1
|
Romero-Expósito M, Sánchez-Nieto B, Riveira-Martin M, Azizi M, Gkavonatsiou A, Muñoz I, López-Martínez IN, Espinoza I, Zelada G, Córdova-Bernhardt A, Norrlid O, Goldkuhl C, Molin D, Sánchez FMP, López-Medina A, Toma-Dasu I, Dasu A. Individualized evaluation of the total dose received by radiotherapy patients: Integrating in-field, out-of-field, and imaging doses. Phys Med 2024; 129:104879. [PMID: 39718311 DOI: 10.1016/j.ejmp.2024.104879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/07/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024] Open
Abstract
PURPOSE To propose a methodology for integrating the out-of-field and imaging doses to the in-field dose received by radiotherapy (RT) patients. In addition, the impact of considering the total dose in planning and radiation-induced second malignancies (RISM) risk assessment will be evaluated in several scenarios comprising photon and proton treatments. METHODS The total dose is the voxel-wise sum of the doses from the different radiation sources (accounting for the radiobiological effectiveness) produced during the whole RT chain. The dose from the plan and imaging procedures were obtained by measurements for a photon prostate treatment and by calculation (combining treatment planning system, analytical models, and Monte Carlo simulations) for two lymphoma treatments, one using photons and the other, protons. Dose distributions, dose volume histograms (DVHs) metrics, mean organ doses, and RISM risks were evaluated for each radiation exposure in each treatment. RESULTS In general, the contribution of the imaging doses is low compared to the dose administered during RT treatment, being higher in proton therapy. However, for some organs, for instance testes in the prostate case, the imaging dose becomes higher than the scattered dose from the treatment fields. Plan evaluations revealed shifts in cumulative DVHs with the inclusion of out-of-field and imaging doses, though minimal clinical impact is expected. Risk assessment showed increased estimates with total dose. CONCLUSIONS The methodology enables accounting for the total dose for optimization of plans and imaging protocols, prospective risk predictions and retrospective epidemiological analyses.
Collapse
Affiliation(s)
- Maite Romero-Expósito
- The Skandion Clinic, Uppsala, Sweden; Oncology Pathology Department, Karolinska Institutet, Stockholm, Sweden.
| | | | | | - Mona Azizi
- Oncology Pathology Department, Karolinska Institutet, Stockholm, Sweden; Medical Radiation Physics, Stockholm University, Stockholm, Sweden
| | | | - Isidora Muñoz
- Pontificia Universidad Católica de Chile, Instituto de Física, Santiago, Chile
| | | | - Ignacio Espinoza
- Pontificia Universidad Católica de Chile, Instituto de Física, Santiago, Chile
| | - Gabriel Zelada
- Servicio de Radioterapia, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | | | - Ola Norrlid
- Uppsala University Hospital, Uppsala, Sweden
| | | | - Daniel Molin
- Department of Immunology, Genetics and Pathology, Cancer Immunotherapy, Uppsala University, Uppsala, Sweden
| | | | - Antonio López-Medina
- Medical Physics and RP Department (GALARIA), University Hospital of Vigo, Meixoeiro Hospital, Vigo, Spain; Instituto de Investigación Sanitaria Galicia Sur, Vigo, Spain
| | - Iuliana Toma-Dasu
- Oncology Pathology Department, Karolinska Institutet, Stockholm, Sweden; Medical Radiation Physics, Stockholm University, Stockholm, Sweden
| | - Alexandru Dasu
- The Skandion Clinic, Uppsala, Sweden; Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Bhandari A, Johnson K, Oh K, Yu F, Huynh LM, Lei Y, Wisnoskie S, Zhou S, Baine MJ, Lin C, Zhang C, Wang S. Developing a novel dosiomics model to predict treatment failures following lung stereotactic body radiation therapy. Front Oncol 2024; 14:1438861. [PMID: 39726705 PMCID: PMC11669717 DOI: 10.3389/fonc.2024.1438861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 11/07/2024] [Indexed: 12/28/2024] Open
Abstract
Purpose The purpose of this study was to investigate the dosiomics features of the interplay between CT density and dose distribution in lung SBRT plans, and to develop a model to predict treatment failure following lung SBRT treatment. Methods A retrospective study was conducted involving 179 lung cancer patients treated with SBRT at the University of Nebraska Medical Center (UNMC) between October 2007 and June 2022. Features from the CT image, Biological Effective Dose (BED) and five interaction matrices between CT and BED were extracted using radiomics mathematics. Our in-house feature selection pipeline was utilized to evaluate and rank features based on their importance and redundancy, with only the selected non-redundant features being used for predictive modeling. We randomly selected 151 cases and 28 cases as training and test datasets. Four different models were trained utilizing the Balanced Random Forest framework on the same training dataset to differentiate between failure and non-failure cases. These four models utilized the same number of selected features extracted from CT-only, BED-only, a combination of CT and BED, and a composite of CT and BED including their interaction matrices, respectively. Results The cohort included 125 non-failure cases and 54 failure cases, with a median follow-up time of 34.4 months. We selected the top 17 important and non-redundant features (with the Pearsons's coefficient < 0.5) in each model. When evaluated on the same independent test set, the four models-CT features-only, BED features-only, a combination of CT and BED features, and a composite model including features from CT and BED that includes their interaction matrices-achieved AUC values of 0.56, 0.75, 0.73, and 0.82, respectively, with corresponding accuracies of 0.61, 0.79, 0.71, and 0.79. The composite model demonstrated the highest AUC and accuracy, indicating that incorporating interactions between CT and BED reveals more predictive capabilities in distinguishing between failure and non-failure cases. Conclusion The dosiomics model integrating the interaction between CT and Dose can effectively predict treatment failure following lung SBRT treatment and may serve as a useful tool to proactively evaluate and select lung SBRT treatment plans to reduce treatment failure in the future.
Collapse
Affiliation(s)
- Ashok Bhandari
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kurtis Johnson
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kyuhak Oh
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Fang Yu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, United States
| | - Linda M. Huynh
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Yu Lei
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Sarah Wisnoskie
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Radiation Oncology, Novant Health Cancer Institute, Winston-Salem, NC, United States
| | - Sumin Zhou
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Michael James Baine
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Chi Lin
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Chi Zhang
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Shuo Wang
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
3
|
Cheung LF, Fujitaka S, Fujii T, Miyamoto N, Takao S. Markerless tracking of tumor and tissues: A motion model approach. Med Phys 2024. [PMID: 39546730 DOI: 10.1002/mp.17524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 11/02/2024] [Accepted: 11/02/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Respiratory motion management is essential in order to achieve high-precision radiotherapy. Markerless motion tracking of tumor can provide a non-invasive way to manage respiratory motion, thereby enhancing treatment accuracy. However, the low contrast in real-time x-ray images for image guidance limits the application of markerless tracking. PURPOSE We present a novel approach based on a motion model to perform markerless tracking of tumor and surrounding tissues even when they have low contrast in real-time x-ray images. METHODS A proof-of-concept validation of the method has been performed using digital and physical phantoms at breathing conditions that are significantly different than the planning stage. A motion model is first constructed by performing principal component analysis (PCA) on the planning 4DCT. During treatment, the motion of a surrogate is tracked and used as the input of the motion model, which generates a 3D real-time volume estimation. Such 3D estimation is then projected to 2D to create digitally reconstructed radiographs (DRRs). The relationships between the real-time DRRs, reference DRRs, and reference x-ray images are first established to simulate 2D real-time images from the real-time volume. The registration between the simulated 2D real-time images and real-time x-ray images corrects the initial motion model estimation to ensure the estimated volume matches the real-time condition. RESULTS In digital phantom, the Dice index of pancreas was improved from 0.74 to 0.78 after correction using real-time DRRs in fully inhaled phase. Validation on lung and pancreas is performed in physical phantom with two motion traces. The surrogate-tumor relationships were intentionally altered to generate large target localization errors due to the differences in body condition between treatment planning stage and during treatment. The real-time correction for the estimated 3D real-time volume was performed using a pair of 2D x-ray images. For the deep breathing motion trace, the tumor localization mean absolute error (MAE) throughout the tracking decreases from around 3 mm to less than 1 mm after correction. For the shallow breathing motion trace with a 1.7 mm baseline shift, the tumor localization MAE throughout the tracking decreases from around 1.5 mm to less than 1 mm after correction. CONCLUSION The method combines the detailed structural information from planning 4DCT and real-time information from real-time x-ray images through a motion model. The matching between the real-time model estimation and 2D real-time images is performed in the same modality so that it can be applied to regions with low contrast in the images. The real-time images successfully corrected the initial motion model estimations in our proof-of-concept validation. This suggests the potential to perform markerless tracking in low-contrast region using a motion model.
Collapse
Affiliation(s)
- Ling Fung Cheung
- Electromagnetic Application Systems Research Department, Research and Development Group, Hitachi Ltd., Hitachi, Ibaraki, Japan
| | - Shinichirou Fujitaka
- Electromagnetic Application Systems Research Department, Research and Development Group, Hitachi Ltd., Hitachi, Ibaraki, Japan
| | - Takaaki Fujii
- Electromagnetic Application Systems Research Department, Research and Development Group, Hitachi Ltd., Hitachi, Ibaraki, Japan
| | - Naoki Miyamoto
- Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
- Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Seishin Takao
- Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
- Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| |
Collapse
|
4
|
Wood TJ, Davis AT, Earley J, Edyvean S, Findlay U, Lindsay R, Plaistow R, Williams M. IPEM topical report: the first UK survey of cone beam CT dose indices in radiotherapy verification imaging for adult patients. Phys Med Biol 2024; 69:225002. [PMID: 39423854 DOI: 10.1088/1361-6560/ad88d1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/18/2024] [Indexed: 10/21/2024]
Abstract
Cone beam CT is integral to most modern radiotherapy treatments. The application of daily and repeat CBCT imaging can lead to high imaging doses over a large volume of tissue that extends beyond the treatment site. Hence, it is important to ensure exposures are optimised to keep doses as low as reasonably achievable, whilst ensuring images are suitable for the clinical task. This IPEM topical report presents the results of the first UK survey of dose indices in radiotherapy CBCT. Dose measurements, as defined by the cone beam dose index (CBDIw), were collected along with protocol information for seven treatment sites. Where a range of optimised protocols were available in a centre, a sample of patient data demonstrating the variation in protocol use were requested. Protocol CBDIwvalues were determined from the average dosimetry data for each type of linear accelerator, and median CBDIwand scan length were calculated for each treatment site at each centre. Median CBDIwvalues were compared and summary statistics derived that enable the setting of national dose reference levels (DRLs). A total of 63 UK radiotherapy centres contributed data. The proposed CBDIwDRLs are; prostate 20.6 mGy, gynaecological 20.8 mGy, breast 5.0 mGy, 3D-lung 6.0 mGy, 4D-lung 11.8 mGy, brain 3.5 mGy and head/neck 4.2 mGy. However, large differences between models of imaging system were noted. Where centres had pro-active optimisation strategies in place, such as sized based protocols with selection criteria, dose reductions on the 'average' patient were possible compared with vendor defaults. Optimisation of scan length was noted in some clinical sites, with Elekta users tending to fit different collimators for prostate imaging (relatively short) compared with gynaecological treatments (longest). This contrasts with most Varian users who apply the default scan length in most cases.
Collapse
Affiliation(s)
- Tim J Wood
- Institute of Physics and Engineering in Medicine: Radiotherapy and Diagnostic Radiology Special Interest Groups, Doses to patients from x-ray imaging in radiotherapy working party, York, United Kingdom
- Medical Physics Service, Queen's Centre, Castle Hill Hospital, Hull University Teaching Hospitals NHS Trust, Castle Road, Hull HU16 5JQ, United Kingdom
| | - Anne T Davis
- Institute of Physics and Engineering in Medicine: Radiotherapy and Diagnostic Radiology Special Interest Groups, Doses to patients from x-ray imaging in radiotherapy working party, York, United Kingdom
- Medical Physics Department, Portsmouth Hospitals University NHS Trust, Portsmouth PO6 3LY, United Kingdom
| | - James Earley
- Institute of Physics and Engineering in Medicine: Radiotherapy and Diagnostic Radiology Special Interest Groups, Doses to patients from x-ray imaging in radiotherapy working party, York, United Kingdom
- Radiotherapy Physics, Royal Surrey Foundation Trust Hospital NHS Foundation Trust, Guildford, United Kingdom
| | - Sue Edyvean
- Radiation Dosimetry Department, Radiation, Chemicals and Environmental Hazards Directorate, UK Health Security Agency, Chilton, Oxon OX11 0RQ, United Kingdom
| | - Una Findlay
- Medical Exposure Group, Radiation, Chemicals and Environmental Hazards Directorate, UK Health Security Agency, Chilton, Oxon OX11 0RQ, United Kingdom
| | - Rebecca Lindsay
- Institute of Physics and Engineering in Medicine: Radiotherapy and Diagnostic Radiology Special Interest Groups, Doses to patients from x-ray imaging in radiotherapy working party, York, United Kingdom
- Medical Physics Department, Leeds Cancer Centre, Leeds LS9 7TF, United Kingdom
| | - Rosaleen Plaistow
- Institute of Physics and Engineering in Medicine: Radiotherapy and Diagnostic Radiology Special Interest Groups, Doses to patients from x-ray imaging in radiotherapy working party, York, United Kingdom
- Medical Physics Department, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Matthew Williams
- Institute of Physics and Engineering in Medicine: Radiotherapy and Diagnostic Radiology Special Interest Groups, Doses to patients from x-ray imaging in radiotherapy working party, York, United Kingdom
- Radiotherapy Physics, Velindre University NHS Trust, Velindre Road, Whitchurch, Cardiff CF14 2TL, United Kingdom
| |
Collapse
|
5
|
Numakura K, Takao S, Matsuura T, Yokokawa K, Chen Y, Uchinami Y, Taguchi H, Katoh N, Aoyama H, Tomioka S, Miyamoto N. Application of motion prediction based on a long short-term memory network for imaging dose reduction in real-time tumor-tracking radiation therapy. Phys Med 2024; 125:104507. [PMID: 39217787 DOI: 10.1016/j.ejmp.2024.104507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/12/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
PURPOSE To demonstrate the possibility of using a lower imaging rate while maintaining acceptable accuracy by applying motion prediction to minimize the imaging dose in real-time image-guided radiation therapy. METHODS Time-series of three-dimensional internal marker positions obtained from 98 patients in liver stereotactic body radiation therapy were used to train and test the long-short-term memory (LSTM) network. For real-time imaging, the root mean squared error (RMSE) of the prediction on three-dimensional marker position made by LSTM, the residual motion of the target under respiratory-gated irradiation, and irradiation efficiency were evaluated. In the evaluation of the residual motion, the system-specific latency was assumed to be 100 ms. RESULTS Except for outliers in the superior-inferior (SI) direction, the median/maximum values of the RMSE for imaging rates of 7.5, 5.0, and 2.5 frames per second (fps) were 0.8/1.3, 0.9/1.6, and 1.2/2.4 mm, respectively. The median/maximum residual motion in the SI direction at an imaging rate of 15.0 fps without prediction of the marker position, which is a typical clinical setting, was 2.3/3.6 mm. For rates of 7.5, 5.0, and 2.5 fps with prediction, the corresponding values were 2.0/2.6, 2.2/3.3, and 2.4/3.9 mm, respectively. There was no significant difference between the irradiation efficiency with and that without prediction of the marker position. The geometrical accuracy at lower frame rates with prediction applied was superior or comparable to that at 15 fps without prediction. In comparison with the current clinical setting for real-time image-guided radiation therapy, which uses an imaging rate of 15.0 fps without prediction, it may be possible to reduce the imaging dose by half or more. CONCLUSIONS Motion prediction can effectively lower the frame rate and minimize the imaging dose in real-time image-guided radiation therapy.
