1
|
Cui X, Yang X, Li D, Dai X, Guo Y, Zhang W, Li Y, Wu X, Zhu L, Xu S, Zhuang H, Yang R, Geng L, Sui J. A StarGAN and transformer-based hybrid classification-regression model for multi-institution VMAT patient-specific quality assurance. Med Phys 2025; 52:685-702. [PMID: 39484994 DOI: 10.1002/mp.17485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/30/2024] [Accepted: 09/28/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND The field of artificial intelligence (AI)-based patient-specific quality assurance (PSQA) for volumetric modulated arc therapy (VMAT) faces challenges in terms of developing general models across institutions due to the prevalence of multi-institution data collection and multivariate heterogeneity. Building a general model that is capable of handling diverse multi-institution data is critical for enabling large-scale integration and analysis. PURPOSE This study aims to develop a star generative adversarial network (StarGAN) and transformer-based hybrid classification-regression PSQA framework to address unification of heterogeneous data from different institutions. METHODS A StarGAN and transformer-based hybrid classification-regression model was developed as a general PSQA framework to predict gamma passing rates (GPRs) and classify quality assurance (QA) results as "Pass" or "Fail" at multiple institutions. A total of 1815 VMAT plans were collected from eight institutions to develop the general PSQA framework and perform clinical commissioning and implementation. Among them, 20 independent clinical plans from each of eight institutions, for a total of 160 plans, were used for the clinical commissioning, and 205 new clinical plans from eight institutions were used for clinical implementation. RESULTS For the 3%/3, 3%/2, and 2%/2 mm gamma criteria, the sensitivity of the proposed PSQA framework with pretraining was 90.13%, 92.03%, and 95.84%, respectively, while the specificity was 76.01%, 76.12%, and 85.34%, respectively. The mean absolute errors (MAEs) of the proposed PSQA framework with pretraining were 1.36%, 2.37%, and 3.96%, respectively, while the root-mean-square errors (RMSEs) were 2.31%, 3.89%, and 5.17%, respectively. The results demonstrated visible improvement at multiple institutions. For clinical commissioning, the deviations between the predicted and measured results were all within 3% for 3%/3 and 3%/2 mm at eight institutions. For clinical implementation, all failure plans were correctly identified by the proposed PSQA framework. CONCLUSIONS The general PSQA framework enables diverse clinical data sources to be handled to achieve enhanced model performance and generalizability, and provides a solution to the unification of heterogeneous data from different institutions to construct robust QA models. This approach can be clinically deployed for VMAT QA.
Collapse
Affiliation(s)
- Xiangxiang Cui
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Xueying Yang
- School of Physics, Beihang University, Beijing, China
- Department of Radiation Oncology, Cancer Center, Peking University Third Hospital, Beijing, China
| | - Dingjie Li
- Department of Radiation Therapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Xiangkun Dai
- Department of Radiation Oncology, General Hospital of People's Liberation Army, Beijing, China
| | - Yuexin Guo
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Zhang
- Department of Radiation Therapy, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Ying Li
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangyang Wu
- Department of Radiotherapy, Shanxi Provincial Cancer Hospital, Xi'an, Shanxi, China
| | - Lihong Zhu
- Department of Radiotherapy, Beijing Obstetrics and Gynecology Hospital, Beijing, China
| | - Shouping Xu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongqing Zhuang
- Department of Radiation Oncology, Cancer Center, Peking University Third Hospital, Beijing, China
| | - Ruijie Yang
- Department of Radiation Oncology, Cancer Center, Peking University Third Hospital, Beijing, China
| | - Lisheng Geng
- School of Physics, Beihang University, Beijing, China
- Peng Huanwu Collaborative Center for Research and Education, Beihang University, Beijing, China
| | - Jing Sui
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| |
Collapse
|
2
|
Cavinato S, Scaggion A, Paiusco M. Technical note: A software tool to extract complexity metrics from radiotherapy treatment plans. Med Phys 2024; 51:8602-8612. [PMID: 39186793 DOI: 10.1002/mp.17365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Complexity metrics are mathematical quantities designed to quantify aspects of radiotherapy treatment plans that may affect both their deliverability and dosimetric accuracy. Despite numerous studies investigating their utility, there remains a notable absence of shared tools for their extraction. PURPOSE This study introduces UCoMX (Universal Complexity Metrics Extractor), a software package designed for the extraction of complexity metrics from the DICOM-RT plan files of radiotherapy treatments. METHODS UCoMX is developed around two extraction engines: VCoMX (VMAT Complexity Metrics Extractor) for VMAT/IMRT plans, and TCoMX (Tomotherapy Complexity Metrics Extractor) tailored for Helical Tomotherapy plans. The software, built using Matlab, is freely available in both Matlab-based and stand-alone versions. More than 90 complexity metrics, drawn from relevant literature, are implemented in the package: 43 for VMAT/IMRT and 51 for Helical Tomotherapy. RESULTS The package is designed to read DICOM-RT plan files generated by most commercially available Treatment Planning Systems (TPSs), across various treatment units. A reference dataset containing VMAT, IMRT, and Helical Tomotherapy plans is provided to serve as a reference for comparing UCoMX with other in-house systems available at other centers. CONCLUSION UCoMX offers a straightforward solution for extracting complexity metrics from radiotherapy plans. Its versatility is enhanced through different versions, including Matlab-based and stand-alone, and its compatibility with a wide range of commercially available TPSs and treatment units. UCoMX presents a free, user-friendly tool empowering researchers to compute the complexity of treatment plans efficiently.
Collapse
Affiliation(s)
- Samuele Cavinato
- Medical Physics Department, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Alessandro Scaggion
- Medical Physics Department, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Marta Paiusco
- Medical Physics Department, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| |
Collapse
|
3
|
Liu S, Ma J, Tang F, Liang Y, Li Y, Li Z, Wang T, Zhou M. Error detection for radiotherapy planning validation based on deep learning networks. J Appl Clin Med Phys 2024; 25:e14372. [PMID: 38709158 PMCID: PMC11302817 DOI: 10.1002/acm2.14372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 02/01/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Quality assurance (QA) of patient-specific treatment plans for intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) necessitates prior validation. However, the standard methodology exhibits deficiencies and lacks sensitivity in the analysis of positional dose distribution data, leading to difficulties in accurately identifying reasons for plan verification failure. This issue complicates and impedes the efficiency of QA tasks. PURPOSE The primary aim of this research is to utilize deep learning algorithms for the extraction of 3D dose distribution maps and the creation of a predictive model for error classification across multiple machine models, treatment methodologies, and tumor locations. METHOD We devised five categories of validation plans (normal, gantry error, collimator error, couch error, and dose error), conforming to tolerance limits of different accuracy levels and employing 3D dose distribution data from a sample of 94 tumor patients. A CNN model was then constructed to predict the diverse error types, with predictions compared against the gamma pass rate (GPR) standard employing distinct thresholds (3%, 3 mm; 3%, 2 mm; 2%, 2 mm) to evaluate the model's performance. Furthermore, we appraised the model's robustness by assessing its functionality across diverse accelerators. RESULTS The accuracy, precision, recall, and F1 scores of CNN model performance were 0.907, 0.925, 0.907, and 0.908, respectively. Meanwhile, the performance on another device is 0.900, 0.918, 0.900, and 0.898. In addition, compared to the GPR method, the CNN model achieved better results in predicting different types of errors. CONCLUSION When juxtaposed with the GPR methodology, the CNN model exhibits superior predictive capability for classification in the validation of the radiation therapy plan on different devices. By using this model, the plan validation failures can be detected more rapidly and efficiently, minimizing the time required for QA tasks and serving as a valuable adjunct to overcome the constraints of the GPR method.
