1
|
Cheng K, Wang J, Liu J, Zhang X, Shen Y, Su H. Public health implications of computer-aided diagnosis and treatment technologies in breast cancer care. AIMS Public Health 2023; 10:867-895. [PMID: 38187901 PMCID: PMC10764974 DOI: 10.3934/publichealth.2023057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/10/2023] [Indexed: 01/09/2024] Open
Abstract
Breast cancer remains a significant public health issue, being a leading cause of cancer-related mortality among women globally. Timely diagnosis and efficient treatment are crucial for enhancing patient outcomes, reducing healthcare burdens and advancing community health. This systematic review, following the PRISMA guidelines, aims to comprehensively synthesize the recent advancements in computer-aided diagnosis and treatment for breast cancer. The study covers the latest developments in image analysis and processing, machine learning and deep learning algorithms, multimodal fusion techniques and radiation therapy planning and simulation. The results of the review suggest that machine learning, augmented and virtual reality and data mining are the three major research hotspots in breast cancer management. Moreover, this paper discusses the challenges and opportunities for future research in this field. The conclusion highlights the importance of computer-aided techniques in the management of breast cancer and summarizes the key findings of the review.
Collapse
Affiliation(s)
- Kai Cheng
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Jiangtao Wang
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Jian Liu
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Xiangsheng Zhang
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Yuanyuan Shen
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Hang Su
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
2
|
Dhiman P, Ma J, Andaur Navarro CL, Speich B, Bullock G, Damen JAA, Hooft L, Kirtley S, Riley RD, Van Calster B, Moons KGM, Collins GS. Overinterpretation of findings in machine learning prediction model studies in oncology: a systematic review. J Clin Epidemiol 2023; 157:120-133. [PMID: 36935090 DOI: 10.1016/j.jclinepi.2023.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
OBJECTIVES In biomedical research, spin is the overinterpretation of findings, and it is a growing concern. To date, the presence of spin has not been evaluated in prognostic model research in oncology, including studies developing and validating models for individualized risk prediction. STUDY DESIGN AND SETTING We conducted a systematic review, searching MEDLINE and EMBASE for oncology-related studies that developed and validated a prognostic model using machine learning published between 1st January, 2019, and 5th September, 2019. We used existing spin frameworks and described areas of highly suggestive spin practices. RESULTS We included 62 publications (including 152 developed models; 37 validated models). Reporting was inconsistent between methods and the results in 27% of studies due to additional analysis and selective reporting. Thirty-two studies (out of 36 applicable studies) reported comparisons between developed models in their discussion and predominantly used discrimination measures to support their claims (78%). Thirty-five studies (56%) used an overly strong or leading word in their title, abstract, results, discussion, or conclusion. CONCLUSION The potential for spin needs to be considered when reading, interpreting, and using studies that developed and validated prognostic models in oncology. Researchers should carefully report their prognostic model research using words that reflect their actual results and strength of evidence.
Collapse
Affiliation(s)
- Paula Dhiman
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | - Jie Ma
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Constanza L Andaur Navarro
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Benjamin Speich
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK; Meta-Research Centre, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Garrett Bullock
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Johanna A A Damen
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Lotty Hooft
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Shona Kirtley
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Richard D Riley
- Centre for Prognosis Research, School of Medicine, Keele University, Staffordshire, UK, ST5 5BG
| | - Ben Van Calster
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands; EPI-centre, KU Leuven, Leuven, Belgium
| | - Karel G M Moons
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Gary S Collins
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
3
|
Yang X, Mu D, Peng H, Li H, Wang Y, Wang P, Wang Y, Han S. Research and Application of Artificial Intelligence Based on Electronic Health Records of Patients With Cancer: Systematic Review. JMIR Med Inform 2022; 10:e33799. [PMID: 35442195 PMCID: PMC9069295 DOI: 10.2196/33799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/24/2022] [Accepted: 03/14/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND With the accumulation of electronic health records and the development of artificial intelligence, patients with cancer urgently need new evidence of more personalized clinical and demographic characteristics and more sophisticated treatment and prevention strategies. However, no research has systematically analyzed the application and significance of artificial intelligence based on electronic health records in cancer care. OBJECTIVE The aim of this study was to conduct a review to introduce the current state and limitations of artificial intelligence based on electronic health records of patients with cancer and to summarize the performance of artificial intelligence in mining electronic health records and its impact on cancer care. METHODS Three databases were systematically searched to retrieve potentially relevant papers published from January 2009 to October 2020. Four principal reviewers assessed the quality of the papers and reviewed them for eligibility based on the inclusion criteria in the extracted data. The summary measures used in this analysis were the number and frequency of occurrence of the themes. RESULTS Of the 1034 papers considered, 148 papers met the inclusion criteria. Cancer care, especially cancers of female organs and digestive organs, could benefit from artificial intelligence based on electronic health records through cancer emergencies and prognostic estimates, cancer diagnosis and prediction, tumor stage detection, cancer case detection, and treatment pattern recognition. The models can always achieve an area under the curve of 0.7. Ensemble methods and deep learning are on the rise. In addition, electronic medical records in the existing studies are mainly in English and from private institutional databases. CONCLUSIONS Artificial intelligence based on electronic health records performed well and could be useful for cancer care. Improving the performance of artificial intelligence can help patients receive more scientific-based and accurate treatments. There is a need for the development of new methods and electronic health record data sharing and for increased passion and support from cancer specialists.
