1
|
Jones RM, Pattwell SS. Future considerations for pediatric cancer survivorship: Translational perspectives from developmental neuroscience. Dev Cogn Neurosci 2019; 38:100657. [PMID: 31158802 PMCID: PMC6697051 DOI: 10.1016/j.dcn.2019.100657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 04/26/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023] Open
Abstract
Breakthroughs in modern medicine have increased pediatric cancer survival rates throughout the last several decades. Despite enhanced cure rates, a subset of pediatric cancer survivors exhibit life-long psychological side effects. A large body of work has addressed potential mechanisms for secondary symptoms of anxiety, post-traumatic stress, impaired emotion regulation and cognitive deficits in adults. Yet, absent from many studies are the ways in which cancer treatment can impact the developing brain. Additionally, it remains less known whether typical neurobiological changes during adolescence and early adulthood may potentially buffer or exacerbate some of the known negative cancer survivorship outcomes. This review highlights genetic, animal, and human neuroimaging research across development. We focus on the neural circuitry associated with aversive learning, which matures throughout childhood, adolescence and early adulthood. We argue that along with other individual differences, the precise timing of oncological treatment insults on such neural circuitry may expose particular vulnerabilities for pediatric cancer patients. We also explore other moderators of treatment outcomes, including genetic polymorphisms and neural mechanisms underlying memory and cognitive control. We discuss how neural maturation extending into young adulthood may also provide a sensitive period for intervention to improve psychological and cognitive outcomes in pediatric cancer survivors.
Collapse
Affiliation(s)
- Rebecca M Jones
- The Sackler Institute for Developmental Psychobiology, Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, United States
| | - Siobhan S Pattwell
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA 98109, United States.
| |
Collapse
|
2
|
Chemotherapy-induced cognitive impairments: A systematic review of the animal literature. Neurosci Biobehav Rev 2019; 102:382-399. [DOI: 10.1016/j.neubiorev.2019.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/02/2019] [Accepted: 05/01/2019] [Indexed: 12/14/2022]
|
3
|
Speidell AP, Demby T, Lee Y, Rodriguez O, Albanese C, Mandelblatt J, Rebeck GW. Development of a Human APOE Knock-in Mouse Model for Study of Cognitive Function After Cancer Chemotherapy. Neurotox Res 2019; 35:291-303. [PMID: 30284204 PMCID: PMC6333492 DOI: 10.1007/s12640-018-9954-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/31/2018] [Accepted: 09/07/2018] [Indexed: 01/12/2023]
Abstract
Cancer-related cognitive impairment in breast cancer patients exposed to multi-agent chemotherapy regimens is associated with the apolipoprotein E4 (APOE4) allele. However, it is difficult to determine the effects of specific agents on cognitive impairment in human studies. We describe the development of a human APOE knock-in congenic C57BL/6J mouse model to study cancer-related cognitive impairment. Female APOE3 and APOE4 homozygous mice were either left untreated or treated with the most commonly used breast cancer therapeutic agent, doxorubicin. APOE3 and APOE4 mice had similar behaviors in exploratory and anxiety assays, which were affected transiently by doxorubicin treatment. Spatial learning and memory were measured in a Barnes maze: after 4 days of training, control APOE3 and APOE4 mice were able to escape with similar latencies. In contrast, doxorubicin-treated APOE4 mice had markedly impaired learning compared to doxorubicin-treated APOE3 mice at all time points. Voxel-based morphometry of magnetic resonance images revealed that doxorubicin treatment caused significant changes in the cortex and hippocampus of in both APOE3 and APOE4 mouse brains, but the differences were significantly greater in the APOE4 brains. The results indicate that doxorubicin-exposed APOE4 mice recapitulate key aspects of human cancer-related cognitive impairment. These data support the usefulness of this novel preclinical model for future elucidation of the genetic and molecular interactions of APOE genotype with chemotherapy; this model can also allow extension to prospective studies of older mice to study these interactions in the context of aging.