Collapse
Affiliation(s)
- Shupeng Liu
- Department of Radiation MedicineGuangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of CosmeticsSchool of Public HealthSouthern Medical UniversityGuangzhouGuangdongChina
- Department of Radiation OncologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Jianhui Ma
- Department of Radiation OncologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Fan Tang
- Department of Radiation OncologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yuqi Liang
- Department of Radiation OncologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yanning Li
- Department of Radiation OncologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Zihao Li
- Department of Clinical EngineerNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Tingting Wang
- Department of Clinical EngineerNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Meijuan Zhou
- Department of Radiation MedicineGuangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of CosmeticsSchool of Public HealthSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
4
|
Ono T, Iramina H, Hirashima H, Adachi T, Nakamura M, Mizowaki T. Applications of artificial intelligence for machine- and patient-specific quality assurance in radiation therapy: current status and future directions. JOURNAL OF RADIATION RESEARCH 2024; 65:421-432. [PMID: 38798135 PMCID: PMC11262865 DOI: 10.1093/jrr/rrae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/26/2024] [Indexed: 05/29/2024]
Abstract
Machine- and patient-specific quality assurance (QA) is essential to ensure the safety and accuracy of radiotherapy. QA methods have become complex, especially in high-precision radiotherapy such as intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT), and various recommendations have been reported by AAPM Task Groups. With the widespread use of IMRT and VMAT, there is an emerging demand for increased operational efficiency. Artificial intelligence (AI) technology is quickly growing in various fields owing to advancements in computers and technology. In the radiotherapy treatment process, AI has led to the development of various techniques for automated segmentation and planning, thereby significantly enhancing treatment efficiency. Many new applications using AI have been reported for machine- and patient-specific QA, such as predicting machine beam data or gamma passing rates for IMRT or VMAT plans. Additionally, these applied technologies are being developed for multicenter studies. In the current review article, AI application techniques in machine- and patient-specific QA have been organized and future directions are discussed. This review presents the learning process and the latest knowledge on machine- and patient-specific QA. Moreover, it contributes to the understanding of the current status and discusses the future directions of machine- and patient-specific QA.
Collapse
Affiliation(s)
- Tomohiro Ono
- Department of Radiation Oncology, Shiga General Hospital, 5-4-30 Moriyama, Moriyama-shi 524-8524, Shiga, Japan
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hiraku Iramina
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hideaki Hirashima
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takanori Adachi
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Mitsuhiro Nakamura
- Division of Medical Physics, Department of Information Technology and Medical Engineering, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
5
|
Huang Y, Pi Y, Ma K, Miao X, Fu S, Feng A, Duan Y, Kong Q, Zhuo W, Xu Z. Predicting the error magnitude in patient-specific QA during radiotherapy based on ResNet. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2024; 32:797-807. [PMID: 38457139 DOI: 10.3233/xst-230251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
BACKGROUND The error magnitude is closely related to patient-specific dosimetry and plays an important role in evaluating the delivery of the radiotherapy plan in QA. No previous study has investigated the feasibility of deep learning to predict error magnitude. OBJECTIVE The purpose of this study was to predict the error magnitude of different delivery error types in radiotherapy based on ResNet. METHODS A total of 34 chest cancer plans (172 fields) of intensity-modulated radiation therapy (IMRT) from Eclipse were selected, of which 30 plans (151 fields) were used for model training and validation, and 4 plans including 21 fields were used for external testing. The collimator misalignment (COLL), monitor unit variation (MU), random multi-leaf collimator shift (MLCR), and systematic MLC shift (MLCS) were introduced. These dose distributions of portal dose predictions for the original plans were defined as the reference dose distribution (RDD), while those for the error-introduced plans were defined as the error-introduced dose distribution (EDD). Different inputs were used in the ResNet for predicting the error magnitude. RESULTS In the test set, the accuracy of error type prediction based on the dose difference, gamma distribution, and RDD + EDD was 98.36%, 98.91%, and 100%, respectively; the root mean squared error (RMSE) was 1.45-1.54, 0.58-0.90, 0.32-0.36, and 0.15-0.24; the mean absolute error (MAE) was 1.06-1.18, 0.32-0.78, 0.25-0.27, and 0.11-0.18, respectively, for COLL, MU, MLCR and MLCS. CONCLUSIONS In this study, error magnitude prediction models with dose difference, gamma distribution, and RDD + EDD are established based on ResNet. The accurate prediction of the error magnitude under different error types can provide reference for error analysis in patient-specific QA.
Collapse
Affiliation(s)
- Ying Huang
- Institute of Modern Physics, Fudan University, Shanghai, China
- Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Fudan University, Shanghai, China
- Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yifei Pi
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Kui Ma
- Varian Medical Systems, Beijing, China
| | - Xiaojuan Miao
- The General Hospital of Western Theater Command PLA, Chengdu, China
| | - Sichao Fu
- The General Hospital of Western Theater Command PLA, Chengdu, China
| | - Aihui Feng
- Institute of Modern Physics, Fudan University, Shanghai, China
- Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanhua Duan
- Institute of Modern Physics, Fudan University, Shanghai, China
- Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Kong
- Institute of Modern Physics, Fudan University, Shanghai, China
| | - Weihai Zhuo
- Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Fudan University, Shanghai, China
| | - Zhiyong Xu
- Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Ishizaka N, Kinoshita T, Sakai M, Tanabe S, Nakano H, Tanabe S, Nakamura S, Mayumi K, Akamatsu S, Nishikata T, Takizawa T, Yamada T, Sakai H, Kaidu M, Sasamoto R, Ishikawa H, Utsunomiya S. Prediction of patient-specific quality assurance for volumetric modulated arc therapy using radiomics-based machine learning with dose distribution. J Appl Clin Med Phys 2024; 25:e14215. [PMID: 37987544 PMCID: PMC10795425 DOI: 10.1002/acm2.14215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/29/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
PURPOSE We sought to develop machine learning models to predict the results of patient-specific quality assurance (QA) for volumetric modulated arc therapy (VMAT), which were represented by several dose-evaluation metrics-including the gamma passing rates (GPRs)-and criteria based on the radiomic features of 3D dose distribution in a phantom. METHODS A total of 4,250 radiomic features of 3D dose distribution in a cylindrical dummy phantom for 140 arcs from 106 clinical VMAT plans were extracted. We obtained the following dose-evaluation metrics: GPRs with global and local normalization, the dose difference (DD) in 1% and 2% passing rates (DD1% and DD2%) for 10% and 50% dose threshold, and the distance-to-agreement in 1-mm and 2-mm passing rates (DTA1 mm and DTA2 mm) for 0.5%/mm and 1.0%.mm dose gradient threshold determined by measurement using a diode array in patient-specific QA. The machine learning regression models for predicting the values of the dose-evaluation metrics using the radiomic features were developed based on the elastic net (EN) and extra trees (ET) models. The feature selection and tuning of hyperparameters were performed with nested cross-validation in which four-fold cross-validation is used within the inner loop, and the performance of each model was evaluated in terms of the root mean square error (RMSE), the mean absolute error (MAE), and Spearman's rank correlation coefficient. RESULTS The RMSE and MAE for the developed machine learning models ranged from <1% to nearly <10% depending on the dose-evaluation metric, the criteria, and dose and dose gradient thresholds used for both machine learning models. It was advantageous to focus on high dose region for predicating global GPR, DDs, and DTAs. For certain metrics and criteria, it was possible to create models applicable for patients' heterogeneity by training only with dose distributions in phantom. CONCLUSIONS The developed machine learning models showed high performance for predicting dose-evaluation metrics especially for high dose region depending on the metric and criteria. Our results demonstrate that the radiomic features of dose distribution can be considered good indicators of the plan complexity and useful in predicting measured dose evaluation metrics.