Collapse
Affiliation(s)
- Kazuki Numakura
- Graduate School of Biomedical Science and Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Seishin Takao
- Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8638, Japan; Department of Medical Physics, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo, Hokkaido 060-8648, Japan
| | - Taeko Matsuura
- Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8638, Japan; Department of Medical Physics, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo, Hokkaido 060-8648, Japan
| | - Kouhei Yokokawa
- Department of Medical Physics, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo, Hokkaido 060-8648, Japan
| | - Ye Chen
- Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8638, Japan; Department of Medical Physics, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo, Hokkaido 060-8648, Japan
| | - Yusuke Uchinami
- Faculty of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Hiroshi Taguchi
- Department of Radiation Oncology, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo, Hokkaido 060-8648, Japan
| | - Norio Katoh
- Faculty of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Hidefumi Aoyama
- Faculty of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Satoshi Tomioka
- Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Naoki Miyamoto
- Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8638, Japan; Department of Medical Physics, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo, Hokkaido 060-8648, Japan.
| |
Collapse
|
6
|
Saki M, Grewal H, Artz M, Willoughby TR, Park J, Brooks E, Getman N, Senterfitt A, Johnson P. Navigating Complexities: Leadless Pacemaker Management in Proton Therapy for a Pacemaker-Dependent Bilateral Breast Cancer Patient. Int J Part Ther 2024; 13:100112. [PMID: 39105198 PMCID: PMC11298889 DOI: 10.1016/j.ijpt.2024.100112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 08/07/2024] Open
Abstract
This case study explores the strategic decision-making and safety considerations in managing a unique scenario where a pacemaker dependent patient, requiring adjuvant radiotherapy for bilateral breast cancer. The conventional pacemaker was located entirely within the treatment target, without the option for transposition because of the bilateral chest treatment, resulting in significant risk of malfunction caused by exposing it to the full prescribed dose. Consequently, the decision was made to replace the conventional pacemaker with a leadless device Micra implanted directly into the heart to mitigate direct device radiation and potential adverse effects of proton therapy on the cardiac device. Following Micra implantation, the patient underwent the proton treatment without complications or serious device malfunctions. This study explores solutions to address the challenges posed by within-the-field cardiac devices and highlights the use of pencil beam proton therapy for individuals with leadless cardiac devices while acknowledging the potential for neutron production and the associated risk of single-event upsets (SEU) in cardiac implantable electronic devices (CIEDs). The findings underscore the significance of strategic decision-making, risk assessment, and continuous monitoring for successful outcomes, particularly in the context of proton therapy for patients with advanced cardiac considerations.
Collapse
Affiliation(s)
- Mohammad Saki
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, FL 32610, USA
- University of Florida Health Proton Therapy Institute, Jacksonville, FL 32206, USA
| | - Hardev Grewal
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, FL 32610, USA
- University of Florida Health Proton Therapy Institute, Jacksonville, FL 32206, USA
| | - Mark Artz
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, FL 32610, USA
- University of Florida Health Proton Therapy Institute, Jacksonville, FL 32206, USA
| | - Twyla R. Willoughby
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, FL 32610, USA
- University of Florida Health Proton Therapy Institute, Jacksonville, FL 32206, USA
| | - Jiyeon Park
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, FL 32610, USA
- University of Florida Health Proton Therapy Institute, Jacksonville, FL 32206, USA
| | - Eric Brooks
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, FL 32610, USA
- University of Florida Health Proton Therapy Institute, Jacksonville, FL 32206, USA
| | - Nataly Getman
- University of Florida Health Proton Therapy Institute, Jacksonville, FL 32206, USA
| | - Abby Senterfitt
- University of Florida Health Proton Therapy Institute, Jacksonville, FL 32206, USA
| | - Perry Johnson
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, FL 32610, USA
- University of Florida Health Proton Therapy Institute, Jacksonville, FL 32206, USA
| |
Collapse
|
7
|
Abuhaimed A, Mujammami H, AlEnazi K, Abanomy A, Alashban Y, Martin CJ. Estimation of organ and effective doses of CBCT scans of radiotherapy using size-specific field of view (FOV): a Monte Carlo study. Phys Eng Sci Med 2024; 47:895-906. [PMID: 38536632 DOI: 10.1007/s13246-024-01413-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 03/04/2024] [Indexed: 09/18/2024]
Abstract
The kV cone beam computed tomography (CBCT) is one of the most common imaging modalities used for image-guided radiation therapy (IGRT) procedures. Additional doses are delivered to patients, thus assessment and optimization of the imaging doses should be taken into consideration. This study aimed to investigate the influence of using fixed and patient-specific FOVs on the patient dose. Monte Carlo simulations were performed to simulate kV beams of the imaging system integrated into Truebeam linear accelerator using BEAMnrc code. Organ and size-specific effective doses resulting from chest and pelvis scanning protocols were estimated with DOSXYZnrc code using a phantom library developed by the National Cancer Institute (NCI) of the US. The library contains 193 (100 male and 93 female) mesh-type computational human adult phantoms, and it covers a large ratio of patient sizes with heights and weights ranging from 150 to 190 cm and 40 to 125 kg. The imaging doses were assessed using variable FOV of three sizes, small (S), medium (M), and large (L) for each scan region. The results show that the FOV and the patient size played a major role in the scan dose. The average percentage differences (PDs) for doses of organs that were fully inside the different FOVs were relatively low, all within 11% for both protocols. However, doses to organs that were scanned partially or near the FOVs were affected significantly. For the chest protocol, the inclusion of the thyroid in the scan field could give a dose of 1-7 mGy/100 mAs to the thyroid, compared to 0.4-1 mGy/100 mAs when it was excluded. Similarly, on average, testes doses could be 6 mGy/100 mAs for the male pelvis protocol compared to 3 mGy/100 mAs when it did not lie in the field irradiated. These dose differences resulted in an average increase of up to 27% in the size-specific effective dose of the protocols. Since changing the field size is possible for CBCT scans, the results suggest that patient-specific scanning protocols could be applied for each scan area in a manner similar to that used for CT scans. Adjustment of the FOV size should be subject to the clinical needs, and assist in improving the treatment accuracy. The patient's height and weight might be considered as the main factors upon which, the selection of the appropriate patient-specific protocol is based. This approach should optimize the imaging doses used for IGRT procedures by minimizing doses of a large ratio of patients.
Collapse
Affiliation(s)
- Abdullah Abuhaimed
- King Abdulaziz City for Science and Technology (KACST), P.O Box 6086, 11442, Riyadh, Saudi Arabia.
| | - Huda Mujammami
- Radiological Sciences Department, College of Applied Medical Sciences, King Saud University, P.O. Box 145111, 4545, Riyadh, Saudi Arabia
| | - Khaled AlEnazi
- Radiological Sciences Department, College of Applied Medical Sciences, King Saud University, P.O. Box 145111, 4545, Riyadh, Saudi Arabia
| | - Ahmed Abanomy
- Radiological Sciences Department, College of Applied Medical Sciences, King Saud University, P.O. Box 145111, 4545, Riyadh, Saudi Arabia
| | - Yazeed Alashban
- Radiological Sciences Department, College of Applied Medical Sciences, King Saud University, P.O. Box 145111, 4545, Riyadh, Saudi Arabia
| | - Colin J Martin
- Department of Clinical Physics and Bio-Engineering, Gartnavel Royal Hospital, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
8
|
Yoshida T, Sasaki K, Hayakawa T, Kawadai T, Shibasaki T, Kawasaki Y. Recommendation for reducing the crystalline lens exposure dose by reducing imaging field width in cone-beam computed tomography for image-guided radiation therapy: an anthropomorphic phantom study. Radiol Phys Technol 2024; 17:629-636. [PMID: 38691308 DOI: 10.1007/s12194-024-00810-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/23/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
In cone-beam computed tomography (CBCT) for image-guided radiation therapy (IGRT) of the head, we evaluated the exposure dose reduction effect to the crystalline lens and position-matching accuracy by narrowing one side (X2) of the X-ray aperture (blade) in the X-direction. We defined the ocular surface dose of the head phantom as the crystalline lens exposure dose and measured using a radiophotoluminescence dosimeter (RPLD, GD-352 M) in the preset field (13.6 cm) and in each of the fields when blade X2 aperture was reduced in 0.5 cm increments from 10.0 to 5.0 cm. Auto-bone matching was performed on CBCT images acquired five times with blade X2 aperture set to 13.6 cm and 5.0 cm at each position when the head phantom was moved from - 5.0 to + 5.0 mm in 1.0 mm increment. The maximum reduction rate in the crystalline lens exposure dose was - 38.7% for the right lens and - 13.2% for the left lens when blade X2 aperture was 5.0 cm. The maximum difference in the amount of position correction between blade X2 aperture of 13.6 cm and 5.0 cm was 1 mm, and the accuracy of auto-bone matching was similar. In CBCT of the head, reduced blade X2 aperture is a useful technique for reducing the crystalline lens exposure dose while ensuring the accuracy of position matching.
Collapse
Affiliation(s)
- Tatsuya Yoshida
- Department of Radiology, Koritsu Tatebayashi Kosei General Hospital, Gunma, Japan.
- Graduate School of Radiological Technology, Gunma Prefectural College of Health Sciences, Gunma, Japan.
| | - Koji Sasaki
- Graduate School of Radiological Technology, Gunma Prefectural College of Health Sciences, Gunma, Japan
| | - Tomoki Hayakawa
- Department of Radiology, Koritsu Tatebayashi Kosei General Hospital, Gunma, Japan
| | - Toshiyuki Kawadai
- Department of Radiology, Koritsu Tatebayashi Kosei General Hospital, Gunma, Japan
| | - Takako Shibasaki
- Department of Radiology, Koritsu Tatebayashi Kosei General Hospital, Gunma, Japan
| | | |
Collapse
|
9
|
Wang M, Yao K, Zhao Y, Geng J, Zhu X, Liu Z, Li Y, Wu H, Du Y. Virtual clinical trial-based study for clinical evaluation of projection-reduced low-dose cone-beam CT for image guided radiotherapy. Front Oncol 2024; 14:1369603. [PMID: 39055562 PMCID: PMC11270018 DOI: 10.3389/fonc.2024.1369603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024] Open
Abstract
Purpose Repeated cone-beam CT (CBCT) scans for image-guided radiotherapy (IGRT) increase the health risk of radiation-induced malignancies. Patient-enrolled studies to optimize scan protocols are inadequate. We proposed a virtual clinical trial-based approach to evaluate projection-reduced low-dose CBCT for IGRT. Materials and methods A total of 71 patients were virtually enrolled with 26 head, 23 thorax and 22 pelvis scans. Projection numbers of full-dose CBCT scans were reduced to 1/2, 1/4, and 1/8 of the original to simulate low-dose scans. Contrast-to-noise ratio (CNR) values in fat and muscle were measured in the full-dose and low-dose images. CBCT images were registered to planning CT to derive 6-degree-of-freedom couch shifts. Registration errors were statistically analyzed with the Wilcoxon paired signed-rank test. Results As projection numbers were reduced, CNR values descended and the magnitude of registration errors increased. The mean CNR values of full-dose and half-dose CBCT were >3.0. For full-dose and low-dose CBCT (i.e. 1/2, 1/4 and 1/8 full-dose), the mean registration errors were< ± 0.4 mm in translational directions (LAT, LNG, VRT) and ±0.2 degree in rotational directions (Pitch, Roll, Yaw); the mean magnitude of registration errors were< 1 mm in translation and< 0.5 degree in rotation. The couch shift differences between full-dose and low-dose CBCT were not statistically significant (p>0.05) in all the directions. Conclusion The results indicate that while the impact of dose-reduction on CBCT couch shifts is not significant, the impact on CNR values is significant. Further validation on optimizing CBCT imaging dose is required.
Collapse
Affiliation(s)
- Meijiao Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Kaining Yao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yixin Zhao
- Department of Otolaryngology, Head and Neck Surgery, Peking University People’s Hospital, Beijing, China
| | - Jianhao Geng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xianggao Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhiyan Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yongheng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hao Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Yi Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
10
|
Siiskonen T, Alenius S, Seppälä T, Tikkanen J, Nadhum M, Ojala J. Cone beam CT doses in radiotherapy patient positioning in Finland-prostate treatments. RADIATION PROTECTION DOSIMETRY 2024; 200:842-847. [PMID: 38828501 DOI: 10.1093/rpd/ncae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/22/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024]
Abstract
Imaging parameters, frequencies and resulting patient organ doses in treatments of prostate cancer were assessed in Finnish radiotherapy centres. Based on a questionnaire to the clinics, Monte Carlo method was used to estimate organ doses in International Commission on Radiological Protection standard phantom for prostate, bladder, rectum and femoral head. The results show that doses from cone beam computed tomography imaging have reduced compared to earlier studies and are between 3.6 and 34.5 mGy per image for the above-mentioned organs and for normal sized patients. There still is room for further optimization of the patient exposure, as many centres use the default imaging parameters, and the length of the imaged region may not be optimal for the purpose.
Collapse
Affiliation(s)
- Teemu Siiskonen
- Department of Physics, University of Helsinki, P.O. Box 64 (Gustaf Hällströmin katu 2), FI-00014 Helsinki, Finland
- STUK-Radiation and Nuclear Safety Authority, Measurements and Environmental Surveillance, Jokiniemenkuja 1, FI-01370 Vantaa, Finland
| | - Saara Alenius
- Department of Physics, University of Helsinki, P.O. Box 64 (Gustaf Hällströmin katu 2), FI-00014 Helsinki, Finland
| | - Tiina Seppälä
- Comprehensive Cancer Center, Helsinki University Hospital and University of Helsinki, PL180, 00290 Helsinki, Finland
| | - Joonas Tikkanen
- STUK-Radiation and Nuclear Safety Authority, Measurements and Environmental Surveillance, Jokiniemenkuja 1, FI-01370 Vantaa, Finland
| | - Miia Nadhum
- Department of Medical Physics, Tampere University Hospital, FI-33521 Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, FI-33720 Tampere, Finland
| | - Jarkko Ojala
- Department of Medical Physics, Tampere University Hospital, FI-33521 Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, FI-33720 Tampere, Finland
- Department of Oncology, Tampere University Hospital, FI-33521 Tampere, Finland
| |
Collapse
|
11
|
Nishioka K, Hashimoto T, Mori T, Uchinami Y, Kinoshita R, Katoh N, Taguchi H, Yasuda K, Ito YM, Takao S, Tamura M, Matsuura T, Shimizu S, Shirato H, Aoyama H. A Single-Institution Prospective Study To Evaluate the Safety and Efficacy of Real- Time Image-Gated Spot-Scanning Proton Therapy (RGPT) for Prostate Cancer. Adv Radiat Oncol 2024; 9:101464. [PMID: 38560429 PMCID: PMC10981019 DOI: 10.1016/j.adro.2024.101464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 01/30/2024] [Indexed: 04/04/2024] Open
Abstract
Purpose In real-time image-gated spot-scanning proton therapy (RGPT), the dose distribution is distorted by gold fiducial markers placed in the prostate. Distortion can be suppressed by using small markers and more than 2 fields, but additional fields may increase the dose to organs at risk. Therefore, we conducted a prospective study to evaluate the safety and short-term clinical outcome of RGPT for prostate cancer. Methods and Materials Based on the previously reported frequency of early adverse events (AE) and the noninferiority margin of 10%, the required number of cases was calculated to be 43 using the one-sample binomial test by the Southwest Oncology Group statistical tools with the one-sided significance level of 2.5% and the power 80%. Patients with localized prostate cancer were enrolled and 3 to 4 pure gold fiducial markers of 1.5-mm diameter were inserted in the prostate. The prescribed dose was 70 Gy(relative biologic effectiveness) in 30 fractions, and treatment was performed with 3 fields from the left, right, and the back, or 4 fields from either side of slightly anterior and posterior oblique fields. The primary endpoint was the frequency of early AE (≥grade 2) and the secondary endpoint was the biochemical relapse-free survival rate and the frequency of late AE. Results Forty-five cases were enrolled between 2015 and 2017, and all patients completed the treatment protocol. The median follow-up period was 63.0 months. The frequency of early AE (≥grade 2) was observed in 4 cases (8.9%), therefore the noninferiority was verified. The overall 5-year biochemical relapse-free survival rate was 88.9%. As late AE, grade 2 rectal bleeding was observed in 8 cases (17.8%). Conclusions The RGPT for prostate cancer with 1.5-mm markers and 3- or 4- fields was as safe as conventional proton therapy in early AE, and its efficacy was comparable with previous studies.