Collapse
Affiliation(s)
- Andrew P Speidell
- Department of Neuroscience, Georgetown University, Washington, DC, USA
| | - Tamar Demby
- Department of Oncology, Georgetown University, Washington, DC, USA
| | - Yichien Lee
- Department of Oncology, Georgetown University, Washington, DC, USA
| | - Olga Rodriguez
- Department of Oncology, Georgetown University, Washington, DC, USA
| | | | | | - G William Rebeck
- Department of Neuroscience, Georgetown University, Washington, DC, USA.
| |
Collapse
|
4
|
Elens I, Dekeyster E, Moons L, D'Hooge R. Methotrexate Affects Cerebrospinal Fluid Folate and Tau Levels and Induces Late Cognitive Deficits in Mice. Neuroscience 2019; 404:62-70. [PMID: 30703509 DOI: 10.1016/j.neuroscience.2019.01.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/03/2019] [Accepted: 01/16/2019] [Indexed: 01/08/2023]
Abstract
Intravenous and/or intrathecal administration of the anti-folate drug methotrexate is a common chemotherapeutic procedure in childhood leukemia. Therapeutic and prophylactic efficacy of these procedures notwithstanding, the occurrence of late adverse effects remains a cause of clinical concern in leukemia survivors. We propose an experimental mouse model to mimic the impact of methotrexate exposure on brain biochemistry and cell proliferation, as well as behavioral and neurocognitive functioning at adult age. Female C57Bl6/J mouse pups received saline or methotrexate injection (20 mg/kg, i.p.). CSF and serum concentrations of folate metabolites and toxicity makers were analyzed at 4 h, 24 h, and 1 week following injection. Behavioral test battery performance was assessed at adult age (3-4 months). We found acute changes in serum and CSF levels of folate in exposed pups that coincided with increases in CSF Tau, whereas homocysteine in serum and CSF, and CSF levels of pTau were unchanged or remained below detection. In addition, methotrexate injection coincided with diminished hippocampal cell proliferation 1 week after methotrexate injection. At adult age, exposed mice displayed hippocampus-dependent deficits in the Morris water maze, whereas exploration and anxiety-related behaviors were largely unaffected. Particularly during the reference memory (probe) trial after reversal learning, methotrexate-exposed animals were less precise than controls. These findings demonstrate adult neurocognitive sequelae in a mouse model that can be attributed to the biochemical and cellular impact of early-life methotrexate exposure.
Collapse
Affiliation(s)
- Iris Elens
- Laboratory of Biological Psychology, KU Leuven, Leuven, Belgium; Department of Child and Adolescent Psychiatry, KU Leuven, University Psychiatric Centre Leuven, Leuven, Belgium
| | - Eline Dekeyster
- Animal Physiology and Neurobiology Unit, Zoological Institute, KU Leuven, Leuven, Belgium; Janssen Vaccines and Prevention B.V., Johnson & Johnson, Leiden, the Netherlands
| | - Lieve Moons
- Animal Physiology and Neurobiology Unit, Zoological Institute, KU Leuven, Leuven, Belgium
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
5
|
Moore IM(K, Merkle CJ, Byrne H, Ross A, Hawkins AM, Ameli SS, Montgomery DW. Effects of Intraventricular Methotrexate on Neuronal Injury and Gene Expression in a Rat Model. Biol Res Nurs 2016; 18:505-14. [DOI: 10.1177/1099800416644780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Central nervous system (CNS)-directed treatment for acute lymphoblastic leukemia, used to prevent disease recurrence in the brain, is essential for survival. Systemic and intrathecal methotrexate, commonly used for CNS-directed treatment, have been associated with cognitive problems during and after treatment. The cortex, hippocampus, and caudate putamen, important brain regions for learning and memory, may be involved in methotrexate-induced brain injury. Objectives of this study were to (1) quantify neuronal degeneration in selected regions of the cortex, hippocampus, and caudate putamen and (2) measure changes in the expression of genes with known roles in oxidant defense, apoptosis/inflammation, and protection from injury. Male Sprague Dawley rats were administered 2 or 4 mg/kg of methotrexate diluted in artificial cerebrospinal fluid (aCSF) or aCSF only into the left cerebral lateral ventricle. Gene expression changes were measured using customized reverse transcription (RT)2 polymerase chain reaction arrays. The greatest percentage of degenerating neurons in methotrexate-treated animals was in the medial region of the cortex; percentage of degenerating neurons in the dentate gyrus and cornu ammonis 3 regions of the hippocampus was also greater in rats treated with methotrexate compared to perfusion and vehicle controls. There was a greater percentage of degenerating neurons in the inferior cortex of control versus methotrexate-treated animals. Eight genes involved in protection from injury, oxidant defense, and apoptosis/inflammation were significantly downregulated in different brain regions of methotrexate-treated rats. To our knowledge, this is the first study to investigate methotrexate-induced injury in selected brain regions and gene expression changes using a rat model of intraventricular drug administration.