Collapse
Affiliation(s)
- Natsuki Ishizaka
- Department of RadiologyNiigata Prefectural Shibata HospitalShibata CityNiigataJapan
| | - Tomotaka Kinoshita
- Department of Radiological TechnologyNiigata University Graduate School of Health SciencesNiigata CityNiigataJapan
| | - Madoka Sakai
- Department of RadiologyNagaoka Chuo General HospitalNagaokaNiigataJapan
- Department of Radiation OncologyNiigata University Medical and Dental HospitalNiigata CityNiigataJapan
| | - Shunpei Tanabe
- Department of Radiation OncologyNiigata University Medical and Dental HospitalNiigata CityNiigataJapan
| | - Hisashi Nakano
- Department of Radiation OncologyNiigata University Medical and Dental HospitalNiigata CityNiigataJapan
| | - Satoshi Tanabe
- Department of Radiation OncologyNiigata University Medical and Dental HospitalNiigata CityNiigataJapan
| | - Sae Nakamura
- Department of Radiation OncologyNiigata Neurosurgical HospitalNiigata CityNiigataJapan
| | - Kazuki Mayumi
- Department of Radiological TechnologyNiigata University Graduate School of Health SciencesNiigata CityNiigataJapan
| | - Shinya Akamatsu
- Department of Radiological TechnologyNiigata University Graduate School of Health SciencesNiigata CityNiigataJapan
- Department of RadiologyTakeda General HospitalAizuwakamatsu CityFukushimaJapan
| | - Takayuki Nishikata
- Department of Radiological TechnologyNiigata University Graduate School of Health SciencesNiigata CityNiigataJapan
- Division of RadiologyNagaoka Red Cross HospitalNagaoka‐shiNiigataJapan
| | - Takeshi Takizawa
- Department of Radiation OncologyNiigata University Medical and Dental HospitalNiigata CityNiigataJapan
- Department of Radiation OncologyNiigata Neurosurgical HospitalNiigata CityNiigataJapan
| | - Takumi Yamada
- Section of Radiology, Department of Clinical SupportNiigata University Medical and Dental HospitalNiigata CityNiigataJapan
| | - Hironori Sakai
- Section of Radiology, Department of Clinical SupportNiigata University Medical and Dental HospitalNiigata CityNiigataJapan
| | - Motoki Kaidu
- Department of Radiology and Radiation OncologyNiigata University Graduate School of Medical and Dental SciencesNiigata CityNiigataJapan
| | - Ryuta Sasamoto
- Department of Radiological TechnologyNiigata University Graduate School of Health SciencesNiigata CityNiigataJapan
| | - Hiroyuki Ishikawa
- Department of Radiology and Radiation OncologyNiigata University Graduate School of Medical and Dental SciencesNiigata CityNiigataJapan
| | - Satoru Utsunomiya
- Department of Radiological TechnologyNiigata University Graduate School of Health SciencesNiigata CityNiigataJapan
| |
Collapse
|
7
|
Nakamura S, Sakai M, Ishizaka N, Mayumi K, Kinoshita T, Akamatsu S, Nishikata T, Tanabe S, Nakano H, Tanabe S, Takizawa T, Yamada T, Sakai H, Kaidu M, Sasamoto R, Ishikawa H, Utsunomiya S. Deep learning-based detection and classification of multi-leaf collimator modeling errors in volumetric modulated radiation therapy. J Appl Clin Med Phys 2023; 24:e14136. [PMID: 37633834 PMCID: PMC10691639 DOI: 10.1002/acm2.14136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/28/2023] Open
Abstract
PURPOSE The purpose of this study was to create and evaluate deep learning-based models to detect and classify errors of multi-leaf collimator (MLC) modeling parameters in volumetric modulated radiation therapy (VMAT), namely the transmission factor (TF) and the dosimetric leaf gap (DLG). METHODS A total of 33 clinical VMAT plans for prostate and head-and-neck cancer were used, assuming a cylindrical and homogeneous phantom, and error plans were created by altering the original value of the TF and the DLG by ± 10, 20, and 30% in the treatment planning system (TPS). The Gaussian filters ofσ = 0.5 $\sigma = 0.5$ and 1.0 were applied to the planar dose maps of the error-free plan to mimic the measurement dose map, and thus dose difference maps between the error-free and error plans were obtained. We evaluated 3 deep learning-based models, created to perform the following detections/classifications: (1) error-free versus TF error, (2) error-free versus DLG error, and (3) TF versus DLG error. Models to classify the sign of the errors were also created and evaluated. A gamma analysis was performed for comparison. RESULTS The detection and classification of TF and DLG error were feasible forσ = 0.5 $\sigma = 0.5$ ; however, a considerable reduction of accuracy was observed forσ = 1.0 $\sigma = 1.0$ depending on the magnitude of error and treatment site. The sign of errors was detectable by the specifically trained models forσ = 0.5 $\sigma = 0.5$ and 1.0. The gamma analysis could not detect errors. CONCLUSIONS We demonstrated that the deep learning-based models could feasibly detect and classify TF and DLG errors in VMAT dose distributions, depending on the magnitude of the error, treatment site, and the degree of mimicked measurement doses.
Collapse
Affiliation(s)
- Sae Nakamura
- Department of Radiation OncologyNiigata Neurosurgical Hospital, Nishi‐kuNiigata CityNiigataJapan
| | - Madoka Sakai
- Department of RadiologyNagaoka Chuo General Hospital, NagaokaNagaokaNiigataJapan
- Department of Radiology and Radiation OncologyNiigata University Graduate School of Medical and Dental Sciences, Chuo‐kuNiigata CityNiigataJapan
| | - Natsuki Ishizaka
- Department of RadiologyNiigata Prefectural Shibata HospitalShibata CityNiigataJapan
| | - Kazuki Mayumi
- Department of Radiological TechnologyNiigata University Graduate School of Health Sciences, Chuo‐kuNiigata CityNiigataJapan
| | - Tomotaka Kinoshita
- Department of Radiological TechnologyNiigata University Graduate School of Health Sciences, Chuo‐kuNiigata CityNiigataJapan
| | - Shinya Akamatsu
- Department of Radiological TechnologyNiigata University Graduate School of Health Sciences, Chuo‐kuNiigata CityNiigataJapan
- Department of RadiologyTakeda General Hospital, Aizuwakamatu CityFukushimaJapan
| | - Takayuki Nishikata
- Department of Radiological TechnologyNiigata University Graduate School of Health Sciences, Chuo‐kuNiigata CityNiigataJapan
- Division of RadiologyNagaoka Red Cross HospitalNagaoka CityNiigataJapan
| | - Shunpei Tanabe
- Department of Radiation OncologyNiigata University Medical and Dental Hospital, Chuo‐kuNiigata CityNiigataJapan
| | - Hisashi Nakano
- Department of Radiation OncologyNiigata University Medical and Dental Hospital, Chuo‐kuNiigata CityNiigataJapan
| | - Satoshi Tanabe
- Department of Radiation OncologyNiigata University Medical and Dental Hospital, Chuo‐kuNiigata CityNiigataJapan
| | - Takeshi Takizawa
- Department of Radiation OncologyNiigata Neurosurgical Hospital, Nishi‐kuNiigata CityNiigataJapan
- Department of Radiology and Radiation OncologyNiigata University Graduate School of Medical and Dental Sciences, Chuo‐kuNiigata CityNiigataJapan
| | - Takumi Yamada
- Section of RadiologyDepartment of Clinical SupportNiigata University Medical and Dental Hospital, Chuo‐kuNiigata CityNiigataJapan
| | - Hironori Sakai
- Section of RadiologyDepartment of Clinical SupportNiigata University Medical and Dental Hospital, Chuo‐kuNiigata CityNiigataJapan
| | - Motoki Kaidu
- Department of Radiology and Radiation OncologyNiigata University Graduate School of Medical and Dental Sciences, Chuo‐kuNiigata CityNiigataJapan
| | - Ryuta Sasamoto
- Department of Radiological TechnologyNiigata University Graduate School of Health Sciences, Chuo‐kuNiigata CityNiigataJapan
| | - Hiroyuki Ishikawa
- Department of Radiology and Radiation OncologyNiigata University Graduate School of Medical and Dental Sciences, Chuo‐kuNiigata CityNiigataJapan
| | - Satoru Utsunomiya
- Department of Radiological TechnologyNiigata University Graduate School of Health Sciences, Chuo‐kuNiigata CityNiigataJapan
| |
Collapse
|
8
|
Yoganathan SA, Ahmed S, Paloor S, Torfeh T, Aouadi S, Al-Hammadi N, Hammoud R. Virtual pretreatment patient-specific quality assurance of volumetric modulated arc therapy using deep learning. Med Phys 2023; 50:7891-7903. [PMID: 37379068 DOI: 10.1002/mp.16567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/16/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Automatic patient-specific quality assurance (PSQA) is recently explored using artificial intelligence approaches, and several studies reported the development of machine learning models for predicting the gamma pass rate (GPR) index only. PURPOSE To develop a novel deep learning approach using a generative adversarial network (GAN) to predict the synthetic measured fluence. METHODS AND MATERIALS A novel training method called "dual training," which involves the training of the encoder and decoder separately, was proposed and evaluated for cycle GAN (cycle-GAN) and conditional GAN (c-GAN). A total of 164 VMAT treatment plans, including 344 arcs (training data: 262, validation data: 30, and testing data: 52) from various treatment sites, were selected for prediction model development. For each patient, portal-dose-image-prediction fluence from TPS was used as input, and measured fluence from EPID was used as output/response for model training. Predicted GPR was derived by comparing the TPS fluence with the synthetic measured fluence generated by the DL models using gamma evaluation of criteria 2%/2 mm. The performance of dual training was compared against the traditional single-training approach. In addition, we also developed a separate classification model specifically designed to detect automatically three types of errors (rotational, translational, and MU-scale) in the synthetic EPID-measured fluence. RESULTS Overall, the dual training improved the prediction accuracy of both cycle-GAN and c-GAN. Predicted GPR results of single training were within 3% for 71.2% and 78.8% of test cases for cycle-GAN and c-GAN, respectively. Moreover, similar results for dual training were 82.7% and 88.5% for cycle-GAN and c-GAN, respectively. The error detection model showed high classification accuracy (>98%) for detecting errors related to rotational and translational errors. However, it struggled to differentiate the fluences with "MU scale error" from "error-free" fluences. CONCLUSION We developed a method to automatically generate the synthetic measured fluence and identify errors within them. The proposed dual training improved the PSQA prediction accuracy of both the GAN models, with c-GAN demonstrating superior performance over the cycle-GAN. Our results indicate that the c-GAN with dual training approach combined with error detection model, can accurately generate the synthetic measured fluence for VMAT PSQA and identify the errors. This approach has the potential to pave the way for virtual patient-specific QA of VMAT treatments.