Collapse
Affiliation(s)
- Kentaro Nishioka
- Radiation Oncology Division, Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Takayuki Hashimoto
- Radiation Oncology Division, Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Takashi Mori
- Department of Radiation Oncology, Hokkaido University Hospital, Sapporo, Japan
| | - Yusuke Uchinami
- Department of Radiation Oncology, Hokkaido University Hospital, Sapporo, Japan
| | - Rumiko Kinoshita
- Department of Radiation Oncology, Hokkaido University Hospital, Sapporo, Japan
| | - Norio Katoh
- Department of Radiation Oncology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Hiroshi Taguchi
- Department of Radiation Oncology, Hokkaido University Hospital, Sapporo, Japan
| | - Koichi Yasuda
- Department of Radiation Oncology, Hokkaido University Hospital, Sapporo, Japan
| | - Yoichi M. Ito
- Data Science Center, Promotion Unit, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, Japan
| | - Seishin Takao
- Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Japan
| | - Masaya Tamura
- Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Japan
| | - Taeko Matsuura
- Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Japan
| | - Shinichi Shimizu
- Department of Carbon Ion Radiotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroki Shirato
- Radiation Oncology Division, Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Hidefumi Aoyama
- Department of Radiation Oncology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| |
Collapse
|
12
|
Becksfort J, Uh J, Saunders A, Byrd JA, Worrall HM, Marker M, Melendez-Suchi C, Li Y, Chang J, Raghavan K, Merchant TE, Hua CH. Setup Uncertainty of Pediatric Brain Tumor Patients Receiving Proton Therapy: A Prospective Study. Cancers (Basel) 2023; 15:5486. [PMID: 38001746 PMCID: PMC10670653 DOI: 10.3390/cancers15225486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
This study quantifies setup uncertainty in brain tumor patients who received image-guided proton therapy. Patients analyzed include 165 children, adolescents, and young adults (median age at radiotherapy: 9 years (range: 10 months to 24 years); 80 anesthetized and 85 awake) enrolled in a single-institution prospective study from 2020 to 2023. Cone-beam computed tomography (CBCT) was performed daily to calculate and correct manual setup errors, once per course after setup correction to measure residual errors, and weekly after treatments to assess intrafractional motion. Orthogonal radiographs were acquired consecutively with CBCT for paired comparisons of 40 patients. Translational and rotational errors were converted from 6 degrees of freedom to a scalar by a statistical approach that considers the distance from the target to the isocenter. The 95th percentile of setup uncertainty was reduced by daily CBCT from 10 mm (manual positioning) to 1-1.5 mm (after correction) and increased to 2 mm by the end of fractional treatment. A larger variation existed between the roll corrections reported by radiographs vs. CBCT than for pitch and yaw, while there was no statistically significant difference in translational variation. A quantile mixed regression model showed that the 95th percentile of intrafractional motion was 0.40 mm lower for anesthetized patients (p=0.0016). Considering additional uncertainty in radiation-imaging isocentricity, the commonly used total plan robustness of 3 mm against positional uncertainty would be appropriate for our study cohort.
Collapse
Affiliation(s)
- Jared Becksfort
- Department of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.U.); (J.A.B.); (H.M.W.); (T.E.M.); (C.-h.H.)
| | - Jinsoo Uh
- Department of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.U.); (J.A.B.); (H.M.W.); (T.E.M.); (C.-h.H.)
| | - Andrew Saunders
- Department of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.U.); (J.A.B.); (H.M.W.); (T.E.M.); (C.-h.H.)
| | - Julia A. Byrd
- Department of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.U.); (J.A.B.); (H.M.W.); (T.E.M.); (C.-h.H.)
| | - Hannah M. Worrall
- Department of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.U.); (J.A.B.); (H.M.W.); (T.E.M.); (C.-h.H.)
| | - Matt Marker
- Department of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.U.); (J.A.B.); (H.M.W.); (T.E.M.); (C.-h.H.)
| | - Christian Melendez-Suchi
- Department of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.U.); (J.A.B.); (H.M.W.); (T.E.M.); (C.-h.H.)
| | - Yimei Li
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jenghwa Chang
- Department of Radiation Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Kavitha Raghavan
- Department of Pediatric Medicine, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Thomas E. Merchant
- Department of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.U.); (J.A.B.); (H.M.W.); (T.E.M.); (C.-h.H.)
| | - Chia-ho Hua
- Department of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.U.); (J.A.B.); (H.M.W.); (T.E.M.); (C.-h.H.)
| |
Collapse
|
13
|
Psarras M, Stasinou D, Stroubinis T, Protopapa M, Zygogianni A, Kouloulias V, Platoni K. Surface-Guided Radiotherapy: Can We Move on from the Era of Three-Point Markers to the New Era of Thousands of Points? Bioengineering (Basel) 2023; 10:1202. [PMID: 37892932 PMCID: PMC10604452 DOI: 10.3390/bioengineering10101202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
The surface-guided radiotherapy (SGRT) technique improves patient positioning with submillimeter accuracy compared with the conventional positioning technique of lasers using three-point tattoos. SGRT provides solutions to considerations that arise from the conventional setup technique, such as variability in tattoo position and the psychological impact of the tattoos. Moreover, SGRT provides monitoring of intrafractional motion. PURPOSE This literature review covers the basics of SGRT systems and examines whether SGRT can replace the traditional positioning technique. In addition, it investigates SGRT's potential in reducing positioning times, factors affecting SGRT accuracy, the effectiveness of live monitoring, and the impact on patient dosage. MATERIALS AND METHODS This study focused on papers published from 2016 onward that compared SGRT with the traditional positioning technique and investigated factors affecting SGRT accuracy and effectiveness. RESULTS/CONCLUSIONS SGRT provides the same or better results regarding patient positioning. The implementation of SGRT can reduce overall treatment time. It is an effective technique for detecting intrafraction patient motion, improving treatment accuracy and precision, and creating a safe and comfortable environment for the patient during treatment.
Collapse
Affiliation(s)
- Michalis Psarras
- Medical Physics Unit, 2nd Department of Radiology, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
- Department of Radiation Oncology and Stereotactic Radiosurgery, Mediterraneo Hospital, 166 75 Athens, Greece
| | - Despoina Stasinou
- Department of Radiation Oncology and Stereotactic Radiosurgery, Mediterraneo Hospital, 166 75 Athens, Greece
| | - Theodoros Stroubinis
- Department of Radiation Oncology and Stereotactic Radiosurgery, Mediterraneo Hospital, 166 75 Athens, Greece
| | - Maria Protopapa
- Department of Radiation Oncology and Stereotactic Radiosurgery, Mediterraneo Hospital, 166 75 Athens, Greece
| | - Anna Zygogianni
- Radiation Oncology Unit, 1st Department of Radiology, Aretaieion University Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece
| | - Vassilis Kouloulias
- Radiation Oncology Unit, 2nd Department of Radiology, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
| | - Kalliopi Platoni
- Medical Physics Unit, 2nd Department of Radiology, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
- Department of Radiation Oncology and Stereotactic Radiosurgery, Mediterraneo Hospital, 166 75 Athens, Greece
| |
Collapse
|
14
|
De Saint-Hubert M, Boissonnat G, Schneider U, Bäumer C, Verbeek N, Esser J, Wulff J, Stuckmann F, Suesselbeck F, Nabha R, Dabin J, Vasi F, Radonic S, Rodriguez M, Simon AC, Journy N, Timmermann B, Thierry-Chef I, Brualla L. Complete patient exposure during paediatric brain cancer treatment for photon and proton therapy techniques including imaging procedures. Front Oncol 2023; 13:1222800. [PMID: 37795436 PMCID: PMC10546320 DOI: 10.3389/fonc.2023.1222800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/21/2023] [Indexed: 10/06/2023] Open
Abstract
Background In radiotherapy, especially when treating children, minimising exposure of healthy tissue can prevent the development of adverse outcomes, including second cancers. In this study we propose a validated Monte Carlo framework to evaluate the complete patient exposure during paediatric brain cancer treatment. Materials and methods Organ doses were calculated for treatment of a diffuse midline glioma (50.4 Gy with 1.8 Gy per fraction) on a 5-year-old anthropomorphic phantom with 3D-conformal radiotherapy, intensity modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT) and intensity modulated pencil beam scanning (PBS) proton therapy. Doses from computed tomography (CT) for planning and on-board imaging for positioning (kV-cone beam CT and X-ray imaging) accounted for the estimate of the exposure of the patient including imaging therapeutic dose. For dose calculations we used validated Monte Carlo-based tools (PRIMO, TOPAS, PENELOPE), while lifetime attributable risk (LAR) was estimated from dose-response relationships for cancer induction, proposed by Schneider et al. Results Out-of-field organ dose equivalent data of proton therapy are lower, with doses between 0.6 mSv (testes) and 120 mSv (thyroid), when compared to photon therapy revealing the highest out-of-field doses for IMRT ranging between 43 mSv (testes) and 575 mSv (thyroid). Dose delivered by CT ranged between 0.01 mSv (testes) and 72 mSv (scapula) while a single imaging positioning ranged between 2 μSv (testes) and 1.3 mSv (thyroid) for CBCT and 0.03 μSv (testes) and 48 μSv (scapula) for X-ray. Adding imaging dose from CT and daily CBCT to the therapeutic demonstrated an important contribution of imaging to the overall radiation burden in the course of treatment, which is subsequently used to predict the LAR, for selected organs. Conclusion The complete patient exposure during paediatric brain cancer treatment was estimated by combining the results from different Monte Carlo-based dosimetry tools, showing that proton therapy allows significant reduction of the out-of-field doses and secondary cancer risk in selected organs.
Collapse
Affiliation(s)
| | | | - Uwe Schneider
- Physik Institut, Universitat Zürich, Zürich, Switzerland
| | - Christian Bäumer
- West German Proton Therapy Centre Essen WPE, Essen, Germany
- West German Cancer Centre (WTZ), Essen, Germany
- Radiation Oncology and Imaging, German Cancer Consortium DKTK, Essen, Germany
- Department of Physics, TU Dortmund University, Dortmund, Germany
| | - Nico Verbeek
- West German Proton Therapy Centre Essen WPE, Essen, Germany
- West German Cancer Centre (WTZ), Essen, Germany
| | - Johannes Esser
- West German Proton Therapy Centre Essen WPE, Essen, Germany
- West German Cancer Centre (WTZ), Essen, Germany
- Faculty of Mathematics and Science Institute of Physics and Medical Physics, Heinrich-Heine University, Düsseldorf, Germany
| | - Jörg Wulff
- West German Proton Therapy Centre Essen WPE, Essen, Germany
- West German Cancer Centre (WTZ), Essen, Germany
| | - Florian Stuckmann
- West German Proton Therapy Centre Essen WPE, Essen, Germany
- West German Cancer Centre (WTZ), Essen, Germany
| | - Finja Suesselbeck
- West German Proton Therapy Centre Essen WPE, Essen, Germany
- West German Cancer Centre (WTZ), Essen, Germany
| | - Racell Nabha
- Belgian Nuclear Research Center (SCK CEN), Mol, Belgium
| | - Jérémie Dabin
- Belgian Nuclear Research Center (SCK CEN), Mol, Belgium
| | - Fabiano Vasi
- Physik Institut, Universitat Zürich, Zürich, Switzerland
| | | | - Miguel Rodriguez
- Hospital Paitilla, Panama City, Panama
- Instituto de Investigaciones Científicas y de Alta Tecnología INDICASAT-AIP, Panama City, Panama
| | | | - Neige Journy
- INSERM U1018, Paris Sud-Paris Saclay University, Villejuif, France
| | - Beate Timmermann
- West German Proton Therapy Centre Essen WPE, Essen, Germany
- West German Cancer Centre (WTZ), Essen, Germany
- Radiation Oncology and Imaging, German Cancer Consortium DKTK, Essen, Germany
- Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
- Department of Particle Therapy, University Hospital Essen, Essen, Germany
| | - Isabelle Thierry-Chef
- Barcelona Institute of Global Health (ISGlobal), Barcelona, Spain
- University Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Lorenzo Brualla
- West German Proton Therapy Centre Essen WPE, Essen, Germany
- West German Cancer Centre (WTZ), Essen, Germany
- Radiation Oncology and Imaging, German Cancer Consortium DKTK, Essen, Germany
- Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
15
|
Li C, Zhou L, Deng J, Wu H, Wang R, Wang F, Yao K, Chen C, Niu T, Zhang Y. A generalizable new figure of merit for dose optimization in dual energy cone beam CT scanning protocols. Phys Med Biol 2023; 68:185021. [PMID: 37619587 DOI: 10.1088/1361-6560/acf3cd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/24/2023] [Indexed: 08/26/2023]
Abstract
Objective. This study proposes and evaluates a new figure of merit (FOMn) for dose optimization of Dual-energy cone-beam CT (DE-CBCT) scanning protocols based on size-dependent modeling of radiation dose and multi-scale image quality.Approach. FOMn was defined using Z-score normalization and was proportional to the dose efficiency providing better multi-scale image quality, including comprehensive contrast-to-noise ratio (CCNR) and electron density (CED) for CatPhan604 inserts of various materials. Acrylic annuluses were combined with CatPhan604 to create four phantom sizes (diameters of the long axis are 200 mm, 270 mm, 350 mm, and 380 mm, respectively). DE-CBCT was decomposed using image-domain iterative methods based on Varian kV-CBCT images acquired using 25 protocols (100 kVp and 140 kVp combined with 5 tube currents).Main results. The accuracy of CED was approximately 1% for all protocols, but degraded monotonically with the increased phantom sizes. Combinations of lower voltage + higher current and higher voltage + lower current were optimal protocols balancing CCNR and dose. The most dose-efficient protocols for CED and CCNR were inconsistent, underlining the necessity of including multi-scale image quality in the evaluation and optimization of DE-CBCT. Pediatric and adult anthropomorphic phantom tests confirmed dose-efficiency of FOMn-recommended protocols.Significance. FOMn is a comprehensive metric that collectively evaluates radiation dose and multi-scale image quality for DE-CBCT. The models and data can also serve as lookup tables, suggesting personalized dose-efficient protocols for specific clinical imaging purposes.
