical Dosimetry Service, Australian Radiation Protection and Nuclear Safety Agency, Yallambie, VIC, 3085, Australia
| | | |
Collapse
|
14
|
Margaroni V, Pappas EP, Episkopakis A, Pantelis E, Papagiannis P, Marinos N, Karaiskos P. Dosimetry in 1.5 T MR-Linacs: Monte Carlo determination of magnetic field correction factors and investigation of the air gap effect. Med Phys 2023; 50:1132-1148. [PMID: 36349535 DOI: 10.1002/mp.16082] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/14/2022] [Accepted: 10/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In Magnetic Resonance-Linac (MR-Linac) dosimetry formalisms, a new correction factor, kB,Q , has been introduced to account for corresponding changes to detector readings under the beam quality, Q, and the presence of magnetic field, B. PURPOSE This study aims to develop and implement a Monte Carlo (MC)-based framework for the determination of kB,Q correction factors for a series of ionization chambers utilized for dosimetry protocols and dosimetric quality assurance checks in clinical 1.5 T MR-Linacs. Their dependencies on irradiation setup conditions are also investigated. Moreover, to evaluate the suitability of solid phantoms for dosimetry checks and end-to-end tests, changes to the detector readings due to the presence of small asymmetrical air gaps around the detector's tip are quantified. METHODS Phase space files for three irradiation fields of the ELEKTA Unity 1.5 T/7 MV flattening-filter-free MR-Linac were provided by the manufacturer and used as source models throughout this study. Twelve ionization chambers (three farmer-type and nine small-cavity detectors, from three manufacturers) were modeled (including their dead volume) using the EGSnrc MC code package. kB,Q values were calculated for the 10 × 10 cm2 irradiation field and for four cardinal orientations of the detectors' axes with respect to the 1.5 T magnetic field. Potential dependencies of kB,Q values with respect to field size, depth, and phantom material were investigated by performing additional simulations. Changes to the detectors' readings due to the presence of small asymmetrical air gaps (0.1 up to 1 mm) around the chambers' sensitive volume in an RW3 solid phantom were quantified for three small-cavity chambers and two orientations. RESULTS For both parallel (to the magnetic field) orientations, kB,Q values were found close to unity. The maximum correction needed was 1.1%. For each detector studied, the kB,Q values calculated for the two parallel orientations agreed within uncertainties. Larger corrections (up to 5%) were calculated when the detectors were oriented perpendicularly to the magnetic field. Results were compared with corresponding ones found in the literature, wherever available. No considerable dependence of kB,Q with respect to field size (down to 3 × 3 cm2 ), depth, or phantom material was noticed, for the detectors investigated. As compared to the perpendicular one, in the parallel to the magnetic field orientation, the air gap effect is minimized but is still considerable even for the smallest air gap considered (0.1 mm). CONCLUSION For the 10 × 10 cm2 field, magnetic field correction factors for 12 ionization chambers and four orientations were determined. For each detector, the kB,Q value may be also applied for dosimetry procedures under different irradiation parameters provided that the orientation is taken into account. Moreover, if solid phantoms are used, even the smallest asymmetrical air gap may still bias small-cavity chamber response. This work substantially expands the availability and applicability of kB,Q correction factors that are detector- and orientation-specific, enabling more options in MR-Linac dosimetry checks, end-to-end tests, and quality assurance protocols.
Collapse
Affiliation(s)
- Vasiliki Margaroni
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleftherios P Pappas
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios Episkopakis
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Global Clinical Operations, Elekta Ltd, Crawley, West Sussex, UK
| | - Evaggelos Pantelis
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Papagiannis
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolas Marinos
- Global Clinical Operations, Elekta Ltd, Crawley, West Sussex, UK
| | - Pantelis Karaiskos
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
15
|
Tsuneda M, Abe K, Fujita Y, Ikeda Y, Furuyama Y, Uno T. Elekta Unity MR-linac commissioning: mechanical and dosimetry tests. JOURNAL OF RADIATION RESEARCH 2022; 64:73-84. [PMCID: PMC9855313 DOI: 10.1093/jrr/rrac072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/16/2022] [Indexed: 06/26/2023]
Abstract
We report the commissioning results of Elekta Unity for the dosimetric performance and mechanical quality assurance (QA), and propose additional commissioning procedures. Mechanical tests included multi-leaf collimator (MLC) positional accuracy, radiation isocenter diameter at the center and off-center position, and coincidence between the magnetic resonance (MR) image center and radiation isocenter. Comparisons between the measurements and calculations of the simple irradiated field, intensity modulated radiation therapy (IMRT) commissioning, MLC output factor ratio, validation of independent dose calculation software and end-to-end testing were performed to evaluate dosimetric performance. The average values of the MLC positional accuracy for film- and imaging device-based analysis were −0.1 and 0.3 mm, respectively. The measured radiation isocenter size was 0.41 mm, and the off-center results were within 1 mm. The coincidence was −0.21, −1.19 and 0.49 mm along the x-, y- and z-axes, respectively. The calculated percent depth doses (PDD) and profiles agreed with the measurements. The results of independent dose calculation were within the action level recommended by American Associations of Physicist in Medicine. The gamma passing rate (GPR) for IMRT commissioning was 98.6 ± 0.9%, and end-to-end testing of adapted plans showed agreement within 2% between the measurement and calculation. We reported the results of mechanical and dosimetric performances of Elekta Unity, and proposed novel commissioning procedures. Our results should provide knowledge to the physics community for enhancing the QA programs.
Collapse
Affiliation(s)
- Masato Tsuneda
- Corresponding author. Department of Radiation Oncology, MR Linac ART Division, Graduate School of Medicine, Chiba University. 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677 Japan. E-mail: , , Tel: +81-43-226-2100, Fax: +81-43-226-2101
| | - Kota Abe
- Department of Radiation Oncology, MR Linac ART Division, Graduate School of Medicine, Chiba University, Chiba, 260-8677 Japan
| | - Yukio Fujita
- Department of Radiation Oncology, MR Linac ART Division, Graduate School of Medicine, Chiba University, Chiba, 260-8677 Japan
- Department of Radiation Sciences, Komazawa University, Setagaya, Tokyo, 259-1193 Japan
| | - Yohei Ikeda
- Department of Radiology, Chiba University Hospital, Chiba, 260-8670 Japan
| | - Yoshinobu Furuyama
- Department of Radiology, Chiba University Hospital, Chiba, 260-8670 Japan
| | - Takashi Uno
- Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Chiba, 260-8677 Japan
| |
Collapse
|
16
|
Muir B, Culberson W, Davis S, Kim GGY, Lee SW, Lowenstein J, Renaud J, Sarfehnia A, Siebers J, Tantôt L, Tolani N. AAPM WGTG51 Report 374: Guidance for TG-51 reference dosimetry. Med Phys 2022; 49:6739-6764. [PMID: 36000424 DOI: 10.1002/mp.15949] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 12/13/2022] Open
Abstract
Practical guidelines that are not explicit in the TG-51 protocol and its Addendum for photon beam dosimetry are presented for the implementation of the TG-51 protocol for reference dosimetry of external high-energy photon and electron beams. These guidelines pertain to: (i) measurement of depth-ionization curves required to obtain beam quality specifiers for the selection of beam quality conversion factors, (ii) considerations for the dosimetry system and specifications of a reference-class ionization chamber, (iii) commissioning a dosimetry system and frequency of measurements, (iv) positioning/aligning the water tank and ionization chamber for depth ionization and reference dose measurements, (v) requirements for ancillary equipment needed to measure charge (triaxial cables and electrometers) and to correct for environmental conditions, and (vi) translation from dose at the reference depth to that at the depth required by the treatment planning system. Procedures are identified to achieve the most accurate results (errors up to 8% have been observed) and, where applicable, a commonly used simplified procedure is described and the impact on reference dosimetry measurements is discussed so that the medical physicist can be informed on where to allocate resources.