Collapse
Affiliation(s)
- S A Yoganathan
- Department of Radiation Oncology, National Center for Cancer Care & Research (NCCCR), Hamad Medical Corporation, Doha, Qatar
| | - Sharib Ahmed
- Department of Radiation Oncology, National Center for Cancer Care & Research (NCCCR), Hamad Medical Corporation, Doha, Qatar
| | - Satheesh Paloor
- Department of Radiation Oncology, National Center for Cancer Care & Research (NCCCR), Hamad Medical Corporation, Doha, Qatar
| | - Tarraf Torfeh
- Department of Radiation Oncology, National Center for Cancer Care & Research (NCCCR), Hamad Medical Corporation, Doha, Qatar
| | - Souha Aouadi
- Department of Radiation Oncology, National Center for Cancer Care & Research (NCCCR), Hamad Medical Corporation, Doha, Qatar
| | - Noora Al-Hammadi
- Department of Radiation Oncology, National Center for Cancer Care & Research (NCCCR), Hamad Medical Corporation, Doha, Qatar
| | - Rabih Hammoud
- Department of Radiation Oncology, National Center for Cancer Care & Research (NCCCR), Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
9
|
Martins JC, Maier J, Gianoli C, Neppl S, Dedes G, Alhazmi A, Veloza S, Reiner M, Belka C, Kachelrieß M, Parodi K. Towards real-time EPID-based 3D in vivo dosimetry for IMRT with Deep Neural Networks: A feasibility study. Phys Med 2023; 114:103148. [PMID: 37801811 DOI: 10.1016/j.ejmp.2023.103148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/17/2023] [Accepted: 09/22/2023] [Indexed: 10/08/2023] Open
Abstract
We investigate the potential of the Deep Dose Estimate (DDE) neural network to predict 3D dose distributions inside patients with Monte Carlo (MC) accuracy, based on transmitted EPID signals and patient CTs. The network was trained using as input patient CTs and first-order dose approximations (FOD). Accurate dose distributions (ADD) simulated with MC were given as training targets. 83 pelvic CTs were used to simulate ADDs and respective EPID signals for subfields of prostate IMRT plans (gantry at 0∘). FODs were produced as backprojections from the EPID signals. 581 ADD-FOD sets were produced and divided into training and test sets. An additional dataset simulated with gantry at 90∘ (lateral set) was used for evaluating the performance of the DDE at different beam directions. The quality of the FODs and DDE-predicted dose distributions (DDEP) with respect to ADDs, from the test and lateral sets, was evaluated with gamma analysis (3%,2 mm). The passing rates between FODs and ADDs were as low as 46%, while for DDEPs the passing rates were above 97% for the test set. Meaningful improvements were also observed for the lateral set. The high passing rates for DDEPs indicate that the DDE is able to convert FODs into ADDs. Moreover, the trained DDE predicts the dose inside a patient CT within 0.6 s/subfield (GPU), in contrast to 14 h needed for MC (CPU-cluster). 3D in vivo dose distributions due to clinical patient irradiation can be obtained within seconds, with MC-like accuracy, potentially paving the way towards real-time EPID-based in vivo dosimetry.
Collapse
Affiliation(s)
- Juliana Cristina Martins
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching b. München, 85748, Germany.
| | - Joscha Maier
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.
| | - Chiara Gianoli
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching b. München, 85748, Germany.
| | - Sebastian Neppl
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, Munich, 81377, Germany.
| | - George Dedes
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching b. München, 85748, Germany.
| | - Abdulaziz Alhazmi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching b. München, 85748, Germany.
| | - Stella Veloza
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching b. München, 85748, Germany.
| | - Michael Reiner
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, Munich, 81377, Germany.
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, Munich, 81377, Germany.
| | - Marc Kachelrieß
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany; Heidelberg University, Grabengasse 1, Heidelberg, 69117, Germany.
| | - Katia Parodi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching b. München, 85748, Germany.
| |
Collapse
|
10
|
Bin S, Zhang J, Shen L, Zhang J, Wang Q. Study of the prediction of gamma passing rate in dosimetric verification of intensity-modulated radiotherapy using machine learning models based on plan complexity. Front Oncol 2023; 13:1094927. [PMID: 37546404 PMCID: PMC10401596 DOI: 10.3389/fonc.2023.1094927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 07/04/2023] [Indexed: 08/08/2023] Open
Abstract
Objective To predict the gamma passing rate (GPR) in dosimetric verification of intensity-modulated radiotherapy (IMRT) using three machine learning models based on plan complexity and find the best prediction model by comparing and evaluating the prediction ability of the regression and classification models of three classical algorithms: artificial neural network (ANN), support vector machine (SVM) and random forest (RF). Materials and methods 269 clinical IMRT plans were chosen retrospectively and the GPRs of a total of 2340 fields by the 2%/2mm standard at the threshold of 10% were collected for dosimetric verification using electronic portal imaging device (EPID). Subsequently, the plan complexity feature values of each field were extracted and calculated, and a total of 6 machine learning models (classification and regression models for three algorithms) were trained to learn the relation between 21 plan complexity features and GPRs. Each model was optimized by tuning the hyperparameters and ten-fold cross validation. Finally, the GPRs predicted by the model were compared with measured values to verify the accuracy of the model, and the evaluation indicators were applied to evaluate each model to find the algorithm with the best prediction performance. Results The RF algorithm had the optimal prediction effect on GPR, and its mean absolute error (MAE) on the test set was 1.81%, root mean squared error (RMSE) was 2.14%, and correlation coefficient (CC) was 0.72; SVM was the second and ANN was the worst. Among the classification models, the RF algorithm also had the optimal prediction performance with the highest area under the curve (AUC) value of 0.80, specificity and sensitivity of 0.80 and 0.68 respectively, followed by SVM and the worst ANN. Conclusion All the three classic algorithms, ANN, SVM, and RF, could realize the prediction and classification of GPR. The RF model based on plan complexity had the optimal prediction performance which could save valuable time for quality control workers to improve quality control efficiency.
Collapse
Affiliation(s)
- Shizhen Bin
- Radiotherapy Center, Third Xiangya Hospital of Central South University, Changsha, China
| | - Ji Zhang
- Radiotherapy Center, Third Xiangya Hospital of Central South University, Changsha, China
| | - Luyao Shen
- Radiotherapy Center, The Central Hospital of Shaoyang, Shaoyang, China
| | - Junjun Zhang
- Radiotherapy Center, Third Xiangya Hospital of Central South University, Changsha, China
| | - Qi Wang
- Radiotherapy Center, Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
11
|
Sheen H, Shin HB, Kim H, Kim C, Kim J, Kim JS, Hong CS. Application of error classification model using indices based on dose distribution for characteristics evaluation of multileaf collimator position errors. Sci Rep 2023; 13:11027. [PMID: 37419940 PMCID: PMC10328946 DOI: 10.1038/s41598-023-35570-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/20/2023] [Indexed: 07/09/2023] Open
Abstract
This study aims to evaluate the specific characteristics of various multileaf collimator (MLC) position errors that are correlated with the indices using dose distribution. The dose distribution was investigated using the gamma, structural similarity, and dosiomics indices. Cases from the American Association of Physicists in Medicine Task Group 119 were planned, and systematic and random MLC position errors were simulated. The indices were obtained from distribution maps and statistically significant indices were selected. The final model was determined when all values of the area under the curve, accuracy, precision, sensitivity, and specificity were higher than 0.8 (p < 0.05). The dose-volume histogram (DVH) relative percentage difference between the error-free and error datasets was examined to investigate clinical relations. Seven multivariate predictive models were finalized. The common significant dosiomics indices (GLCM Energy and GLRLM_LRHGE) can characterize the MLC position error. In addition, the finalized logistic regression model for MLC position error prediction showed excellent performance with AUC > 0.9. Furthermore, the results of the DVH were related to dosiomics analysis in that it reflects the characteristics of the MLC position error. It was also shown that dosiomics analysis could provide important information on localized dose-distribution differences in addition to DVH information.