Collapse
Affiliation(s)
- Xinyu Yang
- Division of Clinical Research, The First Hospital of Jilin University, Changchun, China
- Department of Medical Informatics, School of Public Health, Jilin University, Changchun, China
| | - Dongmei Mu
- Division of Clinical Research, The First Hospital of Jilin University, Changchun, China
- Department of Medical Informatics, School of Public Health, Jilin University, Changchun, China
| | - Hao Peng
- Division of Clinical Research, The First Hospital of Jilin University, Changchun, China
- Department of Medical Informatics, School of Public Health, Jilin University, Changchun, China
| | - Hua Li
- Division of Clinical Research, The First Hospital of Jilin University, Changchun, China
- Department of Medical Informatics, School of Public Health, Jilin University, Changchun, China
| | - Ying Wang
- Division of Clinical Research, The First Hospital of Jilin University, Changchun, China
- Department of Medical Informatics, School of Public Health, Jilin University, Changchun, China
| | - Ping Wang
- Division of Clinical Research, The First Hospital of Jilin University, Changchun, China
- Department of Medical Informatics, School of Public Health, Jilin University, Changchun, China
| | - Yue Wang
- Division of Clinical Research, The First Hospital of Jilin University, Changchun, China
- Department of Medical Informatics, School of Public Health, Jilin University, Changchun, China
| | - Siqi Han
- Division of Clinical Research, The First Hospital of Jilin University, Changchun, China
- Department of Medical Informatics, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
4
|
Dhiman P, Ma J, Andaur Navarro CL, Speich B, Bullock G, Damen JAA, Hooft L, Kirtley S, Riley RD, Van Calster B, Moons KGM, Collins GS. Methodological conduct of prognostic prediction models developed using machine learning in oncology: a systematic review. BMC Med Res Methodol 2022; 22:101. [PMID: 35395724 PMCID: PMC8991704 DOI: 10.1186/s12874-022-01577-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/18/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Describe and evaluate the methodological conduct of prognostic prediction models developed using machine learning methods in oncology. METHODS We conducted a systematic review in MEDLINE and Embase between 01/01/2019 and 05/09/2019, for studies developing a prognostic prediction model using machine learning methods in oncology. We used the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement, Prediction model Risk Of Bias ASsessment Tool (PROBAST) and CHecklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies (CHARMS) to assess the methodological conduct of included publications. Results were summarised by modelling type: regression-, non-regression-based and ensemble machine learning models. RESULTS Sixty-two publications met inclusion criteria developing 152 models across all publications. Forty-two models were regression-based, 71 were non-regression-based and 39 were ensemble models. A median of 647 individuals (IQR: 203 to 4059) and 195 events (IQR: 38 to 1269) were used for model development, and 553 individuals (IQR: 69 to 3069) and 50 events (IQR: 17.5 to 326.5) for model validation. A higher number of events per predictor was used for developing regression-based models (median: 8, IQR: 7.1 to 23.5), compared to alternative machine learning (median: 3.4, IQR: 1.1 to 19.1) and ensemble models (median: 1.7, IQR: 1.1 to 6). Sample size was rarely justified (n = 5/62; 8%). Some or all continuous predictors were categorised before modelling in 24 studies (39%). 46% (n = 24/62) of models reporting predictor selection before modelling used univariable analyses, and common method across all modelling types. Ten out of 24 models for time-to-event outcomes accounted for censoring (42%). A split sample approach was the most popular method for internal validation (n = 25/62, 40%). Calibration was reported in 11 studies. Less than half of models were reported or made available. CONCLUSIONS The methodological conduct of machine learning based clinical prediction models is poor. Guidance is urgently needed, with increased awareness and education of minimum prediction modelling standards. Particular focus is needed on sample size estimation, development and validation analysis methods, and ensuring the model is available for independent validation, to improve quality of machine learning based clinical prediction models.