Collapse
Affiliation(s)
- Bryan Muir
- Metrology Research Centre, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Wesley Culberson
- Department of Medical Physics, University of Wisconsin - Madison, Madison, Wisconsin, United States
| | - Stephen Davis
- Radiation Oncology, Miami Cancer Institute, Miami, Florida, United States
| | - Grace Gwe-Ya Kim
- Department of Radiation Medicine and Applied Sciences, UC San Diego School of Medicine, La Jolla, California, United States
| | - Sung-Woo Lee
- Department of Radiation Oncology, University of Maryland School of Medicine, Columbia, Maryland, United States
| | - Jessica Lowenstein
- Department of Radiation Physics, UT M.D. Anderson Cancer Center, Houston, Texas, United States
| | - James Renaud
- Metrology Research Centre, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Arman Sarfehnia
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey Siebers
- Department of Radiation Oncology, University of Virginia Health System, Charlottesville, Virginia, United States
| | - Laurent Tantôt
- Département de radio-oncologie, CIUSSS de l'Est-de-l'Île-de-Montréal - Hôpital Maisonneuve-Rosemont, Montreal, Quebec, Canada
| | - Naresh Tolani
- Department of Radiation Therapy, Michael E. DeBakey VA Medical Center, Houston, Texas, United States
| |
Collapse
|
17
|
Vedelago J, Karger CP, Jäkel O. A review on reference dosimetry in radiation therapy with proton and light ion beams: status and impact of new developments. RADIAT MEAS 2022. [DOI: 10.1016/j.radmeas.2022.106844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
18
|
Navarro Campos J, de Pooter J, de Prez L, Jansen B. The impact of ion chamber components on kB,Qfor reference dosimetry in MRgRT. Phys Med Biol 2022; 67. [PMID: 35688138 DOI: 10.1088/1361-6560/ac77d0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/10/2022] [Indexed: 01/05/2023]
Abstract
For reference dosimetry in MRgRT,kB,Qis used to correct for the impact of the magnetic field on the chamber calibration coefficient. It has been demonstrated that for accurate simulation ofkB,Qthe dead volume (DV) must be considered. This work goes one step further by analysing the contribution of secondary electrons generated in the various chamber components tokB,Q. The Farmer-type chamber PTW 30013 geometry was modelled for two different DVs. Monte Carlo simulations were performed for a60Co source and a 7 MV MRI-linac and the model was validated against measurements. Both parallel (α = 0° or 180°) and perpendicular (α = 90° or 270°) orientations of the chamber and the magnetic (B) field were considered, and severalB-field strengths between 0 T and 1.5 T. To study the dose contribution to the reduced volume (RV = cavity - DV) from the secondary electrons produced in certain components of the chamber the labelling of the particles was implemented in the PENELOPE user code PENMAIN. A separate model with each solid component of the chamber modelled as liquid water was used to investigate the impact of material choice onkB,Q. Results show that simulatedkB,Qvalues agree better with the measuredkB,Qwhen the DV is considered. It is demonstrated that small components of the chamber impactkB,Qconsiderably, since the contribution to the RV-dose from the bodies closer to the RV is higher than withoutB. Moreover, it is seen that the impact to the dose in the RV is reduced when the material of each component is modelled as liquid water. Therefore, chamber design and, to a lesser extent, choice of material affectkB,Q, and an accurate geometrical model of the chamber components and its further validation are important for correct calculations ofkB,Q.
Collapse
Affiliation(s)
| | | | - Leon de Prez
- VSL - NationalMetrology Institute, Delft, The Netherlands
| | - Bartel Jansen
- VSL - NationalMetrology Institute, Delft, The Netherlands
| |
Collapse
|
19
|
Begg J, Jelen U, Keall P, Liney G, Holloway L. Experimental characterisation of the magnetic field correction factor,kB⃗,for Roos chambers in a parallel MRI-linac. Phys Med Biol 2022; 67. [PMID: 35413694 DOI: 10.1088/1361-6560/ac66b8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 04/12/2022] [Indexed: 12/15/2022]
Abstract
Objective.Reference dosimetry on an MRI-linac requires a chamber specific magnetic field correction factor,kB⃗.This work aims to measure the correction factor for a parallel plate chamber on a parallel MRI-linac.Approach.kB⃗is defined as the ratio of the absorbed dose to water calibration coefficient in the presence of the magnetic field,ND,wB⃗relative to that under 0 T conditions,ND,w0T.kB⃗was measured via aND,wtransfer to a field chamber at each magnetic field strength from a chamber with knownND,wandkB⃗.This was achieved on the parallel MRI-linac by moving the measurement set-up between a high magnetic field strength region at the MRI-isocentre and a low magnetic field strength region at the end of the bore whilst maintaining consistent set-up and scatter conditions. Three PTW 34001 Roos chambers were investigated as well as a PTW 30013 Farmer used to validate methodology.Main Results.The beam quality used for the measurements ofkB⃗wasTPR20/10 = 0.632. ThekB⃗for the PTW Farmer chamber at 1 T on a parallel MRI-linac was 0.993 ± 0.013 (k = 1). The averagekB⃗factor measured for the three Roos chambers on a 1 T parallel MRI-linac was 0.999 ± 0.014 (k = 1).Significance.The results presented are the first measurements ofkB⃗for a Roos chamber on a parallel MRI-linac. The Roos chamber results demonstrate the potential for the chamber as a reference dosimeter in parallel MRI-linacs.
Collapse
Affiliation(s)
- Jarrad Begg
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centre, Liverpool, NSW, 2170, Australia.,Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia.,South Western Sydney Clinical School, University of New South Wales, Liverpool, NSW, 2170, Australia
| | - Urszula Jelen
- Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia
| | - Paul Keall
- Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia.,Image X Institute, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2005, Australia
| | - Gary Liney
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centre, Liverpool, NSW, 2170, Australia.,Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia.,South Western Sydney Clinical School, University of New South Wales, Liverpool, NSW, 2170, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Lois Holloway
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centre, Liverpool, NSW, 2170, Australia.,Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia.,South Western Sydney Clinical School, University of New South Wales, Liverpool, NSW, 2170, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia.,Institute of Medical Physics, University of Sydney, Camperdown, NSW, 2005, Australia
| |
Collapse
|
20
|
Yano M, Araki F, Ohno T. Monte Carlo study of small-field dosimetry for an ELEKTA Unity MR-Linac system. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
21
|
Tyagi N, Subashi E, Michael Lovelock D, Kry S, Alvarez PE, Hunt MA, Lim SB. Dosimetric evaluation of irradiation geometry and potential air gaps in an acrylic miniphantom used for external audit of absolute dose calibration for a hybrid 1.5 T MR-linac system. J Appl Clin Med Phys 2021; 23:e13503. [PMID: 34914175 PMCID: PMC8833292 DOI: 10.1002/acm2.13503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/21/2021] [Accepted: 11/30/2021] [Indexed: 11/20/2022] Open
Abstract
Introduction To investigate the impact of partial lateral scatter (LS), backscatter (BS) and presence of air gaps on optically stimulated luminescence dosimeter (OSLD) measurements in an acrylic miniphantom used for dosimetry audit on the 1.5 T magnetic resonance‐linear accelerator (MR‐linac) system. Methods The following irradiation geometries were investigated using OSLDs, A26 MR/A12 MR ion chamber (IC), and Monaco Monte Carlo system: (a) IC/OSLD in an acrylic miniphantom (partial LS, partial BS), (b) IC/OSLD in a miniphantom placed on a solid water (SW) stack at a depth of 1.5 cm (partial LS, full BS), (c) IC/OSLD placed at a depth of 1.5 cm inside a 3 cm slab of SW/buildup (full LS, partial BS), and (d) IC/OSLD centered inside a 3 cm slab of SW/buildup at a depth of 1.5 cm placed on top of a SW stack (full LS, full BS). Average of two irradiated OSLDs with and without water was used at each setup. An air gap of 1 and 2 mm, mimicking presence of potential air gap around the OSLDs in the miniphantom geometry was also simulated. The calibration condition of the machine was 1 cGy/MU at SAD = 143.5 cm, d = 5 cm, G90, and 10 × 10 cm2. Results The Monaco calculation (0.5% uncertainty and 1.0 mm voxel size) for the four setups at the measurement point were 108.2, 108.1, 109.4, and 110.0 cGy. The corresponding IC measurements were 109.0 ± 0.03, 109.5 ± 0.06, 110.2 ± 0.02, and 109.8 ± 0.03 cGy. Without water, OSLDs measurements were ∼10% higher than the expected. With added water to minimize air gaps, the measurements were significantly improved to within 2.2%. The dosimetric impacts of 1 and 2 mm air gaps were also verified with Monaco to be 13.3% and 27.9% higher, respectively, due to the electron return effect. Conclusions A minimal amount of air around or within the OSLDs can cause measurement discrepancies of 10% or higher when placed in a high b‐field MR‐linac system. Care must be taken to eliminate the air from within and around the OSLD.