Collapse
Affiliation(s)
- Heesoon Sheen
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Han-Back Shin
- Department of Radiation Oncology, Gachon University Gil Medical Center, Incheon, South Korea
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Hojae Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Seoul, South Korea
| | - Changhwan Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Jihun Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Sung Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Chae-Seon Hong
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
12
|
Liu Q, Lu Q, Chai Y, Tao Z, Wu Q, Jiang M, Pu J. Radiomics-Based Quality Control System for Automatic Cardiac Segmentation: A Feasibility Study. Bioengineering (Basel) 2023; 10:791. [PMID: 37508818 PMCID: PMC10376472 DOI: 10.3390/bioengineering10070791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/19/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
PURPOSE In the past decade, there has been a rapid increase in the development of automatic cardiac segmentation methods. However, the automatic quality control (QC) of these segmentation methods has received less attention. This study aims to address this gap by developing an automatic pipeline that incorporates DL-based cardiac segmentation and radiomics-based quality control. METHODS In the DL-based localization and segmentation part, the entire heart was first located and cropped. Then, the cropped images were further utilized for the segmentation of the right ventricle cavity (RVC), myocardium (MYO), and left ventricle cavity (LVC). As for the radiomics-based QC part, a training radiomics dataset was created with segmentation tasks of various quality. This dataset was used for feature extraction, selection, and QC model development. The model performance was then evaluated using both internal and external testing datasets. RESULTS In the internal testing dataset, the segmentation model demonstrated a great performance with a dice similarity coefficient (DSC) of 0.954 for whole heart segmentations. Images were then appropriately cropped to 160 × 160 pixels. The models also performed well for cardiac substructure segmentations. The DSC values were 0.863, 0.872, and 0.940 for RVC, MYO, and LVC for 2D masks and 0.928, 0.886, and 0.962 for RVC, MYO, and LVC for 3D masks with an attention-UNet. After feature selection with the radiomics dataset, we developed a series of models to predict the automatic segmentation quality and its DSC value for the RVC, MYO, and LVC structures. The mean absolute values for our best prediction models were 0.060, 0.032, and 0.021 for 2D segmentations and 0.027, 0.017, and 0.011 for 3D segmentations, respectively. Additionally, the radiomics-based classification models demonstrated a high negative detection rate of >0.85 in all 2D groups. In the external dataset, models showed similar results. CONCLUSIONS We developed a pipeline including cardiac substructure segmentation and QC at both the slice (2D) and subject (3D) levels. Our results demonstrate that the radiomics method possesses great potential for the automatic QC of cardiac segmentation.
Collapse
Affiliation(s)
- Qiming Liu
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China
| | - Qifan Lu
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China
| | - Yezi Chai
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China
| | - Zhengyu Tao
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China
| | - Qizhen Wu
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China
| | - Meng Jiang
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China
| | - Jun Pu
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China
| |
Collapse
|
13
|
Kimura Y, Kadoya N, Oku Y, Jingu K. Development of a deep learning-based error detection system without error dose maps in the patient-specific quality assurance of volumetric modulated arc therapy. JOURNAL OF RADIATION RESEARCH 2023:7160591. [PMID: 37177789 DOI: 10.1093/jrr/rrad028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/15/2022] [Indexed: 05/15/2023]
Abstract
To detect errors in patient-specific quality assurance (QA) for volumetric modulated arc therapy (VMAT), we proposed an error detection method based on dose distribution analysis using unsupervised deep learning approach and analyzed 161 prostate VMAT beams measured with a cylindrical detector. For performing error simulation, in addition to error-free dose distribution, dose distributions containing nine types of error, including multileaf collimator (MLC) positional errors, gantry rotation errors, radiation output errors and phantom setup errors, were generated. Only error-free data were employed for the model training, and error-free and error data were employed for the tests. As a deep learning model, the variational autoencoder (VAE) was adopted. The anomaly of test data was quantified by calculating Mahalanobis distance based on the feature vectors acquired from a trained encoder. Based on this anomaly, test data were classified as 'error-free' or 'any-error.' For comparison with conventional approaches, gamma (γ)-analysis was performed, and supervised learning convolutional neural network (S-CNN) was constructed. Receiver operating characteristic curves were obtained to evaluate their performance with the area under the curve (AUC). For all error types, except systematic MLC positional and radiation output errors, the performance of the methods was in the order of S-CNN ˃ VAE-based ˃ γ-analysis (only S-CNN required error data for model training). For example, in random MLC positional error simulation, the AUC of our method, S-CNN and γ-analysis were 0.699, 0.921 and 0.669, respectively. Our results showed that the VAE-based method has the potential to detect errors in patient-specific VMAT QA.
Collapse
Affiliation(s)
- Yuto Kimura
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
- Radiation Oncology Center, Ofuna Chuo Hospital, 6-2-24 Ofuna, Kamakura, 247-0056, Japan
| | - Noriyuki Kadoya
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Yohei Oku
- Radiation Oncology Center, Ofuna Chuo Hospital, 6-2-24 Ofuna, Kamakura, 247-0056, Japan
| | - Keiichi Jingu
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| |
Collapse
|
14
|
Huang Y, Pi Y, Ma K, Miao X, Fu S, Chen H, Wang H, Gu H, Shao Y, Duan Y, Feng A, Zhuo W, Xu Z. Image-based features in machine learning to identify delivery errors and predict error magnitude for patient-specific IMRT quality assurance. Strahlenther Onkol 2023; 199:498-510. [PMID: 36988665 PMCID: PMC10133379 DOI: 10.1007/s00066-023-02076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 03/05/2023] [Indexed: 03/30/2023]
Abstract
OBJECTIVE To identify delivery error type and predict associated error magnitude by image-based features using machine learning (ML). METHODS In this study, a total of 40 thoracic plans (including 208 beams) were selected, and four error types with different magnitudes were introduced into the original plans, including 1) collimator misalignment (COLL), 2) monitor unit (MU) variation, 3) systematic multileaf collimator misalignment (MLCS), and 4) random MLC misalignment (MLCR). These dose distributions of portal dose predictions for the original plans were defined as the reference dose distributions (RDD), while those for the error-introduced plans were defined as the error-introduced dose distributions (EDD). Both distributions were calculated for all beams with portal dose image prediction (PDIP). Besides, 14 image-based features were extracted from RDD and EDD of portal dose predictions to obtain the feature vectors. In addition, a random forest was adopted for the multiclass classification task, and regression prediction for error magnitude. RESULTS The top five features extracted with the highest weight included 1) the relative displacement in the x direction, 2) the ratio of the absolute minimum residual error to the maximal RDD value, 3) the product of the maximum and minimum residuals, 4) the ratio of the absolute maximum residual error to the maximal RDD value, and 5) the ratio of the absolute mean residual value to the maximal RDD value. The relative displacement in the x direction had the highest weight. The overall accuracy of the five-class classification model was 99.85% for the validation set and 99.30% for the testing set. This model could be applied to the classification of the error-free plan, COLL, MU, MLCS, and MLCR with an accuracy of 100%, 98.4%, 99.9%, 98.0%, and 98.3%, respectively. MLCR had the worst performance in error magnitude prediction (70.1-96.6%), while others had better performance in error magnitude prediction (higher than 93%). In the error magnitude prediction, the mean absolute error (MAE) between predicted error magnitude and actual error ranged from 0.03 to 0.33, with the root mean squared error (RMSE) varying from 0.17 to 0.56 for the validation set. The MAE and RMSE ranged from 0.03 to 0.50 and 0.44 to 0.59 for the test set, respectively. CONCLUSION It could be demonstrated in this study that the image-based features extracted from RDD and EDD can be employed to identify different types of delivery errors and accurately predict error magnitude with the assistance of ML techniques. They can be used to associate traditional gamma analysis with clinically based analysis for error classification and magnitude prediction in patient-specific IMRT quality assurance.
