1
|
Chailapakul P, Maloney O, Hirakawa H, Fujimori A, Kitamura H, Kato TA. The contribution of high-LET track to DNA damage formation and cell death for Monoenergy and SOBP carbon ion irradiation. Biochem Biophys Res Commun 2024; 696:149500. [PMID: 38219488 DOI: 10.1016/j.bbrc.2024.149500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
Carbon ion radiotherapy (CIRT) is a heavy ion charge particle therapy with 29 years of prominent use. Despite advantages like high relative biological effectiveness (RBE), improved quality of life, and reduced treatment time, challenges persist, especially regarding heavy nuclear fragments. Our research addresses these challenges in horizontal irradiation, aiming to comprehend Monoenergetic and Spread-Out Bragg peak (SOBP) carbon ion beam trajectories using cell survival analysis and visualizing biological effects through DNA damage (γ-H2AX). This reveals repair-related protein foci near the Bragg peak. CR-39, a plastic nuclear track detector, was explored to understand high-linear energy transfer (LET) tracks and radiation quality near the Bragg peak. Findings unveil high-LET DNA damage signatures through aligned γ-H2AX foci, correlating with LET values in SOBP. CR-39 visualized high-LET particle exposure, indicating comet-type etch-pits at the Bragg peak and suggesting carbon ion fragmentation. Unexpectedly, dot-type etch-pits in irradiated and post-Bragg peak regions indicated high-LET neutron production. This investigation highlights the intricate interplay of carbon ion beams, stressing the importance of understanding LET variations, DNA damage patterns, and undesired secondary exposure.
Collapse
Affiliation(s)
- Piyawan Chailapakul
- Department of Environmental & Radiological Health Sciences, Colorado State University, USA
| | - Olivia Maloney
- Department of Environmental & Radiological Health Sciences, Colorado State University, USA
| | - Hirokazu Hirakawa
- Institute for Quantum Science, National Institutes for Quantum Science and Technology, Japan
| | - Akira Fujimori
- Institute for Quantum Science, National Institutes for Quantum Science and Technology, Japan
| | - Hisashi Kitamura
- Institute for Radiological Science, National Institutes for Quantum Science and Technology, Japan
| | - Takamitsu A Kato
- Department of Environmental & Radiological Health Sciences, Colorado State University, USA.
| |
Collapse
|
2
|
de Freitas Nascimento L, Leblans P, van der Heyden B, Akselrod M, Goossens J, Correa Rocha LE, Vaniqui A, Verellen D. Characterisation and Quenching Correction for an Al 2O 3:C Optical Fibre Real Time System in Therapeutic Proton, Helium, and Carbon-Charged Beams. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22239178. [PMID: 36501879 DOI: 10.1016/j.sna.2022.113781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 05/24/2023]
Abstract
Real time radioluminescence fibre-based detectors were investigated for application in proton, helium, and carbon therapy dosimetry. The Al2O3:C probes are made of one single crystal (1 mm) and two droplets of micro powder in two sizes (38 μm and 4 μm) mixed with a water-equivalent binder. The fibres were irradiated behind different thicknesses of solid slabs, and the Bragg curves presented a quenching effect attributed to the nonlinear response of the radioluminescence (RL) signal as a function of linear energy transfer (LET). Experimental data and Monte Carlo simulations were utilised to acquire a quenching correction method, adapted from Birks' formulation, to restore the linear dose-response for particle therapy beams. The method for quenching correction was applied and yielded the best results for the '4 μm' optical fibre probe, with an agreement at the Bragg peak of 1.4% (160 MeV), and 1.5% (230 MeV) for proton-charged particles; 2.4% (150 MeV/u) for helium-charged particles and of 4.8% (290 MeV/u) and 2.9% (400 MeV/u) for the carbon-charged particles. The most substantial deviations for the '4 μm' optical fibre probe were found at the falloff regions, with ~3% (protons), ~5% (helium) and 6% (carbon).