Collapse
Affiliation(s)
- Neelam Tyagi
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Ergys Subashi
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Dale Michael Lovelock
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Stephen Kry
- Department of Radiation Physics, IROC, MD Anderson Cancer Center, Houston, Texas, USA
| | - Paola Elisa Alvarez
- Department of Radiation Physics, IROC, MD Anderson Cancer Center, Houston, Texas, USA
| | - Margie A Hunt
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Seng Boh Lim
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
22
|
Cervantes Y, Duchaine J, Billas I, Duane S, Bouchard H. Monte Carlo calculation of detector perturbation and quality correction factors in a 1.5 T magnetic resonance guided radiation therapy small photon beams. Phys Med Biol 2021; 66. [PMID: 34700311 DOI: 10.1088/1361-6560/ac3344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/26/2021] [Indexed: 01/02/2023]
Abstract
Objective.With future advances in magnetic resonance imaging-guided radiation therapy, small photon beams are expected to be included regularly in clinical treatments. This study provides physical insights on detector dose-response to multiple megavoltage photon beam sizes coupled to magnetic fields and determines optimal orientations for measurements.Approach.Monte Carlo simulations determine small-cavity detector (solid-state: PTW60012 and PTW60019, ionization chambers: PTW31010, PTW31021, and PTW31022) dose-responses in water to an Elekta Unity 7 MV FFF photon beam. Investigations are performed for field widths between 0.25 and 10 cm in four detector axis orientations with respect to the 1.5 T magnetic field and the photon beam. The magnetic field effect on the overall perturbation factor (PMC) accounting for the extracameral components, atomic composition, and density is quantified in each orientation. The density (Pρ) and volume averaging (Pvol) perturbation factors and quality correction factors (kQB,QfB,f) accounting for the magnetic field are also calculated in each orientation.Main results.Results show thatPvolremains the most significant perturbation both with and without magnetic fields. In most cases, the magnetic field effect onPvolis 1% or less. The magnetic field effect onPρis more significant on ionization chambers than on solid-state detectors. This effect increases up to 1.564 ± 0.001 with decreasing field size for chambers. On the contrary, the magnetic field effect on the extracameral perturbation factor is higher on solid-state detectors than on ionization chambers. For chambers, the magnetic field effect onPMCis only significant for field widths <1 cm, while, for solid-state detectors, this effect exhibits different trends with orientation, indicating that the beam incident angle and geometry play a crucial role.Significance.Solid-state detectors' dose-response is strongly affected by the magnetic field in all orientations. The magnetic field impact on ionization chamber response increases with decreasing field size. In general, ionization chambers yieldkQB,QfB,fcloser to unity, especially in orientations where the chamber axis is parallel to the magnetic field.
Collapse
Affiliation(s)
- Yunuen Cervantes
- Département de physique, Université de Montréal, Complexe des sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada.,Centre de recherche du Centre hospitalier de l'Université de Montréal, 900 Rue Saint-Denis, Montréal, Québec, H2X 0A9, Canada
| | - Jasmine Duchaine
- Département de physique, Université de Montréal, Complexe des sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada.,Centre de recherche du Centre hospitalier de l'Université de Montréal, 900 Rue Saint-Denis, Montréal, Québec, H2X 0A9, Canada
| | - Ilias Billas
- National Physical Laboratory, Chemical, Medical and Environmental Science Department, Teddington, United Kingdom.,Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Simon Duane
- National Physical Laboratory, Chemical, Medical and Environmental Science Department, Teddington, United Kingdom
| | - Hugo Bouchard
- Département de physique, Université de Montréal, Complexe des sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada.,Centre de recherche du Centre hospitalier de l'Université de Montréal, 900 Rue Saint-Denis, Montréal, Québec, H2X 0A9, Canada.,Département de radio-oncologie, Centre hospitalier de l'Université de Montréal (CHUM), 900 Rue Saint-Denis, Montréal, Québec, H2X 0A9, Canada
| |
Collapse
|
23
|
Subashi E, Lim SB, Gonzalez X, Tyagi N. Longitudinal assessment of quality assurance measurements in a 1.5T MR-linac: Part I-Linear accelerator. J Appl Clin Med Phys 2021; 22:190-201. [PMID: 34505349 PMCID: PMC8504604 DOI: 10.1002/acm2.13418] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/16/2021] [Accepted: 08/29/2021] [Indexed: 01/04/2023] Open
Abstract
Purpose To describe and report longitudinal quality assurance (QA) measurements for the mechanical and dosimetric performance of an Elekta Unity MR‐linac during the first year of clinical use in our institution. Materials and methods The mechanical and dosimetric performance of the MR‐linac was evaluated with daily, weekly, monthly, and annual QA testing. The measurements monitor the size of the radiation isocenter, the MR‐to‐MV isocenter concordance, MLC and jaw position, the accuracy and reproducibility of step‐and‐shoot delivery, radiation output and beam profile constancy, and patient‐specific QA for the first 50 treatments in our institution. Results from end‐to‐end QA using anthropomorphic phantoms are also included as a reference for baseline comparisons. Measurements were performed in water or water‐equivalent plastic using ion chambers of various sizes, an ion chamber array, MR‐compatible 2D/3D diode array, portal imager, MRI, and radiochromic film. Results The diameter of the radiation isocenter and the distance between the MR/MV isocenters was (μ ± σ) 0.39 ± 0.01 mm and 0.89 ± 0.05 mm, respectively. Trend analysis shows both measurements to be well within the tolerance of 1.0 mm. MLC and jaw positional accuracy was within 1.0 mm while the dosimetric performance of step‐and‐shoot delivery was within 2.0%, irrespective of gantry angle. Radiation output and beam profile constancy were within 2.0% and 1.0%, respectively. End‐to‐end testing performed with ion‐chamber and radiochromic film showed excellent agreement with treatment plan. Patient‐specific QA using a 3D diode array identified gantry angles with low‐pass rates allowing for improvements in plan quality after necessary adjustments. Conclusion The MR‐linac operates within the guidelines of current recommendations for linear accelerator performance, stability, and safety. The analysis of the data supports the recently published guidance in establishing clinically acceptable tolerance levels for relative and absolute measurements.
Collapse
Affiliation(s)
- Ergys Subashi
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Seng Boh Lim
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Neelam Tyagi
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
24
|
Delfs B, Blum I, Tekin T, Schönfeld AB, Kranzer R, Poppinga D, Giesen U, Langner F, Kapsch RP, Poppe B, Looe HK. The role of the construction and sensitive volume of compact ionization chambers on the magnetic field-dependent dose response. Med Phys 2021; 48:4572-4585. [PMID: 34032298 DOI: 10.1002/mp.14994] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 04/19/2021] [Accepted: 05/03/2021] [Indexed: 11/11/2022] Open
Abstract
PURPOSE The magnetic-field correction factors k B , Q of compact air-filled ionization chambers have been investigated experimentally and using Monte Carlo simulations up to 1.5 T. The role of the nonsensitive region within the air cavity and influence of the chamber construction on its dose response have been elucidated. MATERIALS AND METHODS The PTW Semiflex 3D 31021, PinPoint 3D 31022, and Sun Nuclear Cooperation SNC125c chambers were studied. The k B , Q factors were measured at the experimental facility of the German National Metrology Institute (PTB) up to 1.4 T using a 6 MV photon beam. The chambers were positioned with the chamber axis perpendicular to the beam axis (radial); and parallel to the beam axis (axial). In both cases, the magnetic field was directed perpendicular to both the beam axis and chamber axis. Additionally, the sensitive volumes of these chambers have been experimentally determined using a focused proton microbeam and finite element method. Beside the simulations of k B , Q factors, detailed Monte Carlo technique has been applied to analyse the secondary electron fluence within the air cavity, that is, the number of secondary electrons and the average path length as a function of the magnetic field strength. RESULTS A nonsensitive volume within the air cavity adjacent to the chamber stem for the PTW chambers has been identified from the microbeam measurements and FEM calculations. The dose response of the three investigated ionization chambers does not deviate by more than 4% from the field-free case within the range of magnetic fields studied in this work for both the radial and axial orientations. The simulated k B , Q for the fully guarded PTW chambers deviate by up to 6% if their sensitive volumes are not correctly considered during the simulations. After the implementation of the sensitive volume derived from the microbeam measurements, an agreement of better than 1% between the experimental and Monte Carlo k B , Q factors for all three chambers can be achieved. Detailed analysis reveals that the stem of the PTW chambers could give rise to a shielding effect reducing the number of secondary electrons entering the air cavity in the presence of magnetic field. However, the magnetic field dependence of their path length within the air cavity is shown to be weaker than for the SNC125c chamber, where the length of the air cavity is larger than its diameter. For this chamber it is shown that the number of electrons and their path lengths in the cavity depend stronger on the magnetic field. DISCUSSION AND CONCLUSION For clinical measurements up to 1.5 T, the required k B , Q corrections of the three chambers could be kept within 3% in both the investigated chamber orientations. The results reiterate the importance of considering the sensitive volume of fully guarded chambers, even for the investigated compact chambers, in the Monte Carlo simulations of chamber response in magnetic field. The resulting magnetic field-dependent dose response has been demonstrated to depend on the chamber construction, such as the ratio between length and the diameter of the air cavity as well as the design of the chamber stem.