Collapse
Affiliation(s)
- Ying Huang
- Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Yifei Pi
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Kui Ma
- Varian Medical Systems No.8 Yun Cheng Street, Beijing, China
| | - Xiaojuan Miao
- The General Hospital of Western Theater Command PLA, Chengdu, China
| | - Sichao Fu
- The General Hospital of Western Theater Command PLA, Chengdu, China
| | - Hua Chen
- Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Hao Wang
- Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Hengle Gu
- Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Yan Shao
- Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Yanhua Duan
- Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Aihui Feng
- Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Weihai Zhuo
- Key Lab of Nucl. Phys. & Ion-Beam Appl. (MOE), Fudan University, Shanghai, China.
| | - Zhiyong Xu
- Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, 200030, Shanghai, China.
| |
Collapse
|
15
|
Cavinato S, Bettinelli A, Dusi F, Fusella M, Germani A, Marturano F, Paiusco M, Pivato N, Rossato MA, Scaggion A. Prediction models as decision-support tools for virtual patient-specific quality assurance of helical tomotherapy plans. Phys Imaging Radiat Oncol 2023; 26:100435. [PMID: 37089905 PMCID: PMC10113896 DOI: 10.1016/j.phro.2023.100435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Background and purpose Prediction models may be reliable decision-support tools to reduce the workload associated with the measurement-based patient-specific quality assurance (PSQA) of radiotherapy plans. This study compared the effectiveness of three different models based on delivery parameters, complexity metrics and sinogram radiomics features as tools for virtual-PSQA (vPSQA) of helical tomotherapy (HT) plans. Materials and methods A dataset including 881 RT plans created with two different treatment planning systems (TPSs) was collected. Sixty-five indicators including 12 delivery parameters (DP) and 53 complexity metrics (CM) were extracted using a dedicated software library. Additionally, 174 radiomics features (RF) were extracted from the plans' sinograms. Three groups of variables were formed: A (DP), B (DP + CM) and C (DP + CM + RF). Regression models were trained to predict the gamma index passing rate P R γ (3%G, 2mm) and the impact of each group of variables was investigated. ROC-AUC analysis measured the ability of the models to accurately discriminate between 'deliverable' and 'non-deliverable' plans. Results The best performance was achieved by model C which allowed detecting around 16% and 63% of the 'deliverable' plans with 100% sensitivity for the two TPSs, respectively. In a real clinical scenario, this would have decreased the whole PSQA workload by approximately 35%. Conclusions The combination of delivery parameters, complexity metrics and sinogram radiomics features allows for robust and reliable PSQA gamma passing rate predictions and high-sensitivity detection of a fraction of deliverable plans for one of the two TPSs. Promising yet improvable results were obtained for the other one. The results foster a future adoption of vPSQA programs for HT.
Collapse
|
16
|
Matsuura T, Kawahara D, Saito A, Yamada K, Ozawa S, Nagata Y. A synthesized gamma distribution-based patient-specific VMAT QA using a generative adversarial network. Med Phys 2023; 50:2488-2498. [PMID: 36609669 DOI: 10.1002/mp.16210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Artificial intelligence (AI)-based gamma passing rate (GPR) prediction has been proposed as a time-efficient virtual patient-specific QA method for the delivery of volumetric modulation arc therapy (VMAT). However, there is a limitation that the GPR value loses the locational information of dose accuracy. PURPOSE The objective was to predict the failing points in the gamma distribution and the GPR using a synthesized gamma distribution of VMAT QA with a deep convolutional generative adversarial network (GAN). METHODS The fluence maps of 270 VMAT beams for prostate cancer were measured using an electronic portal imaging device and analyzed using gamma evaluation with 3%/2-mm, 2%/1-mm, 1%/1-mm, and 1%/0.5-mm tolerances. The 270 gamma distributions were divided into two datasets: 240 training datasets for creating a model and 30 test datasets for evaluation. The image prediction network for the fluence maps calculated by the treatment planning system (TPS) to the gamma distributions was created using a GAN. The sensitivity, specificity, and accuracy of detecting failing points were evaluated using measured and synthesized gamma distributions. In addition, the difference between measured GPR (mGPR) and predicted GPR (pGPR) values calculated from the synthesized gamma distributions was evaluated. RESULTS The root mean squared errors between mGPR and pGPR were 1.0%, 2.1%, 3.5%, and 3.6% for the 3%/2-mm, 2%/1-mm, 1%/1-mm, and 1%/0.5-mm tolerances, respectively. The accuracies for detecting failing points were 98.9%, 96.9%, 94.7%, and 93.7% for 3%/2-mm, 2%/1-mm, 1%/1-mm, and 1%/0.5-mm tolerances, respectively. The sensitivity and specificity were the highest for 1%/0.5-mm and 3%/2-mm tolerances, which were 82.7% and 99.6%, respectively. CONCLUSIONS We developed a novel system using a GAN to generate a synthesized gamma distribution-based patient-specific VMAT QA. The system is promising from the point of view of quality assurance in radiotherapy because it shows high performance and can detect failing points.
Collapse
Affiliation(s)
- Takaaki Matsuura
- Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan.,Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Daisuke Kawahara
- Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akito Saito
- Department of Radiation Oncology, Hiroshima University Hospital, Hiroshima, Japan
| | - Kiyoshi Yamada
- Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
| | - Shuichi Ozawa
- Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan.,Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasushi Nagata
- Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan.,Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
17
|
Zhou L, Zheng W, Huang S, Yang X. Integrated radiomics, dose-volume histogram criteria and clinical features for early prediction of saliva amount reduction after radiotherapy in nasopharyngeal cancer patients. Discov Oncol 2022; 13:145. [PMID: 36581739 PMCID: PMC9800672 DOI: 10.1007/s12672-022-00606-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Previously, the evaluation of xerostomia depended on subjective grading systems, rather than the accurate saliva amount reduction. Our aim was to quantify acute xerostomia with reduced saliva amount, and apply radiomics, dose-volume histogram (DVH) criteria and clinical features to predict saliva amount reduction by machine learning techniques. MATERIAL AND METHODS Computed tomography (CT) of parotid glands, DVH, and clinical data of 52 patients were collected to extract radiomics, DVH criteria and clinical features, respectively. Firstly, radiomics, DVH criteria and clinical features were divided into 3 groups for feature selection, in order to alleviate the masking effect of the number of features in different groups. Secondly, the top features in the 3 groups composed integrated features, and features selection was performed again for integrated features. In this study, feature selection was used as a combination of eXtreme Gradient Boosting (XGBoost) and SHapley Additive exPlanations (SHAP) to alleviate multicollinearity. Finally, 6 machine learning techniques were used for predicting saliva amount reduction. Meanwhile, top radiomics features were modeled using the same machine learning techniques for comparison. RESULT 17 integrated features (10 radiomics, 4 clinical, 3 DVH criteria) were selected to predict saliva amount reduction, with a mean square error (MSE) of 0.6994 and a R2 score of 0.9815. Top 17 and 10 selected radiomics features predicted saliva amount reduction, with MSE of 0.7376, 0.7519, and R2 score of 0.9805, 0.9801, respectively. CONCLUSION With the same number of features, integrated features (radiomics + DVH criteria + clinical) performed better than radiomics features alone. The important DVH criteria and clinical features mainly included, white blood cells (WBC), parotid_glands_Dmax, Age, parotid_glands_V15, hemoglobin (Hb), BMI and parotid_glands_V45.
Collapse
Affiliation(s)
- Lang Zhou
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China
- Department of Biomedical Engineering, South China University of Technology, Guangzhou, 510640, Guangdong Province, China
| | - Wanjia Zheng
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China
- Department of Radiation Oncology, Southern Theater Air Force Hospital of the People's Liberation Army, Guangzhou, 510050, Guangdong Province, China
| | - Sijuan Huang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China.
| | - Xin Yang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China.
| |
Collapse
|
18
|
Leary D, Basran PS. The role of artificial intelligence in veterinary radiation oncology. Vet Radiol Ultrasound 2022; 63 Suppl 1:903-912. [PMID: 36514233 DOI: 10.1111/vru.13162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/21/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022] Open
Abstract
Veterinary radiation oncology regularly deploys sophisticated contouring, image registration, and treatment planning optimization software for patient care. Over the past decade, advances in computing power and the rapid development of neural networks, open-source software packages, and data science have been realized and resulted in new research and clinical applications of artificial intelligent (AI) systems in radiation oncology. These technologies differ from conventional software in their level of complexity and ability to learn from representative and local data. We provide clinical and research application examples of AI in human radiation oncology and their potential applications in veterinary medicine throughout the patient's care-path: from treatment simulation, deformable registration, auto-segmentation, automated treatment planning and plan selection, quality assurance, adaptive radiotherapy, and outcomes modeling. These technologies have the potential to offer significant time and cost savings in the veterinary setting; however, since the range of usefulness of these technologies have not been well studied nor understood, care must be taken if adopting AI technologies in clinical practice. Over the next several years, some practical and realizable applications of AI in veterinary radiation oncology include automated segmentation of normal tissues and tumor volumes, deformable registration, multi-criteria plan optimization, and adaptive radiotherapy. Keys in achieving success in adopting AI in veterinary radiation oncology include: establishing "truth-data"; data harmonization; multi-institutional data and collaborations; standardized dose reporting and taxonomy; adopting an open access philosophy, data collection and curation; open-source algorithm development; and transparent and platform-independent code development.