Collapse
Affiliation(s)
| | | | | | - Adam Ross
- College of Nursing, The University of Arizona, Tucson AZ, USA
| | | | - Sara S. Ameli
- College of Nursing, The University of Arizona, Tucson AZ, USA
| | - David W. Montgomery
- College of Nursing, The University of Arizona, Tucson AZ, USA
- Southern Arizona VA Healthcare System, Tucson AZ, USA
| |
Collapse
|
6
|
Philpot RM. Potential Use of Nicotinic Receptor Agonists for the Treatment of Chemotherapy-Induced Cognitive Deficits. Neurochem Res 2015; 40:2018-31. [DOI: 10.1007/s11064-015-1528-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 01/09/2015] [Accepted: 01/28/2015] [Indexed: 10/24/2022]
|
7
|
Seigers R, Loos M, Van Tellingen O, Boogerd W, Smit AB, Schagen SB. Cognitive impact of cytotoxic agents in mice. Psychopharmacology (Berl) 2015; 232:17-37. [PMID: 24894481 DOI: 10.1007/s00213-014-3636-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 05/05/2014] [Indexed: 01/12/2023]
Abstract
RATIONALE AND OBJECTIVES Adjuvant chemotherapy is associated with changes in cognition in a subgroup of cancer patients. Chemotherapy is generally given as a combination of cytotoxic agents, which makes it hard to define the agent responsible for these observed changes. Literature on animal experiments has been difficult to interpret due to variance in experimental setup. METHODS We examined the effects of cytotoxic agents administered separately on various cognitive measures in a standardized animal model. Male C57Bl/6 mice received cyclophosphamide, docetaxel, doxorubicin, 5-fluorouracil, methotrexate, or topotecan. These agents represent different compound classes based on their working mechanism and are frequently prescribed in the clinic. A control group received saline. Behavioral testing started 2 or 15 weeks after treatment and included testing general measures of behavior and cognitive task performance: spontaneous behavior in an automated home cage, open field, novel location recognition (NLR), novel object recognition (NOR), Barnes maze, contextual fear conditioning, and a simple choice reaction time task (SCRTT). RESULTS Cyclophosphamide, docetaxel, and doxorubicin administration affected spontaneous activity in the automated home cage. All cytotoxic agents affected memory (NLR and/or NOR). Spatial memory measured in the Barnes maze was affected after administration with doxorubicin, 5-fluorouracil, and topotecan. Decreased inhibition in the SCRTT was observed after treatment with cyclophosphamide, docetaxel, and topotecan. CONCLUSIONS Our data show that, in mice, a single treatment with a cytotoxic agent causes cognitive impairment. Not all cytotoxic agents affected the same cognitive domains, which might be explained by differences in working mechanisms of the various agents.