Collapse
Affiliation(s)
- Björn Delfs
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Isabel Blum
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Tuba Tekin
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Ann-Britt Schönfeld
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Rafael Kranzer
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany.,PTW Freiburg, Freiburg, Germany
| | | | - Ulrich Giesen
- Hochenergetische Photonen- und Elektronenstrahlung, Physikalisch-Technische Bundesanstalt, PTB, Braunschweig, Germany
| | - Frank Langner
- Hochenergetische Photonen- und Elektronenstrahlung, Physikalisch-Technische Bundesanstalt, PTB, Braunschweig, Germany
| | - Ralf-Peter Kapsch
- Hochenergetische Photonen- und Elektronenstrahlung, Physikalisch-Technische Bundesanstalt, PTB, Braunschweig, Germany
| | - Björn Poppe
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Hui Khee Looe
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
25
|
Liu X, Li C, Zhu J, Gong G, Sun H, Li X, Sun M, Zhang Z, Li B, Yin Y, Li Z. Technical Note: End-to-end verification of an MR-Linac using a dynamic motion phantom. Med Phys 2021; 48:5479-5489. [PMID: 34174099 DOI: 10.1002/mp.15057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 12/25/2022] Open
Abstract
PURPOSE MR-Linac integrates an MRI scanner and a linear accelerator to provide adaptive radiation treatment. Superior tissue contrast and real-time imaging can give the clinicians confidence to reduce the margins of the planning target volume (PTV). The purpose of this study was to verify the dosimetric accuracy of an MR-Linac system in treating a moving target and assess the error with different motion patterns and adaptation methods. METHODS We performed an end-to-end test for Elekta Unity (Elekta) using the 4D Dynamic Thorax Phantom (CIRS MRgRT 008Z), comparing the measured and planned dose. The moving phantom had four measurement locations in the tumor, liver, kidney, and spinal cord regions with a PTW30013 ion chamber. For seven different motion patterns, we first acquired simulation CT using a slow-scanning protocol, based on which we generated reference plans. The treatment technique was the standard intensity-modulated radiation therapy (IMRT). We tested both adaptation workflows: the Adapt-to-Position (ATP) and the Adapt-to-Shape (ATS). The three-dimensional (3D) distribution was measured using a diode array phantom (Sun Nuclear Inc.) to check the dose distribution accuracy as part of the routine QA process. We also performed end-to-end tests on a conventional Linac. Finally, we used SPSS Statistics 22.0 (Inc., Chicago, IL, USA) for data analysis. RESULTS All pretreatment reference plans and delivered plans had excellent QA results with a better than 95% passing rate of relative gamma analysis (2%/2 mm criteria). The adaptive planning for MR-Linac produced quality plans. The measured dose in the target agreed with the calculated dose. CONCLUSIONS The adaptive treatment on the MR-Linac system investigated met the expected performance with tumor motions. The outline of the target could be visualized and accurately contoured on the 3D MR for online planning. Under different motion patterns, the difference between the measured and calculated dose was acceptable clinically.
Collapse
Affiliation(s)
- Xuechun Liu
- Medical Engineering and Technology Research Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China.,Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Chengqiang Li
- Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jian Zhu
- Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Guanzhong Gong
- Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | | | - Xu Li
- Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Mengdi Sun
- Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zicheng Zhang
- Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.,Department of Radiation Oncology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Baosheng Li
- Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yong Yin
- Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhenjiang Li
- Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
26
|
Calculations of magnetic field correction factors for ionization chambers in a transverse magnetic field using Monte Carlo code TOPAS. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Yang B, Wong YS, Lam WW, Geng H, Huang CY, Tang KK, Law WK, Ho CC, Nam PH, Cheung KY, Yu SK. Initial clinical experience of patient-specific QA of treatment delivery in online adaptive radiotherapy using a 1.5 T MR-Linac. Biomed Phys Eng Express 2021; 7. [PMID: 33882471 DOI: 10.1088/2057-1976/abfa80] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/21/2021] [Indexed: 11/11/2022]
Abstract
Purpose. This study aims to evaluate the performance of a commercial 1.5 T MR-Linac by analyzing its patient-specific quality assurance (QA) data collected during one full year of clinical operation.Methods and Materials. The patient-specific QA system consisted of offline delivery QA (DQA) and online calculation-based QA. Offline DQA was based on ArcCHECK-MR combined with an ionization chamber. Online QA was performed using RadCalc that calculated and compared the point dose calculation with the treatment planning system (TPS). A total of 24 patients with 189 treatment fractions were enrolled in this study. Gamma analysis was performed and the threshold that encompassed 95% of QA results (T95) was reported. The plan complexity metric was calculated for each plan and compared with the dose measurements to determine whether any correlation existed.Results. All point dose measurements were within 5% deviation. The mean gamma passing rates of the group data were found to be 96.8 ± 4.0% and 99.6 ± 0.7% with criteria of 2%/2mm and 3%/3mm, respectively. T95 of 87.4% and 98.2% was reported for the overall group with the two passing criteria, respectively. No statistically significant difference was found between adaptive treatments with adapt-to-position (ATP) and adapt-to-shape (ATS), whilst the category of pelvis data showed a better passing rate than other sites. Online QA gave a mean deviation of 0.2 ± 2.2%. The plan complexity metric was positively correlated with the mean dose difference whilst the complexity of the ATS cohort had larger variations than the ATP cohort.Conclusions. A patient-specific QA system based on ArcCHECK-MR, solid phantom and ionization chamber has been well established and implemented for validation of treatment delivery of a 1.5 T MR-Linac. Our QA data obtained over one year confirms that good agreement between TPS calculation and treatment delivery was achieved.
Collapse
Affiliation(s)
- B Yang
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - Y S Wong
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - W W Lam
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - H Geng
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - C Y Huang
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - K K Tang
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - W K Law
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - C C Ho
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - P H Nam
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - K Y Cheung
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - S K Yu
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| |
Collapse
|
28
|
Roberts DA, Sandin C, Vesanen PT, Lee H, Hanson IM, Nill S, Perik T, Lim SB, Vedam S, Yang J, Woodings SW, Wolthaus JWH, Keller B, Budgell G, Chen X, Li XA. Machine QA for the Elekta Unity system: A Report from the Elekta MR-linac consortium. Med Phys 2021; 48:e67-e85. [PMID: 33577091 PMCID: PMC8251771 DOI: 10.1002/mp.14764] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 01/21/2021] [Accepted: 02/03/2021] [Indexed: 12/31/2022] Open
Abstract
Over the last few years, magnetic resonance image‐guided radiotherapy systems have been introduced into the clinic, allowing for daily online plan adaption. While quality assurance (QA) is similar to conventional radiotherapy systems, there is a need to introduce or modify measurement techniques. As yet, there is no consensus guidance on the QA equipment and test requirements for such systems. Therefore, this report provides an overview of QA equipment and techniques for mechanical, dosimetric, and imaging performance of such systems and recommendation of the QA procedures, particularly for a 1.5T MR‐linac device. An overview of the system design and considerations for QA measurements, particularly the effect of the machine geometry and magnetic field on the radiation beam measurements is given. The effect of the magnetic field on measurement equipment and methods is reviewed to provide a foundation for interpreting measurement results and devising appropriate methods. And lastly, a consensus overview of recommended QA, appropriate methods, and tolerances is provided based on conventional QA protocols. The aim of this consensus work was to provide a foundation for QA protocols, comparative studies of system performance, and for future development of QA protocols and measurement methods.