Collapse
Affiliation(s)
- Del Leary
- Department of Environment and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Parminder S Basran
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
19
|
Gong C, Zhu K, Lin C, Han C, Lu Z, Chen Y, Yu C, Hou L, Zhou Y, Yi J, Ai Y, Xiang X, Xie C, Jin X. Efficient dose-volume histogram-based pretreatment patient-specific quality assurance methodology with combined deep learning and machine learning models for volumetric modulated arc radiotherapy. Med Phys 2022; 49:7779-7790. [PMID: 36190117 DOI: 10.1002/mp.16010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/26/2022] [Accepted: 09/17/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Weak correlation between gamma passing rates and dose differences in target volumes and organs at risk (OARs) has been reported in several studies. Evaluation on the differences between planned dose-volume histogram (DVH) and reconstructed DVH from measurement was adopted and incorporated into patient-specific quality assurance (PSQA). However, it is difficult to develop a methodology allowing the evaluation of errors on DVHs accurately and quickly. PURPOSE To develop a DVH-based pretreatment PSQA for volumetric modulated arc therapy (VMAT) with combined deep learning (DL) and machine learning models to overcome the limitation of conventional gamma index (GI) and improve the efficiency of DVH-based PSQA. METHODS A DL model with a three-dimensional squeeze-and-excitation residual blocks incorporated into a modified U-net was developed to predict the measured PSQA DVHs of 208 head-and-neck (H&N) cancer patients underwent VMAT between 2018 and 2021 from two hospitals, in which 162 cases was randomly selected for training, 18 for validation, and 28 for testing. After evaluating the differences between treatment planning system (TPS) and PSQA DVHs predicted by DL model with multiple metrics, a pass or fail (PoF) classification model was developed using XGBoost algorithm. Evaluation of domain experts on dose errors between TPS and reconstructed PSQA DVHs was taken as ground truth for PoF classification model training. RESULTS The prediction model was able to achieve a good agreement between predicted, measured, and TPS doses. Quantitative evaluation demonstrated no significant difference between predicted PSQA dose and measured dose for target and OARs, except for Dmean of PTV6900 (p = 0.001), D50 of PTV6000 (p = 0.014), D2 of PTV5400 (p = 0.009), D50 of left parotid (p = 0.015), and Dmax of left inner ear (p = 0.007). The XGBoost model achieved an area under curves, accuracy, sensitivity, and specificity of 0.89 versus 0.88, 0.89 versus 0.86, 0. 71 versus 0.71, and 0.95 versus 0.91 with measured and predicted PSQA doses, respectively. The agreement between domain experts and the classification model was 86% for 28 test cases. CONCLUSIONS The successful prediction of PSQA doses and classification of PoF for H&N VMAT PSQA indicating that this DVH-based PSQA method is promising to overcome the limitations of GI and to improve the efficiency and accuracy of VMAT delivery.
Collapse
Affiliation(s)
- Changfei Gong
- Radiation Oncology Department, 1st Affiliated Hospital of Nanchang Medical University, Nanchang, China.,Radiotherapy Center, 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kecheng Zhu
- Radiotherapy Center, 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chengyin Lin
- Radiotherapy Center, 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ce Han
- Radiotherapy Center, 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhongjie Lu
- Radiation Oncology Department, 1st Affiliated Hospital of Medical School of Zhejiang University, Zhejiang, China
| | - Yuanhua Chen
- Radiation Oncology Department, 1st Affiliated Hospital of Medical School of Zhejiang University, Zhejiang, China
| | - Changhui Yu
- Radiation Oncology Department, Taizhou Hospital of Zhejiang Province, Taizhou, China
| | - Liqiao Hou
- Radiation Oncology Department, Taizhou Hospital of Zhejiang Province, Taizhou, China
| | - Yongqiang Zhou
- Radiotherapy Center, 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinling Yi
- Radiotherapy Center, 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yao Ai
- Radiotherapy Center, 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaojun Xiang
- Radiation Oncology Department, 1st Affiliated Hospital of Nanchang Medical University, Nanchang, China
| | - Congying Xie
- Radiotherapy Center, 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Radiation Oncology Department, 2nd Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiance Jin
- Radiotherapy Center, 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
20
|
Predictive gamma passing rate of 3D detector array-based volumetric modulated arc therapy quality assurance for prostate cancer via deep learning. Phys Eng Sci Med 2022; 45:1073-1081. [PMID: 36202950 DOI: 10.1007/s13246-022-01172-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/04/2022] [Indexed: 11/07/2022]
Abstract
To predict the gamma passing rate (GPR) of the three-dimensional (3D) detector array-based volumetric modulated arc therapy (VMAT) quality assurance (QA) for prostate cancer using a convolutional neural network (CNN) with the 3D dose distribution. One hundred thirty-five VMAT plans for prostate cancer were selected: 110 plans were used for training and validation, and 25 plans were used for testing. Verification plans were measured using a helical 3D diode array (ArcCHECK). The dose distribution on the detector element plane of these verification plans was used as input data for the CNN model. The measured GPR (mGPR) values were used as the training data. The CNN model comprises eighteen layers and predicted GPR (pGPR) values. The mGPR and pGPR values were compared, and a cumulative frequency histogram of the prediction error was created to clarify the prediction error tendency. The correlation coefficients of pGPR and mGPR were 0.67, 0.69, 0.66, and 0.73 for 3%/3-mm, 3%/2-mm, 2%/3-mm, and 2%/2-mm gamma criteria, respectively. The respective mean±standard deviations of pGPR-mGPR were -0.87±2.18%, -0.65±2.93%, -0.44±2.53%, and -0.71±3.33%. The probabilities of false positive error cases (pGPR < mGPR) were 72%, 60%, 68%, and 56% for each gamma criterion. We developed a deep learning-based prediction model of the 3D detector array-based VMAT QA for prostate cancer, and evaluated the accuracy and tendency of prediction GPR. This model can provide a proactive estimation for the results of the patient-specific QA before the verification measurement.
Collapse
|
21
|
Li G, Wu X, Ma X. Artificial intelligence in radiotherapy. Semin Cancer Biol 2022; 86:160-171. [PMID: 35998809 DOI: 10.1016/j.semcancer.2022.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/18/2022] [Indexed: 11/19/2022]
Abstract
Radiotherapy is a discipline closely integrated with computer science. Artificial intelligence (AI) has developed rapidly over the past few years. With the explosive growth of medical big data, AI promises to revolutionize the field of radiotherapy through highly automated workflow, enhanced quality assurance, improved regional balances of expert experiences, and individualized treatment guided by multi-omics. In addition to independent researchers, the increasing number of large databases, biobanks, and open challenges significantly facilitated AI studies on radiation oncology. This article reviews the latest research, clinical applications, and challenges of AI in each part of radiotherapy including image processing, contouring, planning, quality assurance, motion management, and outcome prediction. By summarizing cutting-edge findings and challenges, we aim to inspire researchers to explore more future possibilities and accelerate the arrival of AI radiotherapy.
Collapse
Affiliation(s)
- Guangqi Li
- Division of Biotherapy, Cancer Center, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China
| | - Xin Wu
- Head & Neck Oncology ward, Division of Radiotherapy Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China
| | - Xuelei Ma
- Division of Biotherapy, Cancer Center, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China.
| |
Collapse
|
22
|
Hoegele W, Zygmanski P. Strip detector array (SDA) for beam monitoring in radiotherapy: reconstruction of MLC parameters from multiple projections of flux. Biomed Phys Eng Express 2022; 8. [PMID: 35803210 DOI: 10.1088/2057-1976/ac7fbc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/08/2022] [Indexed: 11/11/2022]
Abstract
Objective:In this paper we propose and investigate a new detector with multiple strip detector arrays (SDA) for monitoring MLC shaped x-ray beams for radiotherapy treatment.Approach:Each SDA measures 1D dose profiles equivalent to dose projections. The goal of such a detector is to determine individual MLC leaf positions as well as the Monitor Units (MU) per MLC segment during radiotherapy. In the present work we investigate an optimal SDA detector configuration and reconstruction algorithm. We determine the accuracy of SDA for different treatment sites (spine, pelvis, retroperitoneum, prostate, brain SRT, SRS, lung and head and neck). We perform a simulation study accounting for different type of MLC leaf positional errors: random MLC leaf, systematic for the whole leaf bank and systematic for an individual leaf. In a similar fashion, we also account for errors in Monitor Units per segment.Main results:We demonstrate that for a broad range of IMRT treatment plans a robust reconstruction of errors is achievable with only 3 projections (3 sets of SDA oriented at at 0◦, 45◦ and 135◦). The SDA is capable of capturing both systematic errors in leaf banks and individual leaves as well as random errors sufficient for practical clinical purposes.Significance:These features of the SDA detector makes it suitable for real-time Quality Control of MLC collimated linac output.