Collapse
Affiliation(s)
- Chenguang Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, People's Republic of China
- Department of Physics and Astronomy, University of British Columbia, 325-6224 Agricultural Road, Vancouver, BC V6T1Z1, Canada
| | - Li Zhou
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, People's Republic of China
| | - Jun Deng
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510, United States of America
| | - Hao Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, People's Republic of China
| | - Ruoxi Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, People's Republic of China
| | - Fei Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, People's Republic of China
| | - Kaining Yao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, People's Republic of China
| | - Chen Chen
- School of Electronics, Peking University, Beijing, 100871, People's Republic of China
| | - Tianye Niu
- Shenzhen Bay Laboratory, Shenzhen, 518118, People's Republic of China
| | - Yibao Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, People's Republic of China
| |
Collapse
|
16
|
Chee D, Buckley L. Application of repeat image analysis to radiation therapy imaging modalities as a quality improvement tool for image guided radiotherapy. J Appl Clin Med Phys 2023; 24:e14019. [PMID: 37143316 PMCID: PMC10476973 DOI: 10.1002/acm2.14019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/07/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Repeat images contribute to excess patient dose and workflow inefficiencies and can be analyzed to identify potential areas for improvement within a program. Although routinely used in diagnostic imaging, repeat image analysis is not widely used in radiation therapy imaging, despite the role of imaging in the delivery of precise radiation treatments. PURPOSE Repeat image analysis was performed for on-board cone beam CT imagers and CT simulators within a radiation therapy department. Both the rate of repeat images and the reasons for the repeat images were analyzed. METHODS Data from nine conventional linear accelerators and three CT simulators were analyzed retrospectively over a 5-month period. Repeated images that were not part of the standard of care were considered repeat images. The repeat rate was expressed as the number of repeat scans as percentage of the total number of scans performed. The reasons for the repeats were collected and classified as either patient preparation, patient setup, patient motion, or machine error. These reasons were further classified into sub-categories. RESULTS The overall repeat rate across the linear accelerators was 3.3%, with a maximum of 5% on any single machine. The repeat rate for the three CT simulators was 1.5%. The most common reasons for repeat images were patient preparation (incorrect bladder or rectal filling) and patient setup or positioning. Greater positioning challenges led to higher repeat rates on units that treat a large number of breast patients, palliative patients, or pediatric patients. CONCLUSIONS Repeat image analysis can be applied within a radiation therapy department. Establishing baseline repeat rates and analyzing reasons for the repeat images can identify opportunities for improvements in terms of patient dose reduction and workflow efficiency for the program. Periodic repeat image analysis also permits monitoring the program for changes and for comparison against rates at other institutions.
Collapse
Affiliation(s)
- Daniella Chee
- Radiation Therapy DepartmentPrincess Margaret HospitalTorontoOntarioCanada
| | - Lesley Buckley
- Medical Physics DepartmentThe Ottawa HospitalOttawaOntarioCanada
- Department of Radiology, Radiation Oncology and Medical PhysicsUniversity of OttawaOttawaOntarioCanada
| |
Collapse
|
17
|
Steiner E, Healy B, Baldock C. Dose from imaging at the time of treatment should be reduced. Phys Eng Sci Med 2023; 46:959-962. [PMID: 37436603 DOI: 10.1007/s13246-023-01298-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Affiliation(s)
- Elisabeth Steiner
- Institute for Radiation Oncology and Radiotherapy, LK Wiener Neustadt, Wiener Neustadt, Austria
| | - Brendan Healy
- Australian Clinical Dosimetry Service, Australian Radiation Protection and Nuclear Safety Agency, Melbourne, Australia
| | - Clive Baldock
- Graduate Research School, Western Sydney University, Penrith, NSW, 2747, Australia.
| |
Collapse
|
18
|
Wang Y, Shen J, Gu P, Wang Z. Recent advances progress in radiotherapy for breast cancer after breast-conserving surgery: a review. Front Oncol 2023; 13:1195266. [PMID: 37671064 PMCID: PMC10475720 DOI: 10.3389/fonc.2023.1195266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
Adjuvant radiotherapy after breast-conserving surgery has become an integral part of the treatment of breast cancer. In recent years, the development of radiotherapy technology has made great progress in this field, including the comparison of the curative effects of various radiotherapy techniques and the performance of the segmentation times. The choice of radiotherapy technology needs to be co-determined by clinical evidence practice and evaluated for each individual patient to achieve precision radiotherapy. This article discusses the treatment effects of different radiotherapy, techniques, the risk of second cancers and short-range radiation therapy techniques after breast-conserving surgery such as hypo fractionated whole breast irradiation and accelerated partial breast irradiation. The choice of radiotherapy regimen needs to be based on the individual condition of the patient, and the general principle is to focus on the target area and reduce the irradiation of the normal tissues and organs. Short-range radiotherapy and hypofractionated are superior to conventional radiotherapy and are expected to become the mainstream treatment after breast-conserving surgery.
Collapse
Affiliation(s)
- Yun Wang
- Department of Radiation Oncology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Jingjing Shen
- Department of Radiation Oncology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Peihua Gu
- Department of Radiation Oncology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Zhongming Wang
- Department of Radiation Oncology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
19
|
Harris TC, Jacobson M, Myronakis M, Lehmann M, Huber P, Morf D, Ozoemelam I, Hu YH, Ferguson D, Fueglistaller R, Corral Arroyo P, Berbeco RI. Impact of a novel multilayer imager on metal artifacts in MV-CBCT. Phys Med Biol 2023; 68:10.1088/1361-6560/ace09a. [PMID: 37343590 PMCID: PMC10382207 DOI: 10.1088/1361-6560/ace09a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/21/2023] [Indexed: 06/23/2023]
Abstract
Objective. Megavoltage cone-beam computed tomography (MV-CBCT) imaging offers several advantages including reduced metal artifacts and accurate electron density mapping for adaptive or emergent situations. However, MV-CBCT imaging is limited by the poor efficiency of current detectors. Here we examine a new MV imager and compare CBCT reconstructions under clinically relevant scenarios.Approach. A multilayer imager (MLI), consisting of four vertically stacked standard flat-panel imagers, was mounted to a clinical linear accelerator. A custom anthropomorphic pelvis phantom with replaceable femoral heads was imaged using MV-CBCT and kilovoltage CBCT (kV-CBCT). Bone, aluminum, and titanium were used as femoral head inserts. 8 MU 2.5 MV scans were acquired for all four layers and (as reference) the top layer. Prostate and bladder were contoured on a reference CT and transferred to the other scans after rigid registration, from which the structural similarity index measure (SSIM) was calculated. Prostate and bladder were also contoured on CBCT scans without guidance, and Dice coefficients were compared to CT contours.Main results. kV-CBCT demonstrated the highest SSIMs with bone inserts (prostate: 0.86, bladder: 0.94) and lowest with titanium inserts (0.32, 0.37). Four-layer MV-CBCT SSIMs were preserved with bone (0.75, 0.80) as compared to titanium (0.67, 0.74), outperforming kV-CBCT when metal is present. One-layer MV-CBCT consistently underperformed four-layer results across all phantom configurations. Unilateral titanium inserts and bilateral aluminum insert results fell between the bone and bilateral titanium results. Dice coefficients trended similarly, with four-layer MV-CBCT reducing metal artifact impact relative to KV-CBCT to provide better soft-tissue identification.Significance. MV-CBCT with a four-layer MLI showed improvement over single-layer MV scans, approaching kV-CBCT quality for soft-tissue contrast. In the presence of artifact-producing metal implants, four-layer MV-CBCT scans outperformed kV-CBCT by eliminating artifacts and single-layer MV-CBCT by reducing noise. MV-CBCT with a novel multi-layer imager may be a valuable alternative to kV-CBCT, particularly in the presence of metal.
Collapse
Affiliation(s)
- T C Harris
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States of America
| | - M Jacobson
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States of America
| | - M Myronakis
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States of America
| | - M Lehmann
- Varian Medical Systems, Baden-Dattwil, Switzerland
| | - P Huber
- Varian Medical Systems, Baden-Dattwil, Switzerland
| | - D Morf
- Varian Medical Systems, Baden-Dattwil, Switzerland
| | - I Ozoemelam
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States of America
| | - Y H Hu
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States of America
| | - D Ferguson
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States of America
| | | | | | - R I Berbeco
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
20
|
Hooshangnejad H, Chen Q, Feng X, Zhang R, Farjam R, Voong KR, Hales RK, Du Y, Jia X, Ding K. DAART: a deep learning platform for deeply accelerated adaptive radiation therapy for lung cancer. Front Oncol 2023; 13:1201679. [PMID: 37483512 PMCID: PMC10359160 DOI: 10.3389/fonc.2023.1201679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/08/2023] [Indexed: 07/25/2023] Open
Abstract
Purpose The study aimed to implement a novel, deeply accelerated adaptive radiation therapy (DAART) approach for lung cancer radiotherapy (RT). Lung cancer is the most common cause of cancer-related death, and RT is the preferred medically inoperable treatment for early stage non-small cell lung cancer (NSCLC). In the current lengthy workflow, it takes a median of four weeks from diagnosis to RT treatment, which can result in complete restaging and loss of local control with delay. We implemented the DAART approach, featuring a novel deepPERFECT system, to address unwanted delays between diagnosis and treatment initiation. Materials and methods We developed a deepPERFECT to adapt the initial diagnostic imaging to the treatment setup to allow initial RT planning and verification. We used data from 15 patients with NSCLC treated with RT to train the model and test its performance. We conducted a virtual clinical trial to evaluate the treatment quality of the proposed DAART for lung cancer radiotherapy. Results We found that deepPERFECT predicts planning CT with a mean high-intensity fidelity of 83 and 14 HU for the body and lungs, respectively. The shape of the body and lungs on the synthesized CT was highly conformal, with a dice similarity coefficient (DSC) of 0.91, 0.97, and Hausdorff distance (HD) of 7.9 mm, and 4.9 mm, respectively, compared with the planning CT scan. The tumor showed less conformality, which warrants acquisition of treatment Day1 CT and online adaptive RT. An initial plan was designed on synthesized CT and then adapted to treatment Day1 CT using the adapt to position (ATP) and adapt to shape (ATS) method. Non-inferior plan quality was achieved by the ATP scenario, while all ATS-adapted plans showed good plan quality. Conclusion DAART reduces the common online ART (ART) treatment course by at least two weeks, resulting in a 50% shorter time to treatment to lower the chance of restaging and loss of local control.
Collapse
Affiliation(s)
- Hamed Hooshangnejad
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Carnegie Center of Surgical Innovation, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Quan Chen
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Xue Feng
- Carina Medical, Lexington, KY, United States
| | - Rui Zhang
- Division of Computational Health Sciences, Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Reza Farjam
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Khinh Ranh Voong
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Russell K. Hales
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Yong Du
- Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Xun Jia
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Kai Ding
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Carnegie Center of Surgical Innovation, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
21
|
Andreassi MG, Haddy N, Harms-Ringdahl M, Campolo J, Borghini A, Chevalier F, Schwenk JM, Fresneau B, Bolle S, Fuentes M, Haghdoost S. A Longitudinal Study of Individual Radiation Responses in Pediatric Patients Treated with Proton and Photon Radiotherapy, and Interventional Cardiology: Rationale and Research Protocol of the HARMONIC Project. Int J Mol Sci 2023; 24:ijms24098416. [PMID: 37176123 PMCID: PMC10178896 DOI: 10.3390/ijms24098416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The Health Effects of Cardiac Fluoroscopy and Modern Radiotherapy (photon and proton) in Pediatrics (HARMONIC) is a five-year project funded by the European Commission that aimed to improve the understanding of the long-term ionizing radiation (IR) risks for pediatric patients. In this paper, we provide a detailed overview of the rationale, design, and methods for the biological aspect of the project with objectives to provide a mechanistic understanding of the molecular pathways involved in the IR response and to identify potential predictive biomarkers of individual response involved in long-term health risks. Biological samples will be collected at three time points: before the first exposure, at the end of the exposure, and one year after the exposure. The average whole-body dose, the dose to the target organ, and the dose to some important out-of-field organs will be estimated. State-of-the-art analytical methods will be used to assess the levels of a set of known biomarkers and also explore high-resolution approaches of proteomics and miRNA transcriptomes to provide an integrated assessment. By using bioinformatics and systems biology, biological pathways and novel pathways involved in the response to IR exposure will be deciphered.
Collapse
Affiliation(s)
| | - Nadia Haddy
- Radiation Epidemiology Team, Center for Research in Epidemiology and Population Health, INSERM U1018, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Mats Harms-Ringdahl
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Jonica Campolo
- CNR National Research Council Institute of Clinical Physiology, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Andrea Borghini
- CNR National Research Council Institute of Clinical Physiology, 56125 Pisa, Italy
| | - François Chevalier
- UMR6252 CIMAP, CEA-CNRS-ENSICAEN-University of Caen Normandy, 14000 Caen, France
- Advanced Resource Center for HADrontherapy in Europe (ARCHADE), 14000 Caen, France
| | - Jochen M Schwenk
- Affinity Proteomics, SciLifeLab, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Brice Fresneau
- Department of Children and Adolescents Oncology, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
- Cancer and Radiation Team, Center for Research in Epidemiology and Population Health, INSERM U1018, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Stephanie Bolle
- Department of Radiation Therapy, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Manuel Fuentes
- Deparment of Medicine and General Service of Cytometry, Proteomics Unit, Cancer Research Centre-IBMCC, CSIC-USAL, IBSAL, Campus Miguel de Unamuno s/n, University of Salamanca-CSIC, 37007 Salamanca, Spain
| | - Siamak Haghdoost
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
- UMR6252 CIMAP, CEA-CNRS-ENSICAEN-University of Caen Normandy, 14000 Caen, France
- Advanced Resource Center for HADrontherapy in Europe (ARCHADE), 14000 Caen, France
| |
Collapse
|
22
|
Reilly M, Dandapani SV, Kumar KA, Constine L, Fogh SE, Roberts KB, Small W, Schechter NR. ACR-ARS Practice Parameter for the Performance of Total Body Irradiation. Am J Clin Oncol 2023; 46:185-192. [PMID: 36907934 DOI: 10.1097/coc.0000000000000997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
OBJECTIVES This practice parameter was revised collaboratively by the American College of Radiology (ACR) and the American Radium Society (ARS). This practice parameter provides updated reference literature regarding both clinical-based conventional total body irradiation and evolving volumetric modulated total body irradiation. METHODS This practice parameter was developed according to the process described under the heading The Process for Developing ACR Practice Parameters and Technical Standards on the ACR website ( https://www.acr.org/Clinical-Resources/Practice-Parameters-and-Technical-Standards ) by the Committee on Practice Parameters-Radiation Oncology of the ACR Commission on Radiation Oncology in collaboration with the ARS. RESULTS This practice parameter provides a comprehensive update to the reference literature regarding conventional total body irradiation and modulated total body irradiation. Dependence on dose rate remains an active area of ongoing investigation in both the conventional setting (where instantaneous dose rate can be varied) and in more modern rotational techniques, in which average dose rate is the relevant variable. The role of imaging during patient setup and the role of inhomogeneity corrections due to computer-based treatment planning systems are included as evolving areas of clinical interest notably surrounding the overall dose inhomogeneity. There is increasing emphasis on the importance of evaluating mean lung dose as it relates to toxicity during high-dose total body irradiation regimens. CONCLUSIONS This practice parameter can be used as an effective tool in designing and evaluating a total body irradiation program that successfully incorporates the close interaction and coordination among the radiation oncologists, medical physicists, dosimetrists, nurses, and radiation therapists.