Collapse
Affiliation(s)
- David A Roberts
- Elekta Limited, Cornerstone, London Road, Crawley, RH10 9BL, United Kingdom
| | - Carlos Sandin
- Elekta Limited, Cornerstone, London Road, Crawley, RH10 9BL, United Kingdom
| | | | - Hannah Lee
- Allegheny Health Network Cancer Institute, Pennsylvania, USA
| | - Ian M Hanson
- The Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, UK
| | - Simeon Nill
- The Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, UK
| | - Thijs Perik
- Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Seng Boh Lim
- Memorial Sloan Kettering Cancer Center, New York, USA
| | - Sastry Vedam
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Texas, USA
| | - Jinzhong Yang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Texas, USA
| | - Simon W Woodings
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jochem W H Wolthaus
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Brian Keller
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Geoff Budgell
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, United Kingdom
| | - Xinfeng Chen
- Department of Radiation Oncology, Froedtert Hospital and Medical College of Wisconsin, Milwaukee, USA
| | - X Allen Li
- Department of Radiation Oncology, Froedtert Hospital and Medical College of Wisconsin, Milwaukee, USA
| |
Collapse
|
29
|
Huang CY, Yang B, Lam WW, Tang KK, Li TC, Law WK, Cheung KY, Yu SK. Effects on skin dose from unwanted air gaps under bolus in an MR-guided linear accelerator (MR-linac) system. Phys Med Biol 2021; 66:065021. [PMID: 33607641 DOI: 10.1088/1361-6560/abe837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bolus is commonly used in MV photon radiotherapy to increase superficial dose and improve dose uniformity for treating shallow lesions. However, irregular patient body contours can cause unwanted air gaps between a bolus and patient skin. The resulting dosimetric errors could be exacerbated in MR-Linac treatments, as secondary electrons generated by photons are affected by the magnetic field. This study aimed to quantify the dosimetric effect of unwanted gaps between bolus and skin surface in an MR-Linac. A parallel-plate ionization chamber and EBT3 films were utilized to evaluate the surface dose under bolus with various gantry angles, field sizes, and different air gaps. The results of surface dose measurements were then compared to Monaco 5.40 Treatment Planning System (TPS) calculations. The suitability of using a parallel-plate chamber in MR-Linac measurement was validated by benchmarking the percentage depth dose and output factors with the microDiamond detector and air-filled ionization chamber measurements in water. A non-symmetric response of the parallel-plate chamber to oblique beams in the magnetic field was characterized. Unwanted air gaps significantly reduced the skin dose. For a frontal beam, skin dose was halved when there was a 5 mm gap, a much larger difference than in a conventional linac. Skin dose manifested a non-symmetric pattern in terms of gantry angle and gap size. The TPS overestimated skin dose in general, but shared the same trend with measurement when there was no air gap, or the gap size was larger than 5 mm. However, the calculated and measured results had a large discrepancy when the bolus-skin gap was below 5 mm. When treating superficial lesions, unwanted air gaps under the bolus will compromise the dosimetric goals. Our results highlight the importance of avoiding air gaps between bolus and skin when treating superficial lesions using an MR-Linac system.
Collapse
|
30
|
de Pooter J, Billas I, de Prez L, Duane S, Kapsch RP, Karger CP, van Asselen B, Wolthaus J. Reference dosimetry in MRI-linacs: evaluation of available protocols and data to establish a Code of Practice. Phys Med Biol 2021; 66:05TR02. [PMID: 32570225 DOI: 10.1088/1361-6560/ab9efe] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
With the rapid increase in clinical treatments with MRI-linacs, a consistent, harmonized and sustainable ground for reference dosimetry in MRI-linacs is needed. Specific for reference dosimetry in MRI-linacs is the presence of a strong magnetic field. Therefore, existing Code of Practices (CoPs) are inadequate. In recent years, a vast amount of papers have been published in relation to this topic. The purpose of this review paper is twofold: to give an overview and evaluate the existing literature for reference dosimetry in MRI-linacs and to discuss whether the literature and datasets are adequate and complete to serve as a basis for the development of a new or to extend existing CoPs. This review is prefaced with an overview of existing MRI-linac facilities. Then an introduction on the physics of radiation transport in magnetic fields is given. The main part of the review is devoted to the evaluation of the literature with respect to the following subjects: • beam characteristics of MRI-linac facilities; • formalisms for reference dosimetry in MRI-linacs; • characteristics of ionization chambers in the presence of magnetic fields; • ionization chamber beam quality correction factors; and • ionization chamber magnetic field correction factors. The review is completed with a discussion as to whether the existing literature is adequate to serve as basis for a CoP. In addition, it highlights subjects for future research on this topic.
Collapse
|
31
|
Pojtinger S, Nachbar M, Ghandour S, Pisaturo O, Pachoud M, Kapsch RP, Thorwarth D. Experimental determination of magnetic field correction factors for ionization chambers in parallel and perpendicular orientations. Phys Med Biol 2020; 65:245044. [PMID: 33181493 DOI: 10.1088/1361-6560/abca06] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Magnetic field correction factors are needed for absolute dosimetry in magnetic resonance (MR)-linacs. Currently experimental data for magnetic field correction factors, especially for small volume ionization chambers, are largely lacking. The purpose of this work is to establish, independent methods for the experimental determination of magnetic field correction factors [Formula: see text] in an orientation in which the ionization chamber is parallel to the magnetic field. The aim is to confirm previous experiments on the determination of Farmer type ionization chamber correction factors and to gather information about the usability of small-volume ionization chambers for absolute dosimetry in MR-linacs. The first approach to determine [Formula: see text] is based on a cross-calibration of measurements using a conventional linac with an electromagnet and an MR-linac. The absolute influence of the magnetic field in perpendicular orientation is quantified with the help of the conventional linac and the electromagnet. The correction factors for the parallel orientation are then derived by combining these measurements with relative measurements in the MR-linac. The second technique utilizes alanine electron paramagnetic resonance dosimetry. The alanine system as well as several ionization chambers were directly calibrated with the German primary standard for absorbed dose to water. Magnetic field correction factors for the ionization chambers were determined by a cross-calibration with the alanine in an MR-linac. Important quantities like [Formula: see text] for Farmer type ionization chambers in parallel orientation and the change of the dose to water due the magnetic field [Formula: see text] have been confirmed. In addition, magnetic field correction factors have been determined for small volume ionization chambers in parallel orientation. The electromagnet-based measurements of [Formula: see text] for [Formula: see text] MR-linacs and parallel ionization chamber orientations resulted in 0.9926(22), 0.9935(31) and 0.9841(27) for the PTW 30013, the PTW 31010 and the PTW 31021, respectively. The measurements based on the second technique resulted in values for [Formula: see text] of 0.9901(72), 0.9955(72), and 0.9885(71). Both methods show excellent accuracy and reproducibility and are therefore suitable for the determination of magnetic field correction factors. Small-volume ionization chambers showed a variation in the resulting values for [Formula: see text] and should be cross-calibrated instead of using tabulated values for correction factors.
Collapse
Affiliation(s)
- Stefan Pojtinger
- Physikalisch-Technische Bundesanstalt, Braunschweig, Germany. University Hospital Tübingen, Biomedical Physics, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Nedaie HA, Gholami S, Longo F, Banaee N, Hassani M, Sarfehnia A, Pang G. The effect of magnetic field on Linac based Stereotactic Radiosurgery dosimetric parameters. Biomed Phys Eng Express 2020; 7. [PMID: 35037902 DOI: 10.1088/2057-1976/abd2c4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 12/11/2020] [Indexed: 11/11/2022]
Abstract
Objective: MR-linac machines are being developed for image-guided radiation therapy but the magnetic field of such machines could affect dose distributions. The purpose of this work was to evaluate the effect of a magnetic field on linac beam dosimetric parameters including penumbra for circular cones used in radiosurgery.Methods: Monte Carlo simulation was conducted for a linac machine with circular cones at 6 MV beam. A homogenous magnetic field of 1.5 T was applied transversely and parallel to the radiation beam. Percentage depth dose (PDD) and beam profiles in a water phantom with and without the magnetic field were calculated.Results: The results have shown that when the magnetic field is applied transversely, the PDDs in the water phantom differ in the buildup region and distant part of PDD curves. The beam profiles at three different depths are all significantly different from those without the magnetic field. The penumbra is greater when a magnetic field has been applied.Conclusion: Linear accelerator-based SRT and SRS use small circular cones. The beam penumbra for these cones can change in the presence of a magnetic field. The perturbation of dose distribution has been also observed in a patient plan due to the presence of a magnetic field. The results of this study show that dose distributions in the presence of a magnetic field must be considered for MR-guided radiotherapy treatments.
Collapse
Affiliation(s)
- H Ali Nedaie
- Radiation Oncology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Gholami
- Radiation Oncology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Francesco Longo
- Department of Physics, University of Trieste and INFN Trieste, Italy
| | - Nooshin Banaee
- Department of Medical Radiation, Engineering Faculty, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohssen Hassani
- Radiation Oncology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Arman Sarfehnia
- Odette Cancer Centre, Department of Radiation Oncology, University of Toronto, 2075 Bayview Avenue, Toronto M4N 3M5, Canada
| | - G Pang
- Odette Cancer Centre, Department of Radiation Oncology, University of Toronto, 2075 Bayview Avenue, Toronto M4N 3M5, Canada
| |
Collapse
|
33
|
Krauss A, Spindeldreier CK, Klüter S. Direct determination of [Formula: see text] for cylindrical ionization chambers in a 6 MV 0.35 T MR-linac. Phys Med Biol 2020; 65:235049. [PMID: 33300501 DOI: 10.1088/1361-6560/abab56] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To ensure accurate reference dosimetry with ionization chambers in magnetic resonance linear accelerators (MR-linacs), the influence of the magnetic field on the response of the ionization chambers must be considered. The most direct method considering the influence of magnetic fields in dosimetry is to apply an appropriate absorbed-dose-to-water primary standard. At PTB, a new water calorimeter has been designed which is capable to determine Dw,Q in an MR-linac. The new device allows the direct calibration of ionization chambers in terms of absorbed dose to water for MR-linac irradiation conditions. Hence, the correction factors [Formula: see text] can be determined which replace the current radiation-quality dependent correction factors [Formula: see text] for dosimetry in the presence of magnetic fields. In cooperation with Heidelberg University Hospital,[Formula: see text] factors were measured at the 6 MV 0.35 T Viewray MR-linac for different cylindrical ionization chambers with sensitive volumes ranging from 0.015 cm3 to 0.65 cm3. The chambers were placed both perpendicular and parallel in respect to the magnetic field. Standard uncertainties of about 0.5% were achieved.