Collapse
Affiliation(s)
- R Seigers
- Department of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
8
|
Dubois M, Lapinte N, Villier V, Lecointre C, Roy V, Tonon MC, Gandolfo P, Joly F, Hilber P, Castel H. Chemotherapy-induced long-term alteration of executive functions and hippocampal cell proliferation: Role of glucose as adjuvant. Neuropharmacology 2014; 79:234-48. [DOI: 10.1016/j.neuropharm.2013.11.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 11/18/2013] [Accepted: 11/19/2013] [Indexed: 11/28/2022]
|
9
|
Bisen-Hersh EB, Hineline PN, Walker EA. Effects of early chemotherapeutic treatment on learning in adolescent mice: implications for cognitive impairment and remediation in childhood cancer survivors. Clin Cancer Res 2013; 19:3008-18. [PMID: 23596103 DOI: 10.1158/1078-0432.ccr-12-3764] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE Among children diagnosed with acute lymphoblastic leukemia (ALL) and given chemotherapy-only treatment, 40% to 70% of survivors experience neurocognitive impairment. The present study used a preclinical mouse model to investigate the effects of early exposure to common ALL chemotherapeutics methotrexate (MTX) and cytarabine (Ara-C) on learning and memory. EXPERIMENTAL DESIGN Preweanling mouse pups were treated on postnatal day (PND) 14, 15, and 16 with saline, MTX, Ara-C, or a combination of MTX and Ara-C. Nineteen days after treatment (PND 35), behavioral tasks measuring different aspects of learning and memory were administered. RESULTS Significant impairment in acquisition and retention over both short (1 hour) and long (24 hours) intervals, as measured by autoshaping and novel object recognition tasks, was found following treatment with MTX and Ara-C. Similarly, a novel conditional discrimination task revealed impairment in acquisition for chemotherapy-treated mice. No significant group differences were found following the extensive training component of this task, with impairment following the rapid training component occurring only for the highest MTX and Ara-C combination group. CONCLUSIONS Findings are consistent with those from clinical studies suggesting that childhood cancer survivors are slower at learning new information and primarily exhibit deficits in memory years after successful completion of chemotherapy. The occurrence of mild deficits on a novel conditional discrimination task suggests that chemotherapy-induced cognitive impairment may be ameliorated through extensive training or practice.
Collapse
|
10
|
Recent and remote spatial memory in mice treated with cytosine arabinoside. Pharmacol Biochem Behav 2011; 100:451-7. [PMID: 22020055 DOI: 10.1016/j.pbb.2011.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 09/16/2011] [Accepted: 10/06/2011] [Indexed: 11/21/2022]
Abstract
Clinical studies suggest that chemotherapy is associated with long-term cognitive impairment in some patients. A number of underlying mechanisms have been proposed, however, the etiology of chemotherapy-related cognitive dysfunction remains relatively unknown. As part of a multifaceted approach, animal models of chemotherapy-induced cognitive impairment are being developed. Thus far, the majority of animal studies have utilized a rat model, however, mice may prove particularly beneficial in studying genetic risk factors for developing chemotherapy-induced cognitive impairment. Various chemotherapy agents, including cytosine arabinoside (Ara-C), have been found to impair remote spatial memory in rats in the Morris water maze. The present study evaluated the effects of Ara-C on remote (30 d) spatial memory in mice. In addition, the possibility that time relative to chemotherapy treatment may modulate the effect of chemotherapy on spatial learning and/or recent (1 d) memory was explored. Male C57BL/6J mice received either Ara-C (275 mg/kg i.p. daily for 5 days) or saline. Spatial learning and memory was assessed using the Morris water maze. Half the mice performed a remote (30 d) memory version of the task and the other half performed a recent (1 d) memory version of the task. The experiment was designed such that the probe trial for the recent memory version occurred on the same day relative to chemotherapy treatment as the remote memory version. Despite significant toxic effects as assessed by weight loss, Ara-C treated mice performed as well as control mice during acquisition, recent memory, and remote memory portions of the task. As are some humans, C57BL/6J mice may be resistant to at least some aspects of chemotherapy induced cognitive decline.
Collapse
|
11
|
Fremouw T, Fessler CL, Ferguson RJ, Burguete Y. Preserved learning and memory in mice following chemotherapy: 5-Fluorouracil and doxorubicin single agent treatment, doxorubicin-cyclophosphamide combination treatment. Behav Brain Res 2011; 226:154-62. [PMID: 21930159 DOI: 10.1016/j.bbr.2011.09.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 09/02/2011] [Accepted: 09/07/2011] [Indexed: 02/07/2023]
Abstract
Clinical studies suggest that chemotherapy is associated with long-term cognitive impairment in some patients. A number of underlying mechanisms have been proposed, however, the etiology of chemotherapy-related cognitive dysfunction remains relatively unknown. As part of a multifaceted approach, animal models of chemotherapy induced cognitive impairment are being developed. Thus far, the majority of animal studies have utilized rats, however, mice may prove particularly beneficial in studying genetic risk factors for developing chemotherapy induced cognitive impairment. Thus, C57BL/6J mice were treated once a week for three weeks with saline, doxorubicin and cyclophosphamide (D&C), doxorubicin (Dox), or 5-fluorouracil (5-FU). Recent and remote contextual fear conditioning and novel object recognition (NOR) was assessed. Despite significant toxic effects as assessed by weight loss, the chemotherapy treated mice performed as well as control mice on all task. As are some humans, C57BL/6J mice may be resistant to at least some aspects of chemotherapy induced cognitive decline.