Collapse
Affiliation(s)
| | | | - Kiran A Kumar
- UT Southwestern Medical Center 5323 Harry Hines Blvd, Dallas, TX
| | - Louis Constine
- University of Rochester Medical Center 601 Elmwood Ave, Rochester, NY
| | - Shannon E Fogh
- Department of Radiation Oncology, University of California San Francisco, CA
| | | | - William Small
- Department of Radiation Oncology, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Loyola University Chicago Loyola University Medical Center Department of Radiation Oncology Maguire Center - Room 2944 2160 S. 1st Ave. Maywood, IL
| | - Naomi R Schechter
- South Florida Proton Therapy Institute and Rakuten-Medical, Inc., Delray Beach, FL
| |
Collapse
|
23
|
Delaby N, Barateau A, Chiavassa S, Biston MC, Chartier P, Graulières E, Guinement L, Huger S, Lacornerie T, Millardet-Martin C, Sottiaux A, Caron J, Gensanne D, Pointreau Y, Coutte A, Biau J, Serre AA, Castelli J, Tomsej M, Garcia R, Khamphan C, Badey A. Practical and technical key challenges in head and neck adaptive radiotherapy: The GORTEC point of view. Phys Med 2023; 109:102568. [PMID: 37015168 DOI: 10.1016/j.ejmp.2023.102568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/15/2023] [Accepted: 03/18/2023] [Indexed: 04/05/2023] Open
Abstract
Anatomical variations occur during head and neck (H&N) radiotherapy (RT) treatment. These variations may result in underdosage to the target volume or overdosage to the organ at risk. Replanning during the treatment course can be triggered to overcome this issue. Due to technological, methodological and clinical evolutions, tools for adaptive RT (ART) are becoming increasingly sophisticated. The aim of this paper is to give an overview of the key steps of an H&N ART workflow and tools from the point of view of a group of French-speaking medical physicists and physicians (from GORTEC). Focuses are made on image registration, segmentation, estimation of the delivered dose of the day, workflow and quality assurance for an implementation of H&N offline and online ART. Practical recommendations are given to assist physicians and medical physicists in a clinical workflow.
Collapse
|
24
|
Quality and Safety Considerations in Image Guided Radiation Therapy: An ASTRO Safety White Paper Update. Pract Radiat Oncol 2023; 13:97-111. [PMID: 36585312 DOI: 10.1016/j.prro.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE This updated report on image guided radiation therapy (IGRT) is part of a series of consensus-based white papers previously published by the American Society for Radiation Oncology addressing patient safety. Since the first white papers were published, IGRT technology and procedures have progressed significantly such that these procedures are now more commonly used. The use of IGRT has now extended beyond high-precision treatments, such as stereotactic radiosurgery and stereotactic body radiation therapy, and into routine clinical practice for many treatment techniques and anatomic sites. Therefore, quality and patient safety considerations for these techniques remain an important area of focus. METHODS AND MATERIALS The American Society for Radiation Oncology convened an interdisciplinary task force to assess the original IGRT white paper and update content where appropriate. Recommendations were created using a consensus-building methodology, and task force members indicated their level of agreement based on a 5-point Likert scale from "strongly agree" to "strongly disagree." A prespecified threshold of ≥75% of raters who selected "strongly agree" or "agree" indicated consensus. SUMMARY This IGRT white paper builds on the previous version and uses other guidance documents to primarily focus on processes related to quality and safety. IGRT requires an interdisciplinary team-based approach, staffed by appropriately trained specialists, as well as significant personnel resources, specialized technology, and implementation time. A thorough feasibility analysis of resources is required to achieve the clinical and technical goals and should be discussed with all personnel before undertaking new imaging techniques. A comprehensive quality-assurance program must be developed, using established guidance, to ensure IGRT is performed in a safe and effective manner. As IGRT technologies continue to improve or emerge, existing practice guidelines should be reviewed or updated regularly according to the latest American Association of Physicists in Medicine Task Group reports or guidelines. Patient safety in the application of IGRT is everyone's responsibility, and professional organizations, regulators, vendors, and end-users must demonstrate a clear commitment to working together to ensure the highest levels of safety.
Collapse
|
25
|
Abuhaimed A, Martin CJ. Assessment of organ and size-specific effective doses from cone beam CT (CBCT) in image-guided radiotherapy (IGRT) based on body mass index (BMI). Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2023.110889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
26
|
Matsubara K. [Radiation Exposure in Breast Imaging and Radiation Therapy]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2023; 79:1303-1309. [PMID: 37981313 DOI: 10.6009/jjrt.2023-2278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Affiliation(s)
- Kosuke Matsubara
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| |
Collapse
|
27
|
Shimizu H, Sasaki K, Aoyama T, Iwata T, Kitagawa T, Kodaira T. Evaluation of a new acrylic-lead shielding device for peripheral dose reduction during cone-beam computed tomography. BJR Open 2022; 4:20220043. [PMID: 38525166 PMCID: PMC10958996 DOI: 10.1259/bjro.20220043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Objective To clarify the peripheral dose changes, especially in the eye lens and thyroid gland regions, using an acrylic-lead shield in cone-beam computed tomography (CBCT). Methods The acrylic-lead shield consists of system walls and a system mat. The radiophotoluminescence glass dosemeter was set on the eye lens and thyroid gland regions on the RANDO phantom. The system mat was laid under the RANDO phantom ranging from the top of the head to the shoulders, and then, the system walls shielded the phantom's head. Additionally, the phantom was covered anteriorly with a band that had the same shielding ability as the system mat to cover the thyroid gland region. Protocols for CBCT imaging of the thoracic or pelvic region in clinical practice were used. The measurement was performed with and without the acrylic-lead shield. Results The dose to the eye lens region was reduced by 45% using the system wall. Conversely, the dose to the thyroid gland was unchanged. The use of the system mat reduced the dose to the thyroid gland region by 47%, and the dose to the eye lens was reduced by 22%. The dose to the eye lens region decreased to the background level using the system walls and mat. Conclusion The newly proposed device using an acrylic-lead shield reduced the peripheral dose in CBCT imaging. Advances in knowledge Attention is focused on managing peripheral dose in image-guided radiation therapy. The peripheral dose reduction using the acrylic-lead shield is a new proposal in radiotherapy that has never been studied.
Collapse
Affiliation(s)
- Hidetoshi Shimizu
- Department of Radiation Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, Japan
| | - Koji Sasaki
- Graduate School of Radiological Technology, Gunma Prefectural College of Health Sciences, 323-1 Kamioki, Maebashi, Gunma, Japan
| | | | - Tohru Iwata
- Department of Radiation Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, Japan
| | - Tomoki Kitagawa
- Department of Radiation Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, Japan
| | - Takeshi Kodaira
- Department of Radiation Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, Japan
| |
Collapse
|
28
|
Pazzaglia S, Eidemüller M, Lumniczky K, Mancuso M, Ramadan R, Stolarczyk L, Moertl S. Out-of-field effects: lessons learned from partial body exposure. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:485-504. [PMID: 36001144 PMCID: PMC9722818 DOI: 10.1007/s00411-022-00988-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/03/2022] [Indexed: 05/27/2023]
Abstract
Partial body exposure and inhomogeneous dose delivery are features of the majority of medical and occupational exposure situations. However, mounting evidence indicates that the effects of partial body exposure are not limited to the irradiated area but also have systemic effects that are propagated outside the irradiated field. It was the aim of the "Partial body exposure" session within the MELODI workshop 2020 to discuss recent developments and insights into this field by covering clinical, epidemiological, dosimetric as well as mechanistic aspects. Especially the impact of out-of-field effects on dysfunctions of immune cells, cardiovascular diseases and effects on the brain were debated. The presentations at the workshop acknowledged the relevance of out-of-field effects as components of the cellular and organismal radiation response. Furthermore, their importance for the understanding of radiation-induced pathologies, for the discovery of early disease biomarkers and for the identification of high-risk organs after inhomogeneous exposure was emphasized. With the rapid advancement of clinical treatment modalities, including new dose rates and distributions a better understanding of individual health risk is urgently needed. To achieve this, a deeper mechanistic understanding of out-of-field effects in close connection to improved modelling was suggested as priorities for future research. This will support the amelioration of risk models and the personalization of risk assessments for cancer and non-cancer effects after partial body irradiation.
Collapse
Affiliation(s)
- S. Pazzaglia
- Laboratory of Biomedical Technologies, ENEA CR-Casaccia, Via Anguillarese 301, 00123 Rome, Italy
| | - M. Eidemüller
- Institute of Radiation Medicine, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - K. Lumniczky
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, Albert Florian u. 2-6, 1097 Budapest, Hungary
| | - M. Mancuso
- Laboratory of Biomedical Technologies, ENEA CR-Casaccia, Via Anguillarese 301, 00123 Rome, Italy
| | - R. Ramadan
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - L. Stolarczyk
- Danish Centre for Particle Therapy, Palle Juul-Jensens Boulevard 25, 8200 Aarhus N, Denmark
| | - S. Moertl
- Federal Office for Radiation Protection, Ingolstädter Landstr. 1, 85764 Oberschleißheim, Germany
| |
Collapse
|
29
|
Khan M, Sandhu N, Naeem M, Ealden R, Pearson M, Ali A, Honey I, Webster A, Eaton D, Ntentas G. Implementation of a comprehensive set of optimised CBCT protocols and validation through imaging quality and dose audit. Br J Radiol 2022; 95:20220070. [PMID: 36000497 PMCID: PMC9793481 DOI: 10.1259/bjr.20220070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES Cone-beam computed tomography (CBCT) for radiotherapy treatment verification has increased in frequency; therefore, it is crucial to optimise image quality and radiation dose to patients. The aim of this study was to implement optimised CBCT protocols for the Varian TrueBeams for most tumour sites in adult patients. METHODS A combination of patient size-specific CBCT protocols from the literature and developed in-house was used. Scans taken before and after optimisation were compared by senior radiographers and physicists to evaluate how changes affected image quality and clinical usability for online image registration. The change in dose for each new CBCT protocol was compared to the Varian default. A clinical audit was performed following implementation to evaluate the changes in imaging dose for all patients receiving a CBCT during that period. RESULTS Ten CBCT protocols were introduced including head and neck and patient-size-specific thorax and pelvis/abdomen protocols. Scans from 102 patients with images before and after optimisation were assessed, none of the scans showed image quality changes compromising clinical usability and for some image quality was improved. Between November 2020 and June 2021, 1185 patients had CBCTs using the new protocols. The imaging dose was reduced for 52% of patients, remained the same for 37% and increased for 12%. CONCLUSIONS This study showed that substantial dose reductions and image quality improvements can be achieved with simple changes in the default settings of the Varian TrueBeam CBCT without affecting the radiographers' confidence in online image registration. ADVANCES IN KNOWLEDGE This study represents a comprehensive assessment and optimisation of CBCT protocols for most sites, validated on a large cohort of patients.
Collapse
Affiliation(s)
- Marina Khan
- Department of Radiotherapy, Guy’s & St Thomas’ NHS Foundation Trust, London, UK
| | - Navneet Sandhu
- Department of Medical Physics, Guy’s & St Thomas’ NHS Foundation Trust, London, UK
| | - Marium Naeem
- Department of Medical Physics, Guy’s & St Thomas’ NHS Foundation Trust, London, UK
| | - Rebecca Ealden
- Department of Medical Physics, Guy’s & St Thomas’ NHS Foundation Trust, London, UK
| | - Michael Pearson
- Department of Medical Physics, Guy’s & St Thomas’ NHS Foundation Trust, London, UK
| | - Abdirzak Ali
- Department of Radiotherapy, Guy’s & St Thomas’ NHS Foundation Trust, London, UK
| | - Ian Honey
- Department of Medical Physics, Guy’s & St Thomas’ NHS Foundation Trust, London, UK
| | - Amanda Webster
- Department of Radiotherapy, University College Hospital, London, UK
| | | | | |
Collapse
|
30
|
Khaledi N, Hayes C, Belshaw L, Grattan M, Khan R, Gräfe JL. Treatment planning with a 2.5 MV photon beam for radiation therapy. J Appl Clin Med Phys 2022; 23:e13811. [PMID: 36300870 PMCID: PMC9797178 DOI: 10.1002/acm2.13811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/23/2022] [Indexed: 01/01/2023] Open
Abstract
PURPOSE The shallow depth of maximum dose and higher dose fall-off gradient of a 2.5 MV beam along the central axis that is available for imaging on linear accelerators is investigated for treatment of shallow tumors and sparing the organs at risk (OARs) beyond it. In addition, the 2.5 MV beam has an energy bridging the gap between kilo-voltage (kV) and mega-voltage (MV) beams for applications of dose enhancement with high atomic number (Z) nanoparticles. METHODS We have commissioned and utilized a MATLAB-based, open-source treatment planning software (TPS), matRad, for intensity-modulated radiation therapy (IMRT) dose calculations. Treatment plans for prostate, liver, and head and neck (H&N), nasal cavity, two orbit cases, and glioblastoma multiforme (GBM) were performed and compared to a conventional 6 MV beam. Additional Monte Carlo calculations were also used for benchmarking the central axis dose. RESULTS Both beams had similar planning target volume (PTV) dose coverage for all cases. However, the 2.5 MV beam deposited 6%-19% less integral doses to the nasal cavity, orbit, and GBM cases than 6 MV photons. The mean dose to the heart in the liver plan was 10.5% lower for 2.5 MV beam. The difference between the doses to OARs of H&N for two beams was under 3%. Brain mean dose, brainstem, and optic chiasm max doses were, respectively, 7.5%-14.9%, 2.2%-8.1%, and 2.5%-19.0% lower for the 2.5 MV beam in the nasal cavity, orbit, and GBM plans. CONCLUSIONS This study demonstrates that the 2.5 MV beam can produce clinically relevant treatment plans, motivating future efforts for design of single-energy LINACs. Such a machine will be capable of producing beams at this energy beneficial for low- and middle-income countries, and investigations on dose enhancement from high-Z nanoparticles.