Collapse
Affiliation(s)
- Paula Dhiman
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK.
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | - Jie Ma
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Constanza L Andaur Navarro
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Cochrane Netherlands, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Benjamin Speich
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
- Basel Institute for Clinical Epidemiology and Biostatistics, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Garrett Bullock
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Johanna A A Damen
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Cochrane Netherlands, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Lotty Hooft
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Cochrane Netherlands, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Shona Kirtley
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Richard D Riley
- Centre for Prognosis Research, School of Medicine, Keele University, Staffordshire, ST5 5BG, UK
| | - Ben Van Calster
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
- EPI-centre, KU Leuven, Leuven, Belgium
| | - Karel G M Moons
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Cochrane Netherlands, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Gary S Collins
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
5
|
Jain AK, Aneja S, Fuller CD, Dicker AP, Chung C, Kim E, Kirby JS, Quon H, Lam CJK, Louv WC, Ahern C, Xiao Y, McNutt TR, Housri N, Ennis RD, Kang J, Tang Y, Higley H, Berny-Lang MA, Camphausen KA. Provider Engagement in Radiation Oncology Data Science: Workshop Report. JCO Clin Cancer Inform 2020; 4:700-710. [PMID: 32755458 PMCID: PMC7469584 DOI: 10.1200/cci.20.00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2020] [Indexed: 11/20/2022] Open
Affiliation(s)
- Anshu K. Jain
- National Cancer Institute, Rockville, MD
- Food and Drug Administration, Silver Spring, MD
| | | | | | - Adam P. Dicker
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | | | - Erika Kim
- National Cancer Institute, Rockville, MD
| | - Justin S. Kirby
- Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Harry Quon
- Johns Hopkins School of Medicine, Baltimore, MD
| | | | | | | | - Ying Xiao
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | | | - Nadine Housri
- Yale School of Medicine, New Haven, CT
- theMednet, New Haven, CT
| | | | - John Kang
- University of Rochester Medical Center, Rochester, NY
| | | | | | | | | |
Collapse
|
6
|
Yu Q, Huang K, Zhu Y, Chen X, Meng W. Preliminary results of computer-aided diagnosis for magnetic resonance imaging of solid breast lesions. Breast Cancer Res Treat 2019; 177:419-426. [PMID: 31203487 DOI: 10.1007/s10549-019-05297-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/25/2019] [Indexed: 11/26/2022]
Abstract
PURPOSE The present study aimed to determine suitable optimal classifiers and investigate the general applicability of computer-aided diagnosis (CAD) to compare magnetic resonance (MR)-CAD with MR imaging (MRI) in distinguishing benign from malignant solid breast masses. METHODS We analyzed a total of 251 patients (mean age: 44.8 ± 12.3 years; range: 21-81 years) with 274 breast masses (154 benign masses, 120 malignant masses) using a Gaussian mixture model and a random forest machine model for segmentation and classification. RESULTS The diagnostic performance of MRI alone and MRI plus CAD were compared with respect to sensitivity, specificity, and area under the curve (AUC), using receiver operating characteristic curve analysis. The discriminating power to detect malignancy using MR-CAD with an AUC of 0.955 (sensitivity was 95.8% and the specificity was 92.9%) was significantly higher than that of MRI alone with an AUC of 0.785 (sensitivity was 71.7% and the specificity was 85.7%). CONCLUSION CAD is feasible to differentiate breast lesions, and it can complement MRI, thereby making it easier to diagnose breast lesions and obviating the need for unnecessary biopsies.
Collapse
Affiliation(s)
- Qiujie Yu
- Radiology Department, Harbin Medical University, The Third Affiliated Hospital of Harbin Medical University, 150 Haping Road, Harbin, 150081, Heilongjiang, China
| | - Kuan Huang
- Department of Computer Science, Utah State University, Old Main Hill, Logan, Utah, 84322, USA
| | - Ye Zhu
- Department of Obstetrics and Gynecology, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Xiaodan Chen
- Department of Computer Technology, Harbin Institute of Technology University, 92 West street, Harbin, 150000, Heilongjiang, China
| | - Wei Meng
- Radiology Department, Harbin Medical University, The Third Affiliated Hospital of Harbin Medical University, 150 Haping Road, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|