Collapse
Affiliation(s)
- A Krauss
- Department of Dosimetry for Radiation Therapy and Diagnostic Radiology, Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, D-38116, Braunschweig, Germany
| | | | | |
Collapse
|
34
|
D'Souza M, Nusrat H, Iakovenko V, Keller B, Sahgal A, Renaud J, Sarfehnia A. Water calorimetry in MR‐linac: Direct measurement of absorbed dose and determination of chamber. Med Phys 2020; 47:6458-6469. [DOI: 10.1002/mp.14468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 07/22/2020] [Accepted: 08/11/2020] [Indexed: 11/10/2022] Open
Affiliation(s)
- Mark D'Souza
- Department of Physics Ryerson University 350 Victoria St. Toronto ONM5B 2K3Canada
| | - Humza Nusrat
- Department of Radiation Oncology University of Toronto 2075 Bayview Ave. Toronto ONM4N 3M5Canada
| | - Viktor Iakovenko
- Department of Radiation Oncology University of Toronto 2075 Bayview Ave. Toronto ONM4N 3M5Canada
| | - Brian Keller
- Department of Radiation Oncology University of Toronto 2075 Bayview Ave. Toronto ONM4N 3M5Canada
| | - Arjun Sahgal
- Department of Radiation Oncology University of Toronto 2075 Bayview Ave. Toronto ONM4N 3M5Canada
| | - James Renaud
- Meterology Research Centre National Research Council Canada Montreal Rd. Ottawa ONK1A OR6Canada
- Medical Physics Unit McGill University 1001 Decarie Blvd. Montreal QCH4A 3J1Canada
| | - Arman Sarfehnia
- Department of Physics Ryerson University 350 Victoria St. Toronto ONM5B 2K3Canada
- Department of Radiation Oncology University of Toronto 2075 Bayview Ave. Toronto ONM4N 3M5Canada
- Department of Radiation Oncology McGill University 1001 Decarie Blvd. Montreal QCH4A 3J1Canada
| |
Collapse
|
35
|
Pojtinger S, Nachbar M, Kapsch RP, Thorwarth D. Influence of beam quality on reference dosimetry correction factors in magnetic resonance guided radiation therapy. Phys Imaging Radiat Oncol 2020; 16:95-98. [PMID: 33458350 PMCID: PMC7807647 DOI: 10.1016/j.phro.2020.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 01/09/2023] Open
Abstract
Correction factors for reference dosimetry in magnetic resonance (MR) imaging-guided radiation therapy (k B → , M , Q ) are often determined in setups that combine a conventional 6 MV linac with an electromagnet. This study investigated whether results based on these measurements were applicable for a 7 MV MR-linac using Monte Carlo simulations. For a Farmer-type ionization chamber,k B → , M , Q was assessed for different tissue-phantom ratios (TPR 20 , 10 ).k B → , M , Q differed by 0.0029 ( 43 ) betweenTPR 20 , 10 = 0.6790 ( 23 ) (6 MV linac) andTPR 20 , 10 = 0.7028 ( 14 ) (7 MV MR-linac) at 1.5 T . The agreement was best in an orientation in which the secondary electrons were deflected to the stem of the ionization chamber.
Collapse
Affiliation(s)
- Stefan Pojtinger
- Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Germany
| | - Marcel Nachbar
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Germany
| | | | - Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Germany
| |
Collapse
|
36
|
Hu Q, Yu VY, Yang Y, Hu P, Sheng K, Lee PP, Kishan AU, Raldow AC, O'Connell DP, Woods KE, Cao M. Practical Safety Considerations for Integration of Magnetic Resonance Imaging in Radiation Therapy. Pract Radiat Oncol 2020; 10:443-453. [PMID: 32781246 DOI: 10.1016/j.prro.2020.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/16/2020] [Accepted: 07/28/2020] [Indexed: 12/29/2022]
Abstract
Interest in integrating magnetic resonance imaging (MRI) in radiation therapy (RT) practice has increased dramatically in recent years owing to its unique advantages such as excellent soft tissue contrast and capability of measuring biological properties. Continuous real-time imaging for intrafractional motion tracking without ionizing radiation serves as a particularly attractive feature for applications in RT. Despite its many advantages, the integration of MRI in RT workflows is not straightforward, with many unmet needs. MR safety remains one of the key challenges and concerns in the clinical implementation of MR simulators and MR-guided radiation therapy systems in radiation oncology. Most RT staff are not accustomed to working in an environment with a strong magnetic field. There are specific requirements in RT that are different from diagnostic applications. A large variety of implants and devices used in routine RT practice do not have clear MR safety labels. RT-specific imaging pulse sequences focusing on fast acquisition, high spatial integrity, and continuous, real-time acquisition require additional MR safety testing and evaluation. This article provides an overview of MR safety tailored toward RT staff, followed by discussions on specific requirements and challenges associated with MR safety in the RT environment. Strategies and techniques for developing an MR safety program specific to RT are presented and discussed.
Collapse
Affiliation(s)
- Qiongge Hu
- Department of Radiation Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Victoria Y Yu
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yingli Yang
- Department of Radiation Oncology, University of California, Los Angeles, California
| | - Peng Hu
- Department of Radiology, University of California, Los Angeles, California
| | - Ke Sheng
- Department of Radiation Oncology, University of California, Los Angeles, California
| | - Percy P Lee
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amar U Kishan
- Department of Radiation Oncology, University of California, Los Angeles, California
| | - Ann C Raldow
- Department of Radiation Oncology, University of California, Los Angeles, California
| | - Dylan P O'Connell
- Department of Radiation Oncology, University of California, Los Angeles, California
| | - Kaley E Woods
- Department of Radiation Oncology, University of California, Los Angeles, California
| | - Minsong Cao
- Department of Radiation Oncology, University of California, Los Angeles, California.
| |
Collapse
|
37
|
Darafsheh A, Hao Y, Maraghechi B, Cammin J, Reynoso FJ, Khan R. Influence of 0.35 T magnetic field on the response of EBT3 and EBT-XD radiochromic films. Med Phys 2020; 47:4543-4552. [PMID: 32502280 DOI: 10.1002/mp.14313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To investigate the inconsistency of recent literature on the effect of magnetic field on the response of radiochromic films, we studied the influence of 0.35 T magnetic field on dosimetric response of EBT3 and EBT-XD GafchromicTM films. METHODS Two different models of radiochromic films, EBT3 and EBT-XD, were investigated. Pieces of films samples from two different batches for each model were irradiated at different dose levels ranging from 1 to 20 Gy using 6 MV flattening filter free (FFF) x-rays generated by a clinical MR-guided radiotherapy system (B = 0.35 T). Film samples from the same batch were irradiated at corresponding dose levels using 6 MV FFF beam from a conventional linac (B = 0) for comparison. The net optical density was measured 48 h postirradiation using a flatbed scanner. The absorbance spectra were also measured over 500-700 nm wavelength range using a fiber-coupled spectrometer with 2.5 nm resolution. To study the effect of fractionated dose delivery to EBT3 (/EBT-XD) films, 8 (/16) Gy dose was delivered in four 2 (/4) Gy fractions with 24 h interval between fractions. RESULTS No significant difference was found in the net optical density and net absorbance of the films irradiated with or without the presence of magnetic field. No dependency on the orientation of the film during irradiation with respect to the magnetic field was observed. The fractionated dose delivery resulted in the same optical density as delivering the whole dose in a single fraction. CONCLUSIONS The 0.35 T magnetic field employed in the ViewRay® MR-guided radiotherapy system did not show any significant influence on the response of EBT3 and EBT-XD GafchromicTM films.