Collapse
Affiliation(s)
- Navid Khaledi
- Department of PhysicsFaculty of ScienceToronto Metropolitan UniversityTorontoOntarioCanada
| | - Chris Hayes
- Radiotherapy PhysicsNorthern Ireland Cancer CentreBelfast Health and Social Care TrustBelfastUK
| | - Louise Belshaw
- Radiotherapy PhysicsNorthern Ireland Cancer CentreBelfast Health and Social Care TrustBelfastUK
| | - Mark Grattan
- Radiotherapy PhysicsNorthern Ireland Cancer CentreBelfast Health and Social Care TrustBelfastUK
| | - Rao Khan
- Department of PhysicsFaculty of ScienceToronto Metropolitan UniversityTorontoOntarioCanada,Department of Physics and Astronomy and Department of Radiation OncologyHoward UniversityWashingtonDistrict of ColumbiaUSA
| | - James L. Gräfe
- Department of PhysicsFaculty of ScienceToronto Metropolitan UniversityTorontoOntarioCanada
| |
Collapse
|
31
|
Zhang Y, Zhou H, Chu K, Wu C, Ge Y, Shan G, Zhou J, Cai J, Jin J, Sun W, Chen Y, Huang X. Setup error assessment based on “Sphere-Mask” Optical Positioning System: Results from a multicenter study. Front Oncol 2022; 12:918296. [PMID: 36267985 PMCID: PMC9577199 DOI: 10.3389/fonc.2022.918296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/15/2022] [Indexed: 11/15/2022] Open
Abstract
Background The setup accuracy plays an extremely important role in the local control of tumors. The purpose of this study is to verify the feasibility of "Sphere-Mask" Optical Positioning System (S-M_OPS) for fast and accurate setup. Methods From 2016 to 2021, we used S-M_OPS to supervise 15441 fractions in 1981patients (with the cancer in intracalvarium, nasopharynx, esophagus, lung, liver, abdomen or cervix) undergoing intensity-modulated radiation therapy (IMRT), and recorded the data such as registration time and mask deformation. Then, we used S-M_OPS, laser line and cone beam computed tomography (CBCT) for co-setup in 277 fractions, and recorded laser line-guided setup errors and S-M_OPS-guided setup errors with CBCT-guided setup result as the standard. Results S-M_OPS supervision results: The average time for laser line-guided setup was 31.75s. 12.8% of the reference points had an average deviation of more than 2 mm and 5.2% of the reference points had an average deviation of more than 3 mm. Co-setup results: The average time for S-M_OPS-guided setup was 7.47s, and average time for CBCT-guided setup was 228.84s (including time for CBCT scan and manual verification). In the LAT (left/right), VRT (superior/inferior) and LNG (anterior/posterior) directions, laser line-guided setup errors (mean±SD) were -0.21±3.13mm, 1.02±2.76mm and 2.22±4.26mm respectively; the 95% confidence intervals (95% CIs) of laser line-guided setup errors were -6.35 to 5.93mm, -4.39 to 6.43mm and -6.14 to 10.58mm respectively; S-M_OPS-guided setup errors were 0.12±1.91mm, 1.02±1.81mm and -0.10±2.25mm respectively; the 95% CIs of S-M_OPS-guided setup errors were -3.86 to 3.62mm, -2.53 to 4.57mm and -4.51 to 4.31mm respectively. Conclusion S-M_OPS can greatly improve setup accuracy and stability compared with laser line-guided setup. Furthermore, S-M_OPS can provide comparable setup accuracy to CBCT in less setup time.
Collapse
Affiliation(s)
- Yan Zhang
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Han Zhou
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Kaiyue Chu
- Department of Radiotherapy, Nantong Tumor Hospital, Nantong, China
| | - Chuanfeng Wu
- Department of Radiotherapy, Suzhou Municipal Hospital, Suzhou, China
| | - Yun Ge
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- *Correspondence: Yun Ge, ; Guoping Shan,
| | - Guoping Shan
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- Department of Radiation Physics, Zhejiang Cancer Hospital, Hangzhou, China
- *Correspondence: Yun Ge, ; Guoping Shan,
| | - Jundong Zhou
- Department of Radiotherapy, Suzhou Municipal Hospital, Suzhou, China
| | - Jing Cai
- Department of Radiotherapy, Nantong Tumor Hospital, Nantong, China
| | - Jianhua Jin
- Department of Radiotherapy, Nantong Tumor Hospital, Nantong, China
| | - Weiyu Sun
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Ying Chen
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Xiaolin Huang
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| |
Collapse
|
32
|
Archontakis P, Moutsatsos A, Papagiannis P, Seimenis I, Pantelis E. Spatial distribution of the imaging dose and characterization of the scatter radiation contribution in CyberKnife radiosurgery. Phys Med 2022; 103:11-17. [PMID: 36183580 DOI: 10.1016/j.ejmp.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/07/2022] [Accepted: 09/26/2022] [Indexed: 10/31/2022] Open
Abstract
PURPOSE The imaging dose for intra- and extra-cranial CyberKnife radiosurgery applications was calculated and the scattered radiation reaching the digital detectors was quantified and analyzed with regard to its origin. METHODS The image guidance subsystem of the CyberKnife was modeled based on vendor-provided information. The emitted X-ray energy spectrum for 120 kV was estimated using the SpekPy software tool. Monte Carlo (MC) image acquisition simulations were performed to calculate the total, primary and scattered photon fluences reaching each detector as a function of the imaged object dimensions. MC calculations of the imaging dose were performed for intra- and extra-cranial applications assuming 120 kV and 10 mAs acquisition settings. RESULTS The amount of scattered radiation reaching each detector was found to depend on the dimensions of the imaged anatomical region, contributing more than 40 % to the total photon fluence for regions more than 20 cm thick. More than 20 % of this scattered radiation originates from the contralateral imaging field. A maximum organ dose of 1.5 mGy at the nasal bones and an average dose of 0.37 mGy to the eye lenses per image pair acquisition was calculated for head applications. An entrance imaging dose of 0.4 mGy was calculated for extracranial applications. CONCLUSIONS Scattered radiation reaching each detector in the skull and spine tracking applications can be reduced by acquiring the pair of radiographs sequentially instead of simultaneously. A dose of 3.7 cGy to the eye lenses is estimated assuming 100 image pair exposures required for treatment completion.
Collapse
Affiliation(s)
- Panagiotis Archontakis
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 11527 Athens, Greece
| | - Argyris Moutsatsos
- Radiotherapy and Radiosurgery Department, Iatropolis Clinic, 54-56 Ethnikis Antistaseos, 15231 Athens, Greece
| | - Panagiotis Papagiannis
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 11527 Athens, Greece
| | - Ioannis Seimenis
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 11527 Athens, Greece
| | - Evaggelos Pantelis
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 11527 Athens, Greece; Radiotherapy and Radiosurgery Department, Iatropolis Clinic, 54-56 Ethnikis Antistaseos, 15231 Athens, Greece.
| |
Collapse
|
33
|
Martin CJ, Abuhaimed A. Variations in size-specific effective dose with patient stature and beam width for kV cone beam CT imaging in radiotherapy. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:031512. [PMID: 35917802 DOI: 10.1088/1361-6498/ac85fa] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
The facilities now available on linear accelerators for external beam radiotherapy enable radiation fields to be conformed to the shapes of tumours with a high level of precision. However, in order for the treatment delivered to take advantage of this, the patient must be positioned on the couch with the same degree of accuracy. Kilovoltage cone beam computed tomography systems are now incorporated into radiotherapy linear accelerators to allow imaging to be performed at the time of treatment, and image-guided radiation therapy is now standard in most radiotherapy departments throughout the world. However, because doses from imaging are much lower than therapy doses, less effort has been put into optimising radiological protection of imaging protocols. Standard imaging protocols supplied by the equipment vendor are often used with little adaptation to the stature of individual patients, and exposure factors and field sizes are frequently larger than necessary. In this study, the impact of using standard protocols for imaging anatomical phantoms of varying size from a library of 193 adult phantoms has been evaluated. Monte Carlo simulations were used to calculate doses for organs and tissues for each phantom, and results combined in terms of size-specific effective dose (SED). Values of SED from pelvic scans ranged from 11 mSv to 22 mSv for male phantoms and 8 mSv to 18 mSv for female phantoms, and for chest scans from 3.8 mSv to 7.6 mSv for male phantoms and 4.6 mSv to 9.5 mSv for female phantoms. Analysis of the results showed that if the same exposure parameters and field sizes are used, a person who is 5 cm shorter will receive a size SED that is 3%-10% greater, while a person who is 10 kg lighter will receive a dose that is 10%-14% greater compared with the average size.
Collapse
Affiliation(s)
- C J Martin
- Department of Clinical Physics and Bioengineering, University of Glasgow, Gartnavel Royal Hospital, Glasgow G12 0XH, United Kingdom
| | - A Abuhaimed
- King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| |
Collapse
|
34
|
Hirotaki K, Moriya S, Akita T, Yokoyama K, Sakae T. Image preprocessing to improve the accuracy and robustness of mutual-information-based automatic image registration in proton therapy. Phys Med 2022; 101:95-103. [PMID: 35987025 DOI: 10.1016/j.ejmp.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/21/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022] Open
Abstract
PURPOSE We propose a method that potentially improves the outcome of mutual-information-based automatic image registration by using the contrast enhancement filter (CEF). METHODS Seventy-six pairs of two-dimensional X-ray images and digitally reconstructed radiographs for 20 head and neck and nine lung cancer patients were analyzed retrospectively. Automatic image registration was performed using the mutual-information-based algorithm in VeriSuite®. Images were preprocessed using the CEF in VeriSuite®. The correction vector for translation and rotation error was calculated and manual image registration was compared with automatic image registration, with and without CEF. In addition, the normalized mutual information (NMI) distribution between two-dimensional images was compared, with and without CEF. RESULTS In the correction vector comparison between manual and automatic image registration, the average differences in translation error were < 1 mm in most cases in the head and neck region. The average differences in rotation error were 0.71 and 0.16 degrees without and with CEF, respectively, in the head and neck region; they were 2.67 and 1.64 degrees, respectively, in the chest region. When used with oblique projection, the average rotation error was 0.39 degrees with CEF. CEF improved the NMI by 17.9 % in head and neck images and 18.2 % in chest images. CONCLUSIONS CEF preprocessing improved the NMI and registration accuracy of mutual-information-based automatic image registration on the medical images. The proposed method achieved accuracy equivalent to that achieved by experienced therapists and it will significantly contribute to the standardization of image registration quality.
Collapse
Affiliation(s)
- Kouta Hirotaki
- Doctoral Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 3058577, Japan; Department of Radiological Technology, National Cancer Center Hospital East, Chiba 2778577, Japan
| | - Shunsuke Moriya
- Faculty of Medicine, University of Tsukuba, Ibaraki 3058575, Japan.
| | - Tsunemichi Akita
- Department of Radiological Technology, National Cancer Center Hospital East, Chiba 2778577, Japan
| | - Kazutoshi Yokoyama
- Department of Radiological Technology, National Cancer Center Hospital East, Chiba 2778577, Japan
| | - Takeji Sakae
- Faculty of Medicine, University of Tsukuba, Ibaraki 3058575, Japan
| |
Collapse
|
35
|
Gong W, Yao Y, Ni J, Jiang H, Jia L, Xiong W, Zhang W, He S, Wei Z, Zhou J. Deep learning-based low-dose CT for adaptive radiotherapy of abdominal and pelvic tumors. Front Oncol 2022; 12:968537. [PMID: 36059630 PMCID: PMC9436420 DOI: 10.3389/fonc.2022.968537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/28/2022] [Indexed: 11/15/2022] Open
Abstract
The shape and position of abdominal and pelvic organs change greatly during radiotherapy, so image-guided radiation therapy (IGRT) is urgently needed. The world’s first integrated CT-linac platform, equipped with fan beam CT (FBCT), can provide a diagnostic-quality FBCT for achieve adaptive radiotherapy (ART). However, CT scans will bring the risk of excessive scanning radiation dose. Reducing the tube current of the FBCT system can reduce the scanning dose, but it will lead to serious noise and artifacts in the reconstructed images. In this study, we proposed a deep learning method, Content-Noise Cycle-Consistent Generative Adversarial Network (CNCycle-GAN), to improve the image quality and CT value accuracy of low-dose FBCT images to meet the requirements of adaptive radiotherapy. We selected 76 patients with abdominal and pelvic tumors who received radiation therapy. The patients received one low-dose CT scan and one normal-dose CT scan in IGRT mode during different fractions of radiotherapy. The normal dose CT images (NDCT) and low dose CT images (LDCT) of 70 patients were used for network training, and the remaining 6 patients were used to validate the performance of the network. The quality of low-dose CT images after network restoration (RCT) were evaluated in three aspects: image quality, automatic delineation performance and dose calculation accuracy. Taking NDCT images as a reference, RCT images reduced MAE from 34.34 ± 5.91 to 20.25 ± 4.27, PSNR increased from 34.08 ± 1.49 to 37.23 ± 2.63, and SSIM increased from 0.92 ± 0.08 to 0.94 ± 0.07. The P value is less than 0.01 of the above performance indicators indicated that the difference were statistically significant. The Dice similarity coefficients (DCS) between the automatic delineation results of organs at risk such as bladder, femoral heads, and rectum on RCT and the results of manual delineation by doctors both reached 0.98. In terms of dose calculation accuracy, compared with the automatic planning based on LDCT, the difference in dose distribution between the automatic planning based on RCT and the automatic planning based on NDCT were smaller. Therefore, based on the integrated CT-linac platform, combined with deep learning technology, it provides clinical feasibility for the realization of low-dose FBCT adaptive radiotherapy for abdominal and pelvic tumors.
Collapse
Affiliation(s)
- Wei Gong
- Department of Radiation Oncology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yiming Yao
- Department of Radiation Oncology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Ni
- Department of Radiation Oncology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hua Jiang
- Department of Radiation Oncology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lecheng Jia
- Real Time Laboratory, Shenzhen United Imaging Research Institute of Innovative Medical Equipment, Shenzhen, China
| | - Weiqi Xiong
- Radiotherapy Business Unit, Shanghai United Imaging Healthcare Co., Ltd., Shanghai, China
| | - Wei Zhang
- Radiotherapy Business Unit, Shanghai United Imaging Healthcare Co., Ltd., Shanghai, China
| | - Shumeng He
- IRT Laboratory, United Imaging Research Institute of Intelligent Imaging, Beijing, China
| | - Ziquan Wei
- Real Time Laboratory, Shenzhen United Imaging Research Institute of Innovative Medical Equipment, Shenzhen, China
- *Correspondence: Ziquan Wei, ; Juying Zhou,
| | - Juying Zhou
- Department of Radiation Oncology, First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Ziquan Wei, ; Juying Zhou,
| |
Collapse
|
36
|
Kita N, Shibamoto Y, Takemoto S, Manabe Y, Yanagi T, Sugie C, Tomita N, Iwata H, Murai T, Hashimoto S, Ishikura S. Comparison of intensity-modulated radiotherapy with the 5-field technique, helical tomotherapy and volumetric modulated arc therapy for localized prostate cancer. JOURNAL OF RADIATION RESEARCH 2022; 63:666-674. [PMID: 35726342 PMCID: PMC9303627 DOI: 10.1093/jrr/rrac027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 04/04/2022] [Indexed: 06/15/2023]
Abstract
The outcomes of three methods of intensity-modulated radiation therapy (IMRT) for localized prostate cancer were evaluated. Between 2010 and 2018, 308 D'Amico intermediate- or high-risk patients were treated with 2.2 Gy daily fractions to a total dose of 74.8 Gy in combination with hormonal therapy. Overall, 165 patients were treated with 5-field IMRT using a sliding window technique, 66 were then treated with helical tomotherapy and 77 were treated with volumetric modulated arc therapy (VMAT). The median age of patients was 71 years. The median follow-up period was 75 months. Five-year overall survival (OS) and biochemical or clinical failure-free survival (FFS) rates were 95.5 and 91.6% in the 5-field IMRT group, 95.1 and 90.3% in the tomotherapy group and 93.0 and 88.6% in the VMAT group, respectively, with no significant differences among the three groups. The 5-year cumulative incidence of late grade ≥2 genitourinary and gastrointestinal toxicities were 7.3 and 6.2%, respectively, for all patients. Late grade ≥2 gastrointestinal toxicities were less frequent in patients undergoing VMAT (0%) than in patients undergoing 5-field IMRT (7.3%) and those undergoing tomotherapy (11%) (P = 0.025), and this finding appeared to be correlated with the better rectal DVH parameters in patients undergoing VMAT. Other toxicities did not differ significantly among the three groups, although bladder dose-volume parameters were slightly worse in the tomotherapy group than in the other groups. Despite differences in the IMRT delivery methods, X-ray energies and daily registration methods, all modalities may be used as IMRT for localized prostate cancer.