Collapse
Affiliation(s)
- Thane Fremouw
- Department of Psychology, University of Maine, Orono, ME 04469-5742, United States.
| | | | | | | |
Collapse
|
12
|
Bisen-Hersh EB, Hineline PN, Walker EA. Disruption of learning processes by chemotherapeutic agents in childhood survivors of acute lymphoblastic leukemia and preclinical models. J Cancer 2011; 2:292-301. [PMID: 21611110 PMCID: PMC3100681 DOI: 10.7150/jca.2.292] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 05/13/2011] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE With the survival rate of acute lymphoblastic leukemia (ALL) surpassing 90 percent within this decade, new research is emerging in the field of late effects. A review of the research investigating the relationship of treatment regimens for ALL to specific late effect deficits, underlying mechanisms, and possible remediation is warranted to support continued studies. METHODS The clinical literature was briefly surveyed to describe the occurrence and topography of late effects, specifically neurocognitive deficits. Additionally, the preclinical literature was reviewed to uncover potential underlying mechanisms of these deficits. The advantages of using rodent models to answer these questions are outlined, as is an assessment of the limited number of rodent models of childhood cancer treatment. RESULTS The literature supports that childhood survivors of ALL exhibit academic difficulties and are more likely to be placed in a special education program. Behavioral evidence has highlighted impairments in the areas of attention, working memory, and processing speed, leading to a decrease in full scale IQ. Neurophysiological and preclinical evidence for these deficits has implicated white matter abnormalities and acquired brain damage resulting from specific chemotherapeutic agents commonly used during treatment. CONCLUSIONS The exact role of chemotherapeutic agents in learning deficits remains mostly unknown. Recommendations for an improved rodent model of learning deficits in childhood cancer survivors are proposed, along with suggestions for future directions in this area of research, in hopes that forthcoming treatment regimens will reduce or eliminate these types of impairments.
Collapse
Affiliation(s)
- Emily B. Bisen-Hersh
- 1. Neuroscience Program, Temple University, Philadelphia, PA 19122, USA
- 2. Department of Psychology, Temple University, Philadelphia, PA 19122, USA
| | - Philip N. Hineline
- 2. Department of Psychology, Temple University, Philadelphia, PA 19122, USA
| | - Ellen A. Walker
- 1. Neuroscience Program, Temple University, Philadelphia, PA 19122, USA
- 3. Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| |
Collapse
|
13
|
Seigers R, Fardell JE. Neurobiological basis of chemotherapy-induced cognitive impairment: A review of rodent research. Neurosci Biobehav Rev 2011; 35:729-41. [DOI: 10.1016/j.neubiorev.2010.09.006] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 09/15/2010] [Accepted: 09/16/2010] [Indexed: 10/19/2022]
|
14
|
|
15
|
Boyette-Davis JA, Fuchs PN. Differential effects of paclitaxel treatment on cognitive functioning and mechanical sensitivity. Neurosci Lett 2009; 453:170-4. [DOI: 10.1016/j.neulet.2009.02.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 01/29/2009] [Accepted: 02/16/2009] [Indexed: 10/21/2022]
|
16
|
Effects of chemotherapeutic agents 5-fluorouracil and methotrexate alone and combined in a mouse model of learning and memory. Psychopharmacology (Berl) 2008; 199:527-38. [PMID: 18463849 PMCID: PMC3263345 DOI: 10.1007/s00213-008-1175-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 04/15/2008] [Indexed: 01/14/2023]
Abstract