Collapse
Affiliation(s)
| | | | | | - Mark Akselrod
- Landauer, Stillwater Crystal Growth Division, Stillwater, OK 74074, USA
| | - Jo Goossens
- Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
- Iridium Netwerk, University of Antwerp, 2610 Antwerp, Belgium
| | - Luis Enrique Correa Rocha
- Department of Economics, Ghent University, 9000 Ghent, Belgium
- Department of Physics and Astronomy, Ghent University, 9000 Ghent, Belgium
| | - Ana Vaniqui
- Belgian Nuclear Research Centre, SCK CEN, 2400 Mol, Belgium
| | - Dirk Verellen
- Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
- Iridium Netwerk, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
3
|
Resch AF, Schafasand M, Lackner N, Niessen T, Beck S, Elia A, Boersma D, Grevillot L, Fossati P, Glimelius L, Stock M, Georg D, Carlino A. Technical note: Impact of beamline-specific particle energy spectra on clinical plans in carbon ion beam therapy. Med Phys 2022; 49:4092-4098. [PMID: 35416302 PMCID: PMC9321194 DOI: 10.1002/mp.15652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The Local Effect Model version one (LEM I) is applied clinically across Europe to quantify the relative biological effectiveness (RBE) of carbon ion beams. It requires the full particle fluence spectrum differential in energy in each voxel as input parameter. Treatment planning systems (TPSs) use beamline-specific look-up tables generated with Monte Carlo (MC) codes. In this study, the changes in RBE weighted dose were quantified using different levels of details in the simulation or different MC codes. METHODS The particle fluence differential in energy was simulated with FLUKA and Geant4 at 500 depths in water in 1-mm steps for 58 initial carbon ion energies (between 120.0 and 402.8 MeV/u). A dedicated beam model was applied, including the full description of the Nozzle using GATE-RTionV1.0 (Geant4.10.03p03). In addition, two tables generated with FLUKA were compared. The starting points of the FLUKA simulations were phase space (PhS) files from, firstly, the Geant4 nozzle simulations, and secondly, a clinical beam model where an analytic approach was used to mimic the beamline. Treatment plans (TPs) were generated with RayStation 8B (RaySearch Laboratories AB, Sweden) for cubic targets in water and 10 clinical patient cases using the clinical beam model. Subsequently, the RBE weighted dose was re-computed using the two other fluence tables (FLUKA PhS or Geant4). RESULTS The fluence spectra of the primary and secondary particles simulated with Geant4 and FLUKA generally agreed well for the primary particles. Differences were mainly observed for the secondary particles. Interchanging the two energy spectra (FLUKA vs. GEANT4) to calculate the RBE weighted dose distributions resulted in average deviations of less than 1% in the entrance up to the end of the target region, with a maximum local deviation at the distal edge of the target. In the fragment tail, larger discrepancies of up to 5% on average were found for deep-seated targets. The patient and water phantom cases demonstrated similar results. CONCLUSION RBE weighted doses agreed well within all tested setups, confirming the clinical beam model provided by the TPS vendor. Furthermore, the results showed that the open source and generally available MC code Geant4 (in particular using GATE or GATE-RTion) can also be used to generate basic beam data required for RBE calculation in carbon ion therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Alessio Elia
- MedAustron Ion Therapy CentreWiener NeustadtAustria
| | - David Boersma
- MedAustron Ion Therapy CentreWiener NeustadtAustria
- ACMITGmbHWiener NeustadtAustria
| | | | | | | | - Markus Stock
- MedAustron Ion Therapy CentreWiener NeustadtAustria
| | - Dietmar Georg
- Department of Radiation OncologyMedical University of ViennaViennaAustria
| | | |
Collapse
|
4
|
Yang S, Zhao J, Zhuo W, Shen H, Chen B. Changes of the linear energy transfer (LET) and beam width of therapeutic carbon ion beam in density heterogeneous phantoms. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:021518. [PMID: 35320782 DOI: 10.1088/1361-6498/ac6044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
This work aims to investigate the changes in the linear energy transfer (LET) spectra distribution and the beam spot width of a therapeutic carbon ion beam in density heterogeneous phantoms. Three different heterogeneous phantoms were fabricated using a combination of solid water, lung, and bone tissue slabs and irradiated by a single energy carbon beam (276.5 MeV u-1). CR-39 detectors were used for experimental measurements and the Monte Carlo toolkit Geant4 was employed for theoretical simulations. The results demonstrated that the measured LET spectra agree well with the simulation results. The lung and bone tissues displayed no obvious effect on the spectral distribution of LET. The dose-average LET was invariant and showed no obvious difference in the different materials, while the track-average LET increased in the lung and decreased in the bone materials. Similarly, the beam spot size increased in the lung, and decreased in the bone materials. Additionally, the fluence of the secondary fragments varied in different tissues. These findings are expected to provide cross-validation data for the quality assurance of carbon ion therapy and to be beneficial for validating the base data in treatment planning systems.