Collapse
Affiliation(s)
- Nozomi Kita
- Corresponding author. Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuhocho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan. Tel.: +81-52-853-8276; Fax: +81-52-852-5244; E-mail:
| | - Yuta Shibamoto
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
- Department of Proton Therapy, Narita Memorial Proton Center, 78 Shirakawa-cho, Toyohashi, Aichi, 441-8021, Japan
| | - Shinya Takemoto
- Department of Radiology, Fujieda Heisei Memorial Hospital, 123-1 Mizukami, Fujieda, Shizuoka, 426-8662, Japan
| | - Yoshihiko Manabe
- Department of Radiation Oncology, Nanbu Tokushukai Hospital, 171-1 Hokama, Yaese-cho, Shimajiri-gun, Okinawa, 901-0493, Japan
| | - Takeshi Yanagi
- Department of Proton Therapy, Narita Memorial Proton Center, 78 Shirakawa-cho, Toyohashi, Aichi, 441-8021, Japan
| | - Chikao Sugie
- Department of Radiology, Japanese Red Cross Aichi Medical Center Nagoya Daini Hospital, 2-9 Myoken-cho, Showa-ku, Nagoya, Aichi, 466-8650, Japan
| | - Natsuo Tomita
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
| | - Hiromitsu Iwata
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City University West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya, Aichi, 462-8508, Japan
| | - Taro Murai
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
| | - Shingo Hashimoto
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
| | - Satoshi Ishikura
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
| |
Collapse
|
37
|
Tachibana H, Takahashi R, Kogure T, Nishiyama S, Kurosawa T. Practical dosimetry procedure of air kerma for kilovoltage X-ray imaging in radiation oncology using a 0.6-cc cylindrical ionization chamber with a cobalt absorbed dose-to-water calibration coefficient. Radiol Phys Technol 2022; 15:264-270. [PMID: 35829894 DOI: 10.1007/s12194-022-00665-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/25/2022]
Abstract
In this study, we implemented a practical dosimetry procedure of air kerma for kilovoltage X-ray beams using a 0.6-cc cylindrical ionization chamber, and validated the procedure with the accuracy of the measurements using the 0.6-cc chamber compared to the measurements using a 6-cc chamber and a semiconductor device. In addition, the kerma area products (KAPs) were compared with the dose reference levels of radiology. A modified air kerma formalism using a 0.6-cc cylindrical ionization chamber air kerma formalism with a cobalt absorbed dose-to-water calibration coefficient was implemented. Validation of the formalism showed good agreement between the 0.6-cc chamber and the 6-cc chamber (< 5%), and between the 0.6-cc chamber and the semiconductor device (< 2%) in the 60-120 kV range. The KAPs for four RO machines had difference factors of 0.04-15.4 and 0.01-4.1 from their median and maximum dose reference levels in radiology, respectively.
Collapse
Affiliation(s)
- Hidenobu Tachibana
- Radiation Safety and Quality Assurance Division, Hospital East, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 2778577, Japan.
- Particle Therapy Division, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, 2778577, Japan.
| | - Ryo Takahashi
- Particle Therapy Division, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, 2778577, Japan
- Radiation Safety and Quality Assurance Division, Hospital East, National Cancer Center, Chiba, 2778577, Japan
| | - Takayuki Kogure
- Department of Radiology, Chiba Tokushukai Hospital, Chiba, 2748503, Japan
| | - Shiro Nishiyama
- Department of Radiology, General Hospital, Saiseikai Kawaguchi, Saitama, 3328558, Japan
| | - Tomoyuki Kurosawa
- Particle Therapy Division, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, 2778577, Japan
| |
Collapse
|
38
|
Cumur C, Fujibuchi T, Hamada K. Dose estimation for cone-beam computed tomography in image-guided radiation therapy using mesh-type reference computational phantoms and assuming head and neck cancer. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:021533. [PMID: 35705020 DOI: 10.1088/1361-6498/ac7914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to estimate the additional dose the cone-beam computed tomography (CBCT) system integrated into the Varian TrueBeam linear accelerator delivers to a patient with head and neck cancer using mesh-type International Commission on Radiological Protection reference computational phantoms. In the first part, for use as a benchmark for the accuracy of the Monte Carlo geometry of CBCT, Particle and Heavy Ion Transport code System (PHITS) calculations were confirmed against measured lateral and depth dose profiles using a computed tomography dose profiler. After obtaining good agreement, organ dose calculations were performed by PHITS using mesh-type reference computational phantom (MRCP) and irradiating the neck region; the effective dose was calculated utilising absorbed organ doses and tissue weighting factors for male and female MRCP. Substantially, it has been found that the effective doses for male and female MRCP are 0.81 and 1.06 mSv, respectively. As this study aimed to assess the imaging dose from the CBCT system used in image-guided radiation therapy, it is required to take into account this dose in terms of both the target organ and surrounding tissues. Although the absorbed organ dose values and effective dose values obtained for both MRCP males and females were small, attention should be paid to the additional dose resulting from CBCT. This study can create awareness on the importance of doses arising from imaging techniques, especially CBCT.
Collapse
Affiliation(s)
- Ceyda Cumur
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka City 812-8582, Japan
| | - Toshioh Fujibuchi
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka City 812-8582, Japan
| | - Keisuke Hamada
- Department of Radiological Technology, National Hospital Organisation Kyushu Cancer Center, 3-1-1, Notame Minami-ku, Fukuoka City 811-1395, Japan
| |
Collapse
|
39
|
Zhou S, Li J, Zhu X, Du Y, Yu S, Wang M, Yao K, Wu H, Yue H. Initial clinical experience of surface guided stereotactic radiation therapy with open-face mask immobilization for improving setup accuracy: a retrospective study. Radiat Oncol 2022; 17:104. [PMID: 35659685 PMCID: PMC9167505 DOI: 10.1186/s13014-022-02077-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/31/2022] [Indexed: 11/14/2022] Open
Abstract
Purpose To propose a specific surface guided stereotactic radiotherapy (SRT) treatment procedure with open-face mask immobilization and evaluate the initial clinical experience in improving setup accuracy. Methods and materials The treatment records of 48 SRT patients with head lesions were retrospectively analyzed. For each patient, head immobilization was achieved with a double-shell open-face mask. The anterior shell was left open to expose the forehead, nose, eyes and cheekbones. The exposed facial area was used as region-of-interest for surface tracking by AlignRT (VisionRT Inc, UK). The posterior shell provided a sturdy and personalized headrest. Patient initial setup was guided by 6DoF real-time deltas (RTD) using the reference surface obtained from the skin contour delineated on the planning CT images. The endpoint of initial setup was 1 mm in translational RTD and 1 degree in rotational RTD. CBCT guidance was performed to derive the initial setup errors, and couch shifts for setup correction were applied prior to treatment delivery. CBCT couch shifts, AlignRT RTD values, repositioning rate and setup time were analyzed. Results The absolute values of median (maximal) CBCT couch shifts were 0.4 (1.3) mm in VRT, 0.1 (2.5) mm in LNG, 0.2 (1.6) mm in LAT, 0.1(1.2) degree in YAW, 0.2 (1.4) degree in PITCH and 0.1(1.3) degree in ROLL. The couch shifts and AlignRT RTD values exhibited highly agreement except in VRT and PITCH (p value < 0.01), of which the differences were as small as negligible. We did not find any case of patient repositioning that was due to out-of-tolerance setup errors, i.e., 3 mm and 2 degree. The surface guided setup time ranged from 52 to 174 s, and the mean and median time was 97.72 s and 94 s respectively. Conclusions The proposed surface guided SRT procedure with open-face mask immobilization is a step forward in improving patient comfort and positioning accuracy in the same process. Minimized initial setup errors and repositioning rate had been achieved with reasonably efficiency for routine clinical practice.
Collapse
Affiliation(s)
- Shun Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Junyu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Xianggao Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Yi Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China. .,Institute of Medical Technology, Peking University Health Science Center, 38 Huayuan Road, Beijing, 100191, China.
| | - Songmao Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Meijiao Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Kaining Yao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Hao Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China.,Institute of Medical Technology, Peking University Health Science Center, 38 Huayuan Road, Beijing, 100191, China
| | - Haizhen Yue
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China.
| |
Collapse
|
40
|
Residual image registration error by fiducial markers in accelerated partial breast irradiation using C-arm linac: a phantom study. Phys Eng Sci Med 2022; 45:769-779. [PMID: 35657476 DOI: 10.1007/s13246-022-01142-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
External beam accelerated partial breast irradiation (APBI) is an alternative treatment for patients with early-stage breast cancer. The efficacy of image-guided radiotherapy (IGRT) using fiducial markers, such as gold markers or surgical clips, has been demonstrated. However, the effects of respiratory motion during a single fraction have not been reported. This study aimed to evaluate the residual image registration error of fiducial marker-based IGRT by respiratory motion and propose a suitable treatment strategy. We developed an acrylic phantom embedded with surgical clips to verify the registration error under moving conditions. The frequency of the phase difference in the respiratory cycle due to sequential acquisition was verified in a preliminary study. Fiducial marker-based IGRT was then performed in ten scenarios. The residual registration error (RRE) was calculated on the basis of the differences in the coordinates of clips between the true position if not moved and the last position. The frequencies of the phase differences in 0.0-0.99, 1.0-1.99, 2.0-2.99, 3.0-3.99, and 4.0-5.0 mm were 23%, 24%, 22%, 20%, and 11%, respectively. When assuming a clinical case, the mean RREs for all directions were within 1.0 mm, even if respiratory motion of 5 mm existed in two axes. For APBI with fiducial marker-based IGRT, the introduction of an image registration strategy that employs stepwise couch correction using at least three orthogonal images should be considered.
Collapse
|
41
|
Razdevsek G, Simoncic U, Snoj L, Studen A. The dose accumulation and the impact of deformable image registration on dose reporting parameters in a moving patient undergoing proton radiotherapy. Radiol Oncol 2022; 56:248-258. [PMID: 35575586 PMCID: PMC9122289 DOI: 10.2478/raon-2022-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 02/18/2022] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION Potential changes in patient anatomy during proton radiotherapy may lead to a deviation of the delivered dose. A dose estimate can be computed through a deformable image registration (DIR) driven dose accumulation. The present study evaluates the accumulated dose uncertainties in a patient subject to an inadvertent breathing associated motion. MATERIALS AND METHODS A virtual lung tumour was inserted into a pair of single participant landmark annotated computed tomography images depicting opposite breathing phases, with the deep inspiration breath-hold the planning reference and the exhale the off-reference geometry. A novel Monte Carlo N-Particle, Version 6 (MCNP6) dose engine was developed, validated and used in treatment plan optimization. Three DIR methods were compared and used to transfer the exhale simulated dose to the reference geometry. Dose conformity and homogeneity measures from International Committee on Radioactivity Units and Measurements (ICRU) reports 78 and 83 were evaluated on simulated dose distributions registered with different DIR algorithms. RESULTS The MCNP6 dose engine handled patient-like geometries in reasonable dose calculation times. All registration methods were able to align image associated landmarks to distances, comparable to voxel sizes. A moderate deterioration of ICRU measures was encountered in comparing doses in on and off-reference anatomy. There were statistically significant DIR driven differences in ICRU measures, particularly a 10% difference in the relative D98% for planning tumour volume and in the 3 mm/3% gamma passing rate. CONCLUSIONS T he dose accumulation over two anatomies resulted in a DIR driven uncertainty, important in reporting the associated ICRU measures for quality assurance.
Collapse
Affiliation(s)
- Gasper Razdevsek
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
| | - Urban Simoncic
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
- Jožef Stefan Institute, Ljubljana, Slovenia
| | - Luka Snoj
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
- Jožef Stefan Institute, Ljubljana, Slovenia
| | - Andrej Studen
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
- Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
42
|
Less time is less motion: Analysis of practical efficiencies gained with a modified workflow integrating planar kV mid-imaging with CBCT for spine stereotactic body radiation therapy. Adv Radiat Oncol 2022; 7:100961. [PMID: 35847546 PMCID: PMC9280020 DOI: 10.1016/j.adro.2022.100961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 03/29/2022] [Indexed: 11/22/2022] Open
|
43
|
Heidarloo N, Mahmoud Reza Aghamiri S, Saghamanesh S, Azma Z, Alaei P. A novel analytical method for computing dose from kilovoltage beams used in Image-Guided radiation therapy. Phys Med 2022; 96:54-61. [PMID: 35219962 DOI: 10.1016/j.ejmp.2022.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/12/2022] [Accepted: 02/20/2022] [Indexed: 10/19/2022] Open
Abstract
PURPOSE A modified convolution/superposition algorithm is proposed to compute dose from the kilovoltage beams used in IGRT. The algorithm uses material-specific energy deposition kernels instead of water-energy deposition kernels. METHODS Monte Carlo simulation was used to model the Elekta XVI unit and determine dose deposition characteristics of its kilovoltage beams. The dosimetric results were compared with ion chamber measurements. The dose from the kilovoltage beams was then computed using convolution/superposition along with material-specific energy deposition kernels and compared with Monte Carlo and measurements. The material-specific energy deposition kernels were previously generated using Monte Carlo. RESULTS The obtained gamma indices (using 2%/2mm criteria for 95% of points) were lower than 1 in almost all instances which indicates good agreement between simulated and measured depth doses and profiles. The comparisons of the algorithm with measurements in a homogeneous solid water slab phantom, and that with Monte Carlo in a head and neck CT dataset produced acceptable results. The calculated point doses were within 4.2% of measurements in the homogeneous phantom. Gamma analysis of the calculated vs. Monte Carlo simulations in the head and neck phantom resulted in 94% of points passing with a 2%/2mm criteria. CONCLUSIONS The proposed method offers sufficient accuracy in kilovoltage beams dose calculations and has the potential to supplement the conventional megavoltage convolution/superposition algorithms for dose calculations in low energy range.
Collapse
Affiliation(s)
- Nematollah Heidarloo
- Department of Medical Radiation Engineering, Shahid Beheshti University, Tehran, Iran
| | | | - Somayeh Saghamanesh
- Center for X-ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Zohreh Azma
- Department of Medical Radiation Engineering, Shahid Beheshti University, Tehran, Iran; Erfan Radiation Oncology Center, Erfan-Niyayesh hospital, Iran University of Medical Science, Tehran, Iran
| | - Parham Alaei
- Department of Radiation Oncology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
44
|
Gilling L, Ali O. Organ dose from Varian XI and Varian OBI systems are clinically comparable for pelvic CBCT imaging. Phys Eng Sci Med 2022; 45:279-285. [PMID: 35143026 DOI: 10.1007/s13246-021-01090-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 12/07/2021] [Indexed: 11/27/2022]
Abstract
Pelvic cone-beam computed tomography (CBCT) occurs daily in many radiotherapy clinics as a part of image-guided verification before treatment. These images are acquired by the use of ionizing radiation. The dose received by CBCT imaging is often not quantified in a patient's radiation therapy prescription. The purpose of this work was to quantify the dose from a TrueBeam XI pelvic CBCT imaging system. The dose to organs from this imaging protocol was then compared with published dose data for OBI v1.4 pelvic CBCT imaging. A model of the Varian XI imager was constructed using GATE Monte Carlo scripting language. The model was calibrated by correlation with experimental measurements. An IBA 3D water tank was used to perform relative dose measurements in water. An adult anthropomorphic Alderson phantom with embedded thermolumeniscent dosimeters was used to evaluate dose from prostate CBCT imaging. Following the calibration, the GATE model was used to simulate the dose from the XI pelvic CBCT protocol to the ICRP computational anthropomorphic phantom. The Monte Carlo model constructed in GATE was validated for use in dose estimates for the XI pelvic imaging protocol. The D50 and D10 values tabulated the pelvic CBCT protocol show that doses to organs in the pelvic region are comparable for both systems. For a clinician who intends to evaluate the dose to organs as a result of CBCT imaging of the pelvis from the TrueBeam XI system, for the purposes of treatment planning, the doses reported for OBI v1.4 given in AAPM TG-180 provide a valid estimate.