Collapse
Affiliation(s)
- Arash Darafsheh
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yao Hao
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Borna Maraghechi
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jochen Cammin
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Francisco J Reynoso
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Rao Khan
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
38
|
Snyder JE, St-Aubin J, Yaddanapudi S, Boczkowski A, Dunkerley DAP, Graves SA, Hyer DE. Commissioning of a 1.5T Elekta Unity MR-linac: A single institution experience. J Appl Clin Med Phys 2020; 21:160-172. [PMID: 32432405 PMCID: PMC7386194 DOI: 10.1002/acm2.12902] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/17/2020] [Accepted: 04/16/2020] [Indexed: 12/31/2022] Open
Abstract
MR image-guided radiotherapy has the potential to improve patient care, but integration of an MRI scanner with a linear accelerator adds complexity to the commissioning process. This work describes a single institution experience of commissioning an Elekta Unity MR-linac, including mechanical testing, MRI scanner commissioning, and dosimetric validation. Mechanical testing included multileaf collimator (MLC) positional accuracy, measurement of radiation isocenter diameter, and MR-to-MV coincidence. Key MRI tests included magnetic field homogeneity, geometric accuracy, image quality, and the accuracy of navigator-triggered imaging for motion management. Dosimetric validation consisted of comparison between measured and calculated PDDs and profiles, IMRT measurements, and end-to-end testing. Multileaf collimator positional accuracy was within 1.0 mm, the measured radiation isocenter walkout was 0.20 mm, and the coincidence between MR and MV isocenter was 1.06 mm, which is accounted for in the treatment planning system (TPS). For a 350-mm-diameter spherical volume, the peak-to-peak deviation of the magnetic field homogeneity was 4.44 ppm and the geometric distortion was 0.8 mm. All image quality metrics were within ACR recommendations. Navigator-triggered images showed a maximum deviation of 0.42, 0.75, and 3.0 mm in the target centroid location compared to the stationary target for a 20 mm motion at 10, 15, and 20 breaths per minute, respectively. TPS-calculated PDDs and profiles showed excellent agreement with measurement. The gamma passing rate for IMRT plans was 98.4 ± 1.1% (3%/ 2 mm) and end-to-end testing of adapted plans showed agreement within 0.4% between ion-chamber measurement and TPS calculation. All credentialing criteria were satisfied in an independent end-to-end test using an IROC MRgRT phantom.
Collapse
Affiliation(s)
- Jeffrey E Snyder
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - Joël St-Aubin
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | | | - Amanda Boczkowski
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | | | | | - Daniel E Hyer
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
39
|
Kurz C, Buizza G, Landry G, Kamp F, Rabe M, Paganelli C, Baroni G, Reiner M, Keall PJ, van den Berg CAT, Riboldi M. Medical physics challenges in clinical MR-guided radiotherapy. Radiat Oncol 2020; 15:93. [PMID: 32370788 PMCID: PMC7201982 DOI: 10.1186/s13014-020-01524-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/24/2020] [Indexed: 12/18/2022] Open
Abstract
The integration of magnetic resonance imaging (MRI) for guidance in external beam radiotherapy has faced significant research and development efforts in recent years. The current availability of linear accelerators with an embedded MRI unit, providing volumetric imaging at excellent soft tissue contrast, is expected to provide novel possibilities in the implementation of image-guided adaptive radiotherapy (IGART) protocols. This study reviews open medical physics issues in MR-guided radiotherapy (MRgRT) implementation, with a focus on current approaches and on the potential for innovation in IGART.Daily imaging in MRgRT provides the ability to visualize the static anatomy, to capture internal tumor motion and to extract quantitative image features for treatment verification and monitoring. Those capabilities enable the use of treatment adaptation, with potential benefits in terms of personalized medicine. The use of online MRI requires dedicated efforts to perform accurate dose measurements and calculations, due to the presence of magnetic fields. Likewise, MRgRT requires dedicated quality assurance (QA) protocols for safe clinical implementation.Reaction to anatomical changes in MRgRT, as visualized on daily images, demands for treatment adaptation concepts, with stringent requirements in terms of fast and accurate validation before the treatment fraction can be delivered. This entails specific challenges in terms of treatment workflow optimization, QA, and verification of the expected delivered dose while the patient is in treatment position. Those challenges require specialized medical physics developments towards the aim of fully exploiting MRI capabilities. Conversely, the use of MRgRT allows for higher confidence in tumor targeting and organs-at-risk (OAR) sparing.The systematic use of MRgRT brings the possibility of leveraging IGART methods for the optimization of tumor targeting and quantitative treatment verification. Although several challenges exist, the intrinsic benefits of MRgRT will provide a deeper understanding of dose delivery effects on an individual basis, with the potential for further treatment personalization.
Collapse
Affiliation(s)
- Christopher Kurz
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
- Department of Medical Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748, Garching, Germany
| | - Giulia Buizza
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, P.za Leonardo da Vinci 32, 20133, Milano, Italy
| | - Guillaume Landry
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
- Department of Medical Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748, Garching, Germany
- German Cancer Consortium (DKTK), 81377, Munich, Germany
| | - Florian Kamp
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Moritz Rabe
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Chiara Paganelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, P.za Leonardo da Vinci 32, 20133, Milano, Italy
| | - Guido Baroni
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, P.za Leonardo da Vinci 32, 20133, Milano, Italy
- Bioengineering Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Privata Campeggi 53, 27100, Pavia, Italy
| | - Michael Reiner
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Paul J Keall
- ACRF Image X Institute, University of Sydney, Sydney, NSW, 2006, Australia
| | - Cornelis A T van den Berg
- Department of Radiotherapy, University Medical Centre Utrecht, PO box 85500, 3508 GA, Utrecht, The Netherlands
| | - Marco Riboldi
- Department of Medical Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748, Garching, Germany.
| |
Collapse
|
40
|
Ito S, Araki F, Ohno T. Impact of transverse magnetic fields on dose response of a radiophotoluminescent glass dosimeter in megavoltage photon beams. Med Phys 2020; 47:1995-2004. [DOI: 10.1002/mp.14054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 11/10/2022] Open
Affiliation(s)
- Shotaro Ito
- Graduate school of Health Sciences Kumamoto University 4‐24‐1 Kuhonji, Chuo‐ku Kumamoto 862‐0976Japan
| | - Fujio Araki
- Department of Health Sciences Faculty of Life Sciences Kumamoto University 4‐24‐1 Kuhonji, Chuo‐ku Kumamoto 862‐0976Japan
| | - Takeshi Ohno
- Department of Health Sciences Faculty of Life Sciences Kumamoto University 4‐24‐1 Kuhonji, Chuo‐ku Kumamoto 862‐0976Japan
| |
Collapse
|
41
|
Trachsel MA, Pojtinger S, Meier M, Schrader M, Kapsch RP, Kottler C. Chemical radiation dosimetry in magnetic fields: characterization of a Fricke-type chemical detector in 6 MV photon beams and magnetic fields up to 1.42 T. ACTA ACUST UNITED AC 2020; 65:065005. [DOI: 10.1088/1361-6560/ab7360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Jelen U, Dong B, Begg J, Roberts N, Whelan B, Keall P, Liney G. Dosimetric Optimization and Commissioning of a High Field Inline MRI-Linac. Front Oncol 2020; 10:136. [PMID: 32117776 PMCID: PMC7033562 DOI: 10.3389/fonc.2020.00136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/27/2020] [Indexed: 11/17/2022] Open
Abstract
Purpose: Unique characteristics of MRI-linac systems and mutual interactions between their components pose specific challenges for their commissioning and quality assurance. The Australian MRI-linac is a prototype system which explores the inline orientation, with radiation beam parallel to the main magnetic field. The aim of this work was to commission the radiation-related aspects of this system for its application in clinical treatments. Methods: Physical alignment of the radiation beam to the magnetic field was fine-tuned and magnetic shielding of the radiation head was designed to achieve optimal beam characteristics. These steps were guided by investigative measurements of the beam properties. Subsequently, machine performance was benchmarked against the requirements of the IEC60976/77 standards. Finally, the geometric and dosimetric data was acquired, following the AAPM Task Group 106 recommendations, to characterize the beam for modeling in the treatment planning system and with Monte Carlo simulations. The magnetic field effects on the dose deposition and on the detector response have been taken into account and issues specific to the inline design have been highlighted. Results: Alignment of the radiation beam axis and the imaging isocentre within 2 mm tolerance was obtained. The system was commissioned at two source-to-isocentre distances (SIDs): 2.4 and 1.8 m. Reproducibility and proportionality of the dose monitoring system met IEC criteria at the larger SID but slightly exceeded it at the shorter SID. Profile symmetry remained under 103% for the fields up to ~34 × 34 and 21 × 21 cm2 at the larger and shorter SID, respectively. No penumbra asymmetry, characteristic for transverse systems, was observed. The electron focusing effect, which results in high entrance doses on central axis, was quantified and methods to minimize it have been investigated. Conclusion: Methods were developed and employed to investigate and quantify the dosimetric properties of an inline MRI-Linac system. The Australian MRI-linac system has been fine-tuned in terms of beam properties and commissioned, constituting a key step toward the application of inline MRI-linacs for patient treatments.