RATIONALE The concern that adjuvant cancer chemotherapy agents cause cognitive impairment in a significant number of patients has been expressed by patients and healthcare providers, but clinical studies have yielded conflicting results to date. OBJECTIVE We directly tested two commonly used chemotherapeutic agents in a mouse model of learning and memory. MATERIALS AND METHODS In the present study, mice were conditioned to respond for a liquid reinforcer (Ensure solution) in the presence of an audible tone on day 1 as a measure of acquisition and were then required to perform the same response on day 2 as a measure of retrieval and retention. Methotrexate and 5-fluorouracil were administered prior to the day 1 session. RESULTS Methotrexate (1.0-32 mg/kg) alone failed to alter mean latency acquisition, retrieval, or reinforced response rates. Similar to scopolamine, a known amnesic in this assay, 5-fluorouracil (3-75 mg/kg) failed to alter response rates or acquisition latency on day 1 but significantly altered latency to retrieve a previously learned response on day 2. In combination, 3.2 mg/kg methotrexate plus 75 mg/kg 5-fluorouracil significantly increased day 1 and day 2 acquisition and retrieval latencies without altering response rates or motivation to respond as measured by progressive ratio responding. CONCLUSION Taken together, these data demonstrate that 5-fluorouracil causes increased latencies for retrieval of previously learned behavioral responses and that combination of chemotherapeutic agents may produce greater delays than either agent alone, including when neither agent alone does so.
Collapse
|
17
|
Borzan J, LaGraize SC, Fuchs PN. Effect of chronic vincristine treatment on mechanical withdrawal response and pre-pulse inhibition in the rat. Neurosci Lett 2004; 364:110-3. [PMID: 15196689 DOI: 10.1016/j.neulet.2004.04.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Revised: 04/02/2004] [Accepted: 04/09/2004] [Indexed: 11/15/2022]
Abstract
Chemotherapeutic agents are associated with a number of serious side-effects. In addition to the development of peripheral neuropathy, patients often complain of additional symptoms related to attentional mechanisms. Although a great deal of interest is directed towards understanding the mechanisms underlying the development of peripheral neuropathy, there is a paucity of research that has examined the extent of impairment of attention in animals receiving chemotherapeutic agents. Therefore, the purpose of this experiment was to examine attentional mechanisms using the method of pre-pulse inhibition in animals that were chronically treated with vincristine. Although vincristine treated animals developed signs of peripheral neuropathy, there was no associated alteration of pre-pulse inhibition relative to vehicle treated animals. These results highlight the importance of continuing to develop methodology to model symptom burden in patients receiving chemotherapy.
Collapse
Affiliation(s)
- Jasenka Borzan
- Department of Psychology, University of Texas, P.O. Box 19528, Arlington, TX 76019, USA
| | | | | |
Collapse
|
18
|
Stock HS, Rosellini RA, Abrahamsen GC, McCaffrey RJ, Ruckdeschel JC. Methotrexate does not interfere with an appetitive Pavlovian conditioning task in Sprague-Dawley rats. Physiol Behav 1995; 58:969-73. [PMID: 8577895 DOI: 10.1016/0031-9384(95)00147-b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
There has been considerable interest in developing an animal model of the neuropsychological toxicity of chemotherapeutic agents used in the treatment of patients with cancer, especially children, since these agents often cause significant, long-term neuropsychological deficits. Yanovski, Packer, Levine, Davidson, Micalizzi, D'Angio (13) recently proposed such a model based on their finding that methotrexate retarded the formation of aversive Pavlovian excitatory associations. The present experiment examined the generality of methotrexate induced cognitive impairments by testing rats in Appetitive Pavlovian Conditioning tasks and a Conditioned Taste Aversion paradigm. The results of our study revealed no impairment following methotrexate exposure on the Appetitive Pavlovian tasks or on the Taste Aversion task, relative to two control conditions. While there were a number of methodological differences between the present experiment and those conducted by Yanovski et al. (13), the present results question the robustness and generality of Yanovski's et al. (13) animal model.
Collapse
Affiliation(s)
- H S Stock
- University at Albany, State University of New York 12222, USA
| | | | | | | | | |
Collapse
|