Collapse
Affiliation(s)
- Shiyan Yang
- Institute of Modern Physics, Fudan University, Shanghai, People's Republic of China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai, People's Republic of China
| | - Jingfang Zhao
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, People's Republic of China
| | - Weihai Zhuo
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai, People's Republic of China
- Institute of Radiation Medicine, Fudan University, Shanghai, People's Republic of China
| | - Hao Shen
- Institute of Modern Physics, Fudan University, Shanghai, People's Republic of China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai, People's Republic of China
| | - Bo Chen
- Institute of Radiation Medicine, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
5
|
Kalholm F, Grzanka L, Traneus E, Bassler N. A systematic review on the usage of averaged LET in radiation biology for particle therapy. Radiother Oncol 2021; 161:211-221. [PMID: 33894298 DOI: 10.1016/j.radonc.2021.04.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/20/2022]
Abstract
Linear Energy Transfer (LET) is widely used to express the radiation quality of ion beams, when characterizing the biological effectiveness. However, averaged LET may be defined in multiple ways, and the chosen definition may impact the resulting reported value. We review averaged LET definitions found in the literature, and quantify which impact using these various definitions have for different reference setups. We recorded the averaged LET definitions used in 354 publications quantifying the relative biological effectiveness (RBE) of hadronic beams, and investigated how these various definitions impact the reported averaged LET using a Monte Carlo particle transport code. We find that the kind of averaged LET being applied is, generally, poorly defined. Some definitions of averaged LET may influence the reported averaged LET values up to an order of magnitude. For publications involving protons, most applied dose averaged LET when reporting RBE. The absence of what target medium is used and what secondary particles are included further contributes to an ill-defined averaged LET. We also found evidence of inconsistent usage of averaged LET definitions when deriving LET-based RBE models. To conclude, due to commonly ill-defined averaged LET and to the inherent problems of LET-based RBE models, averaged LET may only be used as a coarse indicator of radiation quality. We propose a more rigorous way of reporting LET values, and suggest that ideally the entire particle fluence spectra should be recorded and provided for future RBE studies, from which any type of averaged LET (or other quantities) may be inferred.
Collapse
Affiliation(s)
- Fredrik Kalholm
- Medical Radiation Physics, Dept. of Physics, Stockholm University, Stockholm, Sweden; Department of Oncology and Pathology, Medical Radiation Physics, Karolinska Institutet, Stockholm, Sweden
| | - Leszek Grzanka
- Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | | | - Niels Bassler
- Medical Radiation Physics, Dept. of Physics, Stockholm University, Stockholm, Sweden; Department of Oncology and Pathology, Medical Radiation Physics, Karolinska Institutet, Stockholm, Sweden; Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark; Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Kusumoto T, Barillon R, Okada S, Yamauchi T, Kodaira S. Improved criterion of the mechanism for forming latent tracks in poly(allyl diglycol carbonate) based on the number of interactions induced by secondary electrons. RADIAT MEAS 2020. [DOI: 10.1016/j.radmeas.2020.106445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|