Collapse
Affiliation(s)
- Wolfgang Hoegele
- Computer Science and Mathematics, Munich University of Applied Sciences, Lothstraße 64, Munich, Bavaria, 80335, GERMANY
| | - Piotr Zygmanski
- Radiation Oncology, Brigham and Women's Hospital & Harvard Medical School, 75 Francis Street, Boston, Massachusetts, 02115, UNITED STATES
| |
Collapse
|
23
|
Abdollahi H, Chin E, Clark H, Hyde DE, Thomas S, Wu J, Uribe CF, Rahmim A. Radiomics-guided radiation therapy: opportunities and challenges. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac6fab] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/13/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Radiomics is an advanced image-processing framework, which extracts image features and considers them as biomarkers towards personalized medicine. Applications include disease detection, diagnosis, prognosis, and therapy response assessment/prediction. As radiation therapy aims for further individualized treatments, radiomics could play a critical role in various steps before, during and after treatment. Elucidation of the concept of radiomics-guided radiation therapy (RGRT) is the aim of this review, attempting to highlight opportunities and challenges underlying the use of radiomics to guide clinicians and physicists towards more effective radiation treatments. This work identifies the value of RGRT in various steps of radiotherapy from patient selection to follow-up, and subsequently provides recommendations to improve future radiotherapy using quantitative imaging features.
Collapse
|
24
|
Liu W, Zhang L, Dai G, Zhang X, Li G, Yi Z. Deep Neural Network with Structural Similarity Difference and Orientation-based Loss for Position Error Classification in The Radiotherapy of Graves' Ophthalmopathy Patients. IEEE J Biomed Health Inform 2021; 26:2606-2614. [PMID: 34941537 DOI: 10.1109/jbhi.2021.3137451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Identifying position errors for Graves' ophthalmopathy (GO) patients using electronic portal imaging device (EPID) transmission fluence maps is helpful in monitoring treatment.} However, most of the existing models only extract features from dose difference maps computed from EPID images, which do not fully characterize all information of the positional errors. In addition, the position error has a three-dimensional spatial nature, which has never been explored in previous work. To address the above problems, a deep neural network (DNN) model with structural similarity difference and orientation-based loss is proposed in this paper, which consists of a feature extraction network and a feature enhancement network. To capture more information, three types of Structural SIMilarity (SSIM) sub-index maps are computed to enhance the luminance, contrast, and structural features of EPID images, respectively. These maps and the dose difference maps are fed into different networks to extract radiomic features. To acquire spatial features of the position errors, an orientation-based loss function is proposed for optimal training. It makes the data distribution more consistent with the realistic 3D space by integrating the error deviations of the predicted values in the left-right, superior-inferior, anterior-posterior directions. Experimental results on a constructed dataset demonstrate the effectiveness of the proposed model, compared with other related models and existing state-of-the-art methods.
Collapse
|
25
|
Utsunomiya S. [3. Radiomics Analysis of Dose and Fluence Distribution (Dosiomics)]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2021; 77:1245-1249. [PMID: 34670934 DOI: 10.6009/jjrt.2021_jsrt_77.10.1245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Satoru Utsunomiya
- Department of Radiological Technology, Graduate School of Health Sciences, Niigata University
| |
Collapse
|
26
|
Osman AFI, Maalej NM. Applications of machine and deep learning to patient-specific IMRT/VMAT quality assurance. J Appl Clin Med Phys 2021; 22:20-36. [PMID: 34343412 PMCID: PMC8425899 DOI: 10.1002/acm2.13375] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/20/2021] [Accepted: 07/18/2021] [Indexed: 01/10/2023] Open
Abstract
In order to deliver accurate and safe treatment to cancer patients in radiation therapy using advanced techniques such as intensity modulated radiation therapy (IMRT) and volumetric-arc radiation therapy (VMAT), patient specific quality assurance (QA) should be performed before treatment. IMRT/VMAT dose measurements in a phantom using various devices have been clinically adopted as standard method for QA. This approach allows the verification of the accuracy of the dose calculation, data transfer, and the delivery system. However, patient-specific QA procedures are expensive and require significant time and effort by the physicists. Over the past 5 years, machine learning (ML) and deep learning (DL) algorithms for predictions of IMRT/VMAT QA outcome have been investigated. Various ML and DL models have shown promising prediction accuracy and a high potential as time-efficient virtual QA tool. In this paper, we review the ML and DL based models that were developed for patient specific IMRT and VMAT QA outcome predictions from algorithmic and clinical applicability perspectives. We focus on comparing the algorithms, the dataset sizes, the input parameters and features, the QA outcome prediction approaches, the validation, the performance, the clinical applicability, and the potential clinical impact. In addition, we discuss the present challenges as well as the future directions in the implementation of these models. To the best of our knowledge, this is the first review on the application of ML and DL based models in IMRT/VMAT QA predictions.
Collapse
Affiliation(s)
| | - Nabil M Maalej
- Department of Physics, Khalifa University, Abu Dhabi, UAE
| |
Collapse
|
27
|
Kimura Y, Kadoya N, Oku Y, Kajikawa T, Tomori S, Jingu K. Error detection model developed using a multi-task convolutional neural network in patient-specific quality assurance for volumetric-modulated arc therapy. Med Phys 2021; 48:4769-4783. [PMID: 34101848 DOI: 10.1002/mp.15031] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 11/06/2022] Open
Abstract
PURPOSE In patient-specific quality assurance (QA) for static beam intensity-modulated radiation therapy (IMRT), machine-learning-based dose analysis methods have been developed to identify the cause of an error as an alternative to gamma analysis. Although these new methods have revealed that the cause of the error can be identified by analyzing the dose distribution obtained from the two-dimensional detector, they have not been extended to the analysis of volumetric-modulated arc therapy (VMAT) QA. In this study, we propose a deep learning approach to detect various types of errors in patient-specific VMAT QA. METHODS A total of 161 beams from 104 prostate VMAT plans were analyzed. All beams were measured using a cylindrical detector (Delta4; ScandiDos, Uppsala, Sweden), and predicted dose distributions in a cylindrical phantom were calculated using a treatment planning system (TPS). In addition to the error-free plan, we simulated 12 types of errors: two types of multileaf collimator positional errors (systematic or random leaf offset of 2 mm), two types of monitor unit (MU) scaling errors (±3%), two types of gantry rotation errors (±2° in clockwise and counterclockwise direction), and six types of phantom setup errors (±1 mm in lateral, longitudinal, and vertical directions). The error-introduced predicted dose distributions were created by editing the calculated dose distributions using a TPS with in-house software. Those 13 types of dose difference maps, consisting of an error-free map and 12 error maps, were created from the measured and predicted dose distributions and were used to train the convolutional neural network (CNN) model. Our model was a multi-task model that individually detected each of the 12 types of errors. Two datasets, Test sets 1 and 2, were prepared to evaluate the performance of the model. Test set 1 consisted of 13 types of dose maps used for training, whereas Test set 2 included the dose maps with 25 types of errors in addition to the error-free dose map. The dose map, which introduced 25 types of errors, was generated by combining two of the 12 types of simulated errors. For comparison with the performance of our model, gamma analysis was performed for Test sets 1 and 2 with the criteria set to 3%/2 mm and 2%/1 mm (dose difference/distance to agreement). RESULTS For Test set 1, the overall accuracy of our CNN model, gamma analysis with the criteria set to 3%/2 mm, and gamma analysis with the criteria set to 2%/1 mm was 0.92, 0.19, and 0.81, respectively. Similarly, for Test set 2, the overall accuracy was 0.44, 0.42, and 0.95, respectively. Our model outperformed gamma analysis in the classification of dose maps containing a single type error, and the performance of our model was inferior in the classification of dose maps containing compound errors. CONCLUSIONS A multi-task CNN model for detecting errors in patient-specific VMAT QA using a cylindrical measuring device was constructed, and its performance was evaluated. Our results demonstrate that our model was effective in identifying the error type in the dose map for VMAT QA.
Collapse
Affiliation(s)
- Yuto Kimura
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Radiation Oncology Center, Ofuna Chuo Hospital, Kamakura, Japan
| | - Noriyuki Kadoya
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yohei Oku
- Radiation Oncology Center, Ofuna Chuo Hospital, Kamakura, Japan
| | - Tomohiro Kajikawa
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Seiji Tomori
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Radiology, National Hospital Organization Sendai Medical Center, Sendai, Japan
| | - Keiichi Jingu
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|