Collapse
Affiliation(s)
- Luke Gilling
- Medical Physics Department, Waikato District Health Board, Hamilton, New Zealand.
| | - Omer Ali
- Medical Physics Department, Waikato District Health Board, Hamilton, New Zealand
| |
Collapse
|
45
|
Dose assessment for daily cone-beam CT in lung radiotherapy patients and its combination with treatment planning. Phys Eng Sci Med 2022; 45:231-237. [PMID: 35076869 DOI: 10.1007/s13246-022-01105-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/19/2022] [Indexed: 10/19/2022]
Abstract
With the increased use of X-ray imaging for patient alignment in external beam radiation therapy, particularly with cone-beam computed tomography (CBCT), the additional dose received by patients has become of greater consideration. In this study, we analysed the radiation dose from CBCT for clinical lung radiotherapy and assessed its relative contribution when combined with radiation treatment planning for a variety of lung radiotherapy techniques. The Monte Carlo simulation program ImpactMC was used to calculate the 3D dose delivered by a Varian TrueBeam linear accelerator to patients undergoing thorax CBCT imaging. The concomitant dose was calculated by simulating the daily CBCT irradiation of ten lung cancer patients. Each case was planned with a total dose of 50-60 Gy to the target lesion in 25-30 fractions using the 3DCRT or IMRT plan and retrospectively planned using VMAT. For each clinical case, the calculated CBCT dose was summed with the planned dose, and the dose to lungs, heart, and spinal cord were analysed according to conventional dose conformity metrics. Our results indicate greater variations in dose to the heart, lungs, and spinal cord based on planning technique, (3DCRT, IMRT, VMAT) than from the inclusion of daily cone-beam imaging doses over 25-30 fractions. The average doses from CBCT imaging per fraction to the lungs, heart and spinal cord were 0.52 ± 0.10, 0.49 ± 0.15 and 0.39 ± 0.08 cGy, respectively. Lung dose variations were related to the patient's size and body composition. Over a treatment course, this may result in an additional mean absorbed dose of 0.15-0.2 Gy. For lung V5, the imaging dose resulted in an average increase of ~ 0.6% of the total volume receiving 5 Gy. The increase in V20 was more dependent on the planning technique, with 3DCRT increasing by 0.11 ± 0.09% with imaging and IMRT and VMAT increasing by 0.17 ± 0.05% and 0.2 ± 0.06%, respectively. In this study, we assessed the concomitant dose for daily CBCT lung cancer patients undergoing radiotherapy. The additional radiation dose to the normal lungs from daily CBCT was found to range from 0.15 to 0.2 Gy when the patient was treated with 25-30 fractions. Consideration of potential variation in relative biological effectiveness between kilovoltage imaging and megavoltage treatment dose was outside the scope of this study. Regardless of this, our results show that the assessment of imaging dose can be incorporated into the treatment planning process and the relative effect on overall dose distribution was small compared to the difference among planning techniques.
Collapse
|
46
|
PCXMC cone beam computed tomography dosimetry investigations. Phys Eng Sci Med 2022; 45:205-218. [PMID: 35072895 DOI: 10.1007/s13246-022-01103-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/07/2022] [Indexed: 10/19/2022]
Abstract
With cone beam computed tomography (CBCT) in image guided radiation therapy being amongst the most widely used imaging modalities, there has been an increasing interest in quantifying the concomitant dose and risk. Whilst there have been several studies on this topic, there remains a lack of standardisation and knowledge on dose variations and the impact of patient size. Recently, PCXMC (a Monte Carlo simulator) has been used to assess both the concomitant dose and dosimetric impact of patient size variations for CBCT. The scopes of these studies, however, have included only a limited range of imaging manufacturers, protocols, and patient sizes. An approach using PCXMC and MATLAB was developed to enable a generalised method for rapidly quantifying and formulating the concomitant dose as a function of patient size across numerous CBCT vendors and protocols. The method was investigated using the Varian on board imaging 1.6 default pelvis and pelvis spotlight protocols, for 94 adult and paediatric phantoms over 6 age groups with extensive height and mass variations. It was found that dose varies significantly with patient size, as much as doubling and halving the average for patients of lower and higher mass, respectively. These variations, however, can be formulated and accounted for using the method developed, across a wide range of patient sizes for all CBCT vendors and protocols. This will enable the development of a comprehensive catalogue to account for concomitant doses in almost any clinically relevant scenario.
Collapse
|
47
|
Washio H, Ohira S, Funama Y, Ueda Y, Morimoto M, Kanayama N, Isono M, Inui S, Nitta Y, Miyazaki M, Teshima T. Dose Reduction and Low-Contrast Detectability Using Iterative CBCT Reconstruction Algorithm for Radiotherapy. Technol Cancer Res Treat 2022; 21:15330338211067312. [PMID: 34981989 PMCID: PMC8733359 DOI: 10.1177/15330338211067312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction: Several studies have reported the relation between the imaging dose and secondary cancer risk and have emphasized the need to minimize the additional imaging dose as low as reasonably achievable. The iterative cone-beam computed tomography (iCBCT) algorithm can improve the image quality by utilizing scatter correction and statistical reconstruction. We investigate the use of a novel iCBCT reconstruction algorithm to reduce the patient dose while maintaining low-contrast detectability and registration accuracy. Methods: Catphan and anthropomorphic phantoms were analyzed. All CBCT images were acquired with varying dose levels and reconstructed with a Feldkamp-Davis-Kress algorithm-based CBCT (FDK-CBCT) and iCBCT. The low-contrast detectability was subjectively assessed using a 9-point scale by 4 reviewers and objectively assessed using structure similarity index (SSIM). The soft tissue-based registration error was analyzed for each dose level and reconstruction technique. Results: The results of subjective low-contrast detectability found that the iCBCT acquired at two-thirds of a dose was superior to the FDK-CBCT acquired at a full dose (6.4 vs 5.4). Relative to FDK-CBCT acquired at full dose, SSIM was higher for iCBCT acquired at one-sixth dose in head and head and neck region while equivalent with iCBCT acquired at two-thirds dose in pelvis region. The soft tissue-based registration was 2.2 and 0.6 mm for FDK-CBCT and iCBCT, respectively. Conclusion: Use of iCBCT reconstruction algorithm can generally reduce the patient dose by approximately two-thirds compared to conventional reconstruction methods while maintaining low-contrast detectability and accuracy of registration.
Collapse
Affiliation(s)
- Hayate Washio
- 53312Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan.,13205Graduate School of Health Sciences, Kumamoto University, Kumamoto, Japan
| | - Shingo Ohira
- 53312Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Yoshinori Funama
- Department of Medical Radiation Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Ueda
- 53312Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Masahiro Morimoto
- 53312Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Naoyuki Kanayama
- 53312Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Masaru Isono
- 53312Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Shoki Inui
- 53312Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan.,Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuya Nitta
- 53312Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Masayoshi Miyazaki
- 53312Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | | |
Collapse
|
48
|
Le Deroff C, Berger L, Bellec J, Boissonnat G, Chesneau H, Chiavassa S, Desrousseaux J, Gempp S, Henry O, Jarril J, Lazaro D, Lefeuvre R, Passal V, Solinhac F, Lafond C, Delpon G. Monte Carlo-based software for 3D personalized dose calculations in image-guided radiotherapy. Phys Imaging Radiat Oncol 2022; 21:108-114. [PMID: 35243041 PMCID: PMC8885460 DOI: 10.1016/j.phro.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/28/2022] [Accepted: 02/11/2022] [Indexed: 11/23/2022] Open
Abstract
Monte Carlo calculations offer 3D personalized IGRT imaging dose distributions. Histogram dose volume were obtained for three anatomical sites and 5 imaging device. The image frequency is responsible for the cumulated dose to organs. Adapting the protocols to morphologies reduce the imaging dose.
Background and purpose Image-guided radiotherapy (IGRT) involves frequent in-room imaging sessions contributing to additional patient irradiation. The present work provided patient-specific dosimetric data related to different imaging protocols and anatomical sites. Material and methods We developed a Monte Carlo based software able to calculate 3D personalized dose distributions for five imaging devices delivering kV-CBCT (Elekta and Varian linacs), MV-CT (Tomotherapy machines) and 2D-kV stereoscopic images from BrainLab and Accuray. Our study reported the dose distributions calculated for pelvis, head and neck and breast cases based on dose volume histograms for several organs at risk. Results 2D-kV imaging provided the minimum dose with less than 1 mGy per image pair. For a single kV-CBCT and MV-CT, median dose to organs were respectively around 30 mGy and 15 mGy for the pelvis, around 7 mGy and 10 mGy for the head and neck and around 5 mGy and 15 mGy for the breast. While MV-CT dose varied sparsely with tissues, dose from kV imaging was around 1.7 times higher in bones than in soft tissue. Daily kV-CBCT along 40 sessions of prostate radiotherapy delivered up to 3.5 Gy to the femoral heads. The dose level for head and neck and breast appeared to be lower than 0.4 Gy for every organ in case of a daily imaging session. Conclusions This study showed the dosimetric impact of IGRT procedures. Acquisition parameters should therefore be chosen wisely depending on the clinical purposes and tailored to morphology. Indeed, imaging dose could be reduced up to a factor 10 with optimized protocols.
Collapse
Affiliation(s)
- Coralie Le Deroff
- Centre Eugène Marquis (Unicancer), Rennes, France
- Corresponding author.
| | - Lucie Berger
- Centre Jean Perrin (Unicancer), Clermont Ferrand, France
| | | | | | | | - Sophie Chiavassa
- Institut de Cancérologie de l’Ouest (Unicancer), Saint-Herblain, France
| | | | - Stéphanie Gempp
- Assistance Publique – Hôpitaux de Marseille, Marseille, France
| | | | - Jimmy Jarril
- Centre Jean Perrin (Unicancer), Clermont Ferrand, France
| | - Delphine Lazaro
- Université Paris-Saclay, CEA, List, F-91120 Palaiseau, France
| | | | - Vincent Passal
- Institut de Cancérologie de l’Ouest (Unicancer), Saint-Herblain, France
| | - Fanny Solinhac
- Assistance Publique – Hôpitaux de Marseille, Marseille, France
| | - Caroline Lafond
- Centre Eugène Marquis (Unicancer), Rennes, France
- Université de Rennes, Inserm, LTSI – UMR 1099, Rennes, France
| | - Gregory Delpon
- Institut de Cancérologie de l’Ouest (Unicancer), Saint-Herblain, France
| |
Collapse
|
49
|
de Crevoisier R, Lafond C, Mervoyer A, Hulot C, Jaksic N, Bessières I, Delpon G. Image-guided radiotherapy. Cancer Radiother 2021; 26:34-49. [PMID: 34953701 DOI: 10.1016/j.canrad.2021.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
We present the updated recommendations of the French society for oncological radiotherapy on image-guided radiotherapy (IGRT). The objective of the IGRT is to take into account the anatomical variations of the target volume occurring between or during the irradiation fractions, such as displacements and/or deformations, so that the delivered dose corresponds to the planned dose. This article presents the different IGRT devices, their use and quality control, and quantify the possible additional dose generated by each of them. The practical implementation of IGRT in various tumour locations is summarised, from the different "RecoRad™" guideline articles. Adaptive radiotherapy is then detailed, due to its complexity and its probable development in the next years. The place of radiation technologist in the practice of IGRT is then specified. Finally, a brief update is proposed on the delicate question of the additional dose linked to the in-room imaging, which must be estimated and documented at a minimum, as long as it is difficult to integrate it into the calculation of the dose distribution.
Collapse
Affiliation(s)
- R de Crevoisier
- Radiotherapy department, centre régional de lutte contre le cancer Eugène Marquis, 35042 Rennes, France.
| | - C Lafond
- Radiotherapy department, centre régional de lutte contre le cancer Eugène Marquis, 35042 Rennes, France
| | - A Mervoyer
- Radiotherapy department, institut de cancérologie de l'Ouest René-Gauducheau, boulevard Jacques-Monod, 44805 Saint Herblain, France; Medical physics department, institut de cancérologie de l'Ouest René-Gauducheau, boulevard Jacques-Monod, 44805 Saint Herblain, France
| | - C Hulot
- Radiotherapy department, centre régional de lutte contre le cancer Eugène Marquis, 35042 Rennes, France
| | - N Jaksic
- Radiotherapy department, centre régional de lutte contre le cancer Eugène Marquis, 35042 Rennes, France
| | - I Bessières
- Medical physics department, centre Georges-François Leclerc, rue du Professeur-Marion, 21000 Dijon, France
| | - G Delpon
- Radiotherapy department, institut de cancérologie de l'Ouest René-Gauducheau, boulevard Jacques-Monod, 44805 Saint Herblain, France; Medical physics department, institut de cancérologie de l'Ouest René-Gauducheau, boulevard Jacques-Monod, 44805 Saint Herblain, France
| |
Collapse
|
50
|
Koo J, Nardella L, Degnan M, Andreozzi J, Yu HHM, Penagaricano J, Johnstone PAS, Oliver D, Ahmed K, Rosenberg SA, Wuthrick E, Diaz R, Feygelman V, Latifi K, Moros EG, Redler G. Triggered kV Imaging During Spine SBRT for Intrafraction Motion Management. Technol Cancer Res Treat 2021; 20:15330338211063033. [PMID: 34855577 PMCID: PMC8649431 DOI: 10.1177/15330338211063033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Purpose: To monitor intrafraction motion during spine stereotactic body radiotherapy(SBRT) treatment delivery with readily available technology, we implemented triggered kV imaging using the on-board imager(OBI) of a modern medical linear accelerator with an advanced imaging package. Methods: Triggered kV imaging for intrafraction motion management was tested with an anthropomorphic phantom and simulated spine SBRT treatments to the thoracic and lumbar spine. The vertebral bodies and spinous processes were contoured as the image guided radiotherapy(IGRT) structures specific to this technique. Upon each triggered kV image acquisition, 2D projections of the IGRT structures were automatically calculated and updated at arbitrary angles for display on the kV images. Various shifts/rotations were introduced in x, y, z, pitch, and yaw. Gantry-angle-based triggering was set to acquire kV images every 45°. A group of physicists/physicians(n = 10) participated in a survey to evaluate clinical efficiency and accuracy of clinical decisions on images containing various phantom shifts. This method was implemented clinically for treatment of 42 patients(94 fractions) with 15 second time-based triggering. Result: Phantom images revealed that IGRT structure accuracy and therefore utility of projected contours during triggered imaging improved with smaller CT slice thickness. Contouring vertebra superior and inferior to the treatment site was necessary to detect clinically relevant phantom rotation. From the survey, detectability was proportional to the shift size in all shift directions and inversely related to the CT slice thickness. Clinical implementation helped evaluate robustness of patient immobilization. Based on visual inspection of projected IGRT contours on planar kV images, appreciable intrafraction motion was detected in eleven fractions(11.7%). Discussion: Feasibility of triggered imaging for spine SBRT intrafraction motion management has been demonstrated in phantom experiments and implementation for patient treatments. This technique allows efficient, non-invasive monitoring of patient position using the OBI and patient anatomy as a direct visual guide.
Collapse
Affiliation(s)
- Jihye Koo
- 7831University of South Florida, 33620, USA.,25301H. Lee Moffitt Cancer Center, 33612, USA
| | | | - Michael Degnan
- 549472The Ohio State University, 43210, Columbus, OH, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | - Gage Redler
- 25301H. Lee Moffitt Cancer Center, 33612, USA
| |
Collapse
|