Collapse
Affiliation(s)
- Urszula Jelen
- Department of Medical Physics, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Bin Dong
- Department of Medical Physics, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Jarrad Begg
- Department of Medical Physics, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia.,Liverpool Cancer Therapy Centre, Radiation Physics, Liverpool, NSW, Australia.,School of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Natalia Roberts
- Department of Medical Physics, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Brendan Whelan
- Sydney Medical School, ACRF Image X Institute, University of Sydney, Sydney, NSW, Australia
| | - Paul Keall
- Department of Medical Physics, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia.,Sydney Medical School, ACRF Image X Institute, University of Sydney, Sydney, NSW, Australia
| | - Gary Liney
- Department of Medical Physics, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia.,Liverpool Cancer Therapy Centre, Radiation Physics, Liverpool, NSW, Australia.,School of Medicine, University of New South Wales, Sydney, NSW, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
43
|
Kim A, Lim-Reinders S, Ahmad SB, Sahgal A, Keller BM. Surface and near-surface dose measurements at beam entry and exit in a 1.5 T MR-Linac using optically stimulated luminescence dosimeters. ACTA ACUST UNITED AC 2020; 65:045012. [DOI: 10.1088/1361-6560/ab64b6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Han EY, Aima M, Hughes N, Briere TM, Yeboa DN, Castillo P, Wang J, Yang J, Vedam S. Feasibility of spinal stereotactic body radiotherapy in Elekta Unity ® MR-Linac. JOURNAL OF RADIOSURGERY AND SBRT 2020; 7:127-134. [PMID: 33282466 PMCID: PMC7717094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/02/2020] [Indexed: 06/12/2023]
Abstract
The Elekta Unity MR-Linac (MRL) is expected to benefit spine stereotactic body radiotherapy (SBRT) due to the improved soft tissue contrast available with onboard MR imaging. However, the irradiation geometry and beam configuration of the MRL deviates from the conventional linear accelerator (Linac). The purpose of the study was to investigate the feasibility of spine SBRT on the MRL. Treatment plans were generated for lumbar and thoracic spines. Target and spinal cord doses were measured with two cylindrical ion chambers inserted into an anthropomorphic spine phantom. Our study indicated that the Monaco treatment planning system (TPS) could generate clinical treatment plans for the MRL that were of comparable quality to the RayStation TPS with a conventional Linac. For both Linacs the planned dose within the gross tumor volume agreed with measurements within ±3%. For the spinal cord, while the measured doses from the TrueBeam were 1.8% higher for the lumbar spine plan and 6.9% higher for thoracic spine plan, the measured doses from MRL were 0.6% lower for the lumbar spine plan and 3.9% higher for the thoracic spine plan. In conclusion, the feasibility of spine SBRT in Elekta Unity MRL has been demonstrated, however, more effort is needed for such as optimizing the online plan adaptation method.
Collapse
Affiliation(s)
- Eun Young Han
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Manik Aima
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neil Hughes
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tina M. Briere
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Debra N. Yeboa
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pam Castillo
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jihong Wang
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jinzhong Yang
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sastry Vedam
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
45
|
Renaud J, Sarfehnia A, Bancheri J, Seuntjens J. Absolute dosimetry of a 1.5 T MR-guided accelerator-based high-energy photon beam in water and solid phantoms using Aerrow. Med Phys 2019; 47:1291-1304. [PMID: 31834640 DOI: 10.1002/mp.13968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 11/09/2022] Open
Abstract
PURPOSE In this work, the fabrication, operation, and evaluation of a probe-format graphite calorimeter - herein referred to as Aerrow - as an absolute clinical dosimeter of high-energy photon beams while in the presence of a B = 1.5 T magnetic field is described. Comparable to a cylindrical ionization chamber (IC) in terms of utility and usability, Aerrow has been developed for the purpose of accurately measuring absorbed dose to water in the clinic with a minimum disruption to the existing clinical workflow. To our knowledge, this is the first reported application of graphite calorimetry to magnetic resonance imaging (MRI)-guided radiotherapy. METHODS Based on a previously numerically optimized and experimentally validated design, an Aerrow prototype capable of isothermal operation was constructed in-house. Graphite-to-water dose conversions as well as magnetic field perturbation factors were calculated using Monte Carlo, while heat transfer and mass impurity corrections and uncertainties were assessed analytically. Reference dose measurements were performed in the absence and presence of a B = 1.5 T magnetic field using Aerrow in the 7 MV FFF photon beam of an Elekta MRI-linac and were directly compared to the results obtained using two calibrated reference-class IC types. The feasibility of performing solid phantom-based dosimetry with Aerrow and the possible influence of clearance gaps is also investigated by performing reference-type dosimetry measurements for multiple rotational positions of the detector and comparing the results to those obtained in water. RESULTS In the absence of the B-field, as well as in the parallel orientation while in the presence of the B-field, the absorbed dose to water measured using Aerrow was found to agree within combined uncertainties with those derived from TG-51 using calibrated reference-class ICs. Statistically significant differences on the order of (2-4)%, however, were observed when measuring absorbed dose to water using the ICs in the perpendicular orientation in the presence of the B-field. Aerrow had a peak-to-peak response of about 0.5% when rotated within the solid phantom regardless of whether the B-field was present or not. CONCLUSIONS This work describes the successful use of Aerrow as a straightforward means of measuring absolute dose to water for large high-energy photon fields in the presence of a 1.5 T B-field to a greater accuracy than currently achievable with ICs. The detector-phantom air gap does not appear to significantly influence the response of Aerrow in absolute terms, nor does it contribute to its rotational dependence. This work suggests that the accurate use of solid phantoms for absolute point dose measurement is possible with Aerrow.
Collapse
Affiliation(s)
- James Renaud
- Metrology Research Centre, National Research Council Canada, Ottawa, ON, K1T 0R6, Canada.,Medical Physics Unit, McGill University, Montréal, QC, H4A 3J1, Canada
| | - Arman Sarfehnia
- Medical Physics Unit, McGill University, Montréal, QC, H4A 3J1, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, ON, M5S 3E2, Canada
| | - Julien Bancheri
- Medical Physics Unit, McGill University, Montréal, QC, H4A 3J1, Canada
| | - Jan Seuntjens
- Medical Physics Unit, McGill University, Montréal, QC, H4A 3J1, Canada
| |
Collapse
|
46
|
Malkov VN, Rogers DWO. Erratum: Monte Carlo study of ionization chamber magnetic field correction factors as a function of angle and beam quality. [Med. Phys. 45(2) p. 908‐925 (2018)]. Med Phys 2019; 46:5367-5370. [DOI: 10.1002/mp.13782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 11/10/2022] Open
Affiliation(s)
- Victor N. Malkov
- Carleton Laboratory for Radiotherapy Physics Physics Department Carleton University Ottawa OntarioK1S 5B6Canada
| | - David W. O. Rogers
- Carleton Laboratory for Radiotherapy Physics Physics Department Carleton University Ottawa OntarioK1S 5B6Canada
| |
Collapse
|
47
|
|
48
|
Reynolds M, Rathee S, Fallone BG. Technical Note: Sensitive volume effects on ion chamber responses in longitudinal magnetic fields. Med Phys 2019; 46:3306-3310. [DOI: 10.1002/mp.13565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 11/11/2022] Open
Affiliation(s)
- Michael Reynolds
- Department of Oncology, Medical Physics Division University of Alberta 11560 University Avenue Edmonton Alberta T6G 1Z2Canada
| | - Satyapal Rathee
- Department of Oncology, Medical Physics Division University of Alberta 11560 University Avenue Edmonton Alberta T6G 1Z2Canada
- Department of Medical Physics Cross Cancer Institute 11560 University Avenue Edmonton Alberta T6G 1Z2Canada
| | - B. Gino Fallone
- Department of Medical Physics Cross Cancer Institute 11560 University Avenue Edmonton Alberta T6G 1Z2Canada
- Departments of Oncology and Physics University of Alberta 11560 University Avenue Edmonton Alberta T6G 1Z2Canada
| |
Collapse
|
49
|
de Prez L, Woodings S, de Pooter J, van Asselen B, Wolthaus J, Jansen B, Raaymakers B. Direct measurement of ion chamber correction factors, k Q and k B, in a 7 MV MRI-linac. ACTA ACUST UNITED AC 2019; 64:105025. [DOI: 10.1088/1361-6560/ab1511] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
Serrano-Mireles J, Garnica-Garza H. Ion chamber response to kilovoltage x-rays in the presence of a contrast agent. Appl Radiat Isot 2019; 147:14-20. [DOI: 10.1016/j.apradiso.2019.01.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 01/08/2019] [Accepted: 01/31/2019] [Indexed: 11/26/